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Abstract

For validly analyzing human visual attention, it is often nec-
essary to proceed from computer-based desktop set-ups to
more natural real-world settings. However, the resulting loss
of control has to be counterbalanced by increasing partici-
pant and/or item count. Together with the effort required
to manually annotate the gaze-cursor videos recorded with
mobile eye trackers, this renders many studies unfeasible.

We tackle this issue by minimizing the need for manual an-
notation of mobile gaze data. Our approach combines geo-
metric modelling with inexpensive 3D marker tracking to
align virtual proxies with the real-world objects. This allows
us to classify fixations on objects of interest automatically
while supporting a completely free moving participant.

The paper presents the EyeSee3D method as well as a com-
parison of an expensive outside-in (external cameras) and
a low-cost inside-out (scene camera) tracking of the eye-
tracker’s position. The EyeSee3D approach is evaluated
comparing the results from automatic and manual classi-
fication of fixation targets, which raises old problems of an-
notation validity in a modern context.
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1 Introduction

Using computer-based desktop set-ups for analyzing human
visual attention and attentive processes can often only be a
technical crutch. Computer-based experiments can be highly
controlled and desktop-based eye tracking comes with con-
venient tools for swift gaze analysis. However, we eventually
approve to a loss of validity of our results for the human
behaviour in the real-world situations we are originally in-
terested in: In desktop-based experiments participants are
rather stable, the content is presented (mostly) only in 2D
and is often presented from a non-natural static perspec-
tive. Particularly if the situation would normally involve
body movements, such as in sports, driving or shopping,
this approach is too reductive and recent studies show that
the transfer of findings to real-world settings is question-
able (e.g. [Gullberg and Holmqvist 2002; Dicks et al. 2010]).
Also, features used for the analysis of gaze behaviour, such
as fixations or saccades, might differ substantially between
desktop and mobile interactions (e.g. [Kinsman et al. 2012]).

With the advent of highly portable lightweight mobile eye
tracking solutions [Babcock and Pelz 2004; Li et al. 2006;
Kassner and Patera 2012], the transition from desktop to
more natural real-world settings becomes technically feasi-
ble. However, to counterbalance the loss of control com-
pared to desktop-based experiments, participant and/or
item count have to be increased. In addition, the real en-
vironment is often more visually cluttered than we design
our desktop-based experiments to be. Together with the in-
creased effort required to manually annotate the gaze-cursor
videos recorded during mobile eye-tracking sessions, this ren-
ders many studies unfeasible: It would simply take months
to years to identify and annotate the data.

If the effort for the analysis of gaze data collected in a mobile
setting could be similarly reduced as in desktop-based set-
tings, this would in our opinion significantly boost research
in visual attention and attentive processes.

In this paper we draw from our experience in augmented
and virtual reality and present a low-cost approach to gaze



analysis in 3D, based on visual marker-tracking technology.
Similarly to region analysis in desktop-based settings, we de-
fine models, i.e. geometric models, of the stimuli content rel-
evant for the gaze analysis, the objects of interest. Instead
of single-perspective areas of interest defining target stim-
uli in 2D screen space coordinates, these models are three-
dimensional geometric approximations of the objects of in-
terest and thus inherently support multiple perspectives and
esp. perspective shifts of the participants. These geometric
models are then synchronized with the real world setting:
They can be thought of as a kind of virtual reality over-
lay on top of the real-world in which each geometric model
coincides with the real-world object of interest in position,
extension and orientation.

This virtual overlay is anchored in the real world with the
help of tracking technology. Distinct markers are defined
in the real world and tracked, e.g. with a camera system,
that have pendants in the virtual world in exactly the same
places. By aligning the virtual markers with the real mark-
ers, an isomorphic coordinate system is overlaid on top of
the real world in which every real target stimulus can be
represented by a virtual proxy object and vice versa.

When the pose of the head is estimated using tracking tech-
nology, gaze directions can be represented in the model.
Then, the targets of fixations can be automatically classified
and the results should be identical to a manual annotation
of gaze-cursor videos.

Besides our general approach, we also present an evalua-
tion in which we compare the classification results based on
manual annotation of gaze-cursor videos with the automatic
classification based on our approach. In addition to that,
we compare two tracking solutions, an expensive outside-
in tracking and a low-cost inside-out tracking which solely
relies on the video recorded by the mobile eye tracking sys-
tem [Pfeiffer 2012].

2 Related Work

Recently, research in technologies that improve the analysis
of mobile eye tracking data has gained momentum. In the
following, we will thus present related work organized based
on the approach used for identifying the objects of interest
in the environment.

2.1 Approaches based on 2D Computer-Vision

For environments for which a geometric model cannot be eas-
ily obtained or for analyses targeting highly dynamic scenes,
pure image-based approaches have been proposed. These ap-
proaches focus on the analysis of local features, such as the
area of interest around the fixated area. These approaches,
however, then require a learning-phase in which the instances
are labelled by a human annotator.

With their SemantiCode approach, Pontillo et al. [2010] fol-
low a semi-automatic approach based on 2D image classifi-
cation (colour histogram). The gaze data is analysed by Se-
mantiCode and samples of the original scene-camera video
centred around the fixation are presented to the human an-
notator. The annotator labels the samples and SemantiCode
step-by-step constructs a database of examples that are used
to suggest labels in subsequent presentations.

Toyama et al. [2012] presented Museum Guide 2.0 which
uses an adapted SIFT feature extractor and an approximate

nearest neighbour approach to classify images of fixated ob-
jects extracted from the scene camera, based on a pre-defined
database of potential target objects. The database has to be
filled with image instances of target objects taken from every
perspective. The speed of the classification depends on the
number of features and the size of the database. The sys-
tem was able to operate in real-time when image processing
was reduced to less than 25 frames per second on a small
set of objects. Harmening and Pfeiffer [2013] extended this
approach with a spatially organized database to speed up
processing significantly. Brone et al. [2011] proposed a sim-
ilar approach to interactively create training examples with
their pre-study training step training-by-looking-at.

The described 2D approaches can deal with stationary as
well as with moving objects of interest. However, they re-
quire an intensive data collection phase and classifications
are not guaranteed to operate in real-time, as they depend
on database size. The detection quality also heavily depends
on the features of the target objects and it is not possible to
differentiate between multiple occurrences.

2.2 Geometry-based Approaches

Geometry-based approaches use a 2D or 3D model of the
environment to calculate the intersection of the line of sight
and the objects of interest. They require, however, the po-
sition and orientation of the eye tracking system at least
once for each fixation (tracking). They also require that
the geometric model is precisely aligned to the real target
objects. Technically, the alignment (often also called regis-
tration) and the tracking of the eye tracking system might
be handled by the same system.

Areas of human-computer interaction where precise 3D geo-
metric models of the visible environment are ubiquitous are
virtual reality and augmented reality. Tanriverdi and Ja-
cob [2000] used gaze as an interaction method in an immer-
sive virtual reality environment presented via head-mounted
display to select objects arranged freely in 3D space. Oth-
ers used gaze for collaboration in virtual reality [Duchowski
et al. 2004], for inspection task training [Duchowski et al.
2002] or for system interactions [Gepner et al. 2007]. All
these approaches have in common that they have the ca-
pability to classify the objects of interest in real-time, but
they require an artificial presentation of the target objects
to achieve this.

A recent approach that uses similar techniques was presented
by Pfeiffer [2012]. They were able to reconstruct so-called
3D attention volumes over real objects, but they lack a ge-
ometric model and are thus not able to classify fixations on
target objects of interest. A more promising approach was
presented by Paletta et al. [2013]: They use a rig consisting
of a camera and a Microsoft Kinect to create a 3D scan of
the target environment. They are then able to estimate posi-
tion and orientation of mobile eye tracking data by using the
created model as one large 3D marker. Regions in this 3D
model can then be annotated and used as regions of interest.
As an additional advantage, the 3D model can also be used
to visualize the collected data. Their approach is highly
suitable for such areas as supermarkets, were the objects
of interest are of reasonable size and not densely packed in
space. It requires, however, an intensive preparation phase,
both manually and computationally.

Somewhere in between is the work of Nilsson et al. [2007] who
use gaze for interacting with an augmented reality system



also in the context of technical maintenance. They link real
and virtual models, but focus on a gaze-based interaction
with virtual constructs.

Another interesting approach was presented by Pirri et
al. [2011] who create the 3D model of the environment on-
the-fly using structure and motion techniques from the area
of self-localization and mapping. The created models are
rather rough, as participants typically do not move as con-
tinuous as required for smooth model generation. But the
coarse structure of the environment can still be identified
and each point of the 3D model can be linked to instances of
scene-camera images that were taken while fixating on the
selected area (see also [Kassner and Patera 2012]).

The work presented here is more in line with the work of
Munn and Pelz [2009]. In their FixTag approach, they used
a computer-vision based feature tracker to estimate the po-
sition and orientation of the eye tracker in space. Their sys-
tem requires a manual calibration of eight reference points
in selected keyframes to establish a reference for the track-
ing. Based on the tracked features, position and orientation
of the eye tracker are then interpolated on all neighbouring
video frames. Regions of interest that have to be defined
beforehand in 3D relative to some reference points are then
mapped onto the image space of the scene-camera video of
the eye tracking system based on the computed eye tracker
transformation. The detected fixations (2D in image space)
are then classified according to the mapped regions of in-
terest. The FixTag system operated off-line in less than
real-time (2 s per frame on a 2.5GHz MacBook Pro). Only
one frame per fixation is classified.

2.3 Marker Tracking

Some of the aforementioned approaches as well as the ap-
proach we propose use markers, either visible or invisi-
ble (infra-red) to instrument the environment. Kohler et
al. [2011] provide an overview about different optical mark-
ers.

Instrumenting the environment with markers always raises
the discussion, whether the presence of such markers does
or does not alter the gaze behaviour of the participants. At
least for the infra-red markers used by Tobii no significant
effects on the presence of markers have been found [Ouzts
et al. 2012].

3 EyeSee3D Approach

With our current research, we are striving for a low-cost so-
lution for automatic 3D gaze analysis that could be applied
on-line on any mobile eye tracking system with a scene cam-
era. As not many systems provide a software development
kit for on-line access to eye tracking and scene-camera data,
our approach also supports an off-line analysis.

The starting point of our approach is a mobile eye track-
ing system with a scene camera (see Figure 2). It detects
human pupils using attached eye cameras. From this, the
gaze direction can be calculated and 2D fixations can be
detected. These are represented as coordinates in the 2D
scene-camera image, i.e. the human gaze is mapped to pix-
els on the video image. This is what is typically visualized
in gaze-cursor videos. Additionally, a 3D direction vector
can be computed in a coordinate system which is relative
to the position and orientation, furthermore referred to as

Eye Tracking
Device

Pupil Detection

2D Gaze Cursor

Pupil Detection

3D Gaze Direction

Pose Estimation

Marker Detection

Pose Calculation

Geometric Model

Model of Stimuli

Eye-Ray Collision

Fixation Output

Figure 2: The different steps of the EyeSee3D approach:
All gaze-related computations are typically done by the eye
tracking device. The scene-camera image is used for esti-
mating the pose of the device using marker tracking. Both
information are combined to identify objects of interest by
means of ray-casting in the 3D geometric model.

pose, of the scene camera. Our current implementation of
EyeSee3D is based on the SMI Eye Tracking Glasses (see
Figure 1), the general approach, however, is applicable to all
other scene-camera-based eye-tracking systems.

Instead of looking at the content of the scene-camera video to
identify the objects under fixation, the idea followed by Eye-
See3D is to make use of the 3D direction vector representing
the line of sight and combine this with a pose estimation. If
the scene camera is calibrated, i.e. its intrinsic parameters
like focal length, image format and principal point are deter-
mined, it is possible to transform known geometries which
are detected in the 2D image to their actual 3D pose. In
other words, the pose of the camera in the world, relative
to the detected geometries, can be calculated. There are
several of such geometries which can be easily detected in
camera images. We chose fiducial augmented reality mark-
ers (one is shown in Figure 1) which have a high contrast
and a unique id number encoded by the white areas. More-
over, this kind of markers with its simple structure can be
detected in real-time.

Summing up, the link of the scene camera to its 3D environ-
ment can be established by detecting the fiducial markers
and calculating the pose transformation with respect to the
calibrated camera parameters. Combining this with the gaze
direction results in a 3D gaze ray that can be casted into the
3D environment. What is missing for annotating fixations
on 3D objects of interest for gaze analysis is their position
and extension in the world. For this, 3D proxy geometries
approximating the objects of interest have to be created and
anchored relatively to the tracking markers in the geometric
model. The advantage of such a 3D model is that it can
be used from any perspective. Thus gaze analysis is not
bound to a fixed location. In EyeSee3D we use the W3C
standard X3D [Web3D 2001] for modelling, which can be
edited manually similar to HTML. It is also supported by
many graphical modelling tools.

The virtual model can be aligned to the world because the
location of the markers are known in both. It can then be
presented as an overlay of the scene-camera image: Each ob-
ject in the virtual world coincides in position and orientation
with the corresponding real object. If the gaze direction is
now modelled as a ray which starts from the eye, objects
which are fixated can be identified by detecting a collision
between the ray and their virtual proxy geometry. The sys-
tem can then output the occurrence of a fixated object fully
automatically (see 6.1).



Figure 3: The target domain of the study: A table with 23
figures of the LEGO Duplo toy set. Lower right: To evaluate
the tracking system, parts of the study were conducted within
the set-up of a stationary optical outside-in tracking system.

The described approach supports static scenes. If objects
are not located relative to a fiducial marker, their position
cannot be tracked with the inbuilt inside-out tracking al-
gorithm. Individual markers, however, can be dynamically
moved and every geometry linked to such a marker will be
updated accordingly. EyeSee3D can be extended to support
additional tracking algorithms for specific scenarios. To give
one example: in a subsequent set-up, we added face-tracking
to update a proxy geometry for the interlocutor’s head [Ren-
ner and Pfeiffer 2013]. As an alternative, movements of mod-
els can also be modelled explicitly by hand and then using
the off-line-analysis.

Our method is also compatible with other tracking mech-
anisms, such as outside-in optical target-based tracking or
inertial tracking. These approaches can be added for en-
hancing the pose estimation of the eye tracking device and
thus increasing the accuracy of the subsequent steps.

4 Practical Example

The EyeSee3D approach introduced above was developed
and evaluated in the context of an experiment analyzing
gazing behaviour in a face-to-face interaction of two human
interlocutors [Pfeiffer-Lessmann et al. 2013].

In the experiment, the interlocutors face each other sitting
at the ends of a table (see Figure 3). There are 23 LEGO
Duplo�figures standing in five rows on the table, each fac-
ing either one of the participants. The figures have specific
features only visible to one of the participants. One of the
participants wears mobile eye tracking glasses equipped with
a scene camera recording the field of view. Each trial starts
with a verbal description of the figure sought-after. The task
for both participants is to find the figure and the finder has
to negotiate with the interlocutor which figure it is. The
study was conducted with 12 pairs of participants and each
pair had to identify 20 figures.

The positions of the figures are static which allows us to ge-
ometrically model the scenario without considering dynam-
ically moving objects. The figures in the set-up are 3D ob-
jects which are stacked in depth and may partially occlude
each other depending on the perspective of the viewer. Be-
cause of this occlusions, approaches which are restricted to
2D planes are not capable of reliably annotating fixations
automatically.

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 11 12
Participant

P
er

ce
nt

ag
e 

of
 fr

am
es

Marker

detected

not detected

Figure 4: The figure shows the percentage of frames in
which the pose of the eye tracking system could be successfully
determined by inside-out marker tracking.

5 Evaluation of the Tracking

There are two crucial aspects relevant for evaluating the
marker-based inside-out tracking: The markers have to be
detected in the images provided by the scene camera and the
pose of the eye tracking system has to be determined based
on the found marker with an adequate accuracy.

In the following section we start by an analysis of how many
of the frames recorded by the scene camera we can cover by
detecting the markers. If this is not possible, the current
pose of the eye tracking system cannot be determined and
thus no ray can be cast into the geometric model and con-
sequently no fixation can be classified. This section is then
followed by a section on the analysis of the accuracy of the
pose estimation.

5.1 Coverage

The orientation and position of the eye tracking system can
be estimated for every frame in which a marker can be
identified by the computer vision algorithm. In the 228150
frames of our test recordings, this was true for 186537 frames
or 81.76 percent. This means that 129.54 minutes of the
recorded 158.44 minutes of gaze data can be classified auto-
matically. Figure 4 shows the details for individual partici-
pants. After the first eight sessions, we optimized the place-
ment and size of the markers behind the interlocutor and
thus were able to optimize frame coverage to over 92 per-
cent. That marker detection failed in the remaining number
of frames has several reasons. First, sometimes the par-
ticipant looked sideways and there simply was no marker
within view. More often, however, swift head movements or
extreme position changes were causing these issues. The re-
sults presented here are based on a per-frame detection and
do not include a tracking of the pose from frame to frame,
which could further increase coverage.

Another effect that can be observed is that the longer the
fixation, the more likely markers have been detected during
the ongoing fixation (see Figure 5). During stable fixations,
a single marker detected would lead to a successful classifi-
cation of the object of interest. Figure 6 shows a histogram
of observed durations during which no marker was detected.
About 40 percent are below 100 ms and thus are not relevant
for many analyses of meaningful fixations.
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Figure 5: The figure shows the percentage of fixations (>
100 ms) for which a marker has been detected, i.e. for which
the position of the eye tracking system could be detected, de-
pending on the duration of the fixations.
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Figure 6: A histogram of the durations of marker losses
found in the experiment. The median duration during which
the markers are lost is 158.18 ms.

5.2 Accuracy

Outside-in tracking systems provide accurate results with
little delay. On the other hand, they are often expensive,
only limitedly portable and thus one cannot cover large ar-
eas. Inside-out tracking, as used in our approach, is cheap
and able to cover large areas. The question is, if the accuracy
that can be achieved is high enough for analyzing gaze.

5.2.1 Outside-in vs. Inside-Out Tracking

To evaluate the inside-out tracking approach in which the
pose of the eye tracking system is estimated by detecting
and tracking fiducial markers, we ran an experiment using
in parallel an optical outside-in tracking system DTrack2
from AR-Tracking GmbH with a sample rate of 60 Hz and
a millimetre accuracy. The data of the DTrack2 system was
thus taken as ground truth.

When matching the pose estimations output by the outside-
in tracking system with the inside-out tracking system, we
found that the latter had a mean delay of 379 ms (SD 90 ms),
which is stable over the whole recording. This delay can be
attributed to the time required by the computationally more
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Figure 7: The position error for the different participants
between outside-in and inside-out tracking.
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Figure 8: The angle error for the different participants
between outside-in and inside-out tracking.

expensive processing chain when using the scene-camera
video for pose estimation: video acquisition, computation of
gaze direction, marker detection and finally the actual pose
estimation. The higher delay is thereby not a problem for
on-line or off-line analysis, as the system always synchronizes
gaze and position estimates correctly. It would however be
a problem if used for interactive applications, as a reaction
time of above 400 ms is far too high for many applications.

Measuring gaze estimation accuracy would require measur-
ing the accuracy of the eye tracker itself. In our study, both
pose-tracking systems were used in parallel, so any errors in
estimating the gaze direction apply to both approaches. We
therefore only consider the accuracy in pose estimation here.

The accuracy of the pose estimation can be determined in
terms of position (see Figure 7) and angle errors (see Fig-
ure 8). The adjusted overall mean position error is 1.23 cm
for the three dimensions (SD 0.90 cm). The adjusted mean
angle error of 2.25 degrees (SD 1.46 degrees) is small enough
to ensure an accurate calculation of fixations on objects
which are not in direct proximity.

The errors were adjusted by removing outliers that result
from a technical experiment with two additional markers
whose positions and orientations were not pre-defined in the
geometric model but learned on-line during their first en-
counter during the experiments. They were positioned at the



Figure 9: Ratio of detected and not detected markers rela-
tive to angular and translational velocity. The more detected
markers prevail, the greener. The more markers are lost, the
redder. Intensity is modulated by density of occurrences.

wall behind the table to increase tracking probability when
the participants were looking upwards at their interlocutor.
We were testing the possibility to start with one pre-defined
marker and extend the knowledge about the geometry on-
the-fly. However, our current approach is not stable enough
and results in a higher standard deviation when these mark-
ers are the only one visible, because errors during the initial
learning phase are not yet optimized over time.

While an outside-in tracking system is relatively robust
against quick head movements, they result in smearing in
the camera of the inside-out system. Therefore, especially
for high angular head velocities, the rate of marker detections
decreases. Figure 9 reveals that from angular velocities of
more than 18 deg/s the detection rate quickly decreases (red
area). Pure translational head velocities have a minor effect.

6 Evaluation of the Classification

6.1 Model-based Approach

By the use of a tracking approach (inside-out/outside-in) the
pose of the eye tracker and the positions of the markers are
known. For automatically annotating fixations on stimuli,
marker locations can be made explicit by modelling them in
the geometric model of the stimuli as active elements.

For the human-human experiment set-up described before
the required target stimuli are the figures and the interlocu-
tor’s face. The figures can be part of a static geometric model
of the scenario. Thus, 23 geometric 3D representations of
them were created. As we are only interested in whether or
not a figure was being gazed at, we could omit small details.
Thus, in this case small proxy boxes could be used for rep-
resenting the figures, as they suffice for approximating their
actual characteristics. The position of the interlocutor’s face
is approximated by a rectangle located at the position where
the participants are seated (see Figure 10).

Having modelled the scenario, it has to be aligned with the
real-world scene, i.e. with the video of the eye tracker’s scene
camera. Therefore, the markers used for tracking have to be

modelled as well. When knowing the position and orienta-
tion of them in the real world, their virtual correspondents
can be anchored as an overlay over the scene. This way, an
isomorphic coordinate system is spanned in the real world.
Since the stimuli and the markers are at fixed positions, the
positions of the stimuli are relative to the markers. Thus,
when the virtual markers are aligned with their real-world
correspondents, also the proxy geometries of the stimuli are
located in the right place (see Figure 10).

By the use of tracking, the positions of the markers in the
real world and the position and orientation of the eye track-
ing glasses is known. When combining this with the gaze
direction detected by the eye tracking system, the former
can be made explicit by modelling it as a gaze ray (see rays
in Figure 10). This enables testing for collisions between
the proxy geometries of the stimuli and the ray. An object
of interest is fixated when the gaze ray intersects with the
proxy geometry and consequently the line of gaze intersects
with the stimulus in the real-world.

When a collision is detected, the virtual proxies actively gen-
erate an event which is logged by the system. The generated
events, as well as all the relevant data from the system (raw
eye tracking output, tracking results, additional information
like timestamps) are written into an extensive log-file to be
used for the post-hoc analysis.

6.2 Manual vs. Automatic Classification

We have first results on comparing manual annotation with
automatic classification. For this we annotated the videos
of one participant and compared the data with the results
provided by EyeSee3D. For 784 relevant fixations the au-
tomatic classification agreed with the human annotator on
64.29 percent. This is good, but not yet satisfying.

This cannot be explained by lost markers alone, as we have
a detection rate that is above 90 percent in the selected case.
And even so, as Figure 6 shows, markers are rarely lost longer
than needed for a fixation of interest (> 100 ms), so the real
upper boundary should be even higher.

In contrast in the evaluation of the FixTag system [Munn
and Pelz 2009], two sessions of about 2 minutes of inter-
action each (184 and 172 fixations respectively) were auto-
matically analysed with a 99.5%/98.3% agreement of FixTag
with manual annotators.

How can the difference in performance be explained? First
of all, the context is completely different. The target scene
used for FixTag consisted of 2D planes in a perpendicular
arrangement, so no occlusions between different regions of in-
terest occurred. Also, the target areas in our study are very
small, only 3-4 cm wide and 8 cm tall, and they are densely
packed. This results in many cases of ambiguities when an-
notating gaze data. As will be detailed in the following, this
raises more general questions on the classification of gaze
data in 3D scenarios.

Investigating on the cases in which automatic tracking and
human annotation disagreed, we found the following main
theme: As Figure 11 demonstrates, the target objects are
densely packed. Thus given a single frame with a gaze-cursor
it is often difficult to decide on which figure the participant
actually focussed on. This is the situation the automatic
classifier is currently faced with, as it computes the inter-
section of the line-of-sight on a per-frame basis. The human



Figure 10: A screenshot from the off-line analysis of the tracking data. The left side shows the virtual model of the scenario.
The upper right shows the fit of the virtual overlay on top of the real video.

annotator, however, apparently used some heuristics to ar-
bitrate between candidates in ambiguous situations. In the
example, the annotator could, knowing which of the figures
had been fixated on in the previous frames, be either con-
servative in maintaining his decision or progressive and at-
tribute the fixation to the new figure. In a few cases, the
decision even seemed to be backtracked, so when the follow-
ing fixation would again be on the initial figure, the fixation
in between was also attributed to the initial figure although
it was more than half-way on the other figure. In some ex-
amples it also mattered whether the head or the foot of a
figure was being touched by the gaze-cursor.

Thus, before comparing manual and automatic annotations,
we would need to specify a coding manual for gaze anno-
tations that covers all these cases. We would then need to
implement the rules of the manual in the automatic analysis
system if we are interested in creating an automatic classi-
fication working the human-way. It could, however, be also
worthwhile to consider taking the automatic classification as
the more objective approach, without any, maybe mislead-
ing, interpretations of the gaze behaviour of the participants.

7 Conclusion

We presented EyeSee3D, an approach for an automatic anal-
ysis of mobile eye tracking data that operates in real-time,
but currently with a delay of about 380 ms. The presented
approach uses low-cost printable markers to instrument the
environment, but it is compatible with other tracking tech-
nologies as well, such as the outside-in optical tracking sys-
tem by AR-Tracking. In our example we used SMI Eye
Tracking Glasses for real-time analysis. EyeSee3D is also

Figure 11: Annotating the videos of the test scenario is
difficult even for human annotators. In the example, the
gaze cursor (black circle) is in between two figures on the
right during a fixation. Which figure is finally annotated
depends on the deliberations of the annotator.

able to analyse previously recorded sessions in off-line mode
and thereby supports off-line only systems such as Tobii
glasses.

The current implementation of EyeSee3D supports static
scenes of any complexity (several objects stacked in 3D).
EyeSee3D also supports moving objects, but only if they ei-
ther bear a tracking marker (then the objects can be moved
freely) or if their movements can be represented in the ge-
ometric model as animations of the proxy models. It can,
however, be easily extended to support additional tracking
algorithms (see Harmening and Pfeiffer [2013] or Renner and
Pfeiffer [2013] for examples).



One issue is the required instrumentation, which might be
difficult in some domains, e.g. shopping, where the environ-
ment is already densely packed. We are therefore planning to
add other tracking methods, such as poster trackers, which
can use arbitrary areas of high visual saliency that might be
part of the natural environment to make the instrumentation
of the environment less obtrusive.
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