Check for
Updates

Crafting An Ada Executive
for the

Intel 80960 Extended Architecture

14 May 1992

Chak Sriprasad
Intel Corporation
5000 W. Chandler Blvd.
Mail Stop SP1-82
Chandler AZ-85226
csriprasad@AZ.INTEL.COM
(602)554-4030

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.

© 1992 ACM 0-89791487.2/92/0006-11 $1.50

11

http://crossmark.crossref.org/dialog/?doi=10.1145%2F257683.257687&domain=pdf&date_stamp=1992-07-16

1. Introduction

The Joint Integrated Avionics Working
Group (JIAWG) selected the Intel 80960 Extended
Architecture as a standard Instruction Set
Architecture for 32-bit processors. The key to the
promulgation of this JIAWG standard is the
availability of quality Ada compilation systems. A
generic Ada-960MX Cross-Development System
consists of a set of software tools that compile, link,
and debug Ada programs that are targeted to the
80960 extended architecture. Part of Ada-960MX
is a runtime system (RTS), a set of predefined
routines for any program generated by the Ada-
960MX compiler. Part of the RTS that directly
interfaces to the architecture is the Ada Executive
(exec) which performs the kemnel or executive
functions required to implement Ada semantics. It
supports Ada tasking, delays, interrupt management,
dynamic storage allocation, and exception raising.
This paper is a discussion of how these features
may be implemented on the 80960 extended
architecture,

The full functionality of the Ada Executive
(exec) is based on the Ada Runtime Environment
Working Groups (ARTEWG) (a subgroup of the
Association for Computing Machinery, Inc., Special
Interest Group for Ada) published "A Model
Runtime System Interface for Ada" (MRTSD){1].
The MRTSI describes a model interface between
the code generated by an Ada compiler and the
executive portion of the runtime system. This
interface is used as the basis for specifying the Ada
Executive.

The exec also provides some real-time
extensions to the Ada runtime. This is based on a
set of features selected from the "Catalog of
Interface Features and Options” (CIFO){2],
which is another ARTEWG proposal. The selected
CIFO features consist of: basic entries that support
task identification and querying of task attributes;
task scheduling control including dynamic priorities,
entry and select criteria, task suspension and
holding and time slicing; Interrupt management
functions that allow selective enabling and masking
of interrupts.

The 80960 extended architecture features
very high levels of hardware-enforced data security,
and support for object-oriented programming in

hardware, It also offers virtual memory management
and multitasking support. Specific instructions and
data structures are dedicated to provide a complete
multiple process management capability, including
priority-driven process scheduling, process timing
and interprocess communication. The exec strives to
best exploit these architecture features.

The following section gives a brief
overview of the 80960 Extended Architecture. A
full discussion of the architecture is beyond the
scope of this paper. This paper assumes a fair
knowledge of this architecture.

1.1. Overview of the 80960 Extended
Architecture

The 80960 extended architecture is an
extension to the core, numerics and protected series
of architectures. The core architecture directly
addresses a 32 bit physical address space and
includes a large register set. It supports signed and
unsigned integer arithmetic, many bit oriented
operations, support for procedure calls, interrupt
handling, fault handling and debugging. The
numerics architecture adds floating-point data types,
registers and instructions to the core architecture. It
supports 32-bit single precision, 64-bit double
precision, and 80-bit extended precision floating
point types. The protected architecture adds virtual
memory management support including paging and
segmentation. It provides on-chip support for Ada
multi-tasking including automatic process
scheduling and dispatching. Each process (task) has
its own protected address space.

The extended architecture includes all
protected architecture features and adds object based
memory organization and protection{33{4].

Different software subsystems can have different
address spaces or domains, providing protection
between parts of a program as well as between
processes. Other added protection features include
object type checking, checking of access rights in
object pointers or access descriptors (ADs) and
protection of ADs against unauthorized changes.
Objects are typed and protected memory segments.
They can only be accessed with ADs. The extended
architecture supports tagging. Tagging associates a
33rd bit, the tag bit, with each 32-bit memory word.
This tag bit provides the distinction between data
words and words that hold ADs. In addition, the tag
bit prohibits the possibility of forged pointers to
protected areas within memory, thus providing a
high level of data security within the architecture.

The physical address space is the 2°2 byte address
space that directly maps to physical memory. The
viral address space contains all the bytes in all the
objects in the system. A 64-bit virtual address has
two parts, a 32-bit offset into an object and an AD
that references the object.

2. Specification and Scope of the Ada Executive

The following is the set of MRTSI
packages and features that embody the core
functionality of the exec. Refer to the MRTSI
document for a formal definition of the interface.

- package Compiler_Exceptions

- package Machine_Specifics

- package RTS_Abortion

- package RTS_Clock

- package RTS_Delays

- package RTS_Interrupts

- package RTS_Priorities

- package RTS_Queued_Interrupts
- package RTS_Rendezvous

- package RTS_Storage. Management
- package RTS_Task_lds

. package RTS_Task_Stages

While MRTSI is essentially a compiler
independent specification, it does identify a host of
cross dependencies among the compiler, the runtime
system, and the processor. This paper addresses this
aspect alone in section 3 "Interface Characteristics”.

The following CIFO packages represent the
subset of CIFO features chosen. Once again the
reader is referred to the CIFO document for the
actual specification,

- package Asynchronous_Task_Holding
- package Complex_Discipline

- package Dynamic_Priorities

- package Interrupt_Management

- package Queuing_Discipline

- package Resources

- package Task_Ids

- package Task_Suspension

+ package Time_Slicing

- package Two_Stage_Task_Suspension
- Entry Criteria

- Select Criteria

- Time Critical Section

The specification listed above provides the

framework and defines the scope of the exec. The
focus of this paper is to identify and define the
characteristics of the interface and show how the
implementation of the features represented by this
specification maps to the 80960 extended
architecture.

3. Interface characteristics

The exec interfaces to the compiler and to
the 80960 processor. This section identifies the
significant aspects of these two interfaces, and the
dependencies on the compiler, the Ada executive,
and the 80960 processor.

3.1. Compiler Dependencies

The implementation of the exec is mainly
in Ada. However, it is likely that some parts of the
exec will be implemented in assembler. This
requires a full understanding of details that are
determined by the compiler, but which affect the
exec implementation. These include:

- The data representation of several
predefined types like INTEGER,
BOOLEAN, DURATION, and
SYSTEM.ADDRESS, as well as all types
defined in the Ada executive.

- Subprogram calling conventions.

- Subprogram parameter passing
conventions.

- Function return conventions, for
functions returning values of a discrete
type.

- The representation of exceptions as data,
and the mechanism of raising an exception.
- The implementation of pragma
Access_Descriptor to impiement Ada
access types as architecture access
descriptors.

- Interrupt handling code (associated with
task interrupt entries) should be located in
Region 3. The hardware interrupt
mechanism only saves all local register
sets, and gives control to the handler under
the context of the current executing
process. Thus the compiler may need to
save all global and floating point registers
used in the handler or other subprograms
that it calls and restore it prior to returning
from the handler.

The compiler vendor should document how

these details are resoived o help integrate the Ada
executive with the compiler and runtime systems.

3.2. Ada Executive Dependencies

The dependencies of the compiler on the
exec consists of all data types and constant
definitions used in specifying the compiler-runtime
interface modules. The Ada executive establishes
the definition of the following constants and type
declarations:

- The representation and constraints of

type STANDARD .DURATION.

The type DURATION shall have the
following characteristcs:

Table I - Duration Attributes

Atmribute DURATION value
'DELTA 0.0001 sec
"FIRST -86400.0 sec
"LAST 86400.0 sec
*SMALL 0.000061 sec

- The following types and constants in

package SYSTEM.
TICK : constant := 2 ** (-14);
-~ 0.0000614

-- The processor supports 32 priorities for
-- processes and interrupts. The Ada task

-- priorities are restricted to the range

~=- 0..15 in order to allow interrupts to have
-- higher priorities than tasks.

subtype Priority is INTEGER range 0..15;

-- The Object table supports 2**26 entries.
-- This type is to index into the object
~= table.

type Index is range 0 .. 2**26 - 1;

for Indaw’Size uaa 26

-- Representation rights to read or write an
-- object’s representation

type Read Rights is naw Boolean;

type Write_Rights is new Boolean;

-- Type rights that are dependent on the
-= object’s type

type Control_Rights is new Roolean;
type Modify_ Rights is new Boclean;

14

type Use_Rights is new Boolean;

type Lifetime is
(Global,
Local);
for Lifetime use
(Global => O,
Local => 1);

type Access_Descriptor
~- defined
recopd
Object_Read Rights
Object_Write Rights
Object Use Rights
Object Modify Rights
Object Control Rights
Object Lifetime
Object_Index
end record;

for Access_Descriptor use
record

Object_Read_Rights

o Object _Write Rights
b Object_Use_Rights

" Object_Modify Rights
3 Object_Control_Rights
b Object Lifetime
> Object Index
31;

end record;

type Ordinal is range

type Address_Mode is (Virtual, Linear,

Physical);

is
in

be ss er ve wa we a4

at

at

Q.

-= may be
private section

Read Rights;
Write Rights;

Use Rights;

ModIfy Rights;
Control_Rights;

Lifetime;

Index;

0 range
0 range
0 range
range

range

o o O

range

0 range

. 2**32 - 1;

typea Address (Mode : Address_Mode)

record
case Mode 1is
when Virtual =>

Offset : Ordinal;
AD i Access_Descriptor;
whan Linear =>
Linear_Address : Ordinal;
when Physical =>
Physical Address : Ordinal;
end case;
end record;
for Address use
recozrd at mod 32;
Mode at 0 range O 7;
Offset at 4 range O 31;
AD at 8 range O 31;
Linear_Address at 4 range 0 31;
Physical Address at 4 range 0 31;
end record;
subtype Virtual address is Address (Mode =>
Virtual);
subtype Linear_address is Address (Mode =>

Linear);

function Virtual (Lin_Addr
return Virtual Address;

Linear_Address)

3.3. 80960 processor Dependencies

There are some ways in which both the
compiler and the exec depend on conventions about
their mutual view of the target machine, They are
embodied in the MRTSI package
Machine Specifics to facilitate adaptation to
specific compilers. The processor specific type
definitions are:

- Init_Statae, the initial task state. This
is a record of key register values and other
task start-up related information.

type Init State is
record
Entry Point : System.Address;
Storage Size : Natural;
Body | Elaborated : Boolean;
Entry Criteria :
Queuing_Discipline. Discipline,
Select Criteria :
Queuing Discipline.Discipline;
Region0 : System.Access Descriptoz,
Regionl : System.Access Descriptor,
Prim_Env_Table_AD :
System.Access Desczzptor,
end record;

- Pre_Call_ State, the portion of the
state of the processor that is not preserved
by the subprogram calling conventions.

subtype Signed 32 4is Integer;
type Pre_Call State is

record
Reg_G0 - : Signed_32;
Reg Gl : Signed”32;
Reg_ G2 : Signed 32;
Reg ! —G3 : 51gned 32;
Reg_! "G4 : Signed_32;
Reg_G5 : Signed_32;
Reg_G& : Slgned 32;
Reg_G7 : Signed 32;
Regq_ ~G8 : Signed_32;
Reg_ "G9 : Slgned 32;
Reg_ ~G10 : Slgned 32;
Reg_| ~Gll H Signed 32;
Reg_ "G12 : 51gned 32;
Reg_G13 : Signed_ 32;
Req Gl4 : 51gned 32;
Reg_| ~G15 H Slgned 32;

Trace Controls :
Trace ControIs _Words. Trace _Control _Word;
Reg_ SF0~

Special_Functions Registers Special_Function_

Reg0;
Reg SF1

Special _ FPunctions Reglsters Special Function_

Regl;
end record;

- Task_Storage Size, the type used
to specify task storage size.

type Task_Storage_Size is range 0..2*%*32;

- Interrupt_Id, the type used 10
identify a hardware interrupt.

1§

type Interrupt_Id is range 8..255;

- Machine Exceptions, the type used
to identify a hardware detected exceptions
when notifying the exception recovery
system.

type Machine_Exceptions is new
Fault_Information.Fault_Type;

- Exrror_Information, the
information associated with a hardware
detected error.

type Error_Information is new
Fault_Information.Fault_Record;

. Allocation_bescriptor, the
information telling how a dynamic storage
collection is allocated.

type Allocation_Descriptor is (Linear,
Virtual);

4. Implementation Characteristics

Based on the selected set of interfaces the
key components of the exec are identified as:

« Task Management

- Interrupt Management

- Time Management

- Storage Management

- Exception Propagation

- Time Critical Section

- Resources

The implementation of these features is
discussed in the following sections. The emphasis is
more on utilizing processor features and instructions
while following a general algorithm that implements
the Ada semantics for these features, This has the
potential to be expanded to a rigorous design
document.

4.1, Task Management
4.1.1. Task Identification

A task is identified by a task control block.
This is a record that consists of the architecture
defined process object and a set of task
management fields. An AD created for this
extended process object serves as a task identifier.
An implementation may restrict access rights on this
AD so that user code may not directly access the

task control block. The following Ada code
represents the definition of a task identifier:

type Task_Control_ Block;

typa Task_Id is access Task_Control_ Block;
pragma Access Descriptor (Task Id);

~- The pragma tells the compiler to implement
-~ the access type Task_Id as an Access

-~ Descriptor.

type Task _Control Block is
record
Process_Info
Process_Control_Blocks. Process _Object;
~- Architecture defined data structure

State E
Ada_Task_sState;

status H
Ada_Status_Flags;

Activator

Num Tobe_ Activated

Act_Chain
Activation_Chain;

Act_Semaphore :
System.Access Descriptor;
-- AD to Semaphore object used to
-— synchronize activation

Task_Id;
Natural;

Task_Type_Descriptor H
Machine _Specifics.Init_State;

Parent_Task : Task_Id;
Master : Master_Id;
Child_Tasks : Task_Id;
Previous_Child : Task_Id;
Next Child : Task_Id;
Leavzng Block :
System.Address; -- Virtual address

Ref Dependents_Port :
System.Access_Descriptor;
-~ AD to Port object used to queue completed
-- tasks as reference dependent on this task.

Delay_Period : Integer;
Delay_semaphore :
System.Access_Descriptor;
-- AD to Semaphore object used to signal
-- a task upen expiration of a delay.

Entry_Queues :
Port_Object_Anchor;
-- List of AD’s to architecture defined
-- Port Objects for each entry.

Called Entry Port H
System.AccesS_Descriptor;
-- AD to the entry queue Port object on
-= which this task is a message waiting
-- to rendezvous (used for timed entry calls)

Partners : Task_1Id;
Next Partner : Task_Id;
Select_Semaphore :
System.Access_Descriptor;
~- AD to the Semaphore object on which this
—-— task waits when none of the open select
-~ entries are called.

Select List :
RTS_Rendezvous.Entry_List;

Select_Mode :
RTS_Rendezvous.Modes;

Index :
RTS_Rendezvous.Entry Index
Entry Params H

System.Address;
Saved Priority

: Integer;
Resource_To_Get H

i6

Resources.Resource; .
-~ Address of resource object on which the
~= task is in a timed wait.

Suspend_Semaphore :
System.Access_Descriptor;
-- AD to Semaphore Object used in task
-- suspension {synchronous).

Holding Semaphore H
System.Access_Descriptor;
-- AD to Semaphore Object used in task
~- suspension (asynchronous).

Holding Disabled Count : Integer;
-- Count of nested calls to enable/disable
-~ holding.

Saved Process Controls ¢
Process Controls Blocks Process Control Word;
end record;

4.1.2. Task Creation and Activation

Tasks come into being in two stages,
creation and activation. Tasks are created by the
elaboration of declarations of objects that are either
defined as tasks or contain an instance of a task
type. Both tasks and task type instances are treated
identically by the exec. Task creation involves the
following steps:

Storage manager is called to allocate a
record for the task control block (TCB). Most of the
fields of the TCB, including the fields of the
process object are initialized with information
provided in the compiler generated call to create
task. Specifically the following process object fields
are set:

- Dispatch port AD is set to the same

dispatch port which is bound to the

Processor Control Block.

Primary Environment Table AD if the
task needs to make subsystem calls. The
compiler provides this as part of the tasks
init state information.

Region 0 AD and Region 1 AD with
read and write rights are set to indicate
where the tasks code and data reside. This
is also part of the tasks init state.

The process controls word for
execution mode, time slicing (default is
off), task priority, process state, and
preemption.

Port objects are allocated for each entry of
the task. The Entry Criteria selected (either for this
task, or globally for all tasks) determine if a FIFO
Port or a Priority Port is used for the entry queue.
An array of AD’s is created for these port objects

and the address of this is set in the
Entry_Queues field of the TCB. A Port object is
also allocated as the Ref_Dependent_Port to
maintain a list of completed tasks that are reference
dependent on this task.

Semaphore objects are allocated, ADs are
created and stored in the following fields of the
TCB: Act_Semaphore, Delay_ Semaphore,
Select_Semaphore, Suspend Semaphore,
and Holding_Semaphore. The usage of these

are discussed in the following sections.

Stack space for the task is allocated as an
object. An AD 1o this is created and set as the
Region 2 AD in the process object. An initial frame
is set up in the stack space, with a dummy previous
frame pointer (R0), Stack Pointer (R1) to the. start
address of the stack (64 bytes from the start of the
frame), and Return Instruction Pointer (R2) to the
entry point address of the task.

The following Ada tasking related
initializations are performed:

- Task state is set to initial.

- Activator is set to the task id of the

task creating this TCB and this TCB is

linked to the activation chain of the

creating TCB.

- Master and Parent_task fields are

initialized. This will be null for library

tasks.

. Priority of the task (in the process

controls field of the process object) is set

to the specified priority or a predetermined

default value,

Finally, the created TCB is made an object
(i.e. incorporated into the object table), and AD is
created to this object and returned to the caller as a
task id. :

Task activation is done at the begin that
follows a declarative part that created the task. An
activation chain is local to a declarative part. The
compiler generated code declares an activation
chain at the begin of the declaration part and
initializes it to null. Every time a task is created, the
exec links the newly created TCB to the given
activation chain. The TCB maintains a pointer to
the activation chain and a link to the next TCB in
the same activation chain. At the end of the
declarative part (just before the first instruction of
the block is to be executed) the compiler calls the

17

procedure Activate_Tasks with the activation chain
as parameter. The activating task first raises its
priority to the highest priority, so that it may not be
preempted while scheduling the tasks that it is
activating. It then performs the following for each
of the task on the chain:

- If the task has not completed elaboration,
then the exception Program Error is
raised.

- The schedprcs instruction is executed
with the task id (AD). This sends the
process/task to the dispatch port, where it
is scheduled for execution at the front of
its priority queue. Note that even though
preemption is enabled, the high active
priority of the activating task nullifies that
effect.

After all tasks have been scheduled, the
activating task changes it priority to its original
(base) priority and executes the wait instruction on
the Act_semaphore in a loop for
Num_Tobe_Activated times.

The procedure Complete_Activation is
generated by the compiler at the end of the
declarative part of the body of a task. This
procedure marks the tasks status as activated and
executes the signal instruction on the activator tasks
Act_Semaphore. The activator task will exit the
wait loop after the last activated tasks signal, mark
its status as completed-activation and then continue
execution.

4.1.3. Task Termination

Tasks come to an end in two stages. First
they complete and then they terminate. Once a task
is completed it does not run again. A completed
task becomes terminated when all tasks that depend
on it either complete or agree to terminate.

The procedure Complete_Task is called as
the last step of a task, whether the task completes
normally or through an exception. There is no
return. If the task has dependents, the exec performs
all actions required for Complete_Master. In
addition the exec performs all actions required on
completion of a task. Some of these actions are:

- Check for pending calls on the task and

raise Tasking Error in any such calling
task. This is done by checking the queue
state (Port Lock and Status) field in each
of the Port Objects (entry queues). The
status of tasks blocked at the port are
marked rendezvous-failed and they are
unblocked by a send instruction.
- Destroy all tasks that are reference
dependent on any block of this task. Those
tasks were already completed, and are
waiting as messages on the Ref-
_Dependents_Port of this task. The
condrec instruction is executed on this
port. Any message received corresponds to
the task id of a previously completed task.
The following is done for each message
received: o

- Deallocate the Region 2 object

associated with the task.

- Deallocate the environment table

object. (if any) associated with the

task.

- Deallocate the task control

block.

- Invalidate the object descriptor

for this TCB. (Usage of dangling

Task ids to these TCB will faunlt

the system).
- Mark the tasks state as terminated. If
this task is not a library task, remove it
from the master dependency chain.
- Terminate any tasks that have become
ready to be terminated through completion
of this master.
- If the activator of this task has not
completed activation, set its status as failed
and signal its Act_Semaphore.
- The stack space (Region 2) is not
deallocated at this point. The task includes
itself to the reference chain of the parent
task. (The reference dependent TCB’s are
maintained even after completion to
provide the capability to test their
"TERMINATED and 'CALLABLE
attributes.) The task ends it execution by
executing the sendserv instruction on the
Ref_Dependents_Port of the parent
task.

4.1.4. Task Eatry Calis

The compiler translates unconditional and

un-timed entry calls to calls to runtime procedures:
Call_Simple and Call_Conditional. A Rendezvous is
possible if the called task is suspended at an accept
or at a select statement and is waiting at the entry
being called. The input parameters to the entry call
procedures are the task id of the task being called,
the entry index of the enuy being called and the
virtual address of any parameters to the entry. The
following is done to try to initiate a rendezvous:

- The called tasks state and status is
checked to make sure that it is callable, i.e.
it has not completed, terminated or in any
way abnormal. If the task is not callable,
the exception Tasking Error is raised.
- The entry index and parameter address
are saved on the called tasks TCB (Index,
and Entry_Params field).
- If the state of the called task is selecting
(unconditional, tmed, or terminable), and
the entry being called is on the select list
as an open accept statement, then the
following is steps are taken:
- If the select mode is tdmed, the
time manager is called to remove
the called task from the time
queue.,
- The called tasks priority is
saved in the calling tasks TCB. If
the called tasks priority is lower
than that of the calling task, then
its priority is changed (in the
process controls filed of its
process object) to the higher
priority.
- The parmers list is updated to
include the calling task.
- The called tasks state is made
ready and the calling (current)
tasks state is set to engaged.
- The called (selecting) task is
unblocked by executing the signal
instruction on it
Select_Semaphore.
- If the called task was not selecting then
the state of the calling task is marked as
calling-entry-unconditionally.
- In either of the above two cases, the
following is also done:
- The AD to the entry queue (port
object) corresponding to the entry
being called is fetched from the
called tasks entry queues list.

18

- The calling task executes the
sendserv instruction with the entry
queue port AD. This suspends the
calling task and sends it as a
message to the entry queue port. If
no process is blocked at the port
(i.e. the calling task has not
executed an accept or select call)
then sendserv enqueues the calling
process as a message at the end of
the appropriate message queue. If
any process are blocked at the port
(i.e. the called task is blocked on
an accept statement) then sendserv
unblocks that process and stores
the calling process AD in that
process objects received message.

For a conditional entry call, the calling task
first checks the entry queue to see if the task being
called is blocked on an accept for this entry. It
fetches the AD to the port object corresponding to
the entry being called. It locks the port object and
examines the queue status. If a process is blocked at
the port, it unlocks the port object and executes the
sendserv instruction. If not it returns to the caller as
an unsuccessful rendezvous.

Timed entry calls are translated to the
runtime procedure Call_Timed. This procedure
checks the status of the called entry queue port just
as in a conditional entry call. If the rendezvous is
not possible, the time manager is called to include
this task in the delay list for the specified duration
in the timed entry call. The state of the task is set
as timed-entry-call. The sendserv instruction is
now executed. The calling task is thus suspended.
This task resumes execution in either of two ways.
The delay may expire before the called task
synchronizes for the rendezvous. In this case the
timer interrupt handler, realizing that the task whose
delay expired is in state timed-entry-call, traverses
the message list pointed to by the
Called_Entry_ Port field of the TCB and
removes this task from the list. It marks the tasks
status as delay-expired. The interrupt handler then
executes a schedpres instruction with the message
(task id) that was delinked from the port.

The second way is when the rendezvous
synchronization takes place before the delay
expires. The task that accepts the entry, realizing
the calling task is in state timed-entry-call, calls the

19

time manager to remove that task from the delay
list. This is done prior to executing the rendezvous
code. Upon rendezvous completion, the calling tasks
status is marked as rendezvous-completed and is
unblocked by a schedpres instruction.

The code that follows the sendserv
instruction in the Call_Timed procedure checks the
tasks status to see if it was unblocked because of
the delay expiration, cr due to the completion of the
rendezvous. It then returns a boolean value for
Rendezvous_Successful.

4.1.5. Accept and Selective Waits

The compiler generates a call to
Accept_Call when it sees accept statements outside
of select statements. (Accept statements with no
code for the entry block are optimized through the
Trivial_Accept call. This is discussed at the end of
section 4.2.1) The input parameter to the
Accept_Call procedure is the number of the entry
being accepted. The rendezvous synchronization is
attempted as follows: §

- The AD to the entry queue port
corresponding to the entry being accepted
is fetched from the accepting tasks TCB. A
receive instruction is executed with this
port AD. The receive instruction receives a
message (task id of a task blocked on an
entry call) from the port requested. If the
port contains no messages (i.e. no callers
for this entry), then the executing process
(accepting task) blocks until a message is
received.

- When this task gets to execute, the
rendezvous has been initiated. The received
message is the task id of the task calling
this entry. The state of the calling task now
changes. If it was in timed-entry-call state,
it is removed from the time queue. Iis state
is now set to engaged-in-rendezvous.

. The priority of the accepting task is
modified to be the higher of the calling
task and itself, This is accomplished
executing the modpe instruction. The oid
priority of the called task is saved in the
Saved_Priority field of the calling
task.

. The rendezvous partners list of the called
task is updated to include the calling task.

. The entry parameter block address is
copied from the calling tasks TCB to the
accepting tasks TCB. The compiler needs
to generate code to transfer the entry
parameters in a form that is consistent with
normal procedure calling conventions
before giving control to the generated code
for the entry block.

Select statement code begins with
evaluation of guards for the accept alternatives.
Compiled code builds a list of open alternatives in a
data structure called an entry list. The valid
elements in this list are only for those entries whose
guards evaluate to ‘open’. The Selective_Wait
procedure is called to process the select list. The
'mode’ parameter to this procedure indicates the
kind of select statement. This procedure first saves
the select list and mode in the TCB
(Select_List, Select_Mode fields). It then
examines its entry queue to see if any task is
waiting for any open entry. If so, immediate
rendezvous is possible, If more than one is
available, one is selected based on the
Select_Criteria field specified in the tasks
Task_Type_Descriptor. The rendezvous
synchronization mechanism is similar to the single
accept call explained above. The index to the
accepted entry and the rendezvous parameter
address is returned to the compiled code, which
then builds the parameter block and branches to the
appropriate entry block code.

If there are no pending entry calls on any
of the open alternatives, then the following is done:

- If the select mode is simple, the task
marks its state as selecting-unconditional
and suspends itself by executing the wait
instruction on the Select_Semaphore.
When it resumes execution (due to an entry
call signalling this semaphore) it gets the
entry index from its TCB and executes the
receive instruction on the corresponding
entry queue port. It then returns the
selected entry and parameter to the
compiled code.

- If the select mode is delay (and the
delay duration is positive), the state of the
task is marked timed-select. The time
manager is called to place this task on the
delay list. The task then suspends itself by
executing the wait instruction on the

20

Select_Semaphore. This task resumes
execution in either of two ways. The delay
may expire before the selecting task
synchronizes for the rendezvous. In this
case the timer interrupt handler, realizing
that the task whose delay expired is in state
timed-select, fetches the
Select_Semaphore AD from its TCB
and executes the degsema instruction to
remove the process from the semaphore. It
marks the tasks status as delay_expired.
The interrupt handler then executes a
schedpres instruction with the message
(task id) that was dequeued from the
semaphore.

The second way is when the
rendezvous synchronization takes place
before the delay expires due to an entry
call on one of the open select entries. The
task that calls the entry, realizing that the
called task is in state timed select, calls the
time manager to remove that task from the
delay list. It then unblocks the selecting
task by executing the signal instruction on
its Select_Semaphore.

The code that follows the wait
instruction in the Selective_Wait procedure
checks the tasks status to see if it was
unblocked because of the delay expiration,
or due to the completion of the rendezvous.
It then returns either a null index (if the
delay expired) or the index of the called
entry and its entry parameter address.

- If the select mode is terminate, then the
state of the task is marked terminable-
select. An attempt is made to release the
master block on which this task depends
on. If that is not successful, then this task
cannot complete now. It suspends itself by
executing the waif instruction on its
Select_Semaphore. This process can
only be resumed (if at all) by an entry call
on any of its open alternative. It then
returns the called entry index and
parameter address.

4.1.6. Rendezvous Completion
At the end of the code of an accept entry

block, the compiler generates a call to
Complete_Rendezvous to reactivate the task that

called this entry. This procedure accomplishes the
following:

- The task id of the rendezvous partner
(calling task) is fetched from the top of the
pPartners list pointed to from the TCB.
It is also delinked from this list,

- If the called tasks saved priority is
different from its current priority, then it is
changed to its original priority by
executing the modpe instruction.

- The calling tasks state is made ready and
is unblocked by executing a schedpres
instruction.

4.1.7. Task Abortion

One or more tasks may be aborted by the
abort statement. The compiler generates a call to
the Abort_Tasks procedure with the list of task ids.
Each task in the list is aborted in the following
way:

- If the task being aborted is not already
terminated or being aborted, then the
callers list and partners list is traversed and
the exception Tasking Error is propagated
in each of those tasks by diverting the
control to the (compiler provided) interface
procedure Raise_Exception. This is
accomplished by first allocating and
building the Pre_Call_State from the
saved global registers in the process object.
Then the saved global registers and the
current frame are modified to reflect
parameters and eniry point address of the
procedure Raise_Exception. The state of
the task is made ready. The tasks are
unblocked in a manner consistent with their
state, and would thus enter the compiler’s
exception handling mechanism.

If the task being aborted has not
completed activation, all unactivated tasks
are terminated. The abort_task procedure is
recursively auempted for all child tasks of
this task being aborted.

- If the task being aborted is in the process
of activating or engaged ina rendezvous,
mark its status as aborting.

- If the task being aborted is blocked on
an entry call, it is logically delinked from
the appropriate port,

21

- If the task being aborted has not
completed activation, its activator’s status
is marked as failed-activation and the
signal instruction is executed on the
activator tasks Act_Semaphore.

. Finally, if there are no child tasks to this
task, it is terminated.

4.1.8. Task Attributes

Task attributes refers to the user modifiable
attributes of tasks that the exec supports, namely:
priorities, and time-slice scheduling of tasks. (The
Ada predefined task atuributes, 'Count, *Callable,
and 'Terminated are directly deciphered from the
task entry queues, and state information.)

The priority of a task may be changed by
either executing the modpc instruction (if it is for
the current executing task) or by modifying the
value in the process controls field of the process
object of the specified task.

With time-slice scheduling, the processor
works on each process for a set duration, called a
time-slice. Six fields in the process object support
time-slice scheduling: the residual-time-slice, next-
time-slice, and execution-time fields; and the
iming, time-slice, and time-slice-reschedule flags in
the process controls. Each task can have a different
time-slice value, ranging from 16 ticks to 2*-1
ticks. The exec supports the CIFO interface
Set_Time_Slice procedure. The time slice for the
task specified is set in the next-time-slice field of
the process object. The Turn_Off_Time_Slice
procedure disables time slicing by turning off the
"timing’ bit in the process controls field of the
process object of the specified task.

4.1.9. Task Suspension/Holding

While there is no support in the Ada
language for task suspension, this feature is
provided through the CIFO task suspension
mechanism (packages Task_Suspension, -
Two_Stage_Task_Suspension, and
Asynchronous_Task_Holding). The suspend, resume
mechanism is implemented by using a semaphore
object associated with cach sk (the
Suspend_Semaphore field in the TCB for the
synchronous case and the Holding Semaphore

for the asynchronous case). The task waits at its
associated semaphore when it is suspended. The
two cases of suspension are discussed below:

- In the synchronous case, the task being
suspended is the current executing process.
The status of the task is checked to see if it
is "suspendable’ (true by defauit in the
general case, and true if the procedure
Will_Suspend is in effect for two stage
task suspension). If not suspendable, then
this is just a latching operation and the task
is not suspended. Qtherwise, the
Suspend_Semaphore AD is fetched
from the TCB. The tasks state is marked as
Suspended and the wait instruction is
executed, specifying the semaphore AD.
This saves the task and blocks it at the
semaphore. The processor dispatches the
next ready task.

- In the asynchronous task holding
mechanism the task being suspended may
not be the executing task. In this case the
Holding_Disabled_Count is fetched
from the TCB. Only if it is zero will the
task be suspended. The suspension is
achieved using the architectures event fault
request mechanism. This is a software
interrapt mechanism via an Event Notice
Fault. The event-request-flags in the
process-notice-and-lock field of the process
object of the task being suspended are set.
The stvos (store virtual ordinal short)
instruction may be used to set the flags.
When this task gets to execute, the
processor automatically raises the event
notice fault. The fault handler then loads
the Holding Semaphore AD from the
TCB and executes the wait instruction,
When the process is resumed it retumns
from the fault handler and continues
execution of the task.

Task resumption mechanism is the same
for suspended and asynchronously held tasks. The
state of the task being resumed is checked to ensure
that the task is suspended. The appropriate
semaphore AD is fetched from the TCB of the task
being resumed (Suspend_Semaphore for a
Resume_Task operation and the
Holding_Semaphore for the Release_Task
operation). The signal instruction is executed,
specifying the semaphore AD. This will unblock the

task and schedule it for execution.

Support is also provided for keeping the a
current executing process bound to the processor,
This is needed for critical regions of code in which
the processor cannot be involuntarily reassigned to
another task. The Disable_Dispatching (CIFO
procedure) is used at the beginning of the critical
section of code. It does the following:

- The current process controls is saved in

the TCBs Saved _Process_Controls

field.

- ‘The status of the task is marked as

Dispatching_Disabled.

- The modpc instruction is issued to

disable timing and raise the process priority

to the highest task priority in the system.

The procedure Enable_Dispatching is used
at the end of the critical section to undo the effect
of Disable_Dispatching as follows:

- The saved process controls word is

feiched from the TCB. The modpc

instruction is issued with this value to
restore the process to its original state.

4.2. Interrupt Management

During initialization the exec configures
the interrupt mechanism to function in the
"dedicated mode" i.e. each external interrupt pin is
a separate interrupt source. The processor control
block points 10 the interrupt table, and interrupt
stack, both of which are located in Region3.
Initially interrupts are masked and any pending
interrupts are cleared in the Special Function
Register SFRO. The interrupt vectors are initialized
in the Interrupt Vector Registers 0 and 1. The
interrupts are enabled by setting all bits in the
Interrupt Enable Special Function Register SFR1.

The exec supports interfacing interrupts to
Ada tasks in two ways. These are specified in the
MRTSI packages RTS_Interrupts and
RTS_Queued_Interrupts. The former provides an
efficient mechanism for an interrupt handler. The
latter is a more generalized form of Ada task with
interrupt entries. The exec also supports masking,
unmasking, and fetching the mask of specific
interrupts as specified in the CIFO package
Interrupt_Management.

4.2.1. Restricted Interrupt Handler Task

This mechanism supports the direct
execution of task interrupt entries. However, the
following restrictions are imposed on such a task:

- The task has only one interrupt entry.

- All of the code in the task is inside a

single accept statement, which could be in

a simple (infinite) loop.

The compiler recognizes such an interrupt
task. The code for the accept body is generated as a
procedure that the interrupt handler could call
directly. A task is not created for this interrupt task.
Regular runtime calls are not generated from within
the accept block.

The procedure Bind_Handler causes the
exec to arrange for any subsequent occurrence of
the specified interrupt to transfer control to
specified address of the handler. The previous
handler (if any) is saved. If the input linear address
is not a Region 3 address, then the
Interface Error exception is raised. The compiler
recognizes an interrupt handler task and compiles
the accept block code into Region 3. The compiler
also saves all global and floating point registers
used in the handler or other subprograms that it
calls. This is required because the hardware
interrupt mechanism only saves all local register
sets, and gives control to the handler under the
context of the current executing process. Note that
if the handler has too many nested calls, the cached
local register sets may all get used up resulting in
the processor flushing all local register sets to
memory. This would cause significant performance
loss in interrupt handling.

The procedure Unbind_Handler undoes
the effect of the last call to Bind_Handler for the
interrupt at hand. In particular it reinstates whatever
binding to handler existed before that call. (Only
one old handler value is saved; they are not
stacked.) This procedure is called at the completion
of the interrupt entry task. If the accept block was
not in a loop, then the compiler generates this call
at the end of the code for the accept block, to
dissociate the interrupt entry from the interrupt.
This procedure is also called if the interrupt task
completes because of the occurrence of an
exception in the accept block.

“The exec also supports the call of the
interrupt entry from a regular task. The compiler,

realizing that the entry being called is an interrupt
entry, generates a call to Software_Interrupt. This
procedure causes the executing task to be
interrupted, and control transferred to the handler (if
any) for Interrupt. The calling task is eventually
resumed at the point following the call. The exec
uses the architectures Inter Agent Communication
(IAC) mechanism to generate a software interrupt
for the specified interrupt vector. The interrupt
handler is given control in the same way as a
hardware interrupt.

The only rendezvous allowed from an
interrupt entry block is a simple entry call to an
entry associated to a simple accept statement with
no sequence of statements or parameters. The
compiler translates the entry call to the special
procedure Trivial_Call. This is implemented as a
conditional entry call, and all interrupts are
disabled. In no case must the calling task wait, This
is accomplished by executing the condrec
instruction to the port associated with the called
entry. The condition code indicates if the
synchronization took place or not.

The corresponding simple accept statement
is translated to a call to the procedure
Trivial_Accept. The task that contains the accept
statement must be a full fledged Ada task (not a
restricted handler). Upon calling this procedure, the
task waits until it is signaled to go on via
Trivial_Call. The accepting tasks state is marked as
accepting-entry and suspends itself on the port
associated with the entry using the sendserv
instruction.

4.2.2. Unrestricted Ihterrupt Handler Task

In the unrestricted case, the interrupt
mechanism merely notifies the accepting task of the
event. Normal Ada task priorities govern the
execution of entries, The interrupt task is a full
fledged Ada task, some or all of whose entries are
interrupt entries. Since the mechanism of entry calls
is message passing using ports, it is not possible for
the accept to distinguish between an entry call from
an interrupt handler and Ada entry call. This
imposes the restriction that interrupt entries may
not be called from regular tasks. The exec
implements the interrupt entry calls as conditional
entry calls.

The procedure Associate Interrupt
notifies the exec that the specified interrupt is to be
associated with the given entry of the given task.
Every occurrence of this interrupt is processed as a
conditional entry call to the given entry. Thus,
when the interrupt occurs, if the called task is
waiting on a matching accept statement, the
rendezvous takes place. As in the case of the
restricted interrupt handling mechanism, the
previous handler is saved by the exec. The task
identifier and entry index are also saved in a global
data structure that has a one-to-one mapping to the
interrupt table. The interrupt vector is set to call an
internal procedure which in turn calls the standard
interface procedure Call_Conditional to initiate the
rendezvous. The task control block of the interrupt
task is also modified to indicate that the entry type
is an interrupt entry. Thus processing at the eénd of
a rendezvous for the interrupt entry omits all
operations related to the calling task. Passing
interrupt data as parameters to the interrupt entry
may be achieved by a user provided function in the
form User_Interrupt_ N_Routine. This is tailored to
the specific interrupt, and may build a parameter
block for the accept entry from the interrupt data. If
such a procedure exists, the exec calls it prior to
initiating the rendezvous. The address returned from
this user function is passed as the parameter address
to the entry call,

4.3. Time Management

The Ada supported time management
functions include: delaying a task for a particular
time period, and fetching the system time. A
periodic external timer interrupt is used to
implement delays and the system time. A task may
be delayed for one of the following reasons:
execution of the delay statement; timed entry call
on an entry that is not accepting; a select statement
with a delay in the else part.

The delay statement is implemented by
calling the time manager function to add the task to
the delay list. The tasks state is marked delayed.
The task then suspends itself by executing the wait
instruction on the Delay_ Semaphore associated
with its TCB. When the delay expires, the timer
interrupt handler, realizing that the task was
delayed, wakes up the task by executing the signal
using the Delay_ Semaphore AD.

The other two forms of delaying a task are
discussed earlier in sections: 4.1.4 and 4.1.5.

The timer interrupt handler performs two
duties:

- Increment the system’s dateftime values.

- Service a list of delays, corresponding to

tasks waiting for a timed delay to expire.

The system date/time is stored as a long
ordinal number of timer ticks since a specific base
date/time. The timer interrupt handler simply
increments the value when it executes.

A list of delays is maintained as a linked
list of records in chronological order, with next
delay to expire at the head of the list. Each record
contains the following fields:

- Task id. The AD of the task that is

delayed. When the delay expires, the timer

interrupt handler wakes up this task.

- Delta. The number of timer ticks

between the previous tasks expiration time

and this tasks expiration time. For the first
record, this field contains the number of
timer ticks between the current system time
and this tasks expiration time.

- Link to next record. Null value indicates

the end of the list.

The timer interrupt handler services the
delay list in the following way. If the delay list is
not empty, the first records delta is decrimented. If
the new delta is zero, then the tasks delay has
expired. This record is now delinked from the delay
list. The TCB of the associated task is accessed.
Depending on the state of the task, (delayed, timed-
entry-call, imed-select) the appropriate action is
taken as explained in previous sections. The same
action is repeated for each subsequent record with
zero delta.

The time manager supports functions to
add a task to the delay list, and to delink any task
from the list.

4.4. Storage Management

The storage management functions are
defined in the (MRTSI) package
RTS_Storage_Management. By default, all
dynamically created Ada objects (except tasks) are
allocaied on the linear address space, and the access

values are linear addresses. However, objects may
be allocated in the virtual address space by the use
of special pragmas (viz. a pragma access_descriptor
associated to an Ada access type). Thus the storage
manager supports memory management in both the
linear and virtual address spaces. Linear memory
management allocates blocks out of Region 3.
Collection_Id and block addresses are linear
addresses. Virtual memory management allocates
memory out of the application heap area. The
collection_ID in this case is an AD and block
addresses are virtual addresses.

The function New_Collection reserves a
storage collection as part of the elaboration of an
access type definition. An internal data structure is
maintained which includes the extent of this
collection and the block size. If the allocation
descriptor is linear the collection resides in Region
3 and a linear address represents the collection_Id.
If it is virtual, the collection resides in the virtual
address space. An AD is created for the collection
and is returned. For protection, the linear addresses
comresponding to the extent of the virtual collection
is marked as invalid. A Storage Error exception is
raised if the memory manager cannot reserve the
specified amount of storage.

Allocation and deallocation of blocks
within collection may be implemented using
standard algorithms like first-fit, best-fit, etc.

4.5. Exception Propagation

Exception handling is mainly the
responsibility of the compiler. However the Ada
executive needs to be able to raise exceptions in
Ada tasks. The hardware fault handling mechanism
of the exec also needs to map the faults that it
cannot internally handle to Ada exceptions. This
requires an interface between the compiler’s
exception handling mechanism and the Ada
Executive. The exception handler also may
propagate an exception to a task. Thus the exec
needs to be able to identify exceptions. The MRTSI
package Compiler_Exceptions defines the standard
Ada exceptions and the interface procedures
Raise_Exception, and Notify_Exception. The
compiler should provide the implementation of
these procedures.

The Ada executive initializes the first

sixteen entries of the fault table with address of
runtime procedures. These procedures are located in
Region 3 and all entries in the fault table are local
procedure fault table entries. For those fault
types/subtypes that map to compiler exceptions, the
exec builds the parameters and makes an inter-
domain call to the compiler interface procedure
Notify_Exception. The exec switches to supervisor
mode before it processes the other fault conditions.
The fault conditions that map to the predefined Ada
exceptions are listed below:

Constraint Error: Arithmetic Fault, Constraint
(range) Fault, Floating Point Fault.

Program Error: Attribute Fault, Constraint (invalid
AD) Fault, Descriptor Fault, Operation Fauit,
Protection Fault, Type Fault, Virtual Memory
(invalid object descriptor) Fault.

Storage Error: Control Stack (overflow) Fauit.

4.6. Time Critical Section

The Ada executive provides the ability to
ensure that a given segment of code is executed
without preemption and with minimal interruption.
This is a CIFO extension to the standard Ada
runtime. The implementation of this feature is
exactly the same as the Disable_Dispatching and
Enable_Dispatching interfaces explained in section
4.1.9.

4.7. Resources

The resource is an implementation of a
synchronization object that real-time applications
can make use of to efficiently control access to a
shared resource. The architecture defined semaphore
object is used directly to model a resource. The
following declaration defines a resource object.

type Resource Block is

recoxd
Semaphore AD : system.Access_Descriptor;
Capacity : Capacity Range :=
Capacity_Range’LAST;
Count. : Counter_Range := 0;
Name : String (l..Name_Range);

end record;
type Resource is access Resource Block;

Resource creation involves allocating a
record for the Resource_Block, allocating a
semaphore object, creating an AD, and storing it

in the Resource_Block. The access to the
Resource_Block is returned to the caller of the
create operation.

A task may unconditionally try to secure a
resource, This is implemented by first decrementing
the count associated with the resource block using
the atadd instruction. If the new count is less than
zero (i.e. the resource was already busy) then the
current task is blocked by executing a wait
instruction on the semaphore associated with the
resource. Its state is marked as unconditional-get-
resource.

A timed get of a resource is implemented
by adding the task to the delay list, if the resource
is not available. The tasks state is marked as timed-
get-resource. The address of the resource block is
saved in the TCBs Resource_To_Get field, and
then the task suspends itself by executing a wait
instruction. The code following this checks the task
status to see if it was resumed by a signal on the
semaphore, or by the delay expiration, and returns
the appropriate boolean value to the caller to
indicate if the resource was secured or not.

The release operation on a resource is
achieved by incrementing the count field of the
resource using the atadd instruction. If the new
count is less than or equal to zero (je. there are
tasks waiting on the semaphore) then a signal
instruction is issued on the semaphore associated
with the resource.

5. Conclusion

This paper provides a comprehensive
design strategy for building the executive
compenent of an Ada Runtime System for the
80960 extended architecture. Adopting MRTSI and
CIFO interfaces to specify the functionality provides
a standard interface to both the compiler and the
Ada application. While this is an optimal design
that closely matches the hardware capability, there
are avenues for optimizing the implementation. One
instance is the number of semaphores associated
with a task. Careful analysis of interaction of
features, may lead to a reduction in the number of
semaphores that a task needs.

The standard interface facilitates compiler
and runtime system development and the kernel
implementation provides the best exploitation of

architecture features. Programs developed using
different Ada Compilers for the 80960 that interface
to the Ada Executive can be easily integrated.

References

1. Ada Runtime Environment Working
Group MRTSI Task Force, "Model Ada
Runtime System Interface," in Ada
Letters Volume X Number 5, May/June
1990.

2. Ada Runtime Environment Working
Group Interfaces Subgroup,
"Catalogue of Interface Features and
Options for the Ada Runtime
Environment, Release 3.0"
Association for Computing Machinery
Special Interest Group for Ada, July
1991.

3. Intel Corporation. i360™ Extended
Architecture Programmer’s Reference
Manual.

4, Intel Corporation. Military 1960™
MX Microprocessor Technical Overview
(order number 271194-001).

