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ABSTRACT

An important phenomenon seen in many areas of biological brains
and recently in deep learning architectures is a process known as
self-organization. For example, in the primary visual cortex, color
and orientation maps develop based on lateral inhibitory connec-
tivity patterns and Hebbian learning dynamics. These fopographic
maps, which are found in all sensory systems, are thought to be a
key factor in enabling abstract cognitive representations. This pa-
per shows for the first time that the Hypercube-based NeuroEvo-
Iution of Augmenting Topologies (HyperNEAT) method can be
seeded to begin evolution with such lateral connectivity, enabling
genuine self-organizing dynamics. The proposed approach draws
on HyperNEAT’s ability to generate a pattern of weights across
the connectivity of an artificial neural network (ANN) based on
a function of its geometry. Validating this approach, the afferent
weights of an ANN self-organize in this paper to form a genuine to-
pographic map of the input space for a simple line orientation task.
Most interestingly, this seed can then be evolved further, providing
amethod to guide the self-organization of weights in a specific way,
much as evolution likely guided the self-organizing trajectories of
biological brains.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning — connectionism and neu-
ral nets
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1. INTRODUCTION

While neuroevolution (NE), i.e. evolving artificial neural net-
works (ANNs) through evolutionary algorithms, has produced sig-
nificant results in a variety of different domains [7, 28, 33], the
ANNSs evolved through NE still often do not include some of the
important features seen in natural brains. One example of such a
feature is neural plasticity, which allows a plastic ANN to change
its internal connection weights during its lifetime based on Hebbian
learning. This synaptic plasticity underlies the ability of real brains
to learn and to adapt to sudden environmental changes. While
there has been progress in incorporating plasticity into NE algo-
rithms [6, 14, 16, 19, 23], so far these approaches are only applied
to simple toy problems and do not exhibit many of the important
plasticity-enabled features seen in natural brains.

One such “hallmark feature of vertebrate brains” [31] is topo-
graphic maps, which are areas of the brain that are spatially orga-
nized based on some feature of sensory input from the environment.
In topographic maps neurons that respond to related sensory input
are located near each other. For example the primary visual cor-
tex (like many other areas in the neocortex) includes a topographic
map [30], which means that it is organized such that adjacent neu-
rons respond to adjacent regions of the visual field. Thivierge and
Marcus [31] suggest that a key function of topographic maps is to
enable abstract cognitive representations.

The topographic maps in the brain are themselves the result of
a self-organizing process of synaptic connection weights, in which
lateral inhibitory synapses and competitive learning play an impor-
tant role [13]. As Miikkulainen [13] showed, a biologically realistic
hand-designed ANN with short range excitatory and long range in-
hibitory connectivity allows the synaptic weights to self-organize
to form a topographic map of the sensory stimuli. The lateral con-
nections between neurons help to focus the initial activation pattern
into a localized (winner-take-all) response on the map after which
the connection weight are modified based on Hebbian learning.

Because evolving such plastic ANNs from scratch is likely a
highly deceptive task [19], the new idea introduced in this paper is
that the Hypercube-based NeuroEvolution of Augmenting Topolo-
gies (HyperNEAT) method [5, 8, 29] can be seeded to directly be-
gin with the necessary lateral connectivity. This advance is enabled
by HyperNEATs ability to generate a pattern of weights across the
connectivity of an evolving neural network based on a function of
its geometry.

HyperNEAT employs an indirect encoding called compositional
pattern producing networks (CPPNs) [25], which can compactly
encode connectivity patterns with regularities such as symmetry,
repetition, and repetition with variation. It also showed that giving
neurons actual locations within the coordinate space of the evolv-
ing neural network allows evolution to exploit topography (i.e. not



just topology), thereby allowing the geometry of sensors to align
sensibly with the geometry of neurons in the brain. This type of
geometric placement of neurons is missing from many ANN mod-
els, yet it is known to be essential to the organization and function
of biological brains [24]. Because of this insight, HyperNEAT is
able to evolve high-dimensional ANNs with regularities appropri-
ate to the problem domain [4, 8, 9, 29], which is in the case of this
paper a self-organizing topographic map.

More importantly, a seeded such structure can than be evolved
further, allowing HyperNEAT (1) to guide the self-organization of
weights towards a particular target configuration and (2) to acceler-
ate the self-organizing process compared to a uniform weight base-
line approach. To demonstrate the potential of this method, experi-
ments in a simple line orientation task are performed, revealing that
the seeded HyperNEAT approach is able to form a genuine topo-
graphic map of the input space. The main results is that seeding
HyperNEAT with a connectivity pattern that encourages the emer-
gence of topographic maps could allow NE approaches to expand
the scope of neural structures that evolution can discover to dy-
namic structures heretofore only seen in neuroscience.

2. BACKGROUND AND RELATED WORK

This section reviews the Neuroevolution of Augmenting Topolo-
gies (NEAT) and HyperNEAT methods behind the new approach
presented in this paper.

2.1 Neuroevolution of Augmenting Topologies
(NEAT)

The HyperNEAT method is itself an extension of the original
NEAT algorithm for evolving ANNs. NEAT starts with a popula-
tion of simple neural networks and then adds complexity over gen-
erations by adding new nodes and connections through mutations.
By evolving networks in this way, the topology of the network does
not need to be known a priori; NEAT searches through increasingly
complex networks to find a suitable level of complexity. Because
it starts simply and gradually adds complexity, it tends to find a so-
lution network close to the minimal necessary size. However, as
explained next, it turns out that directly representing connections
and nodes as explicit genes in the genome cannot scale up to very
large networks. For a complete overview of NEAT see Stanley and
Miikkulainen [26].

2.2 HyperNEAT

NEAT is called a direct encoding because each part of the so-
lution’s representation (i.e. each connection weight in the genome)
maps to a single piece of structure in the final solution network [7].
The significant disadvantage of this approach is that even when dif-
ferent parts of the solution are similar, they must be encoded and
therefore discovered separately. Thus HyperNEAT introduces an
indirect encoding instead, which means that the description of the
solution is compressed such that information can be reused, allow-
ing the final solution to contain more components than the descrip-
tion itself. Indirect encodings allow solutions to be represented as
a pattern of parameters, rather than requiring each parameter to
be represented individually [1, 9, 25, 27]. HyperNEAT, reviewed
in this section, is an indirect encoding extension of NEAT that is
proven in a number of challenging domains that require discover-
ing regularities [3, 8, 9, 29]. For a full description see Stanley et al.
[29] and Gauci and Stanley [9].

In HyperNEAT, NEAT is altered to evolve an indirect encoding
called compositional pattern producing networks (CPPNs; [25]) in-
stead of ANNs. The CPPN in HyperNEAT plays the role of DNA
in nature, but at a much higher level of abstraction; in effect it en-

1) Query each potential ~2) Feed each coordinate pair into CPPN
connection on substrate

N YR %
@) Lo=»1,1

-0.5,0—0,1

30
600 .

Substrate

-1,-1=-0.5,0

1.1 =~ 1,0

v
3) Output is weight
between (xl,y]) and (xz,yz)

v

Figure 1: HyperNEAT Geometric Connectivity Pattern Inter-
pretation. A collection of nodes, called the substrate, is assigned
coordinates that range from —1 to 1 in all dimensions. (1) Ev-
ery potential connection in the substrate is queried to determine
its presence and weight; the dark directed lines in the substrate
depicted in the figure represent a sample of connections that are
queried. (2) Internally, the CPPN (which is evolved) is a graph
that determines which activation functions are connected. As in an
ANN, the connections are weighted such that the output of a func-
tion is multiplied by the weight of its outgoing connection. For
each query, the CPPN takes as input the positions of the two end-
points and (3) outputs the weight of the connection between them.
Thus, CPPNs can produce regular patterns of connections in space.

codes a pattern of weights that is painted across the geometry of
a network. Yet the convenient trick in HyperNEAT is that this en-
coding is itself a network, which means that CPPNs can be evolved
by NEAT. A CPPN is a compositions of functions, wherein each
function loosely corresponds to a useful regularity. For example, a
Gaussian function induces symmetry and a periodic function such
as sine creates segmentation through repetition. In effect, the in-
direct CPPN encoding can compactly encode patterns with regu-
larities such as symmetry, repetition, and repetition with variation
[20, 25]. Thus as the CPPN increases in complexity, it encodes in-
creasingly complex amalgamations of regularities and symmetries
that are projected across the connectivity of a network [8, 9].

Unlike in many common neural network formalisms, in Hyper-
NEAT neurons exist at locations in space. That way, connectivity
is expressed across a geometry, like in a natural brain. Formally,
CPPNs are functions that input the locations of nodes (i.e. the ge-
ometry of a network) and output weights between those locations.
That way, when queried for many pairs of nodes situated in n di-
mensions, the result is a topographic connectivity pattern in that
space. Consider a CPPN that takes four inputs labeled x1, y1, z2,
and y2; this point in four-dimensional space also denotes the con-
nection between the two-dimensional points (z1,y1) and (z2,y2),
and the output of the CPPN for that input thereby represents the
weight of that connection (figure 1). Because the connections are
produced by a function of their endpoints, the final structure is pro-
duced with knowledge of its geometry. In effect, the CPPN is paint-
ing a pattern on the inside of a four-dimensional hypercube that is
interpreted as the isomorphic connectivity pattern, which explains
the origin of the name hypercube-based NEAT (HyperNEAT). Con-
nectivity patterns produced by a CPPN in this way are called sub-
strates so that they can be verbally distinguished from the CPPN
itself, which is also a network.

Each queried point in the substrate is a node in an ANN. The ex-
perimenter defines both the location and role (i.e. hidden, input, or
output) of each such node. As a rule of thumb, nodes are placed on
the substrate to reflect the geometry of the task [3, 29]. That way,



the connectivity of the substrate is a function of the task structure.
For example, the sensors of a robot can be placed from left to right
on the substrate in the same order that they exist on the robot. Out-
puts for moving left or right can also be placed in the same order,
allowing HyperNEAT to understand from the outset the correlation
of sensors to effectors. In this way, knowledge about the problem
geometry can be injected into the search and HyperNEAT can ex-
ploit the regularities of a problem that are invisible to traditional
neural network encodings.

In summary, the HyperNEAT method evolves the internal topol-
ogy and weights of the CPPN that compactly encodes ANN weight
patterns. The capabilities of HyperNEAT are important for the ap-
proach presented in this paper because the lateral connectivity pat-
terns necessary for the self-organization of connection weights can
also be expressed as a function of geometry. As explained next, an
extension to HyperNEAT called adaptive HyperNEAT [16], allows
not only patterns of weights across the connectivity of an ANN to
be generated by a function of its geometry, but also patterns of local
learning rules.

2.3 Adaptive HyperNEAT

Unlike traditional static ANNSs in neuroevolution whose weights
do not change during their lifetime, plastic ANNs [6, 14, 23] that
play an important role in the formation of topographic maps [13,
22] can adapt by changing their internal connection strengths ac-
cording to a Hebbian learning rule that modifies synaptic weights
based on pre- and postsynaptic neuron activity.

The main idea in adaptive HyperNEAT [16] is that CPPNs can
not only encode connectivity patterns but also patterns of plastic-
ity rules. As in the brain, different regions of the ANN should be
more or less plastic and employ different learning rules, which Hy-
perNEAT can facilitate because it sees the ANN geometry. This
idea is based on the insight that if a CPPN can paint a pattern of
connection weights across network geometry, then it should also
be able to paint a pattern of varying plasticity rules across the same
geometry. That way, it does not need to encode each rule separately
(i.e. because the CPPN is an indirect encoding). To facilitate this
capability, instead of outputting only a weight, the Adaptive Hyper-
NEAT variant in paper has one additional output that encodes the
learning rate n of the Hebbian Rule:

Awij =Mn"-0;05 . (1)

In this way, the CPPN computes an entire pattern of Hebbian
rules with different learning rates as a function of the neural geom-
etry in a regular pattern across the network. In this paper, adaptive
HyperNEAT will be compared to a HyperNEAT variant that as-
signs learning rate n for every afferent connection uniformly. This
comparison is designed to investigate the minimal sufficient adap-
tive dynamics that allow the automatic self-organization of a topo-
graphic map.

3. APPROACH: SEEDING HYPERNEAT
WITH LATERAL INHIBITORY
CONNECTIVITY PATTERNS

The new idea in this paper is that because the lateral connec-
tivity patterns in topographic maps are related to their geometry,
evolution in HyperNEAT can be seeded with geometric principles
that bias the pattern of connectivity in a similar way. The hope is
that the weights of the resulting ANNs should also self-organize,
forming a genuine topographic map of the input stimuli. Addition-
ally, this seed can then be evolved further, providing a method to
guide the self-organization of weights in a specific way, much as

evolution likely guided the self-organizing trajectories of biologi-
cal brains (i.e. part of the specific mechanisms for structure forma-
tion in biological brains is genetically determined and shaped by
evolution [10]).

For example, Miikkulainen [13] modeled the lateral connectivity
patterns of a self-organizing ANN, also called self-organizing map
(SOM), in form of a “Mexican hat”, in which the connections to
the closest neurons are excitatory and inhibitory to neurons farther
away. Such a connectivity pattern can easily also be expressed by a
CPPN, by also including a Mexican hat function to the set of activa-
tion functions for HyperNEAT. Because the Mexican hat function
peaks when its input is 0.0, inputting a difference between coor-
dinates, e.g. Ax, achieves the highest value when the coordinates
are the same and negative values for coordinates further apart than
some threshold. The Mexican hat function employed in this paper
is described as follows:

0.1, |z| < 0.6
~v(z) = ¢ —0.0125, |z|> 0.6 and |z| < 1.8 ?2)
0.0, otherwise.

Figure 2 shows an example of such a SOM-generating CPPN
seed together with the HyperNEAT substrate employed in this pa-
per. The substrate contains a two-dimensional input layer (A) and
an output layer (B). The two CPPNs are depictions of the same
CPPN being queried to determine the weights and learning rates of
two different substrate connections. The CPPN at the bottom re-
ceives as input the x and y coordinates of a node in A and a node
in B and returns the weight of that connection from its AB output
node and the corresponding Hebbian learning rate n of that con-
nection. Note that only the afferent connection weights are adapted
during the training of the network. The CPPN on top is the SOM
seed (i.e. the lateral weights within the SOM in the first generation
of evolution), which describes the lateral connectivity pattern of the
hidden layer with short range excitatory and long range inhibitory
connections. This setup in effect means that the CPPN encodes
both the initial starting weights and the temporal dynamics of the
plastic component of the network (i.e. the AB connections in Fig-
ure 2, yielding the ability to evolve the entire temporal dynamics
and starting point for a self-organizing system.

3.1 ANN Activation and Weight Adaptation

The plastic ANN encoded by HyperNEAT is activated for each
training input and, following Miikkulainen [13], allowed to settle
until it reaches a stable state. The number of activations for the
experiments in this paper is set to 15. After the initial network
activation the afferent weights are updated based on the Hebbian
learning rule (Equation 1) and then normalized to keep the sum of
weights constant [2].

The next section introduces the experiments in this paper de-
signed to test HyperNEAT’s ability to produce topographic map-
like structures that develop through a process of self-organization
of connection weights. Additionally, a property common to most
abstract implementations of SOMs [12] and more biologically plau-
sible computational models [13, 22] is that the afferent connection
weights are normally initialized to small random numbers (such an
example is shown in Figure 3a). Therefore, an interesting unex-
plored question is whether this self-organization could be guided
and potentially accelerated by indirectly encoding the initial af-
ferent neural weight patterns. This intriguing possibility is now
enabled by HyperNEAT’s ability to describe large-scale ANN con-
nectivity patterns as a function of neural geometry.
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Figure 2: HyperNEAT Substrate and Lateral Connectivity
CPPN Seed. The substrate contains a two-dimensional input layer
(A) and an output layer (B). The two CPPNs are depictions of the
same CPPN being queried to determine the weights and learning
rates of two different substrate connections. The CPPN at the bot-
tom receives as input the = and y coordinates of a node in A and
anode in B and returns the weight of that connection from its AB
output node, as well as the corresponding Hebbian learning rate n
of that connection from its 7 output. The CPPN at the top is being
queried simply for the static weight of a connection entirely within
the B layer, i.e. a BB connection.

4. EXPERIMENTS

The experiment in this paper tests the ability of the HyperNEAT
approach to guide self-organization of connection weights in a line
orientation task. In this task, differently-oriented lines are projected
onto the ANN retina of 7x7 input neurons. The ANN output layer
has the same number and layout of neurons. The substrate structure
corresponds to the setup shown in Figure 2 (though the resolution
shown in the figure is lower for clarity). At each learning step,
one out of eight differently-orientated lines are selected in a ran-
dom order and projected on the retina. This process is repeated
for a total of 250 input presentations (following the network activa-
tion described in Section 3.1). Topographic maps of visual features
such as line orientation are well studied in computational models
of self-organization [21] and therefore provide a good first proof
of concept for the ability of HyperNEAT to evolve a guided self-
organizing process.

To asses the potential advantage of further evolving the initial
SOM-generating CPPN seed shown in Figure 2, it is important first
to test the self-organization capabilities of the initial seed itself.
Figure 3 shows an example of randomly initialized weight patterns
from the input neurons to the computational layer (before self-
organization) and the weight pattern after training (i.e. 250 input
presentations) for the seed-CPPN. The afferent connection weights
self-organized such that neurons near each other respond to simi-
lar features of the sensory input (i.e. some neurons respond more
strongly to particular line orientations than other neurons). The line
orientation to which each neuron maximally responds is also shown
before and after training with varying orientation increments (Fig-
ure 4). This figure shows how the self-organizing process responds
to different orientation increments and consequently different num-
ber of training samples (eight compared to 30). The weight vectors

(a) Before Training

(b) After Training

Figure 3: Weight Pattern Before and After Self-organization.
This figure shows the weight patterns from each input node to all
the 7 X 7 nodes in the output layer before (a) and (b) after self-
organization . For example, the square to the top left depicts the
connection weights from all 49 (7 x 7) input nodes to this particular
output node.

form a topographic map that correctly reflects the distribution of
input stimuli.

Now that the viability of the CPPN seed is established the ques-
tion in this paper is whether evolution can provide a boost beyond
the self-organizing functionality that the seed already provides. To
test the hypothesis that HyperNEAT can guide the self-organizing
process through indirectly encoded afferent connection weights,
the evolved CPPNs are tested on their ability to create ANNs that
can self-organize into a particular weight configuration indepen-
dently of the order of presented input samples. It is important to
note that the aim of this study is not to suggest that the particu-
lar final configuration is inherently important in its own right, but
rather to make the point that evolution can shape the self-organizing
process to push it in a particular direction. In effect, choosing an
explicit final target configuration in this experiment makes it easier
to show definitively and explicitly that such shaping is possible. In
the future this principle can then be applied to more subtle and less
explicit endpoints for self-organizing processes. The fitness of a
network for this purpose is determined based on:

N
1
o =1 —*E i — il
0 NZ-ZO |wi — e(t)q] 3)

where w is the weight vector produced by the CPPN seed (as seen
in Figure 3b), ¢ is the current weight vector at time ¢t and N are the
total number of connections in the ANN. This function is evaluated
every ten training steps and the resulting values are summed to de-
termine the fitness for one trial. To encourage solutions that match
as closely as possible to the final target pattern, a value of 5.0 is
added to the fitness each time step that the pattern is within a mar-
gin of 0.1% to the target pattern. This fitness function encourages
self-organization of connectivity weights into the final configura-
tion as fast as possible. To encourage robust solutions that do not
depend on a particular order of input samples, each network is eval-
uated on five independent trials and the final fitness is the average
performance across these trials.

Five different approaches are compared to determine the role
of different initial afferent weight patterns and indirectly encoded
learning rates on the self-organizing progress:

o In the Seeded HyperNEAT approach the initial weights from
the input to the output layer of the ANN are determined by
the HyperNEAT approach described in Section 2.3 in which
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Figure 4: Neuron Orientation Sensitivity. Line orientations (d)
are shown to which the neurons in the output layer maximally re-
spond before the self-organization of afferent connection (a), and
after the training with different orientation increments and there-
fore different-sized training samples (30 compared to eight) in (b)
and (c). The corresponding self-organized afferent weight patterns
for (c) are shown in Figure 3b. The main results is that the weight
vectors form a topographic map that correctly reflects the distribu-
tion of input stimuli.

evolution is seeded with a lateral connectivity pattern (Fig-
ure 2). The Hebbian learning rate for the weights from the
input to the outputs nodes are uniformly set to 1.0.

e The Seeded Uniform approach follows the Seeeded Hyper-
NEAT approach but the weights from the input to the output
layer are all set to an intermediate inform value of 0.5 instead
of being determined by HyperNEAT.

e Seeded Random tests the influence of starting with random
weights in the range [0, 1] from the inputs to the output
nodes. This approach reflects the conventional approach ini-
tializing the afferent weights in SOMs [12, 13].

e The Seeded Adaptive HyperNEAT approach follows the
Seeded HyperNEAT approach but in addition to the weights
the learning rates are also generated by HyperNEAT (Sec-
tion 2.3). This approach tests the hypothesis that distributing
the learning rules in a pattern could provide an additional ad-
vantage.

e In the Unseeded HyperNEAT approach in this paper evo-
lution is not seeded (i.e. the initial CPPNs do not contain
any hidden nodes). This variant is designed to test the influ-
ence of seeding HyperNEAT with a SOM-like connectivity
pattern. It is important to note that HyperNEAT can theo-
retically discover a CPPN similar to the seed CPPN by itself
(e.g. a Mexican Hat function can be added during node addi-
tion) that would encode a lateral connectivity pattern neces-
sary for self-organization.

4.1 Experimental Parameters

The size of each HyperNEAT population was 50 with 10% elitism
and a termination criterion of 50 generations. Sexual offspring
(75%) did not undergo mutation. Asexual offspring (25%) had
0.6 probability of weight mutation, 0.06 chance of link addition,
and 0.005 chance of node addition. The available CPPN activation
functions were sigmoid, Gaussian, absolute value, cosine, Mexican
hat, and sine, all with equal probability of being added.
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Figure 5: Training Performance. The average best fitness over
generations is shown for the different HyperNEAT variants, which
are averaged over 30 runs. The main result is that Seeded Hyper-
NEAT and Seeded Random reach a significantly higher average fit-
ness than all other approaches.

S. RESULTS

Each of the HyperNEAT approaches is evaluated over 30 inde-
pendent runs consisting of 50 generations of evolution. Figure 5
shows the training performance over generations for the different
HyperNEAT variants. While the seeded HyperNEAT and Seeded
Random approaches reach a similar average maximum fitness of
139.24 (o = 0.49) and 138.82 (¢ = 0.77), respectively, the Uni-
form setup and seeded Adaptive HyperNEAT reach significantly
lower average maximum fitness values (p < 0.05 according to the
Student’s t-test). The Unseeded HyperNEAT fails to achieve high
average performance and only reaches a fitness of 24.16 (¢ = 0.01)
(data not shown).

It is important to note that while the differences in average fit-
ness between the investigated HyperNEAT methods appear rela-
tively small, the number of generations it took them on average to
find a solution paints a clearer picture (Figure 6). A network counts
as a solution if the error between its final weight pattern (after self-
organization) and the training weight pattern is less than 0.01%.
Seeded HyperNEAT finds a solution in 7.5 generations on aver-
age (o = 3.01), which is significantly faster (p < 0.05) than any
of the other approaches (Figure 6). In fact, the unseeded version
fails to find a solution in all 30 runs, confirming the necessity of
the initial CPPN seed and the deceptiveness of rediscovering the
necessary lateral connectivity pattern through evolution alone. It
is interesting to note that Seeded Adaptive HyperNEAT performs
significantly worse than Seeded HyperNEAT alone (p < 0.001),
suggesting that a uniform learning rate is already optimal for this
particular task.

Because one motivation for this paper is to investigate the robust-
ness of evolved networks in self-organizing into a particular target
configuration, a generalization test was devised to measure how
well an evolved solution would perform under different random or-
ders of training samples. The generalization test consists of 30 tri-
als and measures whether solutions get within a margin of 1% and
0.1% to the final weight target configuration shown in Figure 3b.
The score on the generalization test reflects the probability that a
solution evolved by a particular HyperNEAT variant self-organizes
correctly (Figure 7). Seeded HyperNEAT, Seeded Adaptive Hy-
perNEAT and the Uniform approach do not perform significantly
different and are able to get within a margin of 1% to the target
pattern in 50%, 46% and 56% of the time, respectively. However,
all three methods perform significantly better than the Random ap-
proach (p < 0.05), which only solves the task 35% of the time. The
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The average number of generations over 30 runs that it took the
different HyperNEAT variants to reach the final target configura-
tion (Figure 3b) is shown. The unseeded version fails to find a
solution in all 30 runs (data not shown). The main result is that
Seeded HyperNEAT finds a solution significantly faster than all the
other approaches.
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Figure 7: Generalization Test Results. This chart depicts how
often the final champions from each of the 30 runs are able to reach
the target configuration averaged over 30 independent trials (with
different orders of training examples). Higher values are better.

final performance decreases significantly for all approaches if solu-
tions are required get within a margin of 0.1% to the target pattern
(p < 0.001). Seeded HyperNEAT only passes this stricter general-
ization test 15% of the times, which is however significantly higher
than for the Uniform and Random approach (p < 0.001). Inter-
estingly, these results indicate that the Random approach is less
reliable in producing the final target configuration and that deter-
mining the initial afferent weights through HyperNEAT allows it to
self-organize into the target configuration with a greater accuracy.

5.1 Self-Organization Analysis

Because both the Seeded HyperNEAT and the Seeded Uniform
approach are able to reach the correct target pattern — within a mar-
gin of 1% error — about the same number of times how can their
significant difference in final average performance (Figure 5) be
explained? A closer look at typical learning curves for both ap-
proaches during self-organization of the map (Figure 8) suggest
that while the seeded HyperNEAT and Uniform approach ultimately
reach a similar accuracy, HyperNEAT reaches it more quickly (and
therefore reaches a higher fitness). One way to analyze the rea-
son behind these different progressions is to observe the develop-
ment of the orientation sensitivity of the output neurons. From Fig-
ure 8 it becomes clear that the Seeded HyperNEAT approach is
able to establish the correct orientation pattern more quickly than
the Uniform approach. Initial uniform weights seem to hinder the
self-organizing progress, which could potentially be explained by
the increased local competition between neurons (i.e. by starting
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Figure 8: Development of Orientation Preferences. The devel-
opment of the orientation preferences of the output neurons over
time is shown for the Seeded HyperNEAT approach (top) and the
Uniform approach (bottom). The initial non-uniform weights (Fig-
ure 9) allow the Seeded HyperNEAT approach to self-organize into
the target configuration in fewer training steps.

Table 1: Training and Generalization Results. The Seeded
HyperNEAT approach often performs significantly better than the
other HyperNEAT variants and never significantly worse.

Method Fitness Generations 1% Margin
HyperNEAT | 139.2 (6 =0.49) | 7.5 (c =3.01) | 50%
Random 138.8 (6 =0.77) | 10.6 (6 =5.9) | 34%
Uniform 1362 (0 =1.70) | 19.1 (c=11.4) | 46%
Adaptive 133.1 (6 =1.82) | 23.8 (6 =12.5) | 56%
Unseeded 24.1 (o =0.03) - -

with uniform weights each neuron will initially respond similarly
to the same input stimuli). The Seeded HyperNEAT approach on
the other hand creates a smooth initial weight pattern (Figure 9) that
likely reduces the initial competition among neurons (similarly to
a random initialization).

The main result is that while HyperNEAT and the Random setup
reach a similar final performance, HyperNEAT is able to repro-
duce the final target weight pattern significantly more often. Ad-
ditionally, the Uniform setup reaches an average lower maximum
fitness because the self-organization process is delayed when all
the weights are initially the same. Overall then the Seeded Hyper-
NEAT approach combines the speed of the Random setup with the
reproducibility of the Uniform setup. The results are summarized
in Table 1.

6. DISCUSSION AND FUTURE WORK

While the domain presented in this paper is simple, it helps to
demonstrate that it is indeed possible to seed HyperNEAT with
lateral connectivity that allows the network to self-organize into
a genuine topographic map of the input space. Also importantly,
self-organization can be guided and accelerated by indirectly en-
coding the initial afferent neural weight patterns with the Hyper-
NEAT method. While this study does not suggest that a particular
final configuration of weights is inherently important in its own



Figure 9: Evolved Initial Weight Pattern for Seeded Hyper-
NEAT. The initial weight pattern from the input nodes to the output
nodes is shown that was determined by the Seeded HyperNEAT
approach. This pattern provides the self-organizing process with
a bias towards a particular target configuration and accelerates the
self-organizing process compared to a uniform initialization of con-
nection weights.

right, it nevertheless establishes that such guided self-organization
is possible. In effect evolving towards a final target facilitated the
analysis of the role of different initial afferent weight patterns and
indirectly encoded learning rates on the self-organizing progress.

Interestingly, the poor performance of the unseeded version (Fig-
ure 6) suggests that the path through the search space to encoding
such lateral connectivity patterns necessary for self-organizing dy-
namics to emerge is inherently deceptive. Similar results indicating
that discovering particular kinds of structures is deceptive were also
observed by Verbancsics and Stanley [32] and Risi and Stanley [17]
on seeding HyperNEAT with the concept of locality. This growing
body of evidence suggests that such deception might be common
when geometric principles such as lateral connectivity or locality
are essential to achieving the desired behavior but fitness does not
reward the intermediate stepping stones that lead to that final objec-
tive. Thus manually constructing an appropriate starting seed may
prove an important tool to avert deception in many domains. In the
future it might also be possible to automatically compile a seed that
directly satisfies some user-imposed properties [15].

Furthermore, while prior results in a T-Maze learning task sug-
gest the benefit of indirectly encoded learning rules [16], Seeded
Adaptive HyperNEAT’s performance in this domain is less consis-
tent. It reaches a significantly lower maximum fitness than Seeded
HyperNEAT (Figure 5), which could suggest that a uniform learn-
ing rate is already optimal for this particular task. However, it per-
forms better on the generalization test (1% margin) than Seeded
HyperNEAT (though not significantly), and interestingly, the three
most general solutions that solve the task in 80% of the time are all
evolved by the Seeded Adaptive HyperNEAT approach. Figure 10
shows the initial weight and learning rate pattern from the most
general evolved Adaptive HyperNEAT solution. Although a more
detailed analysis is warranted in the future, this result indicates that
(1) both learning rate and weight pattern can work together to ro-
bustly guide the self-organizational process and (2) finding such a
solution is harder because the right learning rate pattern also has to
be discovered.

In the future it might be possible to combine a SOM-generating
seed with a recent HyperNEAT extension called adaptive evolvable-
substrate HyperNEAT [17, 18]. Adaptive ES-HyperNEAT can au-

(a) Weight Pattern

(b) Learning Rate Pattern

Figure 10: Evolved Initial Weight and Learning Rate Pattern
for Seeded Adaptive HyperNEAT. The initial weight and learning
rate pattern for the afferent connections are shown that were deter-
mined by the Seeded Adaptive HyperNEAT approach. The very
robust performance of this evolved solution on the generalization
test suggests that both weights and learning rate patterns can work
together to bias the self-organizing process.

tomatically determine the placement, density and plasticity of neu-
rons in the HyperNEAT substrate. Thus seeding the adaptive ES-
HyperNEAT approach with the right lateral connectivity could in
principle allow structures reminiscent of deep learning architec-
tures [11] to evolve, in which the internal layers self-organize into
topographic maps that in each successive layer form higher and
higher abstract representations of the input space.

7. CONCLUSION

This paper introduced the idea that the indirect HyperNEAT en-
coding can be seeded with a lateral inhibitory connectivity pattern,
which then allows the weights from the inputs to the hidden layer
to self-organize to form a genuine topographic map of the input
space. The benefit of this new approach is that the initial seed can
be evolved further to accelerate the self-organizing process and to
bias it towards a specific target configuration. An interesting im-
plication is that enabling HyperNEAT to capture this key feature of
natural systems might now allow us to evolve architectures resem-
bling deep learning networks that also rely on unsupervised learn-
ing processes.
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