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Abstract

The gaze locations reported by eye trackers often contain error 
resulting from a variety of sources. Such error is of increasing 
concern to eye tracking researchers, and several techniques have 
been introduced to clean up the error. These methods, however, 
either compensate only for error caused by a particular source 
(such as  pupil dilation) or require the error to be somewhat 
constant across  space and time. This paper introduces a method 
that is applicable to error generated from a variety of sources  and 
that is resilient to the change in error across the display. A study 
shows that, at least in some cases, although the change in error 
across the display appears to be random it in fact  follows a 
consistent pattern which can be modeled using quadratic 
equations. The parameters of these equations can be estimated 
using linear regression on the error vectors between recorded 
fixations and possible target locations. The resulting equations can 
then be used to clean up the error. This regression-based approach 
is  much easier to apply than some of the previously published 
methods. The method is applied to the data of a visual search 
experiment, and the results show that the regression-based error 
correction works very well.

CR Categories: H.5.2 [User Interfaces]: Theory and Methods;

Keywords: eye tracking, error correction.

1 Introduction

The last decade has seen an increasing number of experiments 
that use eye movement data to study human performance. These 
experiments require accurate eye tracking data. The dominant eye 
tracking systems used today are video-based pupil-center corneal-
glint-reflection eye trackers, and such  eye trackers can have 
varying degrees of error depending on  the properties of the 
hardware (cameras resolution, sampling frequency, etc.) as  well as 
the conditions in which the data are recorded (e.g., stimuli 
luminance and head movements) [Holmqvist et al., 2011]. For 
scientific studies, even a small amount  of eye tracking error can 
have a detrimental effect. For example, Holmqvist et al. [2012] 
showed that  even a 0.5º offset of gaze locations can lead to very 
different conclusions  about dwell time on areas of interest (AOI). 
Running  a rigorous eye tracking experiment  requires efforts to 
minimize error.

Several methods have been proposed to correct error in video-
based eye tracking systems. These methods can be roughly 
classified into two categories: source-centric and data-centric. The 
source-centric methods deal with error generated  by a particular 
cause such as head movements  or changes in pupil size. Cerrolaza 
et al. [2012], for example, showed that head movements, 
particularly movements in depth (perpendicular to  the screen), can 
cause error in gaze location estimates. The authors proposed a 
new calibration procedure and a new gaze estimation function 
(which translates the pupil-center corneal-glint vector into x and y 
screen coordinates) that incorporates the eye-to-screen  distance to 
compensate for the error. The new procedure, however, requires 
lengthier calibration because it  repeats traditional calibration two 
more times, one at a shorter eye-to-screen distance and one at a 
longer distance. Another example of a source-centric error 
correction method is proposed by Drewes et al. [2012] to  address 
error caused by changes in pupil  size. The method is very  similar 
in  spirit to Cerrolaza et al. [2012]: A two-pass calibration is 
needed, one using a dark background (causing pupil  dilation), and 
one using a bright background (causing pupil constriction). Then, 
a new gaze estimation function that incorporates pupil  size is used 
to  generate better gaze location estimates. Both  methods were 
shown to work very well  for error that is  solely caused by one 
particular source. However, it might be impractical to combine the 
two methods to reduce both  types of error because a 
straightforward combination would require a six-pass  calibration. 
Clearly, the field needs  better ways for dealing with error from a 
variety of sources. 

The other category of error correction methods, data-centric 
methods, works by extrapolating the pattern of the error from the 
data and then  removing the error based on the extracted pattern. 
These are typically post hoc methods in that they do not  require 
modifications to the calibration procedure or the gaze estimation 
function, but only  need to process the collected eye tracking data. 
Though in order to identify the error the experimental design may 
need to incorporate some required fixation locations  (RFLs) 
[Hornof and Halverson, 2002]. These are points on the screen that 
the analyst can be relatively certain that  a participant fixated at a 
specific point in time, provided that the participant completed  the 
trial accurately. For example, when moving a mouse cursor to 
click on a button, the participant normally needs to fixate the 
button  to ensure an accurate click; this particular behavior can be 
further reinforced by implementing a point-completion deadline 
[Hornof, 2001], which financially rewards a participant if the 
click on the button occurs within a short period of time after the 
mouse cursor starts  to move. With RFLs, the eye tracking error 
can be identified as the disparity between the RFLs and the 
fixations that  were recorded at the time that  the RFLs were 
fixated.

One problem with previous data-centric error correction methods 
that use RFLs is that these methods assume that the eye tracking 
error remains constant  across time and locations on the display. 
This assumption, however, does not always hold. Instead, the 
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error can vary substantially across the display, such as perhaps 
around the edges of the screen when the display area approaches 
the maximum tracking zone of the eye tracker. This paper presents 
a data-centric error correction method that recalibrates eye 
tracking data by identifying how the error changes across the 
display. The method uses both RFLs and a relaxed version  of 
RFLs—probable fixation locations (PFLs). The method does not 
require additional calibrations  with the participant and uses simple 
linear regression to correct the data.

2 Changes in Error Across the Display

Figure 1 shows how error can change across the display. The data 
were collected from one session of our replication of the Williams 
[1966] visual search experiment, with a point-completion deadline 
enforced to  obtain  an accurate measurement  of the eye tracking 
error. The circles  in Figure 1 represent the target location from 
every trial in a session, and the vectors, which are used to assess 
the eye tracking error, connect each target  to the fixation that  was 
recorded when the target was clicked. Targets and distractors were 
randomly distributed across the display, which was useful for 
assessing the error. As can be seen in Figure 1, the error varied in 
direction and magnitude across the display. In the top half of the 
display, the error tended to shift the recorded fixation downward 
and was about  1º (equal to 38.7 pixels). In the bottom half, the 
error was much smaller and tended to shift the recorded fixation 
upward.

The error shown in Figure 1 was not likely caused by improper or 
careless setup of the eye tracking equipment. Many steps, 
discussed in more detail  in Section 4, were taken to reduce error 
in  our eye tracking data. The only aspect of how the eye tracker 
was configured that may have contributed to the error was that it 
was used with a display that was 40° wide, which is right at the 
limit  of the maximum tracking zone for the eye tracker (a 120 Hz 
binocular LC Technologies Eyegaze Analysis System). Our 
average error of 0.74° across all sessions  is in line with the error 
recorded in other experiments for which eye tracking error was 
reported with other pupil-center corneal-glint  eye trackers (e.g., 
[Cerrolaza et al., 2012]).

One approach to addressing how eye tracking error changes 
across a display might be to calculate the average error separately 

for the top half and for the bottom half of the screen based on the 
RFL error vectors. This solution, however, would be problematic 
because it would  require inspecting visualizations such as Figure 
1 for every session of the experiment for every participant to 
determine how the screen should be best divided. This specific 
approach would  also  be susceptible to noise (random variation) in 
the error because as the screen is divided into more regions, there 
are fewer error vectors in each region, and thus the noise would  be 
less likely to be reduced by averaging all of the error vectors.

Figure 2 provides another view into how the error changes across 
locations for the same set of data as in Figure 1. The top panel 
shows how the vertical component of the error changes in relation 
to  the fixations’  x coordinate, and the bottom panel how the 
vertical component changes in  relation to the fixations’  y 
coordinate. (The horizontal component of the error has similar but 
less apparent trends, and is not  shown here.) The solid curves are 
the best-fitting quadratic curves for the data. The graphs show that 
there is a gradual  transition in the vertical component of the error 
from left to right  (the x coordinate), and from top to bottom (the y 
coordinate). Further, this transition seems to be largely accounted 
for by the quadratic curves. These results indicate that the change 
in  error is not  completely random, but that it  follows a smooth 
trend that  can be characterized mathematically. Thus, there is no 
need to discretize the changes using a region-based RFL 
technique such as proposed earlier. Instead, we can simply find 
the equations  that  most  accurately describe the changes across the 
entire display.

3 Error Correction by Spatial Recalibration

Based on Figure 2, we postulate that the true gaze locations and 
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Figure 1: The error vectors between the search targets (circles) 
and the fixations reported by the eye tracker when clicking on 

each target, from one session of the experiment.
1º of visual angle = 38.7 pixels

Figure 2: The vertical component of the error vectors shown in 
Figure 1 as a function of each fixation’s reported x coordinate 

(the top panel) and y coordinate (the bottom panel). The curves 
are the best fitting quadratic functions.
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the reported gaze locations have the following relations:

where xʹ and yʹ are the true gaze coordinates, and x and y are the 
reported coordinates. The terms a0, ..., a5 and b0, ..., b5 are 
coefficients that might change for each calibration, and need to be 
determined from the data. This  equation not only has the quadratic 
components needed to generate the fitting curves in Figure 2, but 
it  also has the interaction component, xy, for capturing changes 
that depend on both coordinates. We call this the “recalibration” 
equation because it essentially compensates for the loss of 
accuracy inherent in the original calibration.

To determine the coefficients of the recalibration equation, 
straightforward linear regression can fit the equation to the 
fixation-to-RFL error vectors such as those shown in Figure 1. 
The RFLs serve as the true gaze coordinates, and the fixation-to-
RFL vectors are used to parameterize the equation to  correct 
fixations at different screen coordinates. Provided that there are a 
sufficient number of RFLs distributed across the display, the 
method will find appropriate parameters to reliably remove the 
error.

When the experimental design does not provide enough RFLs to 
cover the entire display, probable rather than  required fixation 
locations can be used to provide more data for fitting the 
recalibration equation parameters. Probable fixation locations 
(PFLs) are visual  objects that need to be fixated in order to 
successfully complete a trial, but  unlike RFLs, the precise time 
when each PFL is looked at cannot be inferred from the 
experimental design or participant performance. For example, 
small text that  needs to  be read at an arbitrary point  in a task could 
be used as a PFL because the participant would need to look 
directly at the text to recognize it (whereas  other visual properties 
such as color could be recognized in the periphery), but the 
participant could do so  at various different times in a trial, which 
would make it  difficult  to determine which exact fixation should 
be mapped to the PFL. Zhang and Hornof’s [2011] solution to this 
problem was to map each fixation to its nearest PFL. The authors 
showed that with an noise-resilient  algorithm (in their case, the 
somewhat complicated mean-shift algorithm), the method will 
reliably identify  the pattern of error provided that  the RFLs are 
not arranged in an evenly-spaced grid pattern and that the error is 
constant across the display. This study extends the use of PFLs to 
identify eye tracking error that changes across the display.

For the visual  search experiment presented here, a combination of 
RFLs  and PFLs were used to estimate the equation parameters. To 
minimize the effect  of potentially incorrect fixation-to-PFL and 
fixations-to-RFL error vectors, we used the robust linear 
regression method [Hampel et al., 1986], which has been  shown 
to  be resilient to outliers when used to  estimate equation 
parameters. In addition, to reflect their different  levels of 
reliability, the RFL error vectors were weighted ten times higher 
than the PFL error vectors when submitted to regression.

4 Validation of the Error Correction Method

This post hoc regression-based spatial recalibration method was 
applied to the eye movement data of our visual search experiment. 
Figure 3 shows a sample search field used in the experiment, with 
fixation scanpaths superimposed onto the display. The task was to 
search for a target  within a grid of 75 objects  that have different 
colors, shapes, and sizes. Each object had a unique two-digit 

[� = D� + D�[ + D�[� + D�\ + D�\� + D�[\
\� = E� + E�[ + E�[� + E�\ + E�\� + E�[\

number in  the center. The search precues were shown before each 
trial and included the number of the target object  and, depending 
on  the experimental  condition, some combinations of the target’s 
color, size, and shape. Twenty-two participants completed the 
experiment. Each participant was given a total of 96 trials in two 
sessions.

A binocular 120 Hz LC Technologies  Eyegaze Analysis System 
was used to collect the eye movement data. To reduce eye 
tracking error from head movements, a chinrest was used. The eye 
tracker was calibrated at the beginning of each of the two 10-
minute long sessions. To reduce changes in pupil diameter due to 
changes in brightness, the calibration screen used the same 
background as the search task. The raw gaze samples were 
grouped into fixations using a dispersion-based algorithm with a 
maximum dispersion window size of 0.7º and a minimum fixation 
duration of 60 ms.

As mentioned earlier, the error correction for this  experiment used 
a combination of RFLs and PFLs to  find the appropriate 
parameters for the recalibration equation. The RFLs were the 
search targets, and were mapped to the fixations that  occurred 
when the target was clicked. The PFLs were the object  numbers in 
the experimental  condition  in  which no features other than the 
target’s two-digit number were provided in the precue. Because 
the number was small (0.26º in height), the participants  had to 
look  directly at the numbers to find the target. Similar to Zhang 
and Hornof [2011], fixations in this condition were mapped to 
their nearest  PFLs. As mentioned earlier, the RFLs were given a 
larger weight than the PFLs in  the robust linear regression 
computation.

4.1 Results

The post  hoc spatial recalibration cleaned up the error very  well. 
Before error correction, 43% of the RFL-associated fixations were 
within  0.5º of the target, 81% were within 1.0º, and the mean 
deviation was 0.74º (SD  = 1.0º). After error correction, 77% of the 
RFL-associated fixations were within 0.5º of the target, 96% were 
within  1.0º, and the mean deviation was 0.45º (SD = 0.9º). Figure 
4 shows the vertical component of the error (measured using the 

Fixations
Corrected
Uncorrected

10°

Figure 3: An eye movement data visualization of one trial. White 
circles represent the uncorrected fixations, and black the 

corrected fixations. Larger circles indicate longer fixations. The 
participant was looking for a large circle with number 3.
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RFLs) before and after error correction. After error correction, the 
medians were better aligned at zero and the error distributions 
were smaller.

The scanpath in Figure 3 shows the results of applying the error 
correction technique, including how the technique can model 
different error for different  regions of the display. The 
visualization shows the corrected fixations as black circles  and the 
uncorrected fixations  as white circles. Note that the black circles 
are much closer to the objects than the white circles. Many of the 
uncorrected (white) fixations were between objects, but  after 
correction these fixations were at much more plausible locations 
such as on the object labels. The visualization shows how the 
degree of correction differs  for different screen locations. For 
example, the correction for the fixations in the top half of the 
display are generally larger than the corrections for the fixations 
in  the bottom half. This  illustrates how the quadratic recalibration 
equation can adjust differentially across the display.

5 Conclusion

This paper presents a post hoc error correction technique for 
cleaning up eye tracking error. The technique uses  RFLs [Hornof 
and Halverson, 2002] and PFLs [Zhang and Hornof, 2011] to 
measure eye tracking error, and uses quadratic equations to 
characterize the change in  error across  the display. Example data 
from an eye tracking experiment demonstrate that eye tracking 
error that initially appears to  be somewhat random can actually 
follow a smooth quadratic curve. Though the technique presented 
here was developed with data from one particular eye tracker, the 
LC Technologies Eyegaze system, a similar quadratic error trend 
was also reported in Cerrolaza et al. [2012] with eye movement 
data collected  with a different video-based eye tracker, which 
suggests that this pattern of error and the efficacy of our technique 
will persist across video-based systems.

The advantages of the error correction method presented here over 
previously published methods are threefold: (1) The method does 
not complicate the calibration procedure. Experimenters often 
experience frustration with eye tracking calibration because, for 
many video-based cameras, the conditions  (e.g., lighting, camera 
focus, and eye-to-camera distance) have to be just right  to 
successfully calibrate a participant. It is somewhat  impractical to 
extend the calibration procedure as required by error correction 
methods such as Cerrolaza et al. [2012] and Drewes et al. [2012]. 
(2) The current method can accurately and automatically deal with 

changes in error across the display, which improves on previous 
post  hoc error correction methods that require analytic decisions 
by  the analysts. (3) The method is  easy to apply because it uses 
linear regression, which is readily  available in many software 
packages, unlike more sophisticated machine-learning algorithms 
used by other methods such as John et al. [2012].
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Figure 4: Distribution of the vertical component of the eye
tracking error across sessions, before and after error correction.

98


