
Pane~ Ada and High Performance Computing-Reality or Myth?

chair

Steven Dellez Verdix Corporation

I?lmelista

Phiiippe Collard, Telesoft Corporation

Anthony Gargaro, Computer Sciences Corporation

Dz Stephen Zeigler, Verdix Corporation

Dr. Thomas H. Probert, Center for High Performance Computing

As we enter the 1990’s, new technologies for high

performance computing are rapidly becoming

available. Single RISC processors are already available

with performance exceeding 100MIPS and 40MFLOPS.

By the end of the decade processing performance

exceeding 10GIPS and lGFLOPS seem likely.

More importantly multiprocessor chips and
multiprocessor operating systems are starting to

become widely available, promising inexpensive

multiprocessor support for day to day applications.

These Multiple Instruction Multiple Data (MIMD)

systems seem destined to be the mainstay of high

performance computing by the end of the decade if not

soonex There are certainly other form of high

performance computing available today, but the

performance increases coming from these MIMD

systems, the wider applicability of these systems, and
ongoing announcements of multiprocessing

workstations from major vendors suggest that MIMD

systems will be the major high performance computing

platforms.

The natural question to ask is whether Ada is capable

of taking advantage of the new performance

capabilities made available by MIMD systems. This is

not a simple question to answer. Any language is, to

some degree, capable of using multiprocessing. The

heart of the question is whether a programmer, using

Ada, can naturally take advantage of a multiprocessor

system and still keep the program integrity and

software engineering paradigms for which Ada was

designed.

A number of specific questions surface, such as

● Do the abstraction mechanisms used in

software engineering hinder the use of

high performance systems?

● Does Ada tasking fit well with MIMD

systems?

● Will the new Ada9X synchronization

mechanisms be compatible with MIMD

operating systems?

● Does Ada subprogram nesting and

globally visible data make using MIMD
systems harder?

The panelists have been selected for their insights into

these and other issues dating high performance

computing to Ada Each has worked for a number of

years with high performance computing solutions in

Ada and should bring

To prepare for this panel, each panelist was asked to

provide a short position paper that addressed the

following questions

1. Is high performance computing

fundamentally compatible or

incompatible with Ada?

2 What work needs to be done to make

high performance computing with Ada

a reality?

3. Wfl Ada9X have any significant impact

on high performance computing and if

so, how?

4 When will high performance

computing with Ada be a reality?

The panelists responses to these questions and to any

other issues relating to Ada and high performance

computing follow.

m

http://crossmark.crossref.org/dialog/?doi=10.1145%2F257683.257719&domain=pdf&date_stamp=1992-07-16

Position Pa~e~ Ada and HP Computing

Philippe Collard

Telesoft Corporation

Panel membem were asked to answer four questions.

Before addressing these questions, it seems necessary

to comment on the term “High Performance

Computing”.

In the late 1970s, a company called Cray Reseiurh

validated the notion of “supercomputefl with the

introduction of the Cray 1. The machine seemed

awesomely powerful at the time. And was awesomely

expensive.

Less than 20 years later, Digital Equipment’s Alpha

microprocessor embeds, on a single chip, a computing

power equivalent to that of the Cray 1. The expected

cost of an Alpha workstation is less than $20,000. It is
thus rather obvious that the notion of “high

performance” is a very fast moving targeti Hence, I

have deliberately eiected to limit the scope of this

paper to the very high end of the high performance

domain: supercomputem in all shapes, sizes, mhitect

1. Is high performance computing fundamentally

compatible or incompatible with Ada?

FORTRAN is the most widely used language in the

HPC community. In the age of object-oriented

prograrnminq CASE tools, and distributed

computin~ a language developed three decades ago is

still the most widely used vehicle for programming

high-performance computers. FORTRAN’S mutations

to keep up with the latest in supemomputing are

simply amazing. The latest incarnation FORTRAN 90,

attempts to address parallel processing from MIMD to

SIMD architectures not a small featt

From this we can deduce that assessing compatibility

or applicability of a particular programming language

to a particular domain of computing is fairly

subjective. Therefore Ada is not more or less

compatible or incompatible with HPC than say C, C++

or even BASIC. However, Ada possesses a few

characteristics that set it apart from other languages.

Fimt Ada is a very tightly controlled standard. Second

Ada offers the possibility of expressing parallelism at

the language level (via tasking). Third Ada recognizes

the need for language features addressing numerical

computations (though this is probably the most

inticate part of the language to understand).

With these three attributes, Ada has as good a chance

as any other language to replace FORTRAN or at least

to “compete” with FORTRAN in the HPC domain.

2. What work needs to be done to make high perfor.

mance computing with Ada a reality?

The use of Ada in the HPC community is limited by

two factors. One is the availability of robust, well tuned

compilers on traditional and less traditional high

performance computing platforms (within the scope of

this paper). Then there is the large body of existing

FORTFUN code that constitutes the bulk of the HPC

application software.

To make Ada a contender in the I-WC comrnutity we,

the Ada commutity must do three things. First we

must increase the availability of good Ada compilers

on I-PC platforms. The diversity of HPC architectures

will certainly be a challenge. We should focus on the

architectures that are relatively well matched with the

Ada model (i.e. MIMD machines).

Second we must educate the next generation of HPC
users. These future users are still in universities and
colleges. They learn to program in FORTRAN and C.

Let us provide them with the tools to learn in Ada

Third, we must demonstrate that Ada may provide

what is most important to I-PC userx performance.

The work described in [1] provided such a

demonstration. More examples are needed to make

Ada a language of choice in the HPC community

3. Will Ada9X have any significant impact on high

performance computing and if so, how?

Ada was a very ambitious project since it aimed not

only at defining a programming language but also a

model of computing. In our era of” open everything”,

one has to wonder if rigid, all encompassing models

are still necessary Yetr the two most important

characteristics for a standani are implementability and

usability

Thus the question is not to determine if Ada 9X is the

right vehicle to impact HPC but rather if Ada 9X can

encapsulate efficient took that

1. will be implemented by vendors at a

reasonable cost and

2. will be efficiently utilized by I-PC users.

TeleSoft has developed an advanced prototype of a

distributed Ada development system targeted at

loosely coupled multiprocessor architectures. This

system (that will be demonstrated at lki- Ada’%2 [2])

could be used to program computers with a few to a
few hundreds processors. It is largely based on a draft

(August 1991) of the Ada 9X recommendation for

distribution of Ada programs.

One of the most salient features of this system is the

graphical user interface which allows users to

.

U5

.

same time, there are horror stories of huge,

incomprehensible FORTRAN programs buried in the

heart of critical systems. At some point these programs

will be re-titten. If common sense rules, care will be
taken to re-engineer these programs using modem

tools and techniques. Ada should be a strong

contender.

3. Wti Ada9X have any signMcant impact cm high

performance computing and if so, how?

Several features of Ada9X will impmve Ada’s viability

in HPC Most important among these are the object-

oriented extensions. These extensions are NOT a

panacea, but are an important tool for prototyping and
“erg anizing” prqgram$ without these extensions to

Ada, C++ might have the FORTR4N replacement field

locked up by default The proposed Ada9X changes for

distributed programming are probably premature

since there is little experience in this area. The

proposals for parallelizing loops seems to leverage the

experience wtth FORTRAN in loop parallelization. The

proposed “refurbishment” of Ada float 1/0 was a bit

esoteric and is hard to assess; in any case the

FORTRAN floating point seems to get by with little

semantic rigor

While Ada9x may not be crucial to FORTRAN
replacement it will help.

4. When will high performance computing with Ada

be a reality?

Ada will take an increasingly important role in HPC

because of its tasking and because many hardware

vendors are producing multipmcessms. The

acceptance of Ada in the traditional FORTRAN areas of

HPC will depend on accomplishing student/teacher
suppofi I-WC library support, host/target support and

comparable performance.

Compiler vendors should be able to satisfy these

requirements by mid-1994, other than HI?C library

support Government encouragement would help in

creating Ada rewrites and interfaces for common HPC

packages.

Position Pape~ Ada and HP Computing

Dr. Thomas Probert

Center for High Performance Computing

Ada and High Performance Computin& A Window

of opportunity?

High performance computing while not limited to

supercomputin~ inherits its legacy This includes the

problem solving paradigms, hardware ~hitecturai
and software tools as well as a mind set. Ada, like any

other language, can be used to develop high

performance applications given the existence of high

performance compilation and run time systems.

Ada, in its early years focussed on standards

conformance to ensure portability. This achieved

compatibility at the expense of performance. That

decision has implications for Ada’s role in high

performance computing today

In addition, the notion of developing tools and

environments to supp~ and in some cases enforce,

software engineering principles was done more or less

in a vacuum. Whether Ada has been a successful

experiment in attairdng the lofty goals of improving

the state of software engineering practice is still to be

decided but one result is clew, the Ada community

like the Common Lisp community stands isolated

from the mainstream of information processing. This is

true of the high performance computing community as

well.

Large amounts of Ada parallel processing software,

developed on sequential or networked sequential

addtectures under the idea of “software first” and

“software reuse” will be virtually unusable on high
performance machines. Wti these large applications be
re-written or will those applications not use parallel

architectures?

The question is not whether Ada -be useful in

high performance community but m it be used?

This talk will focus on this basic question and the other

central issues that need to be addressed in order to

capture at least part of the high performance

computing market

U6

Position Papen Ada and HP Computing

Dr. Stephen Zeigler

Verdix Corporation

1. Is high performance computing fundamentally

compatible or incompatible with Ada?

High Performance Computing (HPC) is not

incompatible with Ada. That is, there is nothing

fundamental in the design of Ada that precludes the

highest levels of optimization. Indeed, Ada has

strengths in many areas, including tasking floating

point machine access, and modular programming

definitions, that make it technically the best language

for H’PC,

Compared to FORTRAN, Ada’s definition is consistent

and portable, with strong support for modem

programming styles. Ada’s support from govemmen~

as for example via the ACVC testing suites, has

resulted in relatively portable, predictable

programming for i~ user%

However, Ada has practical problems that must be

overcome before it can displace FORTRAN as the HPC

language of choice.

2. What work needs to be done to make high perfor-

mance computing with Ada a reality?

Ada will displace FORTRAN ordy when most of the

following conditions are mek

● Ada is taught to engineering students,
which requires that Ada have student

toolsets at student prices, and that

teachers have teaching tools for Ada in

HPc.

● Most HPC computing libraries are

accessible via Ada interfaces or are

rewritten in Ada.

● Good Ada tools are available for

popular host/target hardware and

operating systems.

● Ada’s perceived performance is

roughly similar to that delivered by

FORTR4N.

None of these conditions are met today.

Ada tools are too expensive and use too much disk

space for most student budgets, and there are no good

curriculum materials to support HPC in Ada There are
many FORTR4N packages that have no Ada

interfaces. The~ are major HPC platforms such as the

Touchstone, the Thinking Machines, the MAICO, the

NCube, and even the Cray where there is no Ada or the
Ada is viewed as unreliable or unfriendly. Toda~ Ada

compilers are not perceived as delivering the pure

performance of Fortran.

This last point, the performance of generated Ada

code, deserves some comment. FORTRAN has been

around for 35 years. It has many optimization. It also

has a user community that is trained to work around its

many idiosyncrasies to work with the compilers for

maximum performance. It has a suite of benchmarks

that are tuned to enable maximum Fortran

performance.

In apples-to-apples performance Ada is probably not

dissimilar from FORTRAN and may even exceed its

performance where Ada types and tasking information

can be used for optimization. Howeveu Ada does need

further work

●

●

●

Benchmarks must be written to enable

maximum Ada performance. This

means avoiding “FORTRAN-isms”

such as unchecked conversions to

mimic common blocks, or casting every

data type as an array. It also means

avoiding unnecessary use of expensive

Ada constructs such as arrays with

dynamic lower bounds.

Ada compilers must mature in their

support of HPC coding techniques,

especially including vectorization,

software pipelinin~ strip mining and

loop inversion /alteration. In addition,

Ada compilers must improve their

support of exception-less optimization.

Ada code generators must supply more

machine<ependent optimiz-ati~ns for

the HPC architectures. Here, time is an

advantage for Ada. The new

architectures represent substantially

improved performances for small chips,

bring their capability into the

supercomputer levels even as single

chips. The new architectures often

require as much work for FOR’TRAN

compiler writers as for Ada, so

increasingly FORTRAN’s optimization

leads will wither. In addition, the
tasking support for Ada will make it

much more attractive on

multiprocessors, at least outside highly

specialized parallel algorithms.

Ada also has strengths beyond its code generation and

tasking-Ada is the basis for a software development

tool set of which the compiler is only a part. Until now,

the software engineering strengths of Ada have been

ignored or minimized by engineers in HPC At the

127

decompose applications in an interactive (“point and

click”) mannez Yet it is built out of “stock”

components. In other words, no special version of the

compilers, linkers or any other standard tools was

necessary to assemble this system.

We consider this effort as a demonstration that it is

indeed possible to include paradigms such as

distributed programming in the Ada standard and still

leave the language definition open enough that a

variety of implementations are possible for a variety of

architectures. For all these reasons we encourage the

work that is now going on in Ada 9X for features

related to high-performance computing.

4. When will high perfomnance computing with Ada

be a reality?

High-performance computing with Ada will become a

reality when a significant number of users recognize

that the Ada language has many features well suited to

HPC-type applications than cannot be found in other

languages. This could occur sooner than one may

think.

I recently attended a users group meeting of a fairiy

large computer manufacturer headquartered in the San

Francisco bay area. This company is involved in the
release of a new version of their base operating system
where the notion of multiprocessing is very important

The basic mechanism used to control multiprocessing

at the user level is not too distant from the tasking

model.

During this meeting I heard engineers from this

company (a stronghold of the C culture) making

statements about how Ada is so interesting from the

multiprocessing point of view! Ada will become a

reality in the HPC area when people start “hacking”

with Ada tasking for progr amming parallel

applications.

References

[l]P. Col.kl, A. Goforth, M. Marquardt Ada as a

Parallel Language for High Performance Computers

Experience and Results. TRI-Ada’90. December 1990.

Baltimore.

[2] T. Burgez R Volz t% al. A Practical Tool for

Distributing Ada Progranw TeleSoft’s Distributed Ada

Configuration Tool. To be presented at TRI-Ada’92.

November 1992. Orlando.

Position Pape~ Ada and HP Computing

Anthony Gargaro

Computer Sciences Corporation

The notion of high performance computing typically

includes a number of distinct technologies such as

parallel processing and distributed execution. These
technologies require a level of spe’&fication of the

target architecture that may lead to linguistic

compromises in a common programrnin g language.

In the last decade there is evidence that Ada has been

both successful and unsuccessful in developing

applications where these technologies have been

important. Therefore, one’s perspective of the “reali~

or myth” of Ada to develop high performance

computing applications may depend upon the speciiic

criteria demanded by the application.

For example, Ada is used today in distributed

execution environments. In some instances, the

purpose for this distribution is to improve

performance, where high performance not only

requires reducing processing time, but increasing

reliability or fault tolerancy A system that can continue

execution in the presence of degraded conditions,

without suffering costly restart, exhibits a kind of

performance vital to some application domains. It may

be contended that in these systems, high performance

has been achieved by advancing beyond what is

specified in the RM, e.g., multiple main subprograms,

or that a fundamental tenet of the language, e.g., type

safety, has been jeopa.niized. In other words, the

language has been compromised either by permissions

or restrictions supported by an implementation. Such a

contention often gives credence to the argument that a

programming language should include features for

high performance computation regardless of the target

architecture; it ia this argument that promotes debate.

The “reality” is ~at a common programming language

should offer the opportunities for innovative

implementation without undermining the rationale for

the language.

The proposed Ada 9X mapping refines this “reality”.

The rapid change in hardware and software occurring

since the standard is recognized as continuing during

the life of the revised standard. Consequently the

mapping emphasizes the Ada tradition of exploiting

straightforward semantic models for parallel

processing and distributed execution by including

implementation guidance and options for specialized

application domains. This emphasis, together with
enhanced features, liberates Ada so that it may become

the preferred language for integrating high

performance software components.

us

