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ABSTRACT
Known Item Search (KIS) is a specialized task of the gen-
eral multimedia search problem. It describes the scenario
where a user has previously seen a video and wants to find
it again in a large collection using a text description. While
there exists only one correct answer to a query (or topic),
the goal is to return a ranked list of videos most likely to
satisfy the request. This search problem includes content
from speech, visual, and meta-data, and it is not clear how
the individual modalities should be combined in the final
result. Reranking models have been shown to be effective in
problems such as image search, but the single ground truth
video for a topic presents a challenge for building a model.
In this paper, we propose a semi-supervised rank learning
approach to the multimedia problem. We use a large train-
ing set of topics and ground truth videos to learn a pairwise
ranking model based on gradient boosted regression trees.
We define a learning feature space that consists of features
derived from topics, videos, and topic-video dependent re-
sults. To overcome the KIS class imbalance problem, a set of
pseudo positive training examples are identified from each of
the multimedia modalities. This semi-supervised approach
uses a ground truth video to select similar videos in each of
the individual modalities. We then model the similarities as
a graph and use a K-Step Markov approach to estimate the
importance of nodes in the graph relative to the truth root
node.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Retrieval
models, Search process]; H.2.4 [Systems]: [Multimedia
databases]

1. INTRODUCTION
The convenience of smart phones with high quality video

capture capability has led to an explosion in the size of per-
sonal and internet video archives. Consumers now use their
phones to capture and share short clips of personal activi-
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ties, news events, blogs, and how-to instructions. According
to YouTube press [23] over 100 hours of video are uploaded
each minute and over 6 billion hours of video are watched
each month. As the volume of content in these repositories
expands, there is an increased need for effective multimedia
search which exploits the multiple modalities of a video.

Known Item Search (KIS) is a specialized task of the gen-
eral multimedia search problem. KIS describes the scenario
where a user has seen a video before, must formulate a text
description based on what he remembers, and knows that
there is only one correct answer. As an example, consider
the TRECVid 2012 [29] KIS topic 1213, “Find the video of
a round silver colored weather satellite, men in white hard
hats, nose cone placed in rocket, and rocket lifting off”. Ta-
ble 1 displays the known item for the satellite topic and
lists example content for its speech, meta-data, and visual
modalities. The KIS problem takes as input a text only
description and returns a ranked list of videos, most likely
to match the known item. Results are measured using the
inverted rank of the known item in the result list.

The KIS problem poses a number of challenges for mul-
timedia search. The first challenge is the modality gap be-
tween the text only topic and the speech, meta-data, and
visual content of the repository. Information retrieval ap-
proaches can be used on the text modalities such as meta-
data and speech to text, but it is not clear how this ap-
proach could make use of visual features from a multimedia
object. Also, the KIS problem is unique from other multi-
media search tasks in that it has only one correct answer.

A second challenge is how to effectively model the search
and ranking problem in the unique feature space of each
multimedia modality. Meta-data can include author con-
tent fields such as FileName, Title, Description, Subject,
and Keywords. This content is often incomplete or miss-
ing, varies in length, and include numerous misspellings.
Automated Speech to Text (ASR) and Optical Character
Recognition (OCR) are sound and vision features that can
be mapped into a text feature space, but are often noisy
and incomplete. Visual features, such as color, texture, and
local keypoint can be extracted from the video content, but
again it is not clear how to map the text topic request to
these feature spaces.

To overcome these challenges, we propose a semi-
supervised rank learning approach to the KIS problem. This
approach uses a large training set of KIS topics and ground
truth videos to learn a pairwise ranking model based on gra-
dient boosted regression trees [2]. We derive a final learning
feature space that combines the individual modality features



from topics, videos, and topic-video dependent results. As
an example, we use information retrieval models to initially
rank and score a topic against each of the individual de-
rived text modalities. Each result is then modeled in the
feature space where the classifier learns a weight vector that
identifies the contribution of each modality. The KIS rank
learning approach provides an effective solution to the prob-
lem of modeling the search and ranking feature space of each
multimedia modality.

The class imbalance is one of the challenges with applying
a rank learning approach to the KIS problem. Consider a
KIS task where the top 100 ranked results are returned for a
given topic. Given the nature of the KIS problem, the result
set consists of 99 negative examples and 1 positive example.
To overcome the class imbalance problem, a set of pseudo
positive training examples are identified from each of the
multimedia modalities. This semi-supervised approach uses
a ground truth video to identify similar videos in each of
the individual modalities. To identify pseudo examples we
model the similarities as a graph and use a K-Step Markov
approach [30] to estimate the importance of nodes in the
graph relative to the truth root node. Each pseudo posi-
tive example is then assigned a decreasing graded relevance
based on the distance from the truth video. This approach
allows us to include both text and visual modalities when
identifying pseudo positive examples.

Our contributions to the multimedia retrieval community
include the following:

1. We construct a feature space consisting of topic spe-
cific, topic-video dependent, and video specific fea-
tures, calculated from the meta-data, speech, and vi-
sual modalities of our text topics and video repository.

2. We introduce the concept of pseudo-positive KIS ex-
amples to offset the class imbalance of having a single
known item. Pseudo-positive examples are identified
in a similarity graph, using a K-Step Markov to es-
timate the importance of nodes relative to the truth
root node.

3. We study a pairwise rank learning approach to the
multimedia KIS problem using gradient boosted re-
gression trees.

2. RELATED WORK
KIS in the context of multimedia search has been studied

as part of a TRECVid task [29] in 2010, 2011, and 2012.
The video collection for the TRECVid task consists of ap-
proximately 8,000 Internet Archive Videos and 300 topics
and judgments for each task year. The task included both
automatic and interactive systems, with results measured
using the mean inverted rank.

An overview of the various KIS systems used during the
2011 TRECVid evaluation can be found in [4] and [6]. Task
participants attempted to bridge the understanding gap be-
tween a topic text and the video collection. Text based
approaches included enriching topics and meta-data using
external knowledge such as Wikipedia, ontologies, or trans-
lations. An approach to bridging the visual modality gap
was to identify examples images from a web image search
engine. Most of the task participants concluded that the
visual modalities provided little benefit to the final rank-
ings. The top scoring team in the task created a classifier

Table 1: Known Item from TRECVid 2012

ASR: Satellite electric eyes will scan the Earth s cloud
cover broadcasting another reporting of the weather sta-
tions. . . space vehicle one of the most technically sophis-
ticated of the space rockets misfortune six times. . .
FileName: 1959−02−19W eatherEye.−o−. 1959−02−
19W eatherEye512kb.mp4
Meta:Title: Weather Eye Vanguard II Satellite Scans
Sky From Space 1959 02 19
Meta:Description: Vanguard II satellite placed in nose
cone of rocket launched partial newsreel brief silence at
start of story
OCR: rwx EYE Vanguard Satellite Suns Sky From Space
Hum

that transformed the original text topic into a set of shorter
modality specific queries. All of the participating systems
attempted to fuse multiple modality results. Our rank learn-
ing approach differs from all of the modality based fusion ap-
proaches used by the TRECVid participants. We attempt
to learn pairwise ranking from a training set that includes
both modality specific scores and visual features.

Research related to the KIS problem has occurred in mul-
tiple text based domains such as person document [15] , web
[14], email [7], Twitter, and Facebook [15]. The results in
[15] show that a mixture of language models which com-
bine evidence from different representations is an effective
approach for this type of document retrieval. Personal doc-
ument search is studied in [14] over email, presentations, web
pages, and pdfs. They investigated techniques for improving
document type prediction in personal desktop search. Their
model uses type specific meta-data to generate a field-based
collection query likelihood. Type specific results are then
merged into a final ranked list which improves overall re-
trieval performance.

Learning to Rank describes a machine learning approach
for constructing ranking models over a set of training data
[3] [17]. Approaches to rank learning can be categorized as
pairwise, pointwise, or listwise learning [3]. This framework
has been successfully applied to rank learning by the infor-
mation retrieval community [11] [31]. LETOR [24] provides
a number of large datasets along with queries, ground truth,
and precomputed feature vectors for studying the learning
to rank problem for information retrieval. Query features
are studied in [18] to evaluate their effectiveness on learn-
ing to rank models. Query features are fixed values of the
query itself, and do not change across documents. These
features include values such as the number of unique tokens,
the number of named entities, and the number of retrieved
document categories for a unique query. Our approach to
rank learning extends the query feature approach to the KIS
multimedia retrieval domain as a set of topic features which
are video independent. The topic features are combined with
video and topic-video dependent features to form the KIS



feature space.
Reranking has been studied in the context of both image

search [32], video search, and semantic indexing. The work
in [26] improved MAP on a semantic indexing and retrieval
task by reranking an initial video shot score, using a model
that considers the homogeneity of the video to which it be-
longs. Automatic video search reranking is studied by [13],
where they identified an initial result set using text search,
concept detection, and image query-by-example. The top
and bottom ranked items were then used as pseudo positive
and negative examples to train a test time model to dis-
cover co-occurrence patterns. Their use of pseudo examples
differ from our approach, which is applied at training time
and identifies similar videos using a graded relevance to a
ground truth video. A graph reranking approach was used
by [16] to improve the initial text search results for a video
search task. In contrast, our graph approach is not used to
rerank an initial result set, but instead to identify additional
pseudo positive examples for training.

3. OUR APPROACH
We propose a semi-supervised rank learning approach to

the multimedia KIS problem. First we define a feature space
derived from topics, videos, and topic-video dependent re-
sults. Next we identify a set of pseudo positive training ex-
amples using a similarity graph constructed from the ground
truth videos. The pseudo positive examples are used to as-
sign a graded relevance to our topic-video training pairs.
Finally, a gradient boosted regression tree algorithm [2] is
used to learn a pairwise ranking model over the training set.

Given a set of known item topics T = (t1, . . . , tm) where
m is the size of the topic set, each KIS topic is derived from
a video repository V = (v1, . . . , vn) where n is the size of
the collection. We define the KIS task as a mapping:

F (ti, V ) = (sv1 , . . . , svn) (1)

where ti is a known item topic, V is the video repository,
and svi is the calculated score for video vi.

3.1 Feature space
To model the KIS feature space, we identify three cate-

gories of features which are defined in Table 2. Topic Fea-
tures are derived from the text of the known item topic
and include term count, unique term count, and named en-
tity counts [19]. The person, location, and organization
named entities are identified using a sequence tagger [8].
The topic features are video independent and allow the tree-
based ranking algorithm to identify groups of similar topics
that can be model as sub-trees.

Topic-Video Features are derived from the output ranks
and scores of various information retrieval models applied
to the topic video pair. The scoring models used in this
work include term frequency inverse document frequency
(TFIDF), probabilistic best match (BM25) [28] [25], and
language models (LM) [22]. These models are applied to
each of the text based fields: ASR [12], OCR, FileName, Ti-
tle, Description, Subject, and Keywords. This category of
features also includes the number of term matches, percent-
age of term matches, calculated term frequency (TF), and
the calculated inverse document frequency (IDF) for each
text field.

The final category is video Features which are derived
from the automated speech, meta-data, or visual compo-

nents of the video. The text-based features for ASR and
meta-data include term counts by field and identified per-
son, location, and organization named entities. From the
visual modalities, we derive both low-level and high-level
image features.

Low-level features include edge [21] histograms, color his-
tograms [27], and bag-of-visual words using SURF [1] key-
point features. The edge direction histogram provides a
compact and computational efficient representation of the
video. The descriptor divides the image into 16 sub-images,
using a 4 × 4 grid, to allow for the calculation of localized
edge distributions. The edge histogram consists of four di-
rectional edges and one non-direction edge for each of the
sub-images and is represented by an 80-dimensional feature
vector. Keypoint detectors [1] attempt to detect a small set
of locally stable points and their surrounding region. Key-
points are clustered into a set of visual words to form the
vocabulary for a bag-of-words. The size of the visual word
vocabulary and the weight of each term is a parameter to
the final representation.

High-level features are the semantic concepts that we use
to describe objects, events, and activities in video. Ta-
ble 3 shows example concepts and descriptions from the
TRECVid [29] semantic indexing task. These concepts pro-
vide an approach to bridge the semantic gap between text
descriptions and the low-level features of a video. A concept
specific model is trained over the low-level features which
can then be used to assign a confidence to a previously un-
seen video.

3.2 Pseudo positive examples
Training a machine learning algorithm over a feature vec-

tor, derived from a KIS topic-video result, presents a chal-
lenge in the number of positive examples. Consider the
TRECVid KIS task, where a system is required to return
a ranked list of the 100 top videos for each topic. The out-
put from this task results in one positive and 99 negative
examples per topic. This large class imbalance creates a
challenge for any supervised learning algorithm.

Further inspection of the ranked result list, reveals that
a number of negative examples are similar to the ground
truth item in one or more modalities. Topic 891 of the 2012
TRECVid KIS task states, “Find a video of yellow bus driv-
ing down winding road in front of building with flags on
roof and driving past geysers”. Consider the three exam-
ple videos in Table 4. The first video, titled “100 th An-
niv Old Faithful Inn Yellow Busses Ride the Old Road”, is
the ground truth video for topic 891 and the two additional
videos are clearly similar in title, meta-data description, and
video image. The identified similarities in multiple modali-
ties show that while a single correct answer exists for a given
KIS topic, the problem could be generalized to one of graded
relevance rather than simple binary classification. Identify-
ing additional pseudo positive KIS examples helps to lessen
the class imbalance problem and results in boosting similar
videos higher in the ranked result list.

We propose a semi-supervised learning approach to KIS
where the training set for a given topic includes both the
single truth example and a set of pseudo positive examples.
The pseudo positive examples are identified by similarity to
the truth video across all of its modalities. Each pseudo
positive example is assigned a decreasing graded relevance
based on the distance from the truth video.



Table 2: Topic, Topic-Video Dependent, and Video Features

Type Feature Description Feature Count

Topic Term Count of terms 1
Unique Term Unique terms 1
Person Count of Person Named Entity 1
Location Count of Location Named Entity 1
Organization Count of Organization Named Entity 1

Topic-Video Dependent TFIDF TFIDF Weight Model 7
BM25 BM25 Probabilistic Model 7
LMIR Language Model 7
Percent Term Percentage of Term Match 7
IDF Inverse Document Freq of Match 7
TF Term Freq of Match 7

Video Term Count of terms 7
Unique Term Unique terms 7
Person Count of Person Named Entity 7
Location Count of Location Named Entity 7
Organization Count of Organization Named Entity 7
Edge Edge direction histogram 80
Color Color histogram 64
Keypoint Visual Bag-of-words 50
Concepts Semantic concepts 50

Table 3: Semantic Concepts

Name Definition
Airplane Flying An airplane flying in the sky
Car Shots of a car
Cityscape View of a large urban setting, show-

ing skylines and building tops.
Demonstration One or more people protesting. May

or may not have banners or signs
Road Shots depicting a road

To identify pseudo examples we model the similarities as
edges in a graph and estimate the importance of nodes in
the graph relative to the truth root node.

For a given KIS topic ti, we construct a directed graph
Gi = (Vi, Ei), where Vi is the set of video nodes in the
topic specific graph and Ei is the set of edges. We define
the ordered pair (u, v) as the directed edge connecting video
node u to video node v.

The topic specific graph is iteratively constructed by ini-
tially selecting the truth video as the root node and per-
forming a similarity search in the video collection using each
modality. The result nodes from each iteration are used as
search nodes for the next iteration. We define the iterative
graph construction as follows: ∀j = 1, . . . , T , video vj is
added to Vi and (u, vi) is added to Ei if

Fi(u, vj) > αi, (2)

where T is the size of the video collection, and Fi(u, vj)
is a modality similarity score between the current root u
and each video vj in the collection. A modality specific
threshold αi is used to select the subset of videos. The αi

is empirically selected for each modality using a validation
set. The graph is initially constructed as a directed multi-
graph where a video node pair (u, v) may be selected as
a directed edge by more than one modality. To identify a
single edge weight connecting u, v we traverse the graph, col-

lapsing multiple edges using the maximum of the modality
specific weights. The final graph is modeled as a directed
acyclic graph (DAG), and therefore does not contain loops
or parallel edges.

Given our topic specific similarity graph we would like to
assign an importance measure I(v|u) to each video node v
in the graph with respect to the truth node u. To calculate
I we use a K-Step Markov approach [30] which generates
random walks of fixed length K, beginning at the root node
u. The importance of node v to the root u is defined as:

I(v|u) = [Mpu +M2pu . . .Mkpu]v (3)

where k is a fixed number of steps, M is the transition prob-
ability matrix, and pu is the initial root probability set.

Table 4: Similar Videos

Title: 100 th Anniv Old Faithful Inn
Yellow Busses Ride the Old Road
Desc: As a part of the Old Faithful
Inn 100 th Anniversary Celebration
yellow National Park busses. . .

Title: Yellowstone Porcelain Basin
Desc: . . . warm spring morning to
shoot video of the Porcelain Basin
area within Norris Geyser Basin. . .

Title: Yellowstone Snowloads Di-
minish and Lion Geyser Roars
Desc: When the roads in Yellow-
stone are clear enough to safely al-
low cars. . .



3.3 Multimedia Rank Learning
To learn a ranking model we follow a pairwise ranking

approach which considers the relative order between pairs of
videos. Pairwise ranking algorithms use binary classification
in order to minimize the number of misclassified pairs.

Our approach to multimedia rank learning uses a frame-
work based on gradient boosted regression trees [9] [10].
This framework has been successfully applied to rank learn-
ing by the information retrieval community [11] [31] and was
the base approach for all of the winning teams at the Yahoo!
Learning to Rank Challenge [5] [2].

The gradient boosting framework uses a stage-wise ap-
proach to generate an ensemble of weak models, each a sim-
ple regression tree, that when combined produce a strong
rank learning classifier. The algorithm uses regression trees
to perform gradient descent in function space and can be
trained to minimize a general differentiable loss function.
The final ranking score is a linear combination of the out-
put scores from each of the simple regression tree models.

Consider a feature vector x ∈ Rd, derived from the topic,
video, and topic-video dependent feature set. The boosted
regression tree model maps the input feature vector to a
ranking score f(x) ∈ �:

f(x) =
�N

i=1
βi × fi(x) (4)

where fi(x) is the learned model for a single regression tree,
βi is the learned weight associated with that tree, and N the
number of trees. The function fi(x) produces a ranking score
by traversing the regression tree and evaluating a particular
feature xi with the weight at the given node. The final
output score for fi(x) is the fixed value from the leaf node
selected by the best path traversal.

A high level review of our approach is described in Algo-
rithm 1. Given a set of KIS training topics Q and a video
collection T , we begin by building a feature vector xq con-
sisting of the topic features, video features, and topic-video
dependent features for each topic-video pair. Next, a video
similarity graph is constructed, where a truth video Q�

q is the
root node of the graph. An importance score is given to each
node of the graph using a K-Step Markov approach. The
graph node score is used to determine the relevance weight
assigned to each topic-video pair. The KIS rank learning
model is generated using gradient boosted regression trees
trained over the relevance weighted feature vector. Given
a previously unseen topic, we construct a feature vector for
each new topic-video pair and apply the KIS rank learning
model to determine a final ranking score.

Algorithm 1: KIS Learn to Rank

Input: Q KIS topic set, T video collection, Q� truth set

Output: f(x) regression tree model

for each q in Q do

xq = build-FeatureVector(q,T );

Gq = build-SimGraph(Q�
q,T );

Iq = run-KStepMarkov(Gq, Q
�
q);

x�
q = assign-Relevance(xq, Iq);

return f(x) = train-KISRankLearn(x�);

4. EXPERIMENTS
Experiments are conducted using the known item topics

and video repository from the TRECVid 2012 evaluation.
This video collection consists of approximately 8,000 Inter-
net Archive Videos distributed in MPEG-4/H.264 format
and released under the Creative Commons license. These
videos total about 200 hours and have a duration between
10 seconds and 3.5 minutes.

Table 5 provides a sample of the topics and ground truth
known item images from the repository. Topics are provided
to the system as a text only description of both the audio
and visual components of the video. The video repository
includes the MPEG-4/H.264 video, the original collected au-
thor meta-data, and speech to text. The system returns a
ranked list of the top 100 videos most likely to match the
topics. The system is evaluated using the mean inverted
rank (IR) for the 361 known item topics and ground truth
results of the TRECVid task. Table 6 shows an example of
how the best field match for a topic can be found in different
meta-data fields.

Table 5: Example topics from TRECVid 2012 KIS

Topic Description Video

893 Find the video of man
speaking German with long
hair and green jacket and
soccer ball in a parking lot.

909 Find the video of woman
pouring black oil from milk
carton.

968 Find the video of three men,
one with spiked white hair
and black and red vest.

1035 Find the video with a lake
and its shores.

4.1 Analysis
Baseline experiments are conducted using a text only in-

formation retrieval approach [20], where the text modali-
ties are merged. The meta-data, ASR, and OCR from the
repository are used to generate a video document that can
be indexed and retrieved using state-of-the-art retrieval al-
gorithms. The results provide both a baseline comparison
and a set of topic-video features used by our rank learning
algorithm. In this experiment, we merge all of the video
text fields into a single document for indexing and retrieval.
Both the topics and video documents are preprocessed for
stop word removal, word stemming, and spell correction.
The results in Table 7 show the IR for the 361 topics using
three different retrieval models. The IR is calculated at five
different ranking points, starting at the top returned doc-
ument and ending with document 100. Results show that
the BM25 model produces the top IR scores at each of the
ranking points for the combined video documents.



Table 6: Example topics from TRECVid 2012 KIS

Topic Description Best Found in

895 Find the video titled ”Sunday Quickie” of a man who is wearing glasses and a blue
shirt standing by the window and watching the rain outside and discussing his trip
to Home Depot and Harveys Hamburger Kiosk.

Meta Title

1002 Find the video of man demonstrating use of children’s laptop. OCR
1051 Find the video of a shirtless boy playing with toy helicopter, gun and soldiers. Meta Desc
1115 Find the video of a close-up face shot of a man wearing dark glasses and a white shirt

who is giving a satire X-lawyer advertisement.
FileName

1167 Find the video titled ”Welcome to Best Bible Study on Earth” which starts with a
picture showing the mountains, lake, and sky and then a map of the United States
where the narrator solicits you to go to their website.

ASR

Table 7: Mean Inverted Rank by Model

Model IR@1 IR@3 IR@5 IR@10 IR@100
TFIDF 0.249 0.296 0.303 0.310 0.316
BM25 0.288 0.315 0.327 0.333 0.339
LM 0.282 0.314 0.323 0.327 0.334

Table 8 provides further analysis of our baseline text only
retrieval models. This table shows a breakdown of the total
documents found at each of the ranking points. The results
show that BM25 outperformed the TFIDF model at rank 1
(IR@1) by 14 KIS videos. It is also interesting to note that
while 82 videos are identified after rank 5, they increase the
final IR by only .012.

Table 8: Count of Topics Found by Model

Model Ct@1 Ct@3 Ct@5 Ct@10 Ct@100
TFIDF 90 129 140 158 218
BM25 104 126 143 160 225
LM 102 129 143 154 221

The next set of experiments follow the information re-
trieval approach, but are performed on each of the text
modalities. These experiments provided modality specific
topic-video features for the rank learning approach and help
to identify the contribution of each of the text modalities.
Tables 9 and 10 show the IR and count found for the 361 top-
ics, using a BM25 retrieval model for the seven text modal-
ities of our video. The IR and count are calculated at five
different ranking points, starting at the top returned docu-
ment and ending with document 100.

The meta-data description provided the highest IR and
count found. This modality is provide by the author and
contains the least noise and most detailed description of the
video. The results also show that the meta-data Title and
FileName identify a large number of relevant videos. Au-
thors often include key terms in these fields that summarize
the content of the video. ASR and OCR results suffer from
noise generated during the translation from speech and video
into text. However, Figure 1 shows that the ASR is compa-
rable to the meta-data Description for the number of unique
ground truth videos identified.

Table 9: Mean Inverted Rank by Field Type

Field IR@1 IR@3 IR@5 IR@10 IR@100
ASR 0.085 0.098 0.099 0.103 0.105
OCR 0.074 0.087 0.088 0.091 0.093
File 0.105 0.128 0.136 0.141 0.146
Title 0.149 0.173 0.180 0.183 0.188
Desc 0.171 0.191 0.198 0.204 0.210
Keyword 0.002 0.004 0.005 0.005 0.006
Subject 0.080 0.102 0.106 0.110 0.113

Table 10: Count of Topics Found by Field Type

Field Ct@1 Ct@3 Ct@5 Ct@10 Ct@100
ASR 31 42 43 53 78
OCR 27 37 38 47 66
File 38 57 69 83 122
Title 54 74 85 94 142
Desc 62 79 91 109 162
Keyword 1 2 4 5 7
Subject 29 46 54 65 92

4.2 Rank Learning
The Rank Learning experiments use a 10-fold cross valida-

tion of the KIS topic set where each fold is divided into train,
validate, and test. A learning feature vector is constructed
for each video and consists of the topic, topic-video, and
video features. The scores for the topic-video features are
derived from the models and fields described in the informa-
tion retrieval analysis experiments. A keyframe is extracted
every two seconds from each video in the collection to de-
rive the set of visual features. OCR text for a video consists
of the concatenated text extracted from each image frame.
Edge, color, and local keypoint features are also extracted
at every frame.

The gradient boosted regression trees used for ranking are
trained using a cross-entropy cost function. To avoid model
over-fitting, the number of trees is controlled by monitoring
the prediction error on the validation set. Models were iter-
atively trained to a maximum of 1000 trees and results show
that 100 tree provided good accuracy on the validation set.
The maximum number of leaves per tree and learning rate
were also used to control over-fitting by monitoring the val-
idation set. The reported results use a maximum of 5 leaves
per tree and learning rate of .05.
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Figure 1: Unique Count of Topics Found by Field

Tables 11 and 12 provide a comparison of the baseline
and rank learning models. The results are reported at five
ranking points for mean inverted rank and total count found.
The four baseline models provides a comparison of text only
retrieval models. The baseline meta-data model combines
the video text fields of filename, title, description, subject,
and keywords. The top baseline model is the BM25 using
the combined text document.

The first rank learning model (RankLearn1) uses the de-
rived feature space and gradient boosted regression trees to
learn a model. This model does not use pseudo-positive ex-
amples and includes a single truth video and 99 negative
videos for each training topic. We see from the results that
the lack of positive examples causes the mean inverted rank
and count found to drop below the top baseline run.

The next two runs (RankLearn1 and RankLearn2) extend
the RankLearn1 model with pseudo positive examples, de-
rived from the K-Step Markov graph ranking approach. The
graph is iteratively constructed by selecting the KIS truth
video as the root and performing a similarity search in the
video collection using each of the seven text and the three
visual modalities. RankLearn2 allows max path lengths of
2 on the graph and identifies approximately 5 pseudo posi-
tive examples per topic. RankLearn3 expands the max path
length to three and identifies approximately 9 pseudo pos-
itive examples per topic. Pseudo positive examples are as-
signed a graded relevance from 1 to 4 using the importance
measure I assigned by the K-Step Markov approach. Our
reported results assign relevance 4 for ground truth, 3 for
I >= .05, 2 for .05 > I >= .01, and 1 for .01 > I >= .001.
These values were determined using the validation set.

The results for RankLearn3 show an increase of 21 topics
found at rank position 1 over the TFIDF baseline and an
increase of 7 topics found over the BM25 baseline. These
results show that the rank learning models are able to boost
additional positive KIS examples higher in the ranked result
list. Our top mean inverted rank of 0.356 is competitive
with the top TRECVid 2012 task participants where the
top reported score was 0.419.

5. CONCLUSIONS
In this paper, we investigated a semi-supervised rank

learning approach to the multimedia KIS problem. We con-
structed a feature space consisting of topic specific, topic-
video dependent, and video specific features, calculated from
the meta-data, speech, and visual modalities of our text top-
ics and video repository. Pseudo-positive KIS examples are
identified in a similarity graph, using a K-Step Markov to

estimate the importance of nodes relative to the truth root.
Pairwise rank learning, using gradient boosted regression

trees, are applied to the KIS problem to improve ranking
results. Our results show that combining pseudo positive
training example with the rank learning framework, im-
proves Known Item Search ranking at all ranking points.
Future work will examine approaches for enriching the topic-
video dependent feature space with features derived from the
visual modalities.
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