
SOFTWARE ENGINEERING ENVIRONMENT FRAMEWORK EVALUATION
METHOD: THREE EXAMPLES

M. Denise Kelley
The MITRE Corporation

1120 NASA Road 1
Houston, Texas 77058

(713) 335-85&5

ABSTRACT

The role of a framework is to manage the products,
processes,and interfaces of a software engineering
environment (SEE) and searnlesslyreimforce and expedite
an organization’s life cycle process. The fiarnework
selection process is complex due to the increasing
mtmber of available hrrteworks and the rapid advances in
technology and applicable standards. In this paper, a
method for evaluating available frameworks is applied to
three fiztmeworks: a government-sponsored prototype for
developing large systems, the Software Life Cycle
Support Environment (SLCSE); a commercial
Computer-Aided Software Engineering (CASE) product
for developing Martagement Information Systems (MIS),
Knowledge Ware’s Application Development Workbench
(ADW); and a commercial product for use in an
Integrated Project Support Environment (IPSE), the
Atherton Software BackPlane. Conclusions and
recommendations regarding the usability, power,
flexibility, and potential enhancements to the framework
evaluation method are provided.

Keywords: Computer-Aided Software Engineering
(CASE), Computer Assisted Software Engineering
Environment (CASEE), framework, life cycle,
management information systems (MIS), method,
software, software engineering environment (SEE).

Permission to mpy without fee all or partof this material is granted provided that the copies arc

not made or distributed for direct commercial advantage, the ACM copyright notice and the tuk

of the publication and its date appear, and not Ice is given that mpying h by permission of the

Association for Computing Machiney. To copy otherwise, or to republish, requues a fee and/or

specxfic permission.

Kathy Rogers
GHG Corporation

1300 Hercules, Suite 111
Houston, Texas 77058

(713) 488-8806

INTRODUCTION

A ftarnework can be described as a structure to facilitate
the integration of tools used across a life cycle. A
framework provides a set of interfaces that supply tool
builders with accessto services and resources. The
interfaces should provide stability and easeof
integmtion. The archit.ecttuvof the interfaces should
support the progressive acquisition of tools.

The successof software projects at the National
Aeromutics and SpaceAdministration (NASA) Johnson
SpaceCenter (JSC) is predicated on the use of capable
software engineering environments (SEES) to support
the development of large, complex and long-duration
projects. The risk of not using a framework for a
signitlcant system (or using an obsolete framework) is
that an enterprise will inefficiently expend budget of
schedule resources. A f%xnework allows efficient aiid
timely acquisition of a SEE in which core support can
be developed (or procured) initially. Subsequently,
increments (tools and capabilities) to support a long-
term cycle may be added as the pmjcct continues.

BACKGROUND

The emergence of the framework concept as a basis for
progressively acquiring SEESwas perceived by the JSC
Software Technology Braach (STB) as an imymtant
technology area to be studied; this resulted in the
decision to evaluate framework technology. The benefit
of cxaminittg a wide range of available framework
options is the acquisition of knowledge supporting
available frameworks’ risks and capabilities. The
intended result of exploring multiple options is to find
the most appropriate frameworks for the various NASA
JSC projects. However, looking at several fratteworks
in depth requires expaditure of significant time and
effort. If more than one person or team lcxks at
frameworks in parallel, comparison and contrast of the
results may be difficul~ This is due to differences in the
approach, criteria, and terminology of each evaluation.
TM paper describes a consistent, reusable, efficient
methed for evaluating frameworks that will provide a
basis for comparing framework evaluations across teams
of evalua~ors.

Q 1992 ACM 0-89791487-2/92/0006.176 $1.S0

176

http://crossmark.crossref.org/dialog/?doi=10.1145%2F257683.257730&domain=pdf&date_stamp=1992-07-16

GOAL OF THE EVALUATION

The goal of the evaluation of framework technology is
fmt to detennirte the capability of a framework to
support the phases, activities, roles, and products of the
software engineering life cycle, and second to learn
lessons that could be beneficial to current and future
programs and projeds at JSC. The Evaluation Method
for SEE Frameworks was created and refined during the
evaluation of (he Software Life Cycle Support
Environment (SLCSE) framework. This evaluation
method was developed to reduce the risk associatedwith
selecting the most appropriate framework among
emerging frameworks. It is intended to addressthe
critical issues of framework selection in a flexible,
efficienL and repxmble manner. Many of the products
of the evaluation (such as the evaluation questions and
the information gathered on the appropti”reference
mdels) can be reused or refined across evaluations.

EVALUATION METHOD

The basis of the Evaluation Method is the evaluation of
five qualities that describe the essenceof a framework
cost, usability, pawer, flexibility, and maturity.

The cost of a hmework is measured not only in terms
of the dollam that are required to purchase the software
that comprises the fiarnework but also the cost of using
tie fmrnework and its associatedhardware and software
system. These additional costs can be characterized in
terms of the expense of the supporting hardware,
operating system, or other supporting software, the cost
(both dolkms and time) for the necessary training to use
the framework effectively, the cost to the organization of
changing business procedures to accommodate the
framework, and the cost of supporting the ti’amework.
An additional cost associated with a fmmework is the
difficulty of integrating tools. If few tools are available,
or the available tools are expensive or difficult to use,
the ovemll expense of the fiarnework increases. The cost
of a ftarnewcxk to a single project can be reduced if the
framewcn-& and the associated skills &veloped to use the
fmmework, ean be used on sexed project.%

Usability of a harnework can be measured in many
ways. &qxxts of usability include user friendliness,
quality, suitability, and functionality. The general
principle of user friendliness, for example, can be broken
down into practicality, convenience, and helpfulness.
The quality of the interface and the amount of support
that is required to interact wifh the framework are should
be noted in the criteria. In addition, the suitability of the
framework to the type of development done by art
enterprise must be considered. For example, the amount

of effofi M===Y to use the framework should be
weighed against the benefits of the framework very
small pojects may benetit from the use of individual
tools without a framework. The actual function of a

framework must be considered to ens~ that tie
fmrnework provides sufficient (but not excessive) project
suppot%appropriate language suppq and correct
project deliverables.

The power of a framework is its ability to increase the
productivity of individuals using the environment built
upon the framework to do what is required to complete
the projec~ The capacity of the framework to manage
life cycle phases, activities. roles, and products must
provide not only enough throughput to support the
volume of traffic created by the tools within the
environmen~ but also support the life cycle functions
(or components) at an appropriate level. It maybe the
case that the support provided by a framework adds
power to some users u the expense of others. For
example, a stringent contlguration control system might
enhance the capabilities of the conilguradon
management group at the expense of programmers.
Information of an administrative nature might he
provided at a cost to overall performance. The overall
leverage provided by the framework to do complex,
undesirable tasks, or repetitive tasks must be weighted
against the overhead associated with using the
framework. If the net result is positive, the tlamework
provides power to the overall projec~

Flexibility is defined as extensibility, tailorability, and
scalability. A framework should support incremental
building so that portions of the environment can be
acquired as they are neexle-rLrather than all at once. The
framewodc should also be tailorable to accommodate the
specillc functions of an organization as well as to
accommodate new opportunities that might arise.
Scalability is the ability of a framework to scale up or
down m meet the specillc needs of a project. This report
has already acknowledged that not all projects require an
environmen~ but even among those that do, there is a
wide range of project and team sizes to be supported.

The maturity of tie framework is predicated on its
experience base, tied personnel+progress over time,
and stability. A framework that has a trained user base
provides both available, knowledgeable personnel and a
known successrate. If a hamework has matured over
time without signiilcant disruptions, it is more likely to
be well engineered than one that has undergone
signifkant modiilcation to accommodate changes. A
tlamework that has accommodated change yet remained
stable over a period of time can be cia.ss~led as mature.

The evaluation method consists of five steps:

● Establish a basis for reviewing the tlamework
Background information should be studied to establish an
understanding of the current stateof framework
technology as well as the context in which the
framework will operate to answer the questions that
charac~xize essential ihrnework characteristics. In order
m establish a basis for understanding framework

177

technology at the be@ming of a framework evaluation
the following steps m necessary:

● Create an evaluation plan and schedule
● Researvh available literature
● Understand the culture of rhe users
● provide a preliminary analysis of the fi-arnework
● Interview framework users
● Interview framework &velopexs
c Select a m.femncemodel

If more than one framework is being evaluated, some of
the information collected by the fmt evaluation team (or
on the first framework evaluated) can be reused by later
evaluation teams. ‘f%edesired reds of this step area
sound basis for conducting a thorough evaluation in a
timely manner rewdting in enough knowledge of the
framework to determine the potential value of continuing
the evaluation.

● Establish evaluation goals
Goals serve as the compass for the evaluation. To
provide the evaluation customer with tie appropriate
amount and level of information, document the goals
before the evaluation. To keep the evaluation on the
right traclGreview the goals frequently. At each review,
determine whether goals are being met and whether all
the goals are still reasonable, considering what has been
learned during the evaluation. Define the evaluation
goals in terms of specific and bounded criteria. State
questions to assessor measure the criteria in clear and
concise terminology. Establish a test case that provides
appropriate direction to the evaluation. Documentation
of the goal(s) of the evaluation is the product of this
step.

● Conduct a test case
After choosing a test case, implement that test case
using the fiarnework. Evaluate a broad range of
framework tirtctions, but explore issues of particular
importance to the user organization at some depth. If a
test case is used across several evaluations, do not
misinterpret increased understanding of the test caseas
better performance of the framework. Whether similar of
differenttestcases are beirtgtiseparate thedifficllkiea
related to the test casefrom the difficulties related to the
framework. The evaluation may end here if the test case
reveals signifkant problems with the fkarnewodc. The
test case should result in identitlmtion of tie
assumptions upon which the fmrnework is based, the
limitations of the flarnework, and the functionality the
frameworkprovides. The overall result of application of
the test case determines the areas in which the framewodr
performed well and those in which it performed poorly.
If the evaluation ends based on the results of the test
case, include the rationale (as it is always possible that
future versions of the framework may solve the identit%d
problems). If the fmrnework performed well, document
the results for reexamination at the end of the evaluation.

● Document recommendations and conclusions
The initial evaluation information, the framework goals
and the test case information serve as the basis for
making recommendations and conclusions on the
framework. ‘f%erecommendations discuss the changes
and enhancementsto be considered for future versions of
the iiarnework. The eortclusions detexmine whether the
bamework is adequatefor the project to be done by the
organization (as well as its suitability to future projects).
The recommendations and conclusions should be based
upon the ikunework concepts in light of the
implementation of the framework. The importance of
documenting the findings of the evaluation cannot be
overstated. If the user organization is responsible for
making the final ckxision on the use of a fi’atrtework, a
clear, concise evaluation report witl provide the best
vehicle for communicating the information gained by the
evaluation team. IF the responsibility for hrnework
selection rests with the evaluation team,documented
Findings will provide a justifkation for the team’s
decision. Written findings will not tide over time or
become confused over the course of multiple
evaluations. Fhtdings cart ako serve as a starting point
for evaluating new versions or revisions of a framework.
Once tie evaluation is captured in writing, it cart be
widely disseminated to other orgarkdons conducting
evaluations or interested in the results of evaluations.

● Refhte the evaluation process
Throughout the process of evaluating the framework,
collect information on issues raised (not just those that
wem explored), the rationale for decisions and the
problems that were encountered during the evaluation.
The importance of documenting the evaluation itself, in
addition to documentation of the evaluation findings, is
important to the refinement and repetition of the process.
Written findings provide a basis of comparison over the
course of multiple evaluation. Documented issues
provide insight to future evaluation teams without
relying on the direct participation of previous evaluators.
Documenting the evaluation prccess is the best way, to
communicate and preserve the lessons learned tim doing
an evaluation. The result of this step documents the
strengths and weaknessesof the evaluation process as
practiced on the test cas

The five stepsare intended to ensure timely, accurate
analysis of the applicable !hrnework features.
Timeliness is supported by reducing the investigation to
a smail but descriptive set of characteristics. Risk
management and cost containment are supported by
investigating the key risks and benefits in the context of
the culture of the user organization. Use of the
evaluation method is intended to result in the .s&xtion
of a cost-effective framework.

The criteria to be measuredduring the selection process
were refined and enhancedby the STB Configuration
Control %erd. The SLCSE, ADW end Atherron
BackPlane were evaluated acceding to the criteria in

.

178

accordance with the evaluation methd, the evaluation of
each was included as a study of the application of the
evaluation method.

RECOMMENDATIONS AND LESSONS
LEARNED

The following enhancements are recommended for the
Evaluation Method for SEE Frameworks:

Continue refinement of the Evaluation Method
for SEE Frameworks

Balance evaluation team size and skills

Schedule frquent reviews

Document evaluations as they proceed

Develop objective thmework measurements

Maintain awarenessabout planned ftarnewcxk
enhancements

Lessons learned, Won the experiences of applying
the method to three test cases, SLCSE, ADW and
Atherton Backplane include

8 Dependence of the system on a speciiic
configuration should be eliminated.

● Performance and the user inte!face should be
impmved to meet user expaationso
The prqmnderance of reasonably pricedi
powerful, graphical user workstations
establishes user expectations on the level of
capabilities and performance rquired in a
system.

● Automated support for documentation and role
addition should be provided. Automation is
also required to suppont modification functions.

● 7he fiarnework concept should be leveraged to
provide the ability to progressively squire a
SEE. ‘I%epower of the populated ilarnework
should be greater than the capability of the sum
of the power of the individual tools used to
populate the fmrnework.

● The automatd document-generation function
should be enhanced to smooth the life cycle
effofi The ability to engineer requirements,
design, and implementation was found to be
much greater when the user’s focus did not have
to shift into a documentation mode and then
shift back into an engineering mode.

Current and future fiarnework evaluations for the STB
have been identified

BIBLIOGRAPHY

ANSWEEE STD 1002-1987, “IEEE Standard Glossary

of Software Engineering Standards,” American National
Standards Institute, New York, NY.

Baldwin, R. W., and D. E. Emery, 19 December 1990,
‘%chnology Assessment of the Soilsvare Life Cycle
Support Environment”, Draft The ?+AHILECorporation,
Bedfo@ MA.

Begley, Zeynep, 24-27 April 1990, “Hanscom Air Force
Base SLCSE Training Course”, Hanscom Air Force
Base, Massachusetts.

Defense Systein Software Development
Standard, 29 February 1988, Department of
Defense, DoD-STD-2167A.

Earl, Anthony, 17 August 1990b, “A Reference Model
for Computer Assisted Software Engineering
Environment Frameworks”, HPL-SEG-TN-90-11,
Software Environments Group, Hewlett-Packard
Laboratories, Bristol BS126QZ, England Version 4.0
ECMAlTC33flGRM/90/O 16.

Erb, D. M., 20 November 1990, “Software Engineering
Methods”, presented to Software Technology Branch,
Information Technology Division, Information Systems
Directcxate.

Hogan, -23-26 October 1990A ‘%IASAfJSC
SLCSE Training Course”, NASA/JSC, Houston, Texas.

Kelley, M. D., drafL 12 Febmary 1992, “Evaluation of
KnowledgeWare’s Computer-Aided SofWare Engineering
(CASE) Application Development Workbench (ADW)
Tcolset”, The MITRE Corporation, Houston, Texas.

Labasse, D. L., drafL 8 February 1991, “A Comparison
of the Atkrton Software Backplane and the ECMA
CASE Envimnmenta Frameworks Reference Model”.

McDennid, J. and K. Ripkin, 1984, “Life Cycle Support
in the Ada Environment”, Cambridge University Press.

Rogers, K. L., M. Bishop, and C. W. McKay, March

1991a, “An Overview of the Clear Lake Life Cycle
Model”, Proceedings of [he Ninth Annuai Natwnd
Conference on Sofnvare Technology, Washington, D,C.,
Pp. 206-222.

Rogers, K. L., April 1991b, “Softwase Engineering
Environment Frameworks Volume I: Evaluation
Method”, MTR-91 WOO048-01, The MITRE
Corporation, Houston, Texas.

.

179

Rogers, IL L., May 199lC, “Software Engineering
Environment Frameworks Volume Ik Evaluation of the
Software Life Cycle Supprxt Environment”, MTR-
91WOO048-02, The MITRE Corporation, Houston,
Texas.

SLCSE Technical Stsff, August 1989,
“Sofhvare Life Cycle Support Environment
Sofiware User’s Manual, Volume 1“, CR-6-
1537, General Research Ccnporation, SPS, and
Intermemics.

SLCSE Technical Staff, October 1989, “Software Life
Cycle Support Environment 2167A Schema”, General
Research Corporation, SPS, and Intermerrics.

Strelich, Tom, February 199@, “Software Life Cycle
Support Environment”, RADC-TR-89-385, FmaI
Tedmical ReporL General Research Corporation, Santa
_ CA.

Srrelich, Tom, 22 October 1990b, “Software Life Cycle
support Environm ent A Computer-Based Fxarnework for
Developing Software Systems”, paper presented at
NASA/JSC, Houston, Texas.

1s0

