
Efficiently Identifying Pareto Solutions
when Objective Values Change

Jonathan E. Fieldsend
∗

Computer Science
University of Exeter, UK

J.E.Fieldsend@exeter.ac.uk

Richard M. Everson
Computer Science

University of Exeter, UK
R.M.Everson@exeter.ac.uk

ABSTRACT
In many multi-objective problems the objective values as-
signed to a particular design can change during the course
of an optimisation. This may be due to dynamic changes
in the problem itself, or updates to estimated objectives
in noisy problems. In these situations, designs which are
non-dominated at one time step may become dominated
later not just because a new and better solution has been
found, but because the existing solution’s performance has
degraded. Likewise, a dominated solution may later be iden-
tified as non-dominated because its objectives have com-
paratively improved. We propose management algorithms
based on recording single “guardian dominators” for each so-
lution which allow rapid discovery and updating of the non-
dominated subset of solutions evaluated by an optimiser.
We examine the computational complexity of our proposed
approach, and compare the performance of different ways of
selecting the guardian dominators.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and networks; G.1.6
[Mathematics of Computing]: Numerical Analysis—Op-
timization, Global optimization

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Multi-objective optimisation, dynamic problems, uncertainty

1. INTRODUCTION
A typical assumption when performing an optimisation

is that the evaluation of a solution does not vary unless
the solution itself is modified. A number of data structures

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598279.

exist for efficiently maintaining and querying sets of multi-
objective solutions in this situation (see [1] for a recent re-
view). In the worst case, the number of domination com-
parisons required before a solution can be classified as non-
dominated is equal to the size of the current non-dominated
set. However, this assumes that a domination relationship
between two solutions at time t will persist at all future
time steps. If this does not hold it becomes necessary to
track dominated as well as non-dominated solutions as the
search progresses if we want to guarantee access at a par-
ticular time step to the best estimate of the non-dominated
subset of solutions visited by an optimiser. How to efficiently
maintain an elite archive when the assigned objectives are
susceptible to change has not been widely addressed in the
literature. We present here data structures and algorithms
to facilitate the efficient identification of the non-dominated
subset of solutions, when the assigned objectives to previ-
ously evaluated solutions may vary over time. This work is
based on our recent technical report [5].

Assigned objectives may vary in a number of circumstances.
In dynamic optimisation problems the problem itself changes
over time, meaning that the objective vectors of all solutions
evaluated at any time may vary if reassessed at a later time
[10]. In noisy problems repeated evaluation of the same solu-
tion leads to different values for the objectives [8, 7]. Finally,
an objective evaluation may be updated or refined at some
later point due to the receipt of new information [4]. In all
these cases, the objective vector y associated with the de-
sign vector x at some time t, may not be the same as the
objective vector associated with x at t+ 1.

We now briefly review the ideas of dominance and Pareto
optimality in Section 2 before discussing in Section 3 the
computational complexity of managing a set where at each
time step a previously evaluated solution may have its ob-
jectives changed, or a brand new solution may be evaluated.
We introduce a data structure and algorithms to efficiently
maintain the set of evaluated solutions and identify the non-
dominated subset in Section 4. In Section 5 we provide
empirical assessments of different algorithms. The paper
concludes with a discussion in Section 6.

2. MULTI-OBJECTIVE OPTIMISATION
In multi-objective optimisation problems the optimiser

seeks to simultaneously extremise D objectives, fd(x), d =
1, . . . , D, where each objective depends upon an L-dimensional
solution vector x of parameters or design variables. The
parameters may also be subject to equality and inequality
constraints which, for simplicity, we assume can be evalu-

O
b

je
ct

iv
e

2

Objective 1a)

yt+1
chg

yt
chg O

b
je

ct
iv

e
2

Objective 1b)

yt+1
new

Figure 1: Two possible transitions from Y t to Y t+1.
a: a single member of Y t has had its value shifted
from yt

chg to yt+1
chg . b: a new solution has been

evaluated with objective vector yt+1
new.

ated precisely. When the objectives are to be minimised the
multi-objective optimisation problem may be expressed as:
minimse y = f(x) = (f1(x), . . . , fD(x)) with x ∈ X ⊆ RL.
The feasible domain X is defined by any design constraints.
When there is more than one objective to be minimised,
solutions may exist for which performance on one objec-
tive cannot be improved without reducing performance on
at least one other. Such solutions are Pareto optimal.

The notion of dominance may be used to make Pareto op-
timality clearer. Assuming, without loss of generality, that
the goal is to minimise the objectives, and given two ob-
jective vectors, v and u, then u is said to dominate v iff
ud ≤ vd, ∀d = 1, . . . , D and u 6= v. This is denoted as
u ≺ v.1 Furthermore, we denote by U ≺ v the situation
where at least one member of the set U dominates v. A set
of objective vectors is said to be a mutually non-dominating
set if no member of the set is dominated by any other mem-
ber. A solution to a multi-objective optimisation problem
is thus Pareto optimal if it is not dominated by any other
feasible solution. The set of all Pareto optimal solutions
is the Pareto set, and its image in objective space is the
Pareto front. We denote the estimated Pareto front (the
non-dominated subset of objective vectors associated with
the solutions evaluated by an optimiser) by E.

Here we address problems in which the objectives asso-
ciated with a solution may vary from one time step to the
next. As such we effectively have a solution whose associated
objective vector y is dependent on the time t at which it is
evaluated; we indicate this with yt. We denote by Y t the
set of all objective vectors that have been evaluated at time
t. An illustration is provided in Figure 1. In the left panel a
single member yt

chg of Y t has a new objective value at time

t + 1, namely yt+1
chg . This new objective value is associated

with the same solution as yt
chg. Also in this illustration all

other yi ∈ Y t, i 6= chg are unaltered so that yt
i = yt+1

i , and
|Y t| = |Y t+1|. In the right panel a new solution has been
evaluated, resulting in yt+1

new, meaning that |Y t+1| = |Y t|+1.

3. UPDATING ON A SINGLE TIME STEP
Consider a general set Y t. At time t+1 either a single so-

lution has had its associated objective vector in Y t changed

1As we are only concerned with the objective space represen-
tation of solutions here, we restrict our dominance notation
to this space.

or a new solution has been evaluated for the first time, which
is added to Y t to form Y t+1. In a situation where more than
one member of Y t has its value changed or there is more than
a single new solution added to Y t, each individual modifica-
tion to the set may be viewed as a distinct time step and the
order these are processed is immaterial to the final states of
the solutions and the elite set.

The non dominated members Et of Y t may be selected
via the nondom function defined below:

A = nondom(Z) = {z ∈ Z | @v ∈ Z,v ≺ z}. (1)

The estimated Pareto front at time t may therefore be iden-
tified as Et = nondom(Y t). Et is also known as the elite
set or archive. It is also useful to define a function which
returns the subset of a population whose members dominate
an objective vector u:

B = dom_members(u, Z) = {z ∈ Z | z ≺ u}. (2)

If vt ∈ Y t and dom_members(vt, Y t) = ∅, then vt ∈ Et.
Conversely if dom_members(vt, Y t) 6= ∅, then vt /∈ Et. Et

may thus be alternatively defined as:

Et = {yt ∈ Y t | dom_members(yt, Y t) = ∅}. (3)

This may seem a slightly convoluted route to defining the
non-dominated set, however it is a useful formulation for
determining which solutions need to be compared to Et for
possible entry into Et+1

3.1 Changing a dominated member of Y t

Consider the effect of changing the objective vector of a
dominated member of Y t, yt

chg. If yt
chg 6∈ Et, then the

change to yt+1
chg (from yt

chg) means that it should now enter

Et+1 if dom_members(yt+1, Et) = ∅. However, there are no
other members of Y t+1 that can enter Et+1 as a result of the
movement of yt

chg to yt+1
chg , because if they were dominated

by members of Et, they will still be dominated by the same
members at t + 1. That is, because yt

chg /∈ Et, then there

is at least one et ∈ Et which dominates yt
chg. At time

t+ 1 this et therefore also dominates all solutions that yt
chg

dominated at time t.
Existing members of Et will require removal from Et+1

if they are dominated by yt+1
chg , so if yt+1

chg enters Et+1, then

each et
i ∈ Et should be compared to yt+1

chg , and if yt+1
chg ≺ et

i

then et
i cannot be a member of Et+1. As long as the domi-

nation comparison results are stored when yt+1
chg is compared

to Et for entry into Et+1, this stage will not require any
additional domination calculations. Consequently a maxi-
mum of |Et| domination comparisons are required when the
objective vector of a dominated member of Y t is changed.

3.2 Changing a non-dominated member of Y t

If prior to varying its objective values yt
chg ∈ Et, then

its change in location may mean it should not be in Et+1.
However, even if it does enter Et+1, as illustrated in Figure
1a, solutions in Y t that it dominated may enter Et+1 be-
cause the change in location to yt+1

chg from yt
chg may mean

solutions in Y t that were previously dominated by yt
chg are

no longer dominated in Y t+1.
If dom_members(yt+1

chg , E
t) = ∅, then yt+1

chg will enter Et+1;

otherwise it will be excluded and Et+1 is initially set as

Et \ {yt
chg}. If yt+1

chg does enter Et+1, then all other et
i ∈ Et

must be assessed to discover whether they are dominated by
yt+1
chg . If yt+1

chg ≺ et
i, then et

i will not be a member of Et+1.

The members yt
i of Y t which are dominated by yt

chg need to

be compared to yt+1
chg only if they are dominated exclusively

by yt
chg at time t; that is dom_members(yt

i , Y
t) = {yt

chg}.
This is because if a yt

i is dominated by members of Y t other
than yt

chg, then it will still be dominated by them at t + 1
since these members are unchanged.

We denote by K the number of solutions in Y t which are
dominated exclusively by yt

chg. In practise K is typically
small (often zero); in order to be exclusively dominated by
a single member of Y t it is necessary (but not sufficient) for
a solution to lie in the level 2 Pareto shell, namely those
solutions that are non-dominated in the set Y t \Et (see [2]).

In the worst case |Et| + K − 1 domination comparisons
are required before the membership of Et+1 is determined.
That is, yt+1

chg will, at worst, need to be compared with all

members of Et bar itself (|Et| − 1 comparisons) and the
K solutions dominated only by yt

chg must be compared to

yt+1
chg , requiring K domination comparisons. If a solution is

not dominated by yt+1
chg it may enter Et + 1 directly without

any other domination comparisons required because if yt
chg

was the only dominating member in Y t, then by definition
no other members of Et can dominate it. This comparison
may also result in yt+1

chg being removed from Et+1.

3.3 Evaluating a new location
Finally, a completely new location, yt+1

new, may be sug-
gested due to evaluation of a new solution. In this case
determination of membership of Et+1 is made by domina-
tion comparison of this proposal with the members of Et.
From this we can see the computational complexity of deter-
mining the elite set of solutions when adding a new location
into Y t+1 is in the worst case |Et| domination comparisons.

3.4 Multiple sequential updates
The cost of determining the elite set Et+1 of Y t+1 from

a single changed member of Y t, when all domination re-
lations between members of Y t have been recorded, is the
sum of two components: |Et| domination comparisons plus
an additional K − 1 domination comparisons when Y t

chg is
non-dominated. This complexity depends on the dominance
relations between elements of Y t being stored, which in itself
is computationally expensive.

However, even if all the domination relations between
members of Y t are stored and the |Et| or |Et|+K−1 domina-
tion comparisons necessary to determine the elite set Et+1

when a member of Y t is changed are computed, this fails
to update all the domination relations between elements of
Y t+1. In particular, the domination relations between ele-
ments of Y t which are dominated by more than one element
of Y t are not updated. For instance, the updating scheme
described in Section 3.3 relies on knowing which members of
Y t a solution is dominated by. We also need to compare a
new solution yt+1

new against Y t\Et to keep track of this infor-
mation. Specifically, if yt+1

new enters Et+1, then the members
of Y t that it dominates will need to be identified (requiring
at worst |Y t+1 \ Et+1| domination comparisons). If yt+1

new is
dominated by Et, then we can utilise the observation that
yt+1
new can at most dominate the subset of Y t+1 which is dom-

inated by every member of dom_members (yt+1
new, E

t+1), but
in the worst case this too is also Y t+1 \ Et+1.

We think of two solutions being linked if one dominates
the other. Maintaining all domination links between mem-
bers of Y t as new solutions enter and existing solutions
change is exorbitant for any |Y t| larger than a modest size.
As such, it is impractical to use the approach outlined in
Section 3 directly. However, efficient updates are possible
by recording the information for just a single solution that
dominates each member of Y t \ Et. The storage require-
ment of O(|Y t|) is vastly reduced in comparison with the
O(|Y t|2) needed to store all links, and the computational
cost of maintaining these single links is also far superior to
maintaining all domination links. We will now outline this
proposed approach.

4. GUARDIAN DOMINATORS
Instead of keeping track of all domination relations be-

tween members of Y t, here we suggest that for each member
yt
i of Y t \Et a single other solution in Y t is recorded which

dominates it: its guardian dominator. As we show below,
tracking these links as search progresses is computationally
inexpensive, and permits Y t and Et to be cheaply updated.

The guardian dominator of the ith member of Y t is la-
belled yt,?

i for convenience (therefore yt,?
i ≺ yt

i). By defini-
tion there is no solution in Y t which dominates any mem-
bers of Et, and as such the elements of Et are not assigned
guardian dominators. Figure 2 illustrates the ways in which
these single relationships are maintained for D = 2 objec-
tives. Figure 2b shows the 43 domination relationships be-
tween the 14 solutions plotted in Figure 2a; domination links
are shown as edges between each dominating and dominated
solution. Figure 2c shows the same set, but with only domi-
nation links between members of Y t \Et and their guardian
dominators, which are selected from Et, making 10 edges
in total as |Y t \ Et| = 10. Figure 2d again shows Y t, but
this time with the yt,?

i selected arbitrarily from the set of all
potential candidates, not just those in Et, which again re-
sults in 10 edges. Finally, Figure 2e shows the links between
each element of Y t \Et and their guardian dominator, with
the yt,?

i assigned as the closest dominating member of Y t.
Here we have used the Euclidean distance to determine the
proximity of solutions, but other distance measures might
be more useful in other situations.

As can be seen in Figure 2, a substantial number of domi-
nation relations can exist between the elements of a general
set of data. The minimum number is |Y t \ Et|, which cor-
responds to each element of Y t \ Et being dominated by a
single element of Et; that is, there are two Pareto shells, with
each element of Et dominating non-intersecting subsets of

the second shell. The maximum is
(|Y t|

2

)
, which corresponds

to the situation where the number of Pareto shells equals the
number of elements in Y t so that the element forming the
first shell dominates |Y t|−1 solutions, the next shell element
dominates |Y t| − 2 solutions, and so on.

The minimum number of guardian dominators and corre-
sponding domination links needed for a set Y t is |Y t \ Et|,
because each member of Y t\Et must be assigned a guardian.

On inspection of Figures 2d-e, it can be seen that if the
guardian dominator yt,?

i of an element yt
i is itself dominated,

then there is a chain of domination links which eventually
reaches a member of Et. This is inevitable, because all el-

O
b

je
ct

iv
e

2

Objective 1a)

O
b

je
ct

iv
e

2

Objective 1b)

O
b

je
ct

iv
e

2

Objective 1c)

O
b

je
ct

iv
e

2

Objective 1d)

O
b

je
ct

iv
e

2

Objective 1e)

Figure 2: a: Graph representations of a general set of 14 solutions, plotted via their objective values in Y t. b:
All domination relations between solutions shown via edges. c: Single domination relation edge plotted per
solution, only members of Et selected as guardian dominators. d: Single domination relation edge shown per
solution, guardian dominator selected arbitrarily from valid candidates in Y t. e: Single domination relation
edge shown per solution, closest dominating member selected as guardian dominator.

Algorithm 1 Methods for determining Et+1 and for assigning guardian dominator when a new solution is generated. Best
case and worst case domination comparisons required are indicated at the right using B and W respectively. Best case varies
for options 2.1-2.4 depending on whether option 1.1 is selected or options 1.2-1.3 to obtain et

dom. It is possible to combine
this approach with data structures suggested in [1] to reduce the number of domination comparisons required for line 2.

1: if Et ⊀ yt+1
new then New solution yt+1

new is not dominated by any element of Et

2: Et+1 := Et ∪ {yt+1
new}; Et+1 := Et+1 \ {et ∈ Et |yt+1

new ≺ et} Ensure Et+1 is a non-dominated set
3: Assign yt+1

new as guardian dominator for {et ∈ Et |yt+1
new ≺ et} B =W = |Et|

4: else New solution yt+1
new is dominated by an element of Et

5: Et+1 := Et

6: option 1.1: et+1
dom := the first element in Et+1 which dominates yt+1

new

7: option 1.2: et+1
dom := the closest element in Et+1 which dominates yt+1

new

8: option 1.3: et+1
dom := as the element in Et+1 which dominates yt+1

new and which guards the fewest others
9: option 2.1: yt+1,?

new := et+1
dom B = 1 or |Et|, W = |Et|

10: option 2.2: yt+1,?
new := the first dominating element of Y t

dom ∪ {et+1
dom} B = 1 or |Et|+ 1, W = |Et ∪ Y t

dom|
11: option 2.3: yt+1,?

new := the closest dominating element of Y t
dom ∪ {et+1

dom} B = |Y t
dom|+ 1 or B =W = |Et ∪ Y t

dom|
12: option 2.4: yt+1,?

new := the dominating element of Y t
dom ∪ {et+1

dom} which guards the fewest B & W as option 2.3
13: end if

ements of Y t have a dominating member associated with
them except the members of Et themselves. As such all
chains must end with an Et solution. Chains may join to-
gether as they approach Et, but it is impossible for a dom-
inated solution not to have a direct sequence to one of the
elements of Et via the guardian dominator links. This prop-
erty is extremely useful, and we exploit it in our proposed
approach for maintaining Y t and identifying Et. We denote
the subset of Y t for which yt

i acts as the guardian domina-
tor by Y t

i . Note that yt
i may not be the only element in Y t

which dominates members of Y t
i , it is merely the dominator

that is recorded.

4.1 Selecting and updating guardians
At first sight it appears desirable to minimise the number

of solutions for which any solution is the guardian domina-
tor; that is to prefer arrangements like Figure 2d and 2e to
Figure 2c. This sort of configuration minimises the number
of domination comparisons that must be made if a guardian
itself is changed. However, to achieve this more domina-
tion comparisons are required than, for example, assigning
the first solution dominating yt+1 to be yt+1,? the guardian
dominator of yt+1. We suggest a number of different meth-
ods for selecting and updating guardian dominators in Al-
gorithms 1 and 2 which span the range of low domination
cost for assigning guardians, but potentially high domina-
tion cost when elements of Y t are changed, through to higher

domination cost for guardian assignment, but fewer domi-
nation comparisons when a solution is changed. It should be
noted that it is generally impossible to ensure |Y t

i | ≤ 1 for all
members of Y t, because if there are more solutions in Pareto
shell 2 than shell 1, then some members of Et will inevitably
be the guardian dominator for more than one element of Y t.

Algorithm 1 presents the options we consider when a new
solution yt+1

new is evaluated at time t + 1. If it is not domi-
nated by the non-dominated subset of Y t (line 1) then it is
added to Et+1, and any members of Et which yt+1

new dom-
inates are assigned yt+1

new as their guardian dominator. On
the other hand, if yt+1

new is dominated, we consider a number
of options to assign its guardian. First, one of the mem-
bers of Et which dominates yt+1

new must be selected (options
1.1-1.3), and labelled as et+1

dom. Computationally the quick-
est option is to assign yt+1,?

new as the first element found in
Et which dominates yt+1

new (lines 6 & 9). At worst this re-
quires Et domination comparisons, but in the best case just
a single domination comparison is required. However, this
approach may result in non-dominated members of Y t being
the guardian dominators for many solutions (c.f. Figure 2c),
so that many comparisons are required should the value of
one of these guardians change later.

The idea underlying option 2.2 is to promote longer chains
of domination links by assigning a guardian dominator from
solutions that are not in the elite archive. Rather than
searching through all Y t+1, a greedy assignment is made.

Algorithm 2 Methods for determining Et+1 when objective values of a member of Y t change, and for assigning/updating
guardian dominators. Best and worst case domination comparisons required are indicated using B and W.

1: if yt
chg ∈ Et then Non-dominated solution being changed

2: if {Et ∪ Y t
chg \ {yt

chg}} ⊀ yt+1
chg then Changed solution is still non-dominated

3: U = {et ∈ Et|yt+1
chg ≺ et} Identify dominated members of previous elite set

4: Et+1 = {yt+1
chg } ∪ E

t \ U
5: Set yt+1

chg as guardian dominator for all elements in U B =W = |Et ∪ Y t
chg| − 1

6: else changed solution is now dominated
7: Et+1 = Et \ {yt

chg}
8: option 3.1: yt+1,?

chg := first dominating element of Et ∪ Y t
chg B = 1,W = |Et ∪ Y t

chg|
9: option 3.2: yt+1,?

chg := closest dominating element of Et ∪ Y t
chg B =W = |Et ∪ Y t

chg|
10: option 3.3: yt+1,?

chg := dominating element of Et ∪ Y t
chg which guards the fewest B =W = |Et ∪ Y t

chg|
11: end if
12: for each yt

i ∈ Y t
chg do Check all solutions that yt

chg was a guardian dominator for

13: if {Et+1 ∪ Y t
chg} ⊀ yt

i then Previously dominated solution is now non-dominated

14: Et+1 := Et+1 ∪ {yt
i} W = |Et+1 ∪ Y t

chg|
15: else
16: option 4.1: if yt+1

chg ≺ yt
i then yt+1,?

i := yt+1
chg , else assign first dominating element of Et+1 B = 1,W = |Et+1|

17: option 4.2: yt+1,?
i := first dominating element of S = Y t

chg ∪ {yt+1
chg } ∪ E

t+1 B = 1,W = |S|
18: option 4.3: yt+1,?

i := closest dominating element of S = Y t
chg ∪ {yt+1

chg } ∪ E
t+1 B =W = |S|

19: option 4.4: yt+1,?
i := dominating element of S = Y t

chg ∪ {yt+1
chg } ∪E

t+1 which guards the fewest B =W = |S|
20: end if
21: end for
22: else Dominated solution being changed
23: if Et ⊀ yt+1

chg then Changed solution is now non-dominated

24: U = {et ∈ Et|yt+1
chg ≺ et} Identify dominated members of previous elite set

25: Set yt+1
chg as the guardian dominator for all elements in U

26: Et+1 = {yt+1
chg } ∪ E

t \ U W = |Et|
27: else Changed solution is still dominated
28: Et+1 := Et B = 1,W = |Et|
29: option 5.1: yt+1,?

chg := first dominating element of yt,?
chg ∪ E

t+1 B = 1,W = |Et+1|+ 1

30: option 5.2: yt+1,?
chg := first dominating element of S = Y t

chg ∪ yt,?
chg ∪ E

t+1 B = 1,W = |S|
31: option 5.3: yt+1,?

chg := closest dominating element of S = Y t
chg ∪ yt,?

chg ∪ E
t+1 B =W = |S|

32: option 5.4: yt+1,?
chg := dominating element of S = Y t

chg ∪ yt,?
chg ∪ E

t+1 which guards the fewest B =W = |S|
33: end if
34: for each yt

i ∈ Y t
chg do Check all solutions that yt

chg was a guardian dominator for

35: option 6.1: if yt+1
chg ≺ yt

i then yt+1,?
i := yt+1

chg , else yt+1,?
i := yt,?

chg B =W = 1

36: option 6.2: yt+1,?
i := first dominating element of S = Y t

chg ∪ {yt+1
chg } ∪ {y

t,?
chg} B = 1,W = |S|

37: option 6.3: yt+1,?
i := closest dominating element of S = Y t

chg ∪ {yt+1
chg } ∪ {y

t,?
chg} ∪ E

t+1 B =W = |S|
38: option 6.4: yt+1,?

i := dom’ing element of S = Y t
chg∪{yt+1

chg }∪{y
t,?
chg}∪E

t+1 which guards the fewest B =W = |S|
39: end for
40: end if

yt+1,?
new is taken as the first element of Y t which has as a

guardian the selected member of the elite archive which
dominates yt+1

new. Specifically yt+1,?
new is assigned to be the

first element in Y t
dom ∪ {et+1

dom} which dominates yt+1
new.

Extending the idea of promoting long chains of domina-
tion links, in option 2.3 we seek to attach a changed element
to an existing chain at a location distant from Et. The
new guardian is then chosen to be the closest (using the Eu-
clidean metric) dominating member of the subset of Y t for
which et+1

dom was the guardian, namely Y t
dom. Choosing the

closest ensures that the guardian cannot dominate any of
the valid alternatives in Y t

dom ∪ {et+1
dom}.

Finally, in option 2.4, the dominating member of Y t
dom ∪

{et+1
dom} which is the currently guardian dominator for the

fewest elements of Y t is selected as yt+1,?
new . This attempts to

reduce the total number of domination links from a solution,
but does not ensure that the selected guardian is at the end
of a chain in Y t

dom ∪ {et+1
dom}. Option combination 1.1 and

2.1 has the lowest best case cost, but is less effective at
generating long chains. Options 2.2-2.4 require the same
number of domination comparisons.

Algorithm 2 presents the options we consider when an ex-
isting solution yt

chg is changed at time t + 1. If yt
chg ∈ Et

then the fact that yt+1
chg is not dominated by any element

of Et is insufficient to determine whether yt+1
chg should enter

Et+1 because it may have moved to a position where it is
dominated by a solution that it dominated at time t. There-
fore it must also be compared to the elements of Y t

chg to de-

termine whether it belongs to Et+1. If it is not dominated
by any elements of Y t

chg, it joins Et+1, and any elements

of Et which it now dominates do not enter Et+1 and are
assigned yt+1

chg as their guardian dominator. If it does not

enter Et+1 then we consider three options for assigning its
guardian yt+1,?

chg . The first (line 8) assigns the first element

of Et ∪ Y t
chg found which dominates it, the second selects

the Euclidean closest from the same set, and the third se-
lects the dominating member from the set which currently
guards the fewest members of Y t.

Irrespective of the assignment of yt+1
chg , the solutions for

which it was guardian dominator must now be checked to
discover whether they are in Et+1. If they are not elite,
then we examine four options for assigning their guardian
dominator. In the first option (line 16) yt+1

chg remains the
guardian if its changed position still dominates the solution,
otherwise the first dominating member of Et+1 is selected.
The other options use Y t

chg ∪{yt+1
chg }∪E

t+1, selecting either
the first dominating member identified, the closest dominat-
ing member, or the dominating member guarding the fewest.

In the situation where yt
chg /∈ Et, yt+1

chg only needs to be

compared to Et to determine if it is non-dominated or not.
The options we consider for guardian dominator assignment
to yt+1

chg if it is dominated are: yt,?
chg if it still dominates,

otherwise the first dominating from Et; the first dominat-
ing element of Y t

chg ∪ {yt,?
chg} ∪E

t+1; the closest dominating
member of this set; or the dominating member guarding the
fewest. As in the earlier case, the guardian dominators for
the elements of Y t

chg may also need to be reassigned. In

the first option yt+1
chg is kept as guardian dominator if its

changed position still dominates the solution, if not the pre-
vious guardian dominator of yt+1

chg itself is selected, as this

must dominate all members of Y t
chg. The next three op-

tions use Y t
chg ∪ {yt+1

chg } ∪ {y
t,?
chg} ∪ E

t+1, the first selecting
the first dominating member identified, the second selecting
the closest dominating member, and the last selecting the
dominating member which guards the fewest in Y t.

5. EMPIRICAL ANALYSIS
Although we give the worst case numbers of domination

comparisons needed for the different updating options, many
of them are determined by the size of Y t

chg, which is de-
termined by the particular problem being optimised and
how guardians were chosen earlier. We therefore illustrate
how these various methods perform on synthetic data which
is generated to mimic the behaviour of different conver-
gence/search types, and on a running optimiser. We follow
a general procedure in which, at alternate time steps, either
the objective vector for an existing member of Y t is changed
or a new location yt+1

new is added.
In the simulation, for each member of Y t we store an

underlying ‘true’ objective location, which is never observed
directly. Instead, an evaluation of a solution results in a
noisy version of the true objective vector obtained by adding
Gaussian noise. The y of a solution is the mean of the noisy
objective vector samples taken thus far. This mimics the
refinement of objectives in noisy optimisation (see e.g. [9,
6]). We model the iterative generating process of Y t in four
distinct ways, based on two solution generation models, and
two selection models. These mimic both how an optimiser

may progress over time, and how there may be bias in the
solution selected for changing.

For solution generation the two regimes are:

1. The underlying ‘true’ objective locations of new solu-
tions are drawn at random from a unit variance Gaus-
sian. This emulates a search problem where the ob-
jective vector of a new solution bears little relation
to fitness of the best members evaluated thus far (the
likely parents), or one that is already well-converged
and therefore rarely finds a better solution.

2. The underlying ‘true’ objective locations of new solu-
tions are set as a perturbed value close to the ‘true’
objective vector of a randomly selected member of Et

(perturbed by additive multivariate isotropic Gaussian
noise with σmut = 0.25). This simulates a search where
the evolved solutions are in the general region of ob-
jective space as previously discovered good solutions.

For selecting which yt to vary at a time step:

1. yt
chg is selected at random from Y t. Any solution may

have its objective vector changed.

2. yt
chg is selected at random from Et. Only estimated

Pareto solutions have their objective vector changed.

Combining a solution generation procedure with a selec-
tion procedure creates four distinct simulations. S1: random
new solutions, random changed solutions; S2: random new
solutions, random elite changed solutions; S3: new solutions
in vicinity of Et, random changed solutions; S4: new solu-
tions in vicinity of Et, random elite changed solutions.

We initialised Y 1 with a single location in objective space,
whose true objective vector is 0, which is perturbed by addi-
tive multivariate isotropic Gaussian noise with σnoise = 0.1.
The simulations reported here used two objectives and were
run for 100,000 time steps. We use the option configurations
detailed in Table 1, which cover a wide range of the methods
described in Algorithms 1 and 2.

Figure 3 shows how key measures of complexity develop
using the different methods of guardian selection on the sim-
ulations as |Y t| increases. The top row shows the cumulative
moving average size of selected Y t

chg, averaged over 50 runs.

This is recorded every time step where a member of Y t is
changed (and therefore a Y t

chg was used). The middle row
shows the (cumulative) mean number of domination compar-
isons required at each time step to identify Et. Finally, the
bottom row shows the ratio between the number of domina-
tion comparisons required, and the size of Et, thus allowing
us to discount the effect of different elite population sizes in
the different simulations. A few key points may be observed.
Although the methods which compare fewer solutions when
assigning a guardian dominator to new locations (C1−3) tend
to require fewer domination comparisons on some simula-
tions (notably S1 and S3), these methods require orders of
magnitude more domination comparisons on S2 (randomly
chosen new solutions and randomly chosen elite changed so-
lutions). This is because the elite members tend to act as
the guardian dominators for many members of Y t, compared
with the other methods, and these heavily-loaded elements
are also changed relatively frequently. Therefore, this com-
bination of methods appears to be a poor choice when an
algorithm is only advancing its Pareto front estimate slowly,

Label Option combinations Description of guardian assignment

C1 1.1, 2.1, 3.1, 4.1, 5.1, 6.1 Assigns first dominating to yt+1
new, and first dominating to yt+1

chg

C2 1.2, 2.1, 3.1, 4.1, 5.1, 6.1 Assigns closest elite to yt+1
new, and first dominating to yt+1

chg

C3 1.3, 2.1, 3.1, 4.1, 5.1, 6.1 Assigns dominating elite which guards fewest to yt+1
new, and first dominating to yt+1

chg

C4 1.1, 2.2, 3.1, 4.2, 5.2, 6.2 Assigns first dominating found – always searching through Y t
chg first for yt+1

chg

C5 1.2, 2.3, 3.2, 4.3, 5.3, 6.3 Assigns closest dominating solution from comparison sets

C6 1.3, 2.4, 3.3, 4.4, 5.4, 6.4 Assigns dominating solution with fewest guarded solutions from comparison sets

Table 1: Methods combinations tested empirically. Options refer to Algorithms 1 and 2.

C1 C2 C3 C4 C5 C6

10
-1

10
0

10
1

10
2

10
3

|Y
ch

g

t
|

10
0

10
1

10
2

10
3

C
o
m

p
a

ri
so

n
s

0 5 10

x 10
4

0

5

10

R
a
ti
o

t
0 5 10

x 10
4t

0 5 10

x 10
4t

0 5 10

x 10
4t

0 5 10

x 10
4t

0 5 10

x 10
4t

Figure 3: Growth of |Y t
chg| and number of domination comparisons using different guardian selection methods.

Top row (log scale): |Y t
chg|. Middle row (log scale) number of domination comparisons. Bottom row: ratio of

number of dominations to elite archive size. Each panel shows the cumulative moving average over 100,000
time steps, averaged over 50 runs. Circles denote simulation S1, triangles: S2, crosses: S3 and stars: S4.

and where there is a bias towards changing elite solutions.
Across the simulation types, the combination C4 appears to
give the best overall performance, having a slightly worse
ratio on simulation S1, than C1−3, but a vastly better ratio
on S2, and on all simulations the average number of com-
parisons per time step required is 0.5-3 times |Et|.

In detail, C4 behaves as follows. If a new proposal is
dominated it selects the guardian from the set of solutions
guarded by the first member in Et which dominates yt+1

new.
If an existing elite member is changed and moved to a dom-
inated location, its guardian is selected as the first dominat-
ing member of Et ∪ Y t

chg. The new guardian of each Y t
chg

element in this case is selected as the first dominating mem-
ber of Y t

chg ∪ {yt+1
chg } ∪ E

t+1 (otherwise, the element enters

Et+1). If a dominated member of Y t is moved to a non-
dominated location, it is set as the guardian for any newly
dominated elements Et. If instead it moves to another still
dominated location, its guardian dominator is kept the same
(if it still dominates) or replaced with the first dominating
member of Et+1 identified. All elements of Y t+1 for which
yt
chg was guardian are compared to each other, the new lo-

cation of the changed solution, yt+1
chg , and the location of the

guardian dominator of yt
chg (yt,?

chg). The first dominating el-
ement of this set is assigned as the guardian dominator for
each previously guarded solution.

We also examined the effect of the methods in a simple
multi-objective optimiser, applied to two of the DTLZ test
problems [3], where objective values are subject to change.
We use two and three objective versions of DTLZ1, which
has multiple deceptive fronts, the majority of which are dis-
tant from the Pareto front, and DTLZ2, where random solu-
tions are in the general vicinity of the Pareto front. We chose
these two as they nicely span a range of expected popula-
tion behaviours. We modified the DTLZ problems so that
isotropic Gaussian noise with σ = 0.1 contaminated the ob-
jectives. The problems were optimised with a (|Et| + 1)-
Evolution Strategy (ES), in which at each iteration (time
step) a member of Et was selected at random. This mem-
ber was either mutated on a single design parameter (using
Gaussian mutation with σ = 0.1), creating yt+1

new, or reevalu-
ated to update its mean objective vector estimate, resulting
in yt+1

chg , using an accumulative resampling approach to im-
prove the objective estimate [9, 6].

Figure 4 shows the empirical results of using the different
methods to identify Et for this optimiser. Note that the elite
archives Et identified by each method are identical, as is the
ES’s behaviour (when started with the same random number
generator seed). We are concerned solely with the cost of
finding Et at each time step. As with the synthetic data, we
average results over 50 different runs for each method com-
bination. Again, combination C4 is the best choice, having

C1 C2 C3 C4 C5 C6

10
0

10
1

|Y
ch

g

t
|

10
1

10
2

10
3

C
o
m

p
a
ri
so

n
s

0 5 10

x 10
4

0

1

2

3

4

5

t

R
a
ti
o

0 5 10

x 10
4t

0 5 10

x 10
4t

0 5 10

x 10
4t

0 5 10

x 10
4t

0 5 10

x 10
4t

Figure 4: Growth of |Y t
chg| and number of domination comparisons using different guardian selection methods

for noisy DTLZ problems. Top row (log scale): |Y t
chg|. Middle row (log scale) number of domination compar-

isons. Bottom row: ratio of number of dominations to elite archive size. Each panel shows the cumulative
moving average over 100,000 time steps, averaged over 50 runs. Circles: DTLZ1, D = 2. Triangles: DTLZ1,
D = 3. Crosses: DTLZ2, D = 2. Stars: DTLZ2, D = 3.

better or equivalent comparison costs across problems, with
the average number of comparison requires ranging from 1
to 2.2 times |Et|.

6. DISCUSSION
This paper has presented a new method for rapidly discov-

ering the non-dominated elite sets in evolving populations,
considering both when new solutions are added to the pop-
ulation and when the objective values of solutions change
during the optimisation. This latter case is particularly im-
portant for dynamic and noisy optimisation. The method
relies on the assignment of a guardian dominator to every
non-elite solution. Although a full average case complexity
analysis is not available because it depends on the nature
of the set being tracked, we show that guardian dominators
can allow rapid location of the elite set in a changing pop-
ulation. Performance of the scheme depends on the way in
which the population of solutions evolves and empirically
we have found the different guardian assignment method
perform differently in different situations. This opens up a
future avenue of work on dynamically adapting the assign-
ment method as a population evolves. Nonetheless, even a
fixed assignment method vastly reduces the number of dom-
ination comparisons need to maintain the elite set and will
allow noisy and dynamic problems to be efficiently handled.

We have exploited the time-cost improvements it provides
in a state-of-the-art noisy optimiser [6], and example Mat-
lab code is available from https://github.com/fieldsend.

7. REFERENCES
[1] N. Altwaijry and M. Menai. Data structures in

multi-objective evolutionary algorithms. J. Computer
Science and Technology, 27(6):1197–1210, 2012.

[2] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
Fast Elitist Non-Dominated Sorting Genetic

Algorithm for Multi-Objective Optimization:
NSGA-II. In Parallel Problem Solving from Nature,
pages 849–858. Springer, 2000.

[3] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.
Scalable Multi–Objective Optimization Test Problems.
In IEEE Congress on Evolutionary Computation,
volume 1, pages 825–830, 2002.

[4] J. Fieldsend and R. Everson. On the efficient use of
uncertainty when performing expensive ROC
optimisation. In IEEE Congress on Evolutionary
Computation, pages 3984–3991, 2008.

[5] J. Fieldsend and R. Everson. On the efficient
maintenance and updating of Pareto solutions when
assigned objectives values may change. Technical
report, University of Exeter, UK, December 2013.

[6] J. Fieldsend and R. Everson. The Rolling Tide
Evolutionary Algorithm: A Multi-Objective Optimiser
for Noisy Optimisation Problems. IEEE Transactions
on Evolutionary Computation, in press.

[7] C.-K. Goh and K. Tan. Evolutionary Multi-objective
Optimization in Uncertain Environments. Springer,
2009.

[8] J. Horn and N. Nafpliotis. Multiobjective
Optimization Using the Niched Pareto Genetic
Algorithm. Technical Report 93005, Illinois Genetic
Algorithms Laboratory, University of Illinois at
Urbana-Champaign, 1993.

[9] T. Park and K. Ryu. Accumulative Sampling for
Noisy Evolutionary Multi-Objective Optimization. In
Proceeding of the Genetic and Evolutionary
Computation Conference, pages 793–800, 2011.

[10] S. Yang, Y. Ong, and Y. Jin. Evolutionary
computation in dynamic and uncertain environments.
Springer, 2007.

