
Application at Statistical Process Control
to the Software Process

Mark A. blltzy

BTG, hlC
1945 Old Gallows Road
Vienna, Virginia 22182

Introduction

The increasing demand for software continues to out-

pace our production capabilities in terms of both quantity

and quality. Proposed solutions to this dilemma range from

the creation of the informal environments of garage-shop

start-ups to the implementation of the formalized processes

of software factories. IBM recently announced. its long-

awaited 0S/2 Version 2.0 amid confessions of a lpurposely

unstructmed development environment intended to “replicate

the spirit of the small start-up companies from which so

much successful software has emerged.” [1] Meanwhile,

the Department of Defense (DoD) has adopted a process

maturity framework [2], [3] that supports a highly

stmctured approach to software production. The framework
advocates the application of the principles of statistical

process control to a software process that builds products

according to a plan while simultaneously improving its
capability to produce better software [2]. The reported IBM

approach to the development of 0S/2 Version 2.0 stands in

sharp contrast to the DODS process maturity framework,

rekindling a long-running argument regarding whether

software production is an art reserved for talented virtuosos

or an engineering discipline that, with time, can be

subjected to the rigor of a product manufacturing

environment.

One element of this debate is the issue of whetiher or not

statistical process control can be applied to the software

process, The software engineering process can be defined as

a set of software engineering activities needed to Iransforrrt

user requirements into software [2]. As with any process,

the application of statistical process control to the software

process is a desirable goal. In the statistical sense, prwess

control refers to the ability to bring measurable

characteristics of process outputs within control limits. If
we view software as a manufactured product then,

theoretically [8], we can apply the same principles of

statistical process control used to manufacture telephones,

personal computers, camcorders, and other mass-l?rodttced

commodities to the production of software. Unfortunately,

Penmsion to copy without fee all or pm of this material is granted prowled thaf

the mpies arc not made or distrihufed for direct mmunercial advantage, the ACM

mWTi@ 11011= and the title of the publication and its date appear, and notice is

given that copying is by permission of fhe Association for Computing Machine~. To

copy otherwise, or to reputdish, requires a fee and/or specific permission..

production of software is inherently different than the

production of these commodities. Unlike a manufacturing

process, the inputs into and the outputs from the software

process are different for each instance of the process. More

importantly, the transformation of user requirements into

software is dominated by cognitive activities, many of

which encourage multiple outputs permitting the selection

of an optimal choice. A goal of most manufacturing

activities is minimization of cognition. Higher levels of

cognition increase variances in productivity and quality
making the application of statistical process control more

difficult. For the software process, a process dominated by

cognitive activities, how can we apply statistical process
control in a meaningful and economically useful manner?

Many existing applications of statistical process contxol

to the software process suffer from a bias toward the

application to manufacturing processes [4]. Theoreticians
and practitioners do not sufficiently consider the

fundamental differences between the software process and

manufacturing processes. This has resulted in the

propagation of some potentially dangerous axioms such as

“if you can measure it, it must be good. ” A more

appropriate analogy is that of the software process to the

design and implementation of the manufacturing operation

rather than the execution of it. This analogy more

accurately reflects the cognition-dominated activities or

design risk [5] of the software process.

Despite the difficulty, the software process is a process

that can be brought under control in the statistical sense.

This paper examines some of the principles of statistical

process control that have been successfully applied to a
variety of manufacturing processes and offers a set of

transformations on these principles that permit their

application to cognition-dominated processes such as the

software process. In many cases, the transformations are

not always as clean as we would like them to be. But fuzzy

transformations are not new to the software community.

A case in point is the application of hardware reliability

measures such as mean time between failure (MTBF) to

software,

The remainder of this paper is divided into four sections.

The first section, Statistical Process Control, introduces

some of the fundamental concepts of statistical process

control. Of particular importance in this section is the

Q 1992 ACM O-S97914tt7-2/92/0006-113$1.50
113

http://crossmark.crossref.org/dialog/?doi=10.1145%2F257683.257717&domain=pdf&date_stamp=1992-07-16


concept of variation and its inevitable presence in processes.
The second section, Quality Characteristics, defines quality

characteristics and the impmance of their specii5cat.ion to

process implementation and measurement. The third

section, Software Processes, examines the effects of

statistical process control principles on the development,
specification, assessmen~ implementation, and auditing of

the software process. This section introduces an

implementation strategy to process development that

supports the application of statistical process control

principles. The fourth section, Process Specification artd

Management, addresses the importance of process

specification and management to the software process in

terms of assessment and measurement. The fifth section,
Next Steps, enumerates implementation steps and describes

an example application.

Statistical Process Control

A process can be defined as a series of activities that

transform inputs into outputs in accordance with customer

specifications. The definition of process used here is more
restrictive than other definitions in two ways. First,
customer specification of the end product or the process is
required. Second, there is more than one activity required to

transform the inputs into outputs, and each activity is the

responsibility of an organizational element within an

enterprise. Semantically, an organizational element

performs an activity within a process. The set of

organizational elements, the activities they perform, the
interfaces between them, and the end-item or process

specification compose a process. This does not necessarily
imply that a craftsman who single- handedly makes a

wooden rocking chair does not use a process. The

definition used here simply implies that the craftsman plays
the role of many organizational elements, each performing a

discrete activity that when combined represent the process

of building the rocker.

The customer specifications referred to by the above

definition of a process may take one of two alternative

forms. A customer may specify the process and, as a

result, be responsible for the outcomes of the process.

More typically, the customer provides a specification of an

end-item in terms of quality characteristics and transfers
responsibility for the process to the developer. For
example, a threaded fitting would have a set of quality

characteristics that would include pitch diameter, length, and
strength, just to name a few. Customer specifications for
the fitting would include values for each of these quality

characteristics. The developer is responsible for the

implementation of a manufacturing process that produces

fittings according to the customer specification. However,

spwification of the values is not sufficient. Why? If the

customer specified that the fitting have a pitch diameter of

0.250Q inches, how many fittings with pitch diameter of

exactly 0.2500 inches would a high-qttaiity manufacturing

process produce out of a lot of 1000? Theoretically, the

answer is zero because the pitch diameter is what is referred

to as a continuous variable. In other words, the

manufacturing process is subject to variation causing some
fittings to have pitch diameters slightly greater than 0.2500

inches and other fittings to have pitch diameters slightly
less than 0.2500 inches. Consequently, the customer must

provide a specification in terms of tolerances. For example,

a fitting may be viewed as acceptable or conforming if the

pitch diameter is between 0.2492 and 0,2508 inches or

stated artother way, 0.2500 t 0.0008 inches. A fitting is
viewed as defective or nonconforming if the pitch diameter

is less than 0.2492 or greater than 0.2508.

Statistical process control is a methodology used to

detemine if a process is in control in the statistical sense of

the word. For a process to be in control, variation in the

quality characteristics of the end-item must be predictable.

Shewhart [6] established that variation in a quality

characteristic has two types of causes.

● Common (chance) causes. Causes that are always

part of the process.

● Special (assignable) causes. Causes that arise due to

special circumstances. Causes that are not aiways

part of the process.

As an example of the difference between common and

special causes of variation, let’s look at a software

development effort that has fallen behind schedule during

the implementation activity. Upon investigation,
management determines that the schedule slip is due to a

decrease in programmer productivity. Programmer

productivity is affected by a variety of causes that are

common to the process such as programmer capability,

programming standards, language, machine availability, and
tools. Other causes that affect programmer productivity are

special to particular instances of the process. For example,

excessive computer down time due to power outages,

inadvertent use of the wrong programming standard,

outbreak of the flu, and others may be considered special

causes of variation in programmer productivity. Processes
that suffer from these special causes of variation do not
produce predictable results and are said to be our of conrro(

in the statistical sense. Identification of the cause of the

decrease in programmer productivity will determine the
action that management takes in response to the variation.

In order to examine the results of special causes of
variation on the outputs of processes more formally, let’s

turn our attention back to the fitting discussed above. We

have already stated that the pitch diameter of the fitting is a

.

114



continuous variable. The pattern of variation or frequency

distribution of the pitch diameter and many other variables

of end-items of manufacturing processes are modeled or

represented quite nicely by common probability

distributions such as the normal distribution. Variation

within the defined distribution results from common causes.

Special causes of variation result in a fundamental change
to the frequency distribution ihat represents the behavior of

the variable. Figure 1 contains an example of just one of

the ways the frequency distribution may change. The graph
in the foreground represents the frexpency distribution of the
variable when the process is subject to only common

causes of variation. The frequency distribution in the

background is shifted to the right. This shift is caused by

the introduction of a special cause of variation into the

process. One result of the shift is that there is an increase

in the mea of the distribution that is greater than the upper

tolerance limit. This means that the probability of creating

a nonconforming end-item has increased- Thust we see the

effects of special cause variation on the predictability of

processes. For completeness, it is worth noting that Figure

1 represents just one possible effect of a special cause of
variation to the distribution, a shift in the mean of the

distribution. The point to be made is that specittf causes of

variation result in fundamental changes to the frequency

distribution for a variable resuit of a process.

Lower p LJw
Tolerance Tolerance
Limit Limit

Figure 1. The Effect of Special Causes on
Frequency Distributions

The enlightened manager understands the distinction

between common and special cause variation. When
variation results from special causes, management works

with workers in the process to eliminate the cause. The

elimination of special causes of variation is not a process

panacea. The graph in the foreground of Figure 1 represents

a process dominated by only common causes of variation.
This does not mean that we are happy with the process.
For example, the area of the distribution that is outside of

the upper and lower tolerance limits may represent a

probability of nonconformance that is unacceptable. When

variation is the result of common cause, management

works with the workers in the process as well as outside

experts to identify process defects and reengineer the process
to eliminate common causes of variation and narrow the
distribution around the mean until the results are consideraj

acceptable. Unenlightened managers make decisions based

on the effects rather than the cause. Decisions that are

based on effects can result in [7]:

● Blaming people for problems beyond theu control

● Spending money for new technologies or new people

that are not needed

. Wasting time looking for an explanation of a

perceived trend when nothing has changed

● Taking other actions when it would have been better

to do nothing

Figure 2. Shoulder Bolt for Wheel Assembly

Shewhart’s [6] method for determining whether a process

was subject to special cause variation was the control chart.

The pufiose of the control chart is to identify unstable

processes. Unstable processes are those processes that are

subject to special causes of variation. Figure 2 contains a

drawing of a wheel assembly for a manufactured item. A
variable of interest in the machining of the shoulder bolt is

the diameter of the portion of the bolt that serves as the
wheel axis. If the diameter is too large, the fit of the bolt

into the wheel will be snug and the wheel will not roll as

freely as desired. If the diameter is too small, the wheel
will wobble. Figure 3 contains an example of the

Shewhart control chart for the diameter of tie shoulder bolt.

Points on the chart represent the average diameter of the

bolt in the nth sample. The points that are circled are those
points that are outside of the upper and lower conrrol limits

which are represented by the dashed lines. These points
indicate that the process is out of control, that is, subject to

spxial causes of variation. (A detailed discussion regarding
control charting including calculation of upper and lower

115



0.35040
@ Upper Control Lim”t

*
i-— e——— — —e ‘e ‘—— ‘——@—

m e e e e
2 e 0

2 0.35030

12
0

0 0
0 *4B

/D

g ——— –E –z–– ~–. – -––_!?

5
0.35020 ‘(z)

Lower Control Linu”t

1
@

o 5 10 15 20 25

Sample Number

Figure 3. A Control Chart

control limits is beyond the scope of this paper, For a process, practical application of statistical process control

detailed discussions& [6], [8].) -

The elimination of special cause variation results in a

stable process for which, according to Deming [91,
performance is predictable, costs and quality are predictable,
productivity is at a maximum, and the effect of changes is

measurable. Again, this doesn’t necessarily mean that we

are happy with the results of the process. It does imply

that variation in the process is the result of common causes

and the process, as it currently exists, cannot perform any

better.

Software Quality Characteristics

The translation of the principles of statistical process

control, as summarized above, to the software process is
not trivial. The software process has been identified as a

process that is dominated by design risk [5] or cognition

because each instance of a software process produces a
unique product for which quality is determined by

conformance to customer requirements measured in terms of

software qua] it y characteristics. Software quality

characteristics are those attributes of software that include

correctness (conformance to functional requirements),

reliability, understandability, portability, maintainability,
tcatubility, robusmess, usability, cost-to-develop, and titne-

to-develop. In the past, many of these characteristics have

been referred to as software quality attributes [10],

Adherence to customer requirements refers to the
elimination of variance in quality characteristics, in other
words, eliminating differences between customer
expectations and the delivered software product. Because

these requirements vary for each customer and often times

conflict, even within a given instance of the software

requires thoughtful action on the part of the developers.

Effective application depends on tie ability of managers to

negotiate a prioritized list of quality characteristics and

acceptable tolerances with their customers and appiy

statistical process control principles in a manner that
assures conformance of the software product to that

prioritized list.

Resolution of conflicting software quality characteristics

has already been identified as a major concern of the

software development manager [1 1]. Successful resolution

of these conflicts depends on goal setting prior to the stm-t

of the software process. More importantly, the process

should be designed based on the product goals. For

example, one would expect the process of developing the
avionics software for the next generation passenger aircraft

to be significantly different from the process of developing
the application software for a military intelligence

workstation designed to automate the manual activities of

correlating and fusing information from sources of

intelligence data. For the avionics application, reliability,

correctness, and efficiency are the high-priority quality

characteristics. For the intelligence application, usability,

maintainability, and portability are the high-priority quality

characteristics due to the uniqueness of the product and the
more than likely evoh,ttionary nature of the development

life cycle. Obviously, the differences in quality
characteristics between these applications are due to the

respective problem domains. However, even within the

same problem domain, different software products require a
different set of prioritized software quality characteristics

depending, of course, on customer requkements.

In the language of statistics, an important distinction is

116



made between the terms variables and af~”butes. A vfible

is an actual measured quality characteristic such as width,

height, or diameter. An attribute refers m the conformance

or nonconformance of a product typicaIly by visual

inspection rather than measurement. For example, a crack

in a ceramic mug results in a nonconforming produc~ The

property of not being cracked ‘represents an attribute of the

mugs. Statisticai process control has to do with using rhe

Shewhart control chart to examine the performtartce of a
variable or an atrnbute over some time. Application is

dependent upon the ability to spedkally define conforming

items versus nonconforming items. This has not proven

trivial in the production of software. Too often, the

acceptance (as conforming) of a software product is based on

two atrnbutes, reliability and “goodness.” Reliability refers

to the failure rate of the software, If the failure rate does
not exceed a customer’s tolerance, which is ven~ often not

quantified, then the software is viewed as conforming in

terms of reliability. Goodness is almost impossible to

quantify and refers to the customer’s perception of the

software-does it work the way the customer thinks it

should [12]? Software is accepted—viewed as

conforming-if it does not exceed the customer’s tolerance

for failure tate and is prnceived as “good.”

Specification of software quality characteristics requires

a quantilable and measurable agreement between customer

and developer. These agreements can be difficult and time

consuming, and like any software requirement, subject to

change without notice. The investment can be worthwhile

if executed properly. From the customer’s perspective,
benefits of the agreement include

● The ability to control the development by specifying

end-item objectives rather than process constraints

● Inclusion of time-to-develop and cost-to-ldevelop as

quality characteristics, equal in importance to

functional and performance tequimmertts

● A signed-up developer who will work harder to meet

the goals when the agreement results from fair
negotiations between customer and developer.

Software process control requires periodic monitoring of

the progress being made toward the achievement of the

quality characteristics agreed to between cuslomer and

developer. Figure 4 contains a graph of the expected

progression of a specific quality characteristic over time.

At time t the process owner develops an estimate-at-

completion of the quality characteristic and finds that it falls

short of the requirement. This may be an indication of a
process failure, an unrealistic requirement, or a flawed
monitoring process. Regardless of the cause, the immediate

effect is an investigation into the process and a discussion

with the customer about the potential ramifications. The

investigation may result in changes in the development

process, the monitoring process, or both, or a renegotiation

of the requirement with the customer.

Quality

Characteristic I
,b -

0
0

0 0

/ 0
/ /

/

0
0

0
0

/
~

Estimate at

Completion

Customer
Expectation

Time

t

Figure 4. Keeping Quality Characteristics Within

Customer-Defined Tolerances

Software Processes

A popular semantic in the software community is the

phrase the software process. Of interest is the use of the
word the which implies that tiere is a software process that

is the correct software process for an enterprise. As

discussed above, it is probabiy unrealistic to expect a single

software process to satisfy the requirements of every

customer of an enterprise. An important element of

statistical process control is the explicit relationship

between product and process.

In a manufacturing environment it is well understood

that quality characteristics specified for an end-item have
considerable effects on the process used to produce that

item. Consequently, design-for-manufacturability has

become a key attribute of the product design process.

Creating product designs that allow for more relaxed

tolerances for product variables can result in dramatic

improvements in manufacturing quality, These

improvements come from more easily satisfied tolerances

rather than improvements in the manufacturing process.

The result. none the less. is fewer nonconforming end-items
and improved quality. For example, Figure 5 contains a

diagram of an apparatus that requires a user to insert a
handlebar into a carriage and secure it with a iocking rod.

.

117



Figure 5. A Design Requiring Limited
Manufacturing Tolerances

This design requires that the holes in the carriage and the

handlebar be drilled within very limited tolerances if the

user is to secure the handlebar with the locking rod easily

and have the handletxw fit securely. Alternative designs are
available that would ensure ease of use for the user. a secure

fit, and less demanding tolerances. An alternative design

has the potential to reduce costs in terms of production

costs, nonconformities, and user satisfaction. This example

illustrates the close relationship between product

specifications and the production process. An understanding

of this relationship provides the basis for a strategy for
process development, implementation, and measurement

that is applied to manufacturing processes and can be

applied to software processes. The fundamental axiom

supporting the strategy recognizes the importance of
tailoring a process to the customer specifications of the

product in terms of quality characteristics. All aspects of

the process including measurement and reporting are

designed to ensure delivery of what is important to the

customer. Implementation of the strategy follows these

four steps:

1) Identify the variables that correspmi to the customer

specified end-item quality characteristics. Variables
in the statistical sense refer to quantifiable metrics

that unambiguously measure satisfaction of quality

characteristics.

2) Design and specify a production process tailored to

satisfaction of the quality characteristics.

3)

4)

Identify process activities that influence the product
variables identified in step 1.

Estabfish merncs and a measurement process for each

activity identified in step 3.

Existing software process assessments [2] assume

correlation between process maturity level and the ability to
produce quality software. This approach may be overly

simplistic. A software process must be assessed based on
its capability to develop software that conforms to the

quality characteristics specified by the customer for that

instance of the process. This includes the establishment of

tolerances for each variable and application of metrics to

ensure compliance. Metrics applied to the process and its
individual activities should measure progress against quality

characteristics ensuring a software product whose quality

characteristics are within customer specified tolerances. The
degree of correlation between an activity metric and a

customer-defined quality characteristic for the product

determines the effwtiveness of a given mernc. Merncs that

do not correlate to the quality characteristics defined for the

end product are considered ineffective and unproductive.

Where does the process owner find process metrics that

correlate to end-item quality characteristics?

Processes, like the products they build, are systems

composed of people, hardware, software, and operating
procedures that together accomplish a set of specific

functions. A software process, viewed as a system, has a

development life cycle consisting of activities that include

requirements definition, design, implementation, and test.

The requirements for an instance of a software process are

specified in terms of quali~ chamcteristics specified by the

customer. Process design is established by partitioning the
process into meaningful activities that can be defined in

terms of inputs, outputs, and constraints. Implementation

is accomplished by specifying the procedures for each

activity and assigning responsibility for each procedure,

Activities that produce tangible items are initial candidates

for the application of metrics. Process owners identify

quality characteristics for each tangible item that correlate to

tie quality characteristics specified for the software product.

Tolerances are defined for each quality characteristic and

metrics are put in place that ensure compliance.

Documentation of the software process in terms of
activities, inputs, outputs, constraints, quality
characteristics, and metrics is contained in a process

specification. This specification should be complete

enough to permit assessment of the process and detailed

enough to permit in-process audits. The purpose of the

assessment is to ensure the organization’s capability of
producing a quality software product as defined by the

customer of that instance of the process. The purpose of

the in-process audit is to ensure process compliance.

.

118



coding
Standatd

Padcage
Development Specification Implement Package

standards E Package k

N

Requirements Develop software Product

- software >
Product o

Maintainability

Portability

Time-to-Complete

Cost-to-Complete

Reliabili~

Figure 6. Software Quality Charaoteristios and Activity Variables

Figure 6 contains an example that demonstrates some of control charting or a comparable technique can point out

the concepts discussed above. The diagram on the left in

Figure 6 is a model of a software process which represents

the process as a single activity entitled Develop Software

Product. Inputs to the activity include functional

requirements. The constraint for the activity is the

development standards chosen for this particular effort. The

output, of course, is a software product. The diagram is

annotated with a partial list of the prioritized set of quality

characteristics identified by the customer and negotiated
with the developer. The right side of Figure 6 conutins a

modeI of a discrete activity within the software process

represented by the diagram on the left. This particular

activity is entitled Implement Package and is responsible
for transforming a package specification into a pa&age with

the constraint being the project’s coding standards. The

output of this activity, a package, is an ideal candidate for

the application of a mernc. A variety of merncs have been
identified that could be applied here. However, cmr interest

is in the application of merncs that correlate to the quality

characteristics identified for the software product by the

customer. Since the customer identified maintainability as

the high-priority quality characteristic, a candidate variable

for measurement is the number of coding standard
violations, We assume here that past experience has shown

a correlation between this variable and the quality
characteristic maintainability. Without this past

experience, managers must make assumptions of correlation

and verify the results. With a variable identified, use of

whether or not this process is in control.

Applying statistical process control principles to

processes dominated by cognitive activities is not an exact

science. The frequency distributions of variables from

manufacturing processes tend to fall neatly into the bell

curves of the normal distribution permitting simplifying

assumptions and straight-forward calculations to develop

equations for control limits. Determining whether or not a

process is in control merely requires establishment of a

measuring process for the variables and charting over time.

Even the variable, number of coding standard violations,

described above represen~ a relatively trivial aspect ofthe

package implementation activity. We would expect this
variabie to be brought under conrrol quickly once errors are

detected and the source of the errors corrected. We base our

expectations on the fact that adherence to coding standards is
not an activity that requires a high-degree of cognition. A

variable from the package implementation activity that

requires a higher degree of cognition is correctness. The

term correctness here refers to compliance with the package

specification. This implies that the package functions

reliably and does the right thing. The activity associated

with this variable requires a higher degree of cognition.

Consequently, the behavior of the variable will not be as
nice as those in manufacturing processes. Measurement,

establishment of control limits, and identification of special

cause variation, will be more difficult requiring solutions

119



Figure 7. Representation of a Process

that are more intuitive than scientific. This does not organization chart and a prose description of tie role each

eliminate the usefulness of the principles. However, it does
modify the implementation significantly but not to the

point of corrupting the basic principles.

Process Specification and Management

Earlier, this paper addressed the close relationship of

product and process, The relationship formed the basis for a
strategy that when implemented tailors a development
process to the desired product. This tailoring is necessary

functional area piays in- the process do not sufficiently

document the software development process. What is
needed is a more precise method for documenting the

dynamic nature of the software organization. The tool of

choice for the documentation of people-intensive processes

like the software process is Doug Ross’s Structured

Analysis and Design Technique or a subset of that technique

called IDEF @ttegrated Computer-Aided Manufacturing

Efinition Language). There are many advantages to the
use of this technique.

to ensure satisfaction of the product quality characteristics

agreed to between customer and developer. Failure to tailor .

the process restdts in static processes that tend to serve the

developer’s goals at the expense of the customer’s goals.

As discussed in the previous section, the tailoring of the ●

process includes the tailoring of process metrics to the

quality characteristics of the product specified by the

customer.

An effective software process is engineered based on the .

requirements for the process and sped%% in a language that
unambiguously conveys the functions that make up the .

process. Currently, many of the software development

pians that we write do not provide a dynamic representation
of the software process. Software organizations are .

typically composed of vertically aligned functional groups

that need to interact effectively to succeed. The static

Each function is described in terms of its inputs,

outputs, constraints, and mechanisms.

Functional blocks can be assigned to vertically

aligned functional areas in the software organization.

Inputs, outputs, constraints, and mechanisms define

the interfaces between functional areas.

The model is simple to build and simple to read.

The model is a living model that can be modified

easily to reflect desired changes to the process.

Unlike flow-charts, it is not burdened with a negative
bias from the programming staff.

representation of the organization in the form of an Figure 7 demonstrates the use of an IDEF model to describe

120



the dynamic behavior of a software organization. The

model defines the interface between functional areas and

allocates spedlc activities to each area. More importantly,

the model defines an interacting set of activities that make a

horizontal cut through the vertically aligned organization.

The success of the software process is dependent upott the

success of these horizontal cuts because the results of these

cuts are the end-items of the process. Management must

understand the importance of dtis dynamic view to the

success of the software process and to the success of the

enterprise as a whole. In the past, management has focused

on the control of the vertical functional areas and has

burdened functional area managers with activity

management and employee supervisory duties. This

problem is compounded by conflicting incentives that force

managers to make unattractive decisions regarding employee

growth versus activity accomplishment. It also promotes

inefficiencies by rewarding managers for discrete activi~

accomplishment often at the expense of process efficiency.

It also fosters staff growth resulting in decreased

productivity per labor hour as managers work to build their

functional areas and increase their status within the

organization. The new model of management assigns

process owners to each individual horizontal process and

makes them responsible for the success of that process.

This encourages a focus on the end-item and the satisfaction

of customer requirements. Most importantly, it focuses

managers attention on process efficiency and thus creates an

environment that encourages the use of statistical process

control principles. Without a process focus, an enterprise

finds it difficult to align the goals of the functional area

managers with the goals of the enterprise in a way that

guarantees success.

An effective management program identifies those

processes that are critical to the organization’s success,

assigns a process owner, establishes performance and cost

objectives based on product quality characteristics,

empowers the process owner to accomplish the goals, and

evaluates the process owner and employees in [he process
on their progress toward the goals. Written agrw,ments that

are reached by consensus between the process owner and

management, and subsequently between process owner and

employee in the process, become the basis for performance
evaluations. This provides confidence that employee goals

are aligned with enterprise goals.

Next Steps

This paper has examined some of the basic principles of

statistical process control and their application to the
software process. Statistical process control has its roots in

the manufacturing environment of the early 20th century,
however, some simple transformations are available that

allow the application to cognition-dominated processes.

Variation in the quality characteristics of the end-items of

processes dominated by cognition will continue to be much

greater than those of manufacturing processes. However,

recognition of special versus common causes of variation

will enable process owners to make better decisions and as a

result bring processes like the software process under

control in the statistical sense of the term. In general, the

application of statistical process control principles to the

software process involves the following steps:

1)

2)

3)

4)

9

0

T

Negotiate a set of prioritized software quality
characteristics with the customer.

Design, specify, and implement a software process

capable of prcducing the desired software product

Esrablish prccess owners and empower them.

Establish metrics for processes that correlate to the

quality characteristics established for the end-item

sofhvare product.

Employ controi charting or comparable techniques to

determine the stability of each process.

Bring processes in control by eliminating all special

causes of variation.

Continuously improve processes in order to bring
control limits within tolerances so that the end-item

software product meets customer requirements.

The steps enumerated here closely parallel those

developed by product manufacturers to describe a design-for

manufacturability program [14]. The application to

software is not immediately apparent because of the lack of

similarity between the model inherent in these steps and

existing planning models. However, some similarities can

be denoted. For example, our current approach to steps 1

and 2 typically entails the selection of an existing software

process model (rapid prototyping, evolutionary
development, or waterfall) based, ideally, on problem

domain characteristics but more often based on the model

that the developer is most comfortable with. Actually,

specific enumeration of steps 1 and 2 encourages the

development of new software process models. An actual

case study describing the results of following steps 1 and 2

in an unbiased manner is well-documented in [15]. The

case study describes the development of the Prototype

Ocean Surveillance Terminal (POST), an intelligence

gathering and display system used by Navy intelligence
analysts.

Intelligence analysts based on U.S. Navy vessels are

responsible for tracking and reporting on enemy vessels in

lx



order to provide ship-based officers strategic information
vital to the survival of the fleet. prior to POST, analysts

manually correlated intelligence data from shore-based
processing systems to create the tracks of enemy vessels.

This correlation process was time-consuming and error-

prone because much of it was based on intuition and

induction rather than straight-forward deduction. In the

early 1980s, with the advent of reasonably-priced, rugged,
high-performance workstations on the markeL a group of

individuals, familiar with the problem of ship-based

intelligence analysts, began to envision a potential

solution. At the time, neither the system developer (BTG)
nor the customer (the U.S. Navy) could visualize-to the

point of writing a requirements specification-the type of

system required by the intelligence analysL This eliminated

the use of the classic waterfall process model. Software
process models based on prototyping were available but did

not meet the need [15]:

. There was a need to deploy a working system early.

● Only a minuscuie subset of overall system functions

could be articulated at project initiation.

● The customer wanted the users to p[ay with a
working system, provide feedback, and quickly see a

new desired capability.

● Product accuracy, robustness, user-friendliness,
maintainability (in fact, operational maintainability

or the ability to modify while deployed) were the

critical quality chamcteristics.

Stepping back and applying step 2 in an unbiased
manner to the quality characteristics negotiated as pan of

step 1, resulted in the development and implementation of a

new software process model later named operational

prototyping [15]. The operational prototyping process can

be summarized by the following steps.

1) Construct an evolutionary prototype using a

conventional development (waterfall) process.

Specify and implement a small, well-understcmd, set

of the requirements.

2) Deploy copies of the proto&pe to operational sites.

3) Deploy prototypes with the prototypes to sit with
the user and learn the application. The prototypes
fix problems that arise and add new functionality that

the users request.

4) Record changes that users view as useful and role

them into a next generation evolutionary prototype.

~ Go to S&p 2.

So far in this case study, we have seen the negotiation of

quality characteristics (step 1 of applying statistical process

control principles to the software process) and the design,
specification, and implementation of a software process

capable of building the desired software product (step 2).

We have also seen a subset of the process owners and tAe

empowerment of these process owners (step 3). We did not

see this empowerment explicitly, however, implicit in the

operational prototyping process is the empowerment of the

prototypes deployed with the evolutionary prototypes.
These prototypes are not encumbered by formal change

control procedures, management indecision, or resource

limitations. They are empowered to serve the user. This

empowerment is necessary for the on-site prototyping

process to succeed.

Metrics established for POST development did not

include the classic merncs of lines-of-code (LoC), errors-per-

thousand LOC, or others that did not correlate to the quality

characteristics specified as part of step 1. Instead, a limited

set of metrics that, over time, showed correlation (step 4) to

the quality characteristics were used.

This case study has shown the feasibility of steps 1

through 4 in the approach to the application of statistical
process control to the software process. Design,
specification, and implementation of a software process

model tailored to produce a software product possessing the

desired quality characteristics has proven, from experience,

to be a valuable part of the approach because statistical

process control is not just a measurement discipline. It is a

product planning and assurance philosophy that recognizes
the variation inherent in all processes.

The high degree of correlation between the software

process and the end-item software product results in a

process that is considered to be correct. In other words, a

correct process is a process that when adhered to will

increase the probability of developing an end-item software

product that satisfies customer requirements. The prudent

enterprise considers some additional process atrnbutes when

designing a software process. These attributes include [ 13]

- Responsiveness. This attribute refers the ability of

the process to react quickly to changes in external

conditions (e.g., a change in the set of prioritized

quality characteristics).

● Flexibility. This attribute is similar to
responsiveness except that flexibility refers to the

process’s reaction to internal factors.

● Cost-Effectiveness. 1s the process efficient enough to

.

m



be competitive? Does the process minimize direct
labor houm?

● Auditability. Schedule and cost pressures tempt

circumvention of the process and the potential for

introduction of special causes of variation. Procts

audits ertsute that the process remains in conh-ol.

The flexibility of a software process affects the

competitiveness of the process. Flexibility refers to the

ability to adapt and implement new technologies as they

become available, to correct flaws by allowing process path
modifications, to maintain production even when some

part(s) of the process fail, and to adapt to new applications
without major modifkations.

References

[1]

[21

[3]

[4]

[a

[6-I

[n

[81

[9]

Burgess, John, “IBM Finishes One Race, Starts

Another,” The Washington Post, Washington, D.C.,

March 31, 1992.

Humphrey, Watts S., Managing the Software

Process, Addison-Wesley Publishing Company, Inc.,

Reading, Massachusetts, 1989.

Humphrey, Watts S., et al., “Software Process

Improvement at Hughes Aircraft,” IEEE SofWare,

July 1991, pp. 11-23.

Cho, Chin-Kuei, Quality Programming: Developing

and Testing Software with Statistical Quality

Control, John Wiley and Sons, Inc., New York,

1987,

Bollinger, Terry B. and Clement McGowan, “A

Critical Look at Software Capability Evaluations,”

IEEE SofWare, July 1991, pp. 2541.

Shewhart, Walter A., The Economic Control of

Quality of Mant@ctured Product, D. Van Nostrand

Company, New York, 1931, reprinted by ASQC

Quality Press, Milwaukee, Wisconsin, 1980.

Nolan, Thomas W. and Lloyd P. Provost,

“Understanding Variation,” Quality Progress, May
1990, pp. 70-78.

Grant, Eugene L. and Richard S. Leavenworth,
Statistical Quaiity Control, Sixth Edition, McGraw-

Hill Publishing Company, New York, 1988.

Deming, W. Edwards, Out of the Crisis, MIT Center

for Advanced Engineering Study, Cambridge,

Massachusetts, 1986.

[10] Bowen, Thomas P, Gary B. Wigle, and Jay T. Tsai,

Specification of Software Quality Attributes, Volume

I (of three), Rome Air IXvelopment Center, Air Force

Systems Command, Griffiss Air Force Base, New

York, 1985

[11] Weinberg, G. M. and E. L. Schulman, “Goals and

Performance in Computer Programming,” Human
Factors, 1974, 16 (l), pp. 70-77.

[12] Potosnak, Kathleen, “Mental Models: Helping Users

Understand Sofhvare,” IEEE SofWare, Human Factors,

September, 1989, pp. 85-86,88.

[13] Kurtz, Robert B., et al., Toward a New Era in U.S.

Manufacturing: The Need for a National Vision,

Manufacturing Studies Board, Commission on

Engineering and Technical Systems, National Research

Council, National Academy Press, Washington, D.C.,

1986.

[14] Harry, Mikel J., The Nature of Six Sigma Quality,

Motorola, Inc., Government Electronics Group.

[lfl Davis, Alan M., “Operational Prototyping: The POST

Story,” to be published in IEEE Software, August,

1992.

m


