
.

Cxafting An Ada Executive

for the

Intel 80960 Extended Architecture

14 my 1992

Chak Sriprasad
Intel Corporation

5000 W. Chandler Blvd.
Mail Stop SP1-82

Chandler AZ-85226
csri.prasad@AZ .INTEL.COM

(602)554-4030

01992ACM0497914S7-2/W/OOWl $LSO

http://crossmark.crossref.org/dialog/?doi=10.1145%2F257683.257687&domain=pdf&date_stamp=1992-07-16

1. Introduction

The Joint Integrated Avionics Working
Group (JIAWG) selected the Intel 80960 Extended
Architecture as a standard Instruction Set
Arehiteetum for 32-bit proeewm. The key to the
promulgation of this JIAWG strmdard is the
availability of quality Ada compilation systems. A
generic Ada-%OMX Cross-Development System
consists of a set of software tools that compile, linlG
and debug Ada programs that are targeted to the
80960 extended architecture. Pail of Ada-960MX
is a runtirne system (RTS), a set of predefmed
routines for any program generated by the Ada-
960MX compiler. Part of the RTS that directly
interfaces to the architecture is the Ada Executive
(exec) which performs the kernel or executive
functions required to implement Ada semantics. It
supports Ada tasking, delays, interrupt management
dynamic storage allocation, and exception raising.
This paper is a discussion of how these features
may be implemented on the 80960 extended
architecture.

The full functionality of the Ada Exeeutive
(exee) is based on the Ada Runtime Environment
Working Groups (ARTEWG) (a subgroup of the
kmeiation for Computing Machinery, Inc., Special
Interest Group for Ada) published “A Model
Runtime System Interfaee for Ada” (MRTSI)[I].
The MRTSI deseribes a model intetiaee between
the code generated by art Ada compiler and the
executive portion of the runtime system. This
interfaee is used as the basis for specifying the Ada
Executive.

The exec also provides some real-time

extensions to the Ada runtime. This is based on a

setof features selected from the “Catalog of
Interface Features and Options” (CIFO)[2],
which is another ARTEWG proposal. The selected
CIFO features consist ofi basic entries that support
task identifkation and querying of task attribute
task scheduling conuol including dynamic priorities.
entry and select criteria, task suspension and
holding and time slicing Interrupt management
functions that aIIow sekxxive enabling and masking
of interrupts.

The 80960 extended architecture features
very high levels of hardware-enforeed data seeurity,
and support for object-oriented progmrnming in

hardware. It also offers vti memory management
and multitasking support. S~ific instructions and
data structures are dedicated to provide a complete

muhiple process management capability, including

priority-driven process scheduling, process timing

and interprocess communication. The exec strives to

best exploit these architecture featurm.

The foUowing section gives a brief
ovemiew of the 80%0 Extended Architecture. A
full discussion of the archituture is beyond the
scope of this paper. This paper assumes a fair
knowledge of this arehitezture.

1.1. Overview of the 80960 Extended
Architecture

The 8G960 extended architecture is an
extension to the core, numerics and proteeted series
of architectures. The core arehiteaure directly
addresses a 32 bit physicai address space and
includes a large register seL It supports signed and
unsigned integer arithmetic, many bit oriented
operations, support for procedure calls, interiupt
handlig, fault handling and debugging. The
numerics architecture adds floating-point data types,
registers and instructions to the core architecture, It
supports 32-bit single precision, 64-bit double
preeision, and 80-bit extended precision floating
point types. The protected architecture adds virtual
memory management support including paging and
segmentation. It provides on-chip support for Ada
multi-tasking including automatic process
scheduling and dispatching. Each PIOC12.SS (task) has

its own protected address space.
The extended architecture includes all

proteeted architecture features and adds object based
memory organization and proteetion[31[41.
Different software subsystems can have different
address spaces or domains, providing protection
behveen parts of a program as well as between
processes. Other added protection features include
object type checking, checking of aeeessrights in
object pointers or access descriptors (ADs) and
protection of ADs against unauthorized changes.
Objects are typedand protected memory segments.
They can only be accessed with ADs. The extended
architecture supports tagging. Tagging assockites a
33rd biu the tag bit, with e.@ 32-bit memory word.
This tag bh provides the distinction between data
words and words that hold ADs. In addition, the tag
bit prohibits the possibility of forged pointers to
proteeted areas witiin memory, thus providing a
high level of data seeurity within the architecture.

Tlte physical address .qxxe is the ~z byk? addms
space that directly maps to physical memory. The
virtual address space conrains allrhebytesinsll the
objects in the system. A 64-bit virtual address &
two parts, a 32-bit offset into an object and an AD
that references the objec~

framework and defines the mpe of the exec. The
focus of this paper is to identify and define the
characteristics of the interfhce and show how the
implementation of the features represented by this
specification maps to tie 80%0 extended
architectllle.

3. Interface characteristics
2. Specification and Scope of the Ada Executive

The following is the set of MRTSI
packages and features that embody the core
functionality of rhe exec. Refer to the MRTSI
document for a formal definition of the interface.

“ package Compiler_Exceptions
. package Machine_Specifica
o package RTS_Abortion
o package RTS_Clock
o package RTS_Delays
. package RTS_Interrupts
. package RTS_Priorities
- package RTS_Queued_Interrupts
. package RTS_Rendezvous
o package RTS_Storage_Management
. package RTS_Task_Ids
. package RTS_Task_Stages

While MRTSI is essentially a compiler
independent specification, it does identify a host of
cress dependencies among the compiler, the runtime
system, and the processor. This paper addresses this
aspect alone in section 3 “Interface Characteristics”.

The following CIFO packages represent the
subset of CIFO features chosen. Once again the
reader is referred to the CIFO document for the
actual specitlcation.

. package Asynchronous-Task-Holding

. package Complex_Discipline

. package Dynamic_Priorities

. package Interrupt_Management

. package Queuing_Discipline

. package Resources

. package Tasl_I&

. package Task_Suspension
● package Tme_Slicing
. package Two_Stage-Task_Suspension
. Entry criteria
. Select Criteria
● ‘llme Critical Section

The specification listed above provides the

The exec interfaces to tie compiler and to
the 80960 processor. This section identifks the
signitlcant aspects of these two interfaces, and rhe
dependencies on the compiler, the Ada executive,
and the 80960 processor.

3.1. Compiler Dependencies

The implementation of the exec is mainly
in Ada. However, it is likely that some parts of the
exec will be implemented in assembler. This
requires a full understanding of details that are
determined by the compiler, but which affect the
exec implementation. These include:

. The &ta representation of several
predefmed types like INTEGER,
BOOLEAN, DUR?VJ1ON, and
SYSTEM .ADDRESS, as well as all types
defined in the Ada executive.
. Subprogram calling conventions.
. Subprogram parameter passing
conventions.
. Function return conventions, for
functions returning values of a discrete
type.
. The representation of exceptions as data,
and the mechanism of raising an exception.
- The implementation of pragma
Access_Descriptor to implement Ada
access types as architecture access
descriptors.
. Interrupt handling code (associated with
task interrupt entries) should be located in
Region 3. The hsrdware interrupt
mechanism only saves all local register
sets, and gives control to the handler under
the context of the current executing
process. lltua the compiler may need to
save ail global and floating point registers
used in rho handler or other subprograms
that it calls and restore it prior to returning
from the handler.

The compiler vendor shouId document how

13

these details are IWOhd to help inte~te the Ada
executive with the compiler and ntntime systems.

32. Ada Executive Dependencies

The dependencies of the compik on the
execclmsiswofalldawtype sand Consiant
definitions used in specifying the eumpik-runtime
interfaee modules. me Ada executive established
the deftition of the following umtants and type
declarations:

. The representation and eonsuaints of
type STANDARD . DURATION.

The type DURATION shall have the
following ckteristic.s

Table I - Duration Atuibutes

Atmibute DURATION value

‘DELTA O.0001SW

‘FIRST -86400.0 sec

II ‘LAST I 86400.0 st-z II

II‘SMALL o.ml sw II

. The following types and constants in
package SYSTEM.

TICK : constant := 2 ** (-14);
-- 0.0000614

-- The processor supports 32 priorities for
-- processes and interrupts. The Ada task
-- priorities are restricted to the range
-- 0..15 in order to allow interrupts to have
-- higher priorities than tasks.
subtype Priority is INTEGER range O. .15;

-- The Object table supports 2**26 entries.
-- This type is to index into the object
-- table.
type Index is range O . . 2“26 - 1;
fer Index ~Size u-- 26:

-- Representation rights to read or write an
-- object’s representation
typa Read Rights is aow Boolean;
type Writ~_Rights la now Boolean;

-- Type rights that are dependent on the
-- object’s type
type Control-Rights is maw Boolean;

type Modify_Rights ia new Boolean;

typa Use-Rights La naw Boolean;

t~ Lifetime is
(Global.
Local) ;

for Lifetime US-
(Global => O,
Local => 1);

typa Access_Descriptor is -- may be
-- defined in private section

rece~
Object_Ra?ad_Rights : Read_Rights;
Object_Write_Rights : Write Rights;
ObjecC_Use Rights : Use R~ghts;
Object_Mod~fy Rights : Mod~fy_Rights;
Ob’ject-Contro~_Rights : Control_Rights;
Object_Lifetime : Lifetime;
Object_Index : Index;

end record;

for Access_Descriptor use
recoxd

Object_Read_Rights at O range O . .
o;

Object_Wri.te_Rights
1:

at O range 1 . .
-.

Object_Use_Rights at O range 2 . .
5.
L;

Object_Modify_Rights at O range 3 . .
3;

Object_Control_Rights at O range 4 . .
4:-,

Object_Lifetime at O range 5 . .
5;

Object_Index at O range 6 . .
31;

end record;

type Ordinal is rangfa O . . 2’”32 - 1;

type Address_Mode is (Virtual, Linear,
Physical);

type Address (Mode : Address_Mode) 18
record

came Mode 18
wham Virtual =>

Offset : Ordinal;
AD : Access_Descriptor;

when Linear =>
Linear Address : Ordinal;

wbsm Phys~cal =>
Physical_Address : Ordinal;

end C~Se;

end remoxd;
for Address um

record at mod 32;
Mode at O range O . . 7;
Offset at 4 range O . . 31;
AD at 8 range O . . 3i;
Linear_Address at 4 range O . . 31;
Physical_Address at 4 range O . . 31;

end rmcord;

subtype Virtual address is Address (Mode =>
Virtual);
ma@t~ Linear_address Lm Address (Mode =>

Linear);

fumctlon Virtual (Lin_Addr : Linear_Address)
xetuxn Virtual_Address;

33. 8W60prw-r Dependencks

Tke am some ways in which both the
compiler and the exec depend on conventions about
their mutual view of the target machine. They arc
embodied in the MRTSI package
Machina_Specifics to facilitate adaptation to
specific compilers. The pmce—saor specific type
definitions am

o Irtit_State, the initial task state. This
is a record of key register values and otk
task start-up related information.

type Init_State is
racord

Entry_Point : System .Address;
Storage_Size : Natural;
Body_Elaborated : Boolean;
Entry Criteria :

Queuing_Di scipIine. Discipline;
Select Criteria :

Queuing_D;~;;~;ne .Discipline;
: System.Access-Descriptor;

Regionl : System.Access-Descriptor;
Prim_Env-Table AD :

System.Access_DesCripto~;
●rid record;

. Pre_Call_State, theportionof the
stateoftheprocessor thatisnotpresemed
by the subprogram calling conventiona.

subtype Signed_32 is Integer;
type Pre Call_State is

recod
Reg GO : Signed_32;
Reg-Gl : Signed_32;
Reg-G2 : Signed_32;
Reg-G3 : Signed_32;
Reg-G 4 : Signed_32:
Reg-G5 : Signed_32;
Reg–G6 : Signed_32;
Reg-G7 : Signed_32:
Reg-G8 : Signed_32:
Reg-G9 : Signed_32;
Reg-GIO : Signed_32;
Reg-Gl 1 : Signed_32;
Reg-G12 : Signed_32;
Reg-G13 : Signed_32;
Reg-Gl 4 : Signed_32;
Reg~Gl 5 : Signed_32;
Trace Controls :

Trace_Contrors_Words.Trace_Control_Word;
Reg SFO :

Special_Fu~ctions_Registers .Special_Function_
RegO:

Reg_SFl
Special_Functions_Registers .Special_Function_
Regl;

●nd -COd;

. Task_Storage_Size, the type used
to specify task storage size.

type Task_Storage_Size %8 racge 0..2**32;

- Interzupt_Ic$ the type
ident@ahardware interrupt.

Usedto

type Interrupt_Id ie ran+ 0..255;

. Machine_Exceptions, the type used
to identifi ahardwaredetected exceptions
when notifying the excqxionrecovexy
system.

type Machine Exceptions ia new
Fault_Informati~n .Fault_Type;

. Error_Infozmation, the
infonnationassociated withahardware
detectierror.

type Error_Information is now
Fault-Information.Fault_Record;

. Allocation_Descriptor, the
information telling howadynamic storage
collection isallocated.

type Allocation_Descriptor 18 (Linear,
Virtual);

4. Implementation Characteristics

Based on the selected setof interfaces the
key componentsof the exec are identified ax

Task Management
Interrupt Management
Time Management
Storage Management
Exception Propagation
Time Critical Section
Resources

The im@ementation ofthese featuresis
discussed inthefollowing sections. The emphasis is
moreonutilizing processor features andinstrucaons
while following ageneral algorithm that implements
rheAdasemantics forthesefeatures. Thishasthe
potential tobeexpanded toarigomusdesign
document.

4.1. Task Management

4.1.1. Task Identification

Ataskisidentifkd by ataskcorttrol block.
Thisisamordthat consistsoftheamhitecture
defined process object andasetoftask
management fields. AnADcreated for this
extended process object senmsas a task identifier.
Animpkxnentation mayrestrictaccess rightsonthis
ADsothatusercode maynotdirectly access the

.

15

taak cantrol block. The following Ada code
represents the defmkion of a task identitkc

t- Task_Control_Bi ock;

type Task_Id ia acceas Task_Control_Bl ock;
pra~ Access_Descriptor (Task_Id);
-- The pragma tells the compiler to implement
-- the access type Task-Id as an Access
-- Descriptor.

type Task Control_Block in
zecord–

Process_Info :

Process_Control_Blocks .Process_Object;
-- Architecture defined data structure

State
Ada_Task_State;

Status
Ada_Status_Flags;

Activator : Task_Id;
Num_Tobe Activated : Natural;
Act_Chai~ :

Activation_Chain;
Act_Semaphore

System.Access_Descriptor;
-- AD to Semaphore object used to
-– synchronize activation

Task_Type Descriptor :
Machine_Specifi~s. Init_State;

Parent_Task : Task Id;
Master : Mast~r Id;
Child_Tasks : Task_Id;
Previous Child : Task_Id;
Next Chi~d : Task_Id;
Leav~ng Block

System.Addres~; -- Virtual ad~ress
Ref_Dependents Port

System.Access_Descri~tor;
-- AD to Port object used to queue completed
-- tasks as reference dependent on this task.

Delay_Period : Integer;
Delay_semaphore

System.Access_Descriptor;
-- AD to Semaphore object used to signal
-- a task upon expiration of a delay.

Entry_Queues :
Port Object_Anchor;
-- L~st of AD*s to architecture defined
-- Port Objects for each entry.

Called_Entry Port
System.Access_Desc~iptor;
-- AD to the entry gueue Port object on
-- which this task is a message waiting
-- to rendezvous (used for timed entry calls)

Partners : Task_Id;
Next_Partner : Task_Id;
Select_Semaphore :

System.Access_Descriptor;
-- AD to the Semaphore object on which this
-- task waits when none of the open select
-- entries are called.

Select_List :

RTS_Rendezvous .Entry_List;
Select_Mode

RTS_Rendezvous .Modes;
Index :

RTS_Rendezvous .Entry_Index
Entry_Params :

System.Address;
Saved_Priority : Integer;
Resource_To_Get :

Resources.Resource;
-- Address of resource object on which the
-- task is in a timed wait.

Suspend_Semaphore
System.Access_Descriptor;
-- &D to Semaphore Object used in task
-- suspension (synchronous) .

Holding_Semaphore
System.Access_Descriptor;
-- AD to Semaphore Object used in task
-- suspension (asynchronous).

Holding Disabled Count : Integer;
-- Count of n~sted calrs to enable/disable
-- holding.

Saved Process_Controls :
Process_Con~rols_Blocks.Process_Control_Word;

end record;

4.L2. Task Creation and Activation

Tasks come into being in two stages,
creationandactivation. Tasksarecreated bythe
elzdm-ationof declarationsof objectsthatare either
definedastasksor containaninstance ofatask

type.Bothtasksand tssktypeinstances aretreated
identically bytheexec. Tssk creation involves the

following steps:

Storagemanageris calledtoallocatea
record for the task controi block (TCB). Most of the
fieldsoftheTCB, including the fields of the
proeesa object are initialized with information
provided in the compiler generated call to create
task Specifkdly the following process object fields
are set

. DispatchportADksettothesame
dispatchportwhich isboundtothe
Processor Control Block.
. Primary Environment TableAD ifthe
taskneedstomake subsystem calls. The
compiler provides this aspart of the tasks
init state information.
. RegionOADandRegion lAD with
readandwrk rights are settoindicate
where the taskscodeand data reside. This
isalsopartofthe tasksinitstate.
. The process contrdswordfor
execution mode, tinmslicing(defauk is
ofo, task priority, Process state, and
preemption.

Port objects arerdlocated for each enti-yof
therask. The Entry Criteria selezted(eitber forthis
task or globally for all tasks) determine if a FIK3
Portora Priority Port isused forthe entry queue.
AnarmyofAD’s iscreatedforthese port objects

and the address of this is set in the
Ent ry_Queues field of the TCB. A Port object is
also allocated as the Ref_Dependent_Port to
maintain a fist of completed tasks that are reference
depndent on this task.

Semaphore objects are allocated, ADs are
created and stored in the following fields of the
TCB: Act_Semaphore, Dela y_Semaphore,

Select Semaphore, Suspend_Semaphore,
and Hol=ing_Semaphore. The usage of these

are discussed in the following sections.

Stack space for rhe task is allocated as an
object. An AD to this is created and set as the ~
Region 2 AD in the process object. An initial frame
is set up in the stack space, with a dummy previous
frame pointer (RO), Stack Pointer (RI) to the.start
address of the stack (64 bytes from the start of the
frame), and Return Instruction Pointer (R2) to the
entry point address of the task.

The following Ada tasking related
initializations am performed

. Task state is set to initial.

. Activator is set to the task id of the

task creating this TCB and this TCB is
linked to the activation chain of the
creating TCB.
. Master and Parent_task fields are
initialized. This will be null for library
tasks.

priority of the task (in the process
conuols field of the process object) is set
to the specified priority or a predetermined
default value.

Finally, the created TCB is made an object
(i.e. incorpmated into the object table), and AD is
created to this object and returned to the caller as a
task id.

Task activation is done at the begin that
follows a declarative part that created the task. An
activation chain is local to a declarative pant. The
compiler generated code declares an activation
chain at the begin of the declaration part and
initiahzes it to null. Every time a @ is created, the
exec links the newly created TCB to the given
activation chain. The TCB maintains a pointer to
the activation chain and a link to the next TCB in
the same activation chain. At the end of the
declarative part (just before the first instruction of
the block is to be executed) the compiler calls the

procedure Activate-Tasks with the activation chain
as parameter. The acavating task fnt &es its
priority to the highest priority, so that it may not be
preempted while scheduling the tasks that it is
activating. It then performs the following for each
of the @k on the chain:

. If the task has not completed elaboration,
then the exception Program Error is
laised.
. The schedprcs instruction is executed
with the task id (AD). This sends the
process/task to the dispatch pot% where it
is scheduled for execution at the front of
its priority queue. Note that even though
preemption is enablecL the high active
priority of the activating task nullifies that
effect.

After dl tasks have been scheduled, the
activating task changes it priority to its original
(base) priority and executes the wait instruction on

the Act_semaphore in a hop fOr

Num_Tobe_Act i vat ed times.

The procedure Complete_Activation is
generated by the compiler at the end of the
declarative part of the body of a task. This
procedure marks rhe tasks status as activated and
executes the signal instruction on the activator tasks
Act_Semaphore. The activator task will exit the
wait loop after the last activated tasks signal, mark
its status as compfeted-activation and then continue
execution.

4.1.3. Task Termination

Tasks come to an end in two stages. Fimt
they complete and then they terminate. Once a task
is completed it does not run again. A completed
task becomes terminated when all tasks that depend
on it either complete or agree to terminate.

The procedure Complete_Task is called as
the last step of a taslG whether the task completes
normatty or through an exception. There is no
return. If the task has dependents, the exec performs
all actions required for Complete_Master. In
addition the exec perfotms all actions required on
completion of a task. Some of these actions arw

. Check for pending calls on the task and

raise Tasking Error in any such calling
task This is done by checking the queue
suw.e(port Lock and Status) field in -h
of the Port Objects (entry queues). The
status of tasks blocked at the port are
marked rendezvous-fa”led and they are
unblocked by a send instruction.
. Destroy all tasks that axe reference
dependent on any bIock of this task Those
tasks were aheady completed, and are
waiting as messages on the Re f -

_Dependents Port of this task The

condrec instrucfi%n is executed on this
pen Any message received corresponds to
the task id of a previously completed task.
The following is done for each metwge
received

. Deallocate the Region 2 object
associated with the task
“ Deallocate the environment table
object (if any) associated with the
task
o Deallocate the task control
block.
. Invalidate the object descriptor
for this TCB. (Usage of dangling
Task ids tn these TCB will fault
the system).

. Mark the tasks state aa terminated. If
this task is not a library task, remove it
from the master dependency chain.
. Terminate any tasks that have &come
ready to be terminated through completion
of this master.
. If the activator of this task has not
completed activation, set its status as fa”led

and signal its Act_Semaphore.

“ The stack space (Region 2) is not

deallocated at this point. The task includes
itself to the referents chain of the parent
task (The reference dependent TCB’S are
maintained even after completion to
provide the capability to test their
‘TERMINATED and ‘CALLABLE
attribute.) The task ends it execution by
executing the sendserv instruction on the
Ref_Dependent s_Port of the parent

task

4.1.4. Task Entry Calls

The compiler tradates unconditional and

un-timed entry calls to calls to runtime procedure
Call_Simple and Call_Conditional. A Rendezvous is
possible if the called task is suspended at an accept
or at a select statement and is waiting at the entry
being called. The input parameters to the entry d

procedures are the task id of the task being called,

the entry index of the entry being called and the

virtual address of any pararnetcm m the entry. ‘Ihe

following is done to try to initiate a rendezvow

. The called tasks state and status is
checked to make sure that it is callable, i.e.
it has not compIeted, terminated or in any
way abnormal. If the task is not callable,
the exception Tasking Error is raised.
. The entry index and parameter address
are saved on the called tasks TCB (Index,

and Ent ry_Params field).

. If the state of the called task is selecting

(unconditional, timed, or terminable), and
the entry being called is on the select list
as an open accept statemen~ then the
following is steps are taken:

. If the select mode is timed, the

time manager is called to remove
the called task from the time
queue.
. The called tasks priority is
saved in the calling tasks TCB. If
the calkxi tasks priority is lower
than that of the calling task, then
its priority is changed (in the
process controts fded of its
process object) to the higher
priority.
. The partners list is updated to
include the calling task

- The called tasks state is made

ready and the calling (current)

tasks state is set to engaged.

. The called (selecting) task is
unblocked by executing the signal
instruction on it
SeLect_Semaphore.

. If the called task was not selecting then

the state of the calling task is marked as

cai[ing-entry-unconditionally.

, In either of the above two cases, the
following is also done

. The AD to the entry queue (port
object) comesponding to the entry
being called is fetched from the
called tasks entry queues M.

. llte calling task executes the
sendserv instruction with the entxy
queue pm AD. This suspends the
caIling task and sends it as a
message to the entry queue pofi If
no process is blocked at the port
(i.e. the calling task has not
executed an acceptor select cd)
then senckcrv enqueues the calling
process as a message at the cmd of
the appropriate message queue. Xf
any process axe blccked at the port
(i.e. the called task is blocked on
an accept statement) then sendserv
unblocks that process and stores
the calling process AD in that
process ob@ts received message.

For a conditional entry call, the calling task
fmt checks the entry queue to see if the task Ming
called is blocked on an accept for this entzy. It
fetches the AD to the port object tmreaponding to
the entry being called. It locks the port object and
examines the queue status. If a process is blocked at
the po~ it unlocks the port object and executes the
sendserv instruction. If not it returns to the caller as
an unsuccessful rendezvous.

Treed enfry calls are translated to the
runtime procedure Call_Timed. This procedure
checks the status of the called entry queue port just
as in a conditional entry call. If the rendezvous is
not possible, the time manag~ is ~~ ~ include
this task in the delay list for the specifkd duration
in the timed entry call. The state of the task is set
as timed-entry-call. ‘l’he sendsem instruction is
now executed. The calling task is thus suspended.
This task resumes execution in either of two ways.
The delay may expire before the called task
synchronizes for he rendezvous. In this case the
timer interrupt handler, realizing that the task whose
delay expired is in state timed-ent?y-call, travca’ses

the message list pointed to by the
Called Entry_Port field of the TCB and
removes %a task from the list. It marks the tasks
status as delay-expired. The interrupt handler then
executes a schedprcs instruction with the message
(task id) that was delinked from the pmt

The sewnd way is when the rendezvous
synchroniaion takes place before the delay
expires. The task that accepts the entry, realiziig
the calling task is in state dmed-entry-cafl, calls the

time manager to remove that task ffom rhe delay
list. This is done prior to executing the rendezvous
code. Upon rendezvous completion, the calling tasks
status is marked as rendezvous-completed and is
unblocked by a schedprcs instruction.

The code thatfollows the sendserv
instruction in the Call_Timed procedure checks the
tasks status to see if it was unblocked because of
the delay expiration, cr due to the completion of the
rendezvous. It then returns a boolean value for
Rendezvons_Successful.

4.1.5. Accept and Selective Waits

The compiler generates a call to
Accept-Call when it sms accept statements outside
of select statements. (Accept statements with no
code for the entry block are optimized through the
TriviaI_Accept call. This is discussed at the end of
section 4.2 1) The input parameter to the
Accept_CaU procedure is the number of the entry
being accepted. The rendezvous synchronization is
attempted as follows “

. The AD to the entry queue port
corresponding to the entry being accepted
is fetched from the accepting tasks TCB. A
receive instruction is executed with this
port AD. The receive instruction receives a
message (task id of a task blocked on an
entry call) tiom the pm requested. If the
port contains no messages (i.e. no CaIlers
for this entry), then the executing process
(auepting task) blocks until a message is
received

When this task gets to execute, the
rendezvous has been initiated. The received
message is the rask id of the task calling
this entry. The state of the calling task now

changes. If it was in dmed-entry-cafl state,
it is removed from the time queue. Its state
is now set to engaged-in-rendezvous.
. The priority of the amepting task is
modified to be the higher of the calling
task and itsdf. This is accomplished
executing the modpe instruction. The old
priority of the called task is saved in the
Saved_Priority field of the calling
task.
. The rendezvous partners list of the called

task is updated to include the calling task.

19

. The entry parameter block address is
copied horn the calling tasks TCB to the
accepting tasks TCB. lle compiler needs
to generate code to transfez the entry
pammeters in a form that is consistent with
normal procedure calling conventions
before giving control to the generated code
for the entry block.

Select statement code begins with
evaluation of guards for the accept ahamativea.
Compiled code builds a list of open akernativea in a
data structure called an entry lisL The valid
elements in this list are only for those entries whose
guards evaluate to ‘open’. The Selective=Wait
procedure is called to process the select hst. llte
‘mcxie’ parameter to this procedure indicatm the
kind of select statement. This procedure fmt saves
the select list and mode in the TCB
(Select List, Select_Mode fields). It then
examines~~ entry queue to see if any task is
waiting for any open entry. If so, immediate
rendezvous is possible. If more than one is
avaiIable, one is selected based on rhe
.Select_criteria field specified in the tasks

Task_Type_Descriptor. The rendezvous
synchronization mechanism is similar to the single
accept call explained above. The index to the
accepted entry and the rendezvous parameter
address is returned to the compiled code, which
then builds the parameter block and branches to the
approptite entry block code.

If there are no pending entry calls on any

of the open alternatives, then the following is done:

. If the select mode is simple. the task
marks its state as sefecting-unconditional

and suspends itself by executing the wait

instruction on the Select_Semaphore,

When it resumes execution (due to an entry
call signaling this semaphore) it gets the
entry index from its TCB and executes the
receive instruction on the corresponding
entry queue pom It then retmns the
selected entry and parameter to the
compiled code.
. If the select mode is delay (and the
delay duration is positive), the state of the
task is marked rimed-sefect. The time
manager ia called to place this task on the
delay Iist. The task then suspends itself by
executing the waif instruction on the

Select_Semaphore. lltis task resumes
execution in either of two ways. The delay
may expire before the selecting task
synchronizes for the rendezvous, In this
case the timer intemupt handler, realizing
that the task whose delay expired is in state
timed-select, fetches the

Select_Semaphore AD from its TC.B

and executes the deqsema instruction to

remove the process tim the semaphore. It
marks the tasks status as dehy_e@red.
The interrupt handler then executes a
schedprcs instmction with the message
(task id) that was dequeued from the
semaphore.

The second way is when the
rendezvous synchronization takes place
before the delay expires due to an entry
call on one of the open select entries. The
task that calls the entry, realizing that the
called task is in state timed select, calls the

time manager to remove that task from the
delay list. R then unblccks the selecting
task by executing the sigmd instruction on
its Select_Semaphore.

The code that follows the wail
instruction in the Selective_Wait procedute
checks the tasks status to see if it was
unblocked because of the delay expiration,

or due to the completion of the rendezvous.

It then returns either a null index (if the
delay expired) or the index of the called
entry and its entry parameter address.

. If the select mode is terminate, then the
state of the task is marked tenninub/e-

seIect. An attempt is made to rekse the
master bbck on which this task depends
on. If that is no(successful, then this task
cannot complete now. It suspends itseif by
executing the wait instruction on its
Select_Semaphore. This process can

only be resumed (if at all) by an entry call
on any of its open alternative. It then
remrns the called entry index and
pammeter address.

4.1.6. Rendezvous Completion ~~

At the end of the code of an accept entry
block, the compiler generates a call to
CompieteaRendezvous to reactivate the task tha

20

called this entry. This procedure rccompIishes the
foumving

. The task id of the rendezvous partner
(calling task) is fetched fixxn the top of the
partners list pointed to fkom the ‘ICB.
It is also delinked from this lis
. If the called tasks saved priority is
different ihm its current priority, thea it is
changed to its original priority by
executing the modpe instruction.
. The calling rash state is made reudy and
is unblocked by executing a schedprw

instruction.

4.1.7, Task Abortion

One or mom tasks maybe aborted by the
aborf statemen~ The compiler generates a call to
the AbortyTaska procedure with the list of task ids.
Each task m the list is aborted in the following
way

. If the task being aborted is not abeady
terminated or being aborted, then the
caIlers list and panrters list is traversed and
the exception Tasking Error is propagated
in each of those tasks by diverting the
control to the (compiler provided) interface
procedure Raise_Exception. This is
accomplished by fmt allocating and
building the Pre_Call_St ate from the
saved global registers in the process object.
Then the saved global registers and the
current flame are modified to reflect
pammeters and entry point addreaa of the
procedure Raise-Exception. The state of
the task is made reudy. The tasks are
unblocked in a manner cmsistent with their
state, and would thus enter the compiler’s
exception handling mechanism.

If the task being aborted has not
completed activation, aI1 inactivated tasks
are terminated. The abort-task procedure is
recursiwdy atwmpted for aU child tasks of
this task being aborted.
- If the task being aborted is in the process
of activating or engaged in a rendezvous,
mark its status as aborting.
. If the tssk being aborted is blocked on
an entry call, it is logically &linked fmm
the appropriate pmt.

. If the task being aborted has not

compIeted activation, its activator’s status

is marked as fm”[edirctiwtwn and the

signul instruction is executed on rhe
SCUW+UX tasks Act_Semaphore.

FmaUy, if them are no child tasks to this
ras~ it is terminated.

4.1.8. Task Attributes

Task attributes refers to the user modifiable
attributes of tasks that tie exw supports, namely
priorities, and time-slice scheduling of tasks. me
A& predefti task attributes, ‘CounL ‘Callable,
and ‘Terminated are directly deciphered from the
task entry queues, and state information.)

The priority of a task maybe changed by
either executing the modpc instruction (if it is for
the current executing task) or by modifying the
value in the process controls field of the process
object of the .spedied rask.

With time-slice scheduling, the processor
works on each process for a set duration, called a
time-slice. Six fields in the process object support
time-slice scheduling the nxidual-time-slice, next-
time-slice, and execution-time fields; and the
timing, time-slice+ and time-slice-reschedule flags in
the process controls. Each task can have a different
titne-slit@ value, ranging from 16 ticks to 2X-1
ticks. The exec supports the CIFO interface
Set-Time-Slice procedure. The time slice for the
task specified is set in the next-time-slice field of
the process object. The Turn-Off-Time-Slice
procedure disabks time slicing by turning off the
‘timing’ bit in the process controls fieId of the
process object of the sqecitled task.

4.1.9. Task Suspension/Holding

While there is no support in the Ada
language for task suspension, this feature is
provided through the CIFO task suspension
mechanism (packages Task_Suspension, -
Two_Stage-Task_Suspemsion, and
Asynchronous_Task_Hokling). The suspend, resume
mechanism is implemented by using a semaphore
ob~t aas&aed widi each @sk (the

Suspend_Semaphore field in the TCB for the
synchronous case and the Holdlng_Semaphore

21

task and schedule it for execution.for the asynchronous case). The task waits at its
associated semaphore when it is suspended. The
two cases of suspension are discussed below.

In the synchronous use, the task being
suspended is the current execudng process.
Thestatus of thetask ischeckedtosee ifit
is ‘suspendible’ (tree by default in the
general case, and true if the procdum
WiU-Suspend is in eff=t for WO stage
task suspension). If not suspendible, then
this is just a latching operation and the task
is not suspended. Othenvise, the
Suspend_Semaphore AD is fetched
from the TCB. The tasks state is marked as
Suspended and rhe wait insauction is
executed, specifying the semaphore AD.
This saves the task and blocks it at the
semaphore. The processor dispatches the
next ready task
. In the asynchronous task holding
mechanism tie task being suspended may
not be the executing task. In this case the
Holding_D is abled Count is fetched
from the TCB. Only if~t is zero will the
task be suspended. The suspension is
achieved using the architectures event fault
request mechanism. This is a software
interrupt mechanism via an Event Notice
FaulL The event-request-flags in the
process-notice-and-lock field of the process
ob~t of the task being suspended are seL
The srvos (store virtual ordinal short)
instruction may be used to set he flags.
When this task gets to execwe, the
processor automatically raises the event
notice faul~ The fault handler then loads
the ~olding_Semaphore AD from the
TCB and executes the wait instruction.
When the process is resumed it returns
from the fault handler and continues
execution of the task.

Task resumption mechanism is the same
for suspended and asynchronously held tasks. The
state of the task being resumed is checked to ensure
that the task is suspended. The appropriate
semaphore AD is fetche$ from the TCB of the task
being resumed (Suspend_Semaphore for a
Resume_Task operation and tie
~olding_Semaphore for the Rekase-Task
opemtion). The signal instruction is executed,
specifying the semaphore AD. This will unblock the

Support is also provided for keeping the a
current executing process bound to the pmcewor.
This is needed for critical regions of code in which
the processor cannot be involuntarily rwssigned to
anothw task. The Disable_Dispatchiig (CIFO
procedure) is used at the begirming of the critical
section of code. It does the following

. The current process controls is saved in
the TCBS Saved_Process_Controls

field.
. The status of the task is marked as
Dispatching_Disabled.

. The modpc instruction is issued to
disable timing and raise the process priority
to the highest task priority in the system.

The procedure Enable_Dispatching is used
at the end of the critical section to undo the effect
of Disable_Dispatching as follows

- The saved process controis word is
fetched from the TCB. The nwdpc

instmction is issued with this value to
restore the process to its originai state.

4.2. Interrupt Management

During initialization the exec contlgures
the interrupt mechanism to function in the
“dedicated mode” i.e, each external interrupt pin is
a separate interrupt source. The processor control
block points to the interrupt table, and interrupt
stack, both of which are located in Region3.
Initially interrupts are masked and any pending
interrupts are cleared in the Special Function
Register SFRO. The intemtpt vectors are initialized
in the Interrupt Vector Registers O and 1. The
interrupts are enabled by setting all bits in the
Interrupt Enable Special Function Register SFR1.

The exec supporia interfacing interrupts to
Ada tasks in two ways. These are specified in the
MRTSI packages RTS_Interrupts and
RTS_Queued_Mwrupts. The former provides an
efficient mechanism for an interrupt handler. The
latter is a more generalized form of Ada task with
interrupt entries. The exec also supports masking,
unmasking, and fetching tie mask of specif~c
interrupts as spdfkd in the CE?O package
hcx-rupt_ManagemenL

22

4.2.1. Restricted Interrupt Handler Task

This mechanism supports the direct
execution of task interrupt entries. However, the
following restrictions are imposed on such a task

. T%e task has only one intenupt entry.
“Allofthe codeinthe taskis insidea
single =cept statemenq which could be in
a simple (infinite) loop.

The compiler recognizes such an interqt
task The code for the accept body is generated as a
procedure that the intenupt handler could call
directly. A task is not created for this interrupt task.
Regular runtime calls are not generated from within
the accept block.

The procedure Bind-Handler causes the
exec to arrange for any subsequent occmrence of
the specified intemupt to transfer control to
spwified address of the handler. The previous
handler (if any) is saved. If the input linear address
is not a Region 3 address, then the
Interface Error exception is raised. The compiler
recognizes an interrupt handler task and compiles
the accept block code into Region 3. ‘The compiler
also saves aIl global and floating point registers
used in the handler or other subprograms that it
calls. This is required because the hardware
interrupt mechanism only saves ail local register
sets, and gives control to the handler under the
context of fhe cument executing process. Note that
if the handler has too many nested calls, the cached
local register sets may all get used up resulting in
the processor flushing SU local register sets to
memory. This would cause signifkant performance
loss in interrupt handling.

The procedure Unbind_Handler undoes
the effect of the last call to Bind_Hamdler for the
interrupt at hand. In particular it reinstates whatever
binding to handler existed before that call. (Only
one old handler value is savd, they are not
stacked.) This procedure is called at the completion
of the interrupt enuy task. If the accept block was
not in a loop, then the compiler generates this call
at the end of the code for the accept block, to
dissociate the interrupt entry from the interrupL
Thii procedure is also called if the interrupt task
completes because of the occurrence of an
exception in the accept block.

The exec also supports the call of the
interrupt entry from a regular task. The compiler,

realizing that the entry being called is an interrupt
entry, generates a call to Software_Interrupt. This
prrxedure causes the executing task to be
interrupted, and control mansferred to the handler (if
any) for Interrupt. The calling task is eventually
resumed at the point following the cdl. The exec
uses the architectures Inter Agent Communication
(IAC) mechanism to generate a software interrupt
for the specified interrupt vector. The intemupt
handler is given control in the same way as a
hadware intermpt.

The only rendezvous allowed from an
interrupt entry block is a simple entry call to an
enuy associated to a simple accept statement with
no sequence of statements or parameters. The
compiler translates the enay call to the special
procedure Trivial=Call. This is implemented as a
conditional entry call, and all interrupts are
disablexl. In no case must the calling task wait. This
is accomplished by executing the condrec
instruction to the port associated with the called
entry. The condition code indicates if the
synchronization took place or no~

The corresponding simple accept statement
is translated to a call to the procedure
Trivial-Accept. The task that contains the accept
statement must be a full fledged Ada task (not a
resrncted handler). Upon calling this procedure, the
task waits until it is signaled to go on via
Trivial_Call. The accepting tasks state is marked as
accepting-entry and suspends itself on the port
associated with the entry using the sendserv
instmction.

4.2.2. Unrestricted Interrupt Handler Task

In rhe unrestricted case, the interrupt
mechanism merely notifies the accepting task of the
eVenL Normal Ada task priorities govern the

execution of enuies. The interrupt task is a full
fledged Ada task, some or all of whose entries are
intexnlpt entries. Since the mechanism of entry @Is
is message passing using ports, it is not possl%le for
the accept to distinguish between an entry call b
an interrupt handler and Ada enay call. This
imposes the restriction that interrupt entries may
not be called from regular tasks. The exec
implements the interrupt entry calls as conditional
entry calls.

23

The procedure Associate Intemupt
notifies the exez that the specifid-interrupt is to be
associated with the given enrry of the given task.
Every occurrence of this interrupt is processed as a
conditional entry call to the given entry. Thus,
when rhe interrupt occurs, if the called task is
waiting on a matching accept statemem~ the
rendezvous takes place. As in the ease of the
restricted interrupt handling rneehanism, the
previous handler is saved by the exec. ‘lTie task
identifkr and entry index are also saved in a global
data stxucture that has a one-to-one mapping to the
interrupt table. The interrupt vector is W%to call an
internal procedure which in turn calls the standard
interfaee procedure Call_Cooditional to initiate the
rendezvous. The task control block of the interrupt
task is also modified to indicate that the entry type
is an intetntpt entry. Thus processing at the end of
a rendezvous for the interrupt entry omits all
operations related to the calling task. Passing
interrupt data as parameters to the interrupt entry
may be achieved by a user provided function in the
form User Interrupt N Routine. This is tailored to

the specit% interrup~ =d may build a pamrrteter
block for the accept entry from the interrupt data. If
such a procedure exists, the exec calls it prior to
initiating the rendezvous. The address returned from
this user function is passed as the pamrneter address
to the entry call.

43. Time Management

The Ada supported time management
functions include: delaying a task for a particular
time period, and fetehing the system time. A
periodic external timer intemupt is used to
implement delriys and the system time. A task may
be delayed for One of the following masons:
execution of the delay statemen~ timed enhy call
on an entry that is not accepting a select statement
with a delay in the else part.

The delay statement is implemented by
calling the time manager function to add the task to
the delay lis~ The tasks state is marked delayed.

The task then suspertda itself by exeeuting the wait
instruction on the Delay_Semaphore associated
with its TCB. When the delay expires, the timer
interrupt handler, realizing that the task was
delayed, wakes up the task by executing rhe signaf
using the De la y_Semapho re AD.

The other two forms of delaying a task are
discussed earlier in sections: 4.1.4 and 4.1.5.

The timer interrupt handler performs two

dutiex
. Increment the system’s date/time values.
. Serviee a list of delays, corresponding to
tasks waiting for a timed delay to expire.

T%e system date.hime is stored as a long
ordinal number of timer ticks sinm a specif5c base
date/time. The timer interrupt handler simply
increments the value when it executes.

A list of delays is maintained as a linked
list of records in chronological order, with next
delay to expire at the head of rhe list. Each record
contains the foUowing fields:

. Taskid. The ADofthetask thatis
delayed. When the delay expires, the timer
interrupt handler wakes up this task.
. Delta. The number of timer ticks
between the previous tasks expiration time
and this tasks expiration time. For the fmt
record, this field contains the number of
timer ticks between the current system time

and this tasks expiration time.
. Link to next record. Null value indicates
the end of the lisL

The timer interrupt handler services the
delay list in the following way. If the delay list is
not empty, the fmt records delta is decrimented. If
the new delta is zero, then the tasks delay has
expired. This record is now delinked from the delay
lis~ The TCB of the associated task is accessed
Depending on the state of the task, (delayed, timed-

enoy-call, timed-select) the appropriate action is
taken as explained in previous seetions. Tle same
action is repeated for each subsequent record with
zero delta.

The time manager supports functions m
add a task to the delay list, and to del.ink any task
from the list,

4.4. Storage Management

The storage management functions are
defined in the (MRTSX) package
RTS_Storage_Management., By defaul~ all
dynamically created Ada objeets (except *) are
allocated on the linear address space, and the access

24

values are linear addresses. However, objects may
bealloeated inthevirtual addresa spaceby rheuae
of speeial pragmas (viz. a pragma access_&scn”j7tor

associated to an A& aeceas type). Thus the storage

manager suppcuts memory management in both the
linear and virtual address spaces. Linear memory
management allocates blocks out of Region 3.

ColleetionJd and block addmaes are linear
addresses. Vii memory management allocates
memmy out of the application heap area. l%e
collectionJD in this ease is an AD and block
addresses are virtual addresses.

The function New_Colleetion resenes a
storage edlection as part of the elalnxation of an
access type definition. An internal data stmeture is
maintained which includes the extent of this
collection and the block size. If the allocation
descriptor is Zinear the collection resides in Region
3 and a linear address mpresenta rhe collection_Id.
If it is nrtual, the collection residea in the virtual
address space. An AD is created for the collection
and is returned. For protection, the linear addresses
corresponding to the extent of the virtual collection
is marked as invalid. A Storage Error exception is
raised if the memory manager cannot re.stme the
specified amount of storage.

AUocation and deallocation of blocks
wirhin collection may be implemented using
sra.ndardalgorithms like fmt-fi~ best-fi~ ete.

4S. Exception Propagation

Exception handling is mainly the
responsibility of the compiler. However the Ada
executive needs to be able to raise exceptions in
Ada tasks. The hardware fault handling mechanism
of the exee also needs to map the faults that it
cannot internally handle to Ada exceptions. This
requires an interfaee between the compiler’s
exception handling mechanism and the Ada
Executive. The exception handler also may
propagate an exception to a task. Thus the exee
needs to be able to identify exceptions. The MRTSI

Pt@We Compiler_Exceptions defines the standard
Ada exceptions and the intcrfaee pmeedurea
Raise Exception, and Notify-Exception. The
compfier should provide the ixnplementafion of
these pmeedures.

The Ada executive initializes the fmt

sixteen entries of the fault fable with address of
runtime procedures. These procedures are bested in
Region 3 and all entries in the fault table are local
prccedure fault table entries. For those fault
ty-pedsubtypes that map to compiler exeeptiona, the
exee builds the parameters and makes an inter-
domain call to the cmmpiler interfaee procedure
Notify-Exception,, The exec switehea to supervisor
mode before it processes the orher huh conditions.
The fault conditions that map to the Predefti Ada
exceptions are listed below

Constraint Error: Arithmetic Fault, Constraint
(range) FaulL Floating Point Fault.

Program Error: Attribute Fauk Constraint (invalid
AD) FaulL Descriptor Fauk Operation FaulL
Protection Fault, Type FaulL Virtual Memory
(invalid object descriptor) Fault.

Storage Error: Control Stack (overflow) Fault.

4.6. Time Critical Seetion

The Ada executive provides the ability to
ensure that a given segment of code is executed
without preemption and with minimal interruption.
This is a CIFO extension to the standard Ada
runtime. The implementation of this feature is
exaetly the same as the Disable_Dispatching and
Enable_Dispatching interfaces explained in section
4.1.9.

4.7. Resources

The resouree is an implementation of a
synchronizuion objeet that real-time applications
can make use of m efficiently control aeeess to a
shared resource. The architecture defined semaphore
object is used directly to model a resouree. The
following declaration defines a resource object.

type Resource_Block in
record –

Semaphore AD : system. Access-Descriptor;
capacity -: Capaci ty_Range : =

Capacity Range’ LAST;
Cotiiit : Counter-Range : = O;
Name : String (1. .Name_Range);

●nd record:
type Resource ia ● ccasa Resource_Block;

Reaouree creation involves allocating a
record for the Resouree_Bloek, allocating a
semaphore objec& creating an AD, and storing it

2s

in the Resource_Block. The access to the

Resource_Block is returned to the caller of the

create operation.

A task may unconditionally try to secure a
resource. l%is is implemented by first dccrementing
the count associated with the resource block using
the utaa%finstmction. If the new cxxmt is Iesa than
zero (i.e. the resource was already busy) then the
cxurertt task is blocked by executing a wit
instruction on the semaphore associated with the
resource. Its state is marked as uncondirionuf-get-
resource.

A timed get of a resoume is implemented
by adding the task to the delay I@ if the resource
is not available. The tasks state is marked as timed-

get-resource. The address of the resource blodc is
saved in the TCBS Resource_To_Get field, and
rhen the task suspends itself by executing a wait

instruction. l%e code following this checks the task
status to see if it was resumed by a signal on the

semaphore, or by the delay expiration, and returns
the appropriate boolean value to the caller to
indicate if the resource was secured or not.

The release operation on a resource is
achieved by incrementing the count field of the
resource using rhe u@zZi instruction. If the new
count is less than or equal to zero (ie. there are
tasks waiting on the semaphore) then a signul
instruction is issued on the semaphore associated

with the resource.

5. Conclusion

This paper provides a comprehensive
design strategy for building the executive
component of an Ada Runtime System for the
8Q960 extended architecture. Adopting MRTSI and
CIFO interfaces to specify the functionality provides
a standard interface to both the compiles and the
A& application. While this is an optimal design
that closely matches the hardware capability, there
are avenues for optimizing the implementation. One
instance is the number of semaphores associated
with a task. Careful analysis of interaction of
features, may lead to a reduction in the number of
semaphores that a task needs.

The standard interface facilitates mmpiles
and rundme system development and the kernel
imrkrnentation movides the best exdoitation of

architecture features. Progams developed using
differemt Ada Compilers for the 80%0 that interfaw
to the A& Executive can be easily integrated.

References

1. Ada Runtime Environment Working
Group MRTSI Task Force, “Model Ada
Runtime System Inter face,” in Ada
Letters Volume X Number 5, May/June
1990.

2. Ada Runtime Environment Working
Group Interfaces Subgroup,
“Catalogue of Interface Features and
Options for the Ada Runtime
Environment, Release 3. O“
Association for Computing Machinery
Special Interest Group for Ada, July
1991.

3. Intel Corporation. i.960= Extended
Architecture Programmer’s Reference
Manual.

4. Intel Corporation. Military i960~
MX Microprocessor Technical Overview
(order number 271194-001) .

26

