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Abstract

We present an efficient implementation of the solution to the conjugacy problem in Thomp-
son’s group F'. This algorithm checks for conjugacy by constructing and comparing directed
graphs called strand diagrams. We provide a description of our solution algorithm, including
the data structure that represents strand diagrams and supports simplifications.

1 Thompson’s Group F and Strand Diagrams

The elements of Thompson’s Group F' [3] are piecewise, linear homeomorphisms of the interval [0, 1]
such that each piece has slope that is a power of 2 and, furthermore, the breakpoints between pieces
take place at dyadic rational coordinates. The group operation is simply function composition. In
a group, the conjugacy problem is the problem of determining whether any two elements are
conjugate. The conjugacy problem is not solvable in general [5], but is solvable in certain cases.

A strand diagram [2] is a finite acyclic digraph embedded on the unit square. The digraph has
a source along the top edge of the square and a sink along the bottom edge. Any internal vertex
is either a merge or a split (Figure 1). Elements of Thompson’s Group F' can be translated to
strand diagrams. Each element in a generating set corresponds to a particular strand diagram. A
composition of such elements is represented by a concatenation of the associated strand diagrams.

Figure 1: A strand diagram, a merge, and a split (image taken from [2]).



The Conjugacy Problem in Thompson’s Group F TBA

2 Algorithm for the Conjugacy Problem in F

The algorithm to determine whether two strand diagrams inhabit the same conjugacy class proceeds
as follows. First, we convert the strand diagrams to annular strand diagrams. This is achieved
by a process called closing, in which sources are identified with sinks. Next, the annular strand
diagrams are reduced using a graphical rewriting system that is both confluent, terminating, and
respects conjugacy [1]. Furthermore, any two connected and reduced annular strand diagrams s,
and s, can be encoded into two planar graphs g; and g, respectively such that s; and s, represent
conjugate elements if and only if g; and go are isomorphic. Hence the problem reduces to checking
whether two simplified planar graphs are isomorphic. Moreover, this enterprise can be carried out
in linear time given a linear time planar-graph-isomorphism checker [4].
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Figure 2: Algorithm Flowchart
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