
Towards Patterns to Enhance the Communication in
Distributed Software Development Environments

Ernst Oberortner, Irwin Kwan, Daniela Damian

e.oberortner@gmail.com, irwink@cs.uvic.ca, danielad@cs.uvic.ca

Distributed Software Development (DSD) is an emerging research
area in software engineering. Several conducted research studies
identified similar communication problems among DSD teams and
tried to solve them. In this paper we present patterns that we have
identified while surveying state of the art research studies. The
patterns can help to organize DSD teams better in order to
enhance their communication. We also highlight some potential
future research challenges.

1. Introduction

Nowadays, several development teams of large software houses are
distributed globally [HRG+08,MHG+10,Lan09]. The collaboration among
distributed software development (DSD) teams is based upon the team
members’ communication. The better the communication, the better the
collaboration, and the better the success of the resultant software. DSD teams
communicate about various aspects of the intended software. For example,
the software's requirements must be defined, updated, and clarified.
Technical utilities, such as mailing lists, online forums, software repositories,
or bug tracking systems, facilitate the communication during the whole
software development process.

The literature consists of many studies and tools to enhance the
communication of DSD teams, such as [DKM10,HM06,SR07]. Many studies
use data mining techniques [HK05] and utilize social network analysis
methods [WF94] to discover the communication structures of DSD teams.
Mining the data of communication and software repositories can help, for
example, to leverage invisible relations between globally distributed team
members. Another example is to support newcomers, helping them to
collaborate with task-related experienced team members in order to become
productive more quickly.

We present patterns to improve the communication within DSD teams. The
patterns describe (1) how to organize co-located teams to enhance the
communication with remote teams and (2) how to support the DSD team
members to find other DSD team members with some wanted professional
skills.

Agile software development is a software development process that is mostly
utilized in DSD teams [Eck10]. In this paper, we do not focus on the software
development process that DSD teams utilize. However, the communication
during the whole software development process is an important aspect. The

patterns presented in this paper can improve the communication independent
of the utilized development process.

This paper is structured as follows: In Section 2 we justify the importance of
the communication within DSD teams with an example. Section 3 explains the
pattern’s common terminology. Then, in Section 4 we describe the pattern’s
format. The main contribution of this paper is in Section 5, the patterns, and
we also discuss the relationship between them. In Section 6 we highlight
some potential future research challenges for DSD environments. The paper
concludes with Section 7.

2. Motivating Example

In this section we justify the importance of the presented patterns to enhance
the communication within DSD teams. Imagine a DSD development team, as
exemplified in Figure 1, that is globally organized. The illustrated DSD team
consists of one software designer and three software developers.

Figure 1 A motivating example

For example, a software designer, located in North America, propagates
design updates to, in his opinion, related software developers via e-mail. The
developers implement the required software updates and submit the new
code into the source code repository. All developers receive a notification
about the updated code, enabled by a special feature of the source code
repository.

As illustrated, the software designer in North America does not directly
communicate with the one developer located in South Africa. The developer in
South Africa recognizes software updates through the recently submitted
code into the software repository. It can happen that the new code is
inconsistent with the code of the developer in South Africa. Such situations
occur often in DSD teams because there exist invisible dependencies
between the DSD team members.

In the illustrated scenario, mining only the mailing list or just the source code
repository is not sufficient because the invisible dependency cannot be
uncovered from just mining the mail repository. Only a combination of mining
the mail and the source code repository's data identifies the invisible
dependency. Detecting invisible dependencies can enhance future
communications between the globally distributed software designer and the
developers.

3. The Patterns’ Terminology

The survey's studies use various terms that have a different naming but
common meaning among all studies. In this section, we explain the survey's
common terms in order to improve the understandability and to avoid
misunderstandings.

The term distributed software development (DSD) elates to a software
development strategy where the team members are distributed on various
geographical locations. The team members are located at various sites. As
illustrated in the motivating example (see Section 2), the designer is located in
North America, whereas the developers are located in Asia, South Africa, and
South America. In this case, North America, Asia, South Africa, and South
America are the sites of the DSD team. Usually, each side consists of a group
of team members. We term team members that reside on the same side as
co-located team members, whereas team members that reside on different
sites are remote team members.

All team members must collaborate with each other during the whole
software development process in order to gather the requirements correctly,
to design, develop, and test the software. The DSD team members use
existing technical communication facilities to collaborate with each other,
such as mailing lists, software repositories, bug tracking systems, or instant
messengers. Such communication facilities can be used, for example, to
coordinate task-related activities between the DSD team members and to
propagate information to appropriate DSD team members. Similar to Damian
et al. [DIS+07], we base the definition of awareness on Dourish and Bellotti
[DB92]: Awareness is “an understanding of the activities of others, which
provides a context for one's own activities”.

A social network gives information about who communicates with whom in
the DSD team. A social network can differ from the organization structure of
the DSD team and can give additional information about the social
interactions between the DSD team members.

4. The Patterns’ Format

In the Table 1 we explain the pattern format that we use throughout the paper.
Our pattern format is a subset of to the pattern format utilized in the GoF book
[GHJ+95].

Problem: We utilize a driving question in order to explain the pattern’s
problem.

Forces: Regarding the Language of Shepherding [Har99], forces
drive the problem. In our pattern format, forces explain and
motivate the problem in more detail. We confirm the
problem with papers discovered during a literature review.

Solution: In the solution section we explain the pattern’s solution to
the problem. We also try to visualize to pattern’s solution
graphically.

Consequences
and Resulting
Questions:

A pattern’s consequences are the side effects and trade-offs
of applying the pattern. Consequences describe arising
questions in case of utilizing the pattern.

Related
Patterns:

In this section we list similar patterns that we have
discovered in the literature.

Known Uses: In the Known Uses section we list several studies that utilize
the pattern or that have discovered the importance of the
pattern.

Table 1 The utilized pattern format

Following Alexander [Ale77], we annotate each pattern with one or two
asterisks. One asterisk denotes that the pattern is subject to further
investigations. Based on our observations and findings during the literature
survey, patterns annotated with two asterisks are valid.

5. Patterns to Improve the Communication

This section covers the main contributions of this proceeding. We present
three patterns that cover various aspects of a DSD team’s communication.

5.1 Pattern: COMMUNICATION BROKER **

How to enhance the communication between remote teams?

In DSD teams, challenges like miscommunication, misunderstandings, and
how to share information are likely more severe than in co-located teams
because of communication problems [HM06]. Also, in DSD environments the
communication between co-located team members is more efficient than
between remote team members. DSD teams are volatile and hence, the team
members change frequently [DKM10].

Identify within each co-located team one COMMUNICATION BROKER
that is responsible for the communication with the remote teams.

Figure 2 The COMMUNICATION BROKER pattern

In Figure 2 we visualize the COMMUNICATION BROKER pattern graphically.
Within each co-located DSD team, one team member must be identified that
is responsible for the communication with the remote teams and their team
members. The COMMUNICATION BROKER observes the communication
between its’ co-located team members and propagates important issues, such
as updates, changes, or extensions of the software, to the remote teams and
their COMMUNICATION BROKER. The COMMUNICATION BROKER
receives the important issues and propagates them to its’ co-located team
members.

One benefit of identifying COMMUNICATION BROKERS is that within each
co-located team there is one central switching point that has knowledge about
the communication within its’ co-located team. The COMMUNICATION
BROKER is mostly personally known within each co-located team, resulting in
a trusted relationship between the COMMUNICATION BROKER and its’ co-
located team members. Because the COMMUNICATION BROKER
communicates with remotely located COMMUNICATION BROKERS, a
personal relationship evolves that can result in a trusted communication
between the COMMUNICATION BROKERS. Because of the personal and
trusted relationships between the COMMUNICATION BROKERS the
communication can get enhanced.

COMMUNICATION BROKERS can have an information overflow of the
communicated issues within and across co-located team members.
Furthermore, the question about how to find appropriate COMMUNICATION
BROKERS must be answered. This question relates to the DISCOVERING
THE EXPERTS patterns (see Section 5.2). A further relevant question
concentrates on the dynamic of DSD teams [DKM10]. What happens if the
COMMUNICATION BROKER leaves the DSD team or the organization?

Related Patterns:

‐ Scott et al. introduce the Façade pattern that is similar to the
COMMUNICATION BROKER pattern [SIG+05].

‐ Each small team of should have a Scrum Master [RJ02] of an agile
software development process is comparable to the
COMMUNICATION BROKER pattern. A Scrum Master is responsible
for coordinating the team and the communication within the team. But,
a Scrum Master is not a team leader.

Known Uses:

‐ Wolf et al. follow a three step filtering process to build a task-based
social network [WSD+09]. The authors use the filtering process to
identify COMMUNICATION BROKER in order to discover which team
members contributed to a build failure.

‐ During a conducted web-based survey within R&D DSD teams, Hinds
and McGrath [HM06] identified that a COMMUNICATION BROKER is
necessary.

5.2 Pattern: AWARENESS NETWORK*

How to find DSD team members with a required expertise and
professional skills?

At least 70% of development time is spent on communication [DT87]. Finding
appropriate experts in a globally DSD team to communicate with to gather
additional experience, is a problem [MH02]. Team members who recently
joined the DSD team are not aware of the other team members’ professional
background, skills, activities and tasks [EC06]. The network of assigned tasks
differs from the social interactions within the DSD team [DIS+07]. To become
productive more quickly, newcomers must be aware of whom to contact in
case they have some task-specific questions [SR07].

Construct an AWARENESS NETWORK, i.e., a social network mined from
several project repositories, which reflects the DSD team members’
communication content.

Figure 3 Constructing an AWARENESS NETWORK

In Figure 1 we sketch how to construct an AWARENESS NETWORK by
mining multiple repositories, such as mailing lists, source code repositories, or
bug tracking repositories. It is particularly important to gather the topic of the
DSD team members’ interactions in order to discover the team members’
professional skills and in which interactions they participated. For example, if
a developer that submits frequently to the source code repository new code
for the database access and participates frequently in database topics in the
mailing lists, then it is highly possible that this developer is an expert in
database development. The resultant AWARENESS NETWORK should be
accessible to all DSD team members, making it possible to search for team
members with a desired expertise.

An AWARENESS NETWORK can speed up the communication within the
DSD team. Newcomers can increase their productivity because they
immediately know whom to contact regarding which questions. Invisible
relationships can be detected because the AWARENESS NETWORK differs
from the network of assigned tasks to the DSD team members.

Mining the data of multiple repositories is necessary because mining just one
repository can lead to an inaccurate AWARENESS NETWORK [HWC06].
Mining historical data can limit the AWARENESS NETWORK’s accuracy.
Therefore, an accurate and current status of work must be provided [DIS+07].
A permanent update of the AWARENESS NETWORK is needed, but keeping
the AWARENESS NETWORK up-to-date is challenging because DSD teams
are volatile and the team members change their roles or leave the team
frequently [SR07]. Redmiles and deSouza [SR07] have discovered three
factors that influence the awareness network: (1) the organizational reuse
program, (2) the software developers’ experience, and (3) the software
architecture.

Known Uses:

‐ Hossain et al. [HWC06] mined the e-mail repository and performed a
text-based keyword finding to construct the AWARENESS NETWORK.
A limitation is that mining one repository is not sufficient. Also the
authors state that a context-specific search would result in a more
accurate AWARENESS NETWORK.

‐ The Expertise Browser [MH02] is a web-based tool to support DSD
team members finding experts to talk to. The tool mines a change
management system and visualizes project-related expertise
information.

‐ The Hipikat Tool [CM03] mines some project’s source and mail
repositories to support newcomers to find relevant solutions for their
tasks.

5.3 Relationships between the Patterns

In DSD teams, many challenges and problems exist that usually do not arise
in co-located software development teams. In this section, we discuss the
patterns and explain their relationships.

There exist a relationship between the COMMUNICATION BROKER and the
AWARENESS NETWORK pattern. The observations by Hossain et al.
[HWC06] are in accord with Conway’s Law [Con68]. In hierarchically
organized companies it means that the higher a team member is in the
organization’s hierarchy, the higher the possibility to select this team member
as the COMMUNICATION BROKER. To avoid an information overload of the
COMMUNICATION BROKER, it is important to think about whom to identify
as the COMMUNICATION BROKER. Furthermore, it can be possible to
identify multiple COMMUNICATION BROKERS within the co-located teams
that are responsible for the communication that covers the
COMMUNICATION BROKER’s working activities, tasks, or professional skills.
Hence, an AWARENESS NETWORK of a co-located team can offer valuable
clues to identify COMMUNICATION BROKERs.

DSD teams utilize various repositories, such as communication, source code,
documentation, and bug tracking. Communication repositories, such as
mailing lists or online forums, support DSD teams in order to define, clarify
and modify the software's requirements. Source code repositories, such as
concurrent version control (CVS) or Subversion (SVN), are utilized to version
the software's source code. Documentation repositories keep track about a
project's relevant documents, such as architecture documents, written
deliverables, or change requests. Bug tracking repositories, such as Bugzilla,
give information about identified and detected software bugs. According
[HS08], mining just one repository is not sufficient to enhance the
communication of DSD teams.

6. Future Research Challenges

Nowadays, model-driven development (MDD) is a popular paradigm in
software development. Models can be used to define the software's
requirements and technical artefacts in a platform-independent way, making it
possible to generate recurring and schematic parts of the software
automatically [Sch06]. Model repositories, such as EMFStore [KH10] or
MORSE [HZD09], store and version the software's models. To the best of our
knowledge, there exist no approaches yet that mine model repositories to
support the DSD team communication. In our opinion, potential future
research challenges exist to (1) mine model repositories and (2) to combine
the mining results with the mining results of, for example, communication,
source code, documentation, or bug tracking repositories.

A further identified research challenge deals with the broad variety of the
repositories' data schemes. For example, the data schema of communication
repositories differs from the data scheme of a bug repository. Many existing
data mining approaches utilize the repositories' meta-data to construct, for

example, social networks. But, just mining the meta-data is not sufficient to
support the DSD team communication. Furthermore, the implementations of
the various repository tools differ. For example, the CVS source code
repository stores the data differently than the SVN source code repository. We
ask if it is possible to define or standardize one universal meta-data and data
scheme to ease the mining to improve the DSD teams’ communication?

During physical DSD team meetings, the attendees formulate meeting
minutes. Mostly, these do not cover all discussions during the meetings and
are difficult to propagate to the team members who did not attend the
meeting. Furthermore, personal communication among co-located team
members, such as during coffee breaks, at the hallway, or just in the office,
are difficult to propagate to the other co-located team members and especially
to the remote team members. An important question is how to catch such
conversations and how to propagate the information to the appropriate co-
located and remote team members?

7. Conclusion

Communication in distributed software development (DSD) teams is
challenging because several questions arise that usually do not arise in co-
located software development teams. Successful communication within DSD
teams implies bigger success of the developed software. In this paper, we
present three patterns to enhance the DSD team communication. We mined
the patterns from surveying state of the art approaches published at several
conferences and books that focus on DSD.

The COMMUNICATION BROKER pattern can improve the communication
between co-located and remote DSD teams. The AWARENESS NETWORK
pattern helps to find appropriate DSD team members with some desired
professional skills. The patterns can help to organize DSD teams better in
order to develop software more successfully.

Acknowledgements
We want to thank Lise Hvatum. Lise gave us great hints and suggestions to
define and to improve the patterns and the paper.

References:

[Ale77] Christopher Alexander, A Pattern Language: Towns, Buildings,
 Construction, Oxford University Press, 1977.

[CM03] D. Cubranic and G. C. Murphy. Hipikat: Recommending
 Pertinent Software Development Artifacts. In Proceedings of
 the 25th International Conference on Software Engineering (ICSE
 ’03), pages 408–418, Washington, DC, USA, 2003. IEEE
 Computer Society.

[Con68] M. Conway, How Do Committees Invent?, Datamation,
 14(4):28–31, April 1968.

[CWH+06] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley.
 Identification of Coordination Requirements: Implications for
 the Design of Collaboration and Awareness Tools. In
 Proceedings of the 20th Anniversary Conference on Computer
 Supported Cooperative Work (CSCW ’06), pages 353–362, New
 York, NY, USA, 2006. ACM.

[DB92] P. Dourish and V. Bellotti. Awareness and Coordination in
 Shared Workspaces. In Proceedings of the 1992 ACM
 conference on Computer-supported cooperative work (CSCW
 ’92), pages 107–114, New York, NY, USA, 1992. ACM.

[DIS+07] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Awareness in
 the Wild: Why Communication Breakdowns Occur. In
 Proceedings of The International Conference on Global Software
 Engineering (ICGSE ’07), pages 81–90, Washington, DC, USA,
 2007. IEEE Computer Society.

[DKM10] D. Damian, I. Kwan, and S. Marczak. Requirements-Driven
 Collaboration: Leveraging the Invisible Relationships
 between Requirements and People. In Collaborative Software
 Engineering, pages 57–76. Springer Berlin, Heidelberg, 2010.

[DT87] T. DeMarco and L. Timothy. Peopleware - productive projects
 and teams. Dorset House Publishing, New York, 1987.

[EC06] K. Ehrlich and K. Chang. Leveraging expertise in global
 software teams: Going outside boundaries. In Proceedings of
 the IEEE International Conference on Global Software
 Engineering (ICGSE’06), pages 149–158, Washington, DC, USA,
 2006.

[Eck10] J. Eckstein, Agile Software Development with Distributed
 Teams: Staying Agile in a Global World, Dorset House, New
 York, 2010 250 pages ISBN 978-0-932633-71-2

[GHJ+95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
 Patterns: Elements of Reusable Object-Oriented Software.
 Addison-Wesley Professional, 1995.

[Har99] N. Harrison, The Language of Shepherding,
 http://hillside.net/index.php/the-language-of-shepherding

[Has08] A. E. Hassan. The Road Ahead for Mining Software
 Repositories. In Proceedings of Frontiers of Software
 Maintenance (FoSM ’08), pages 48–57, 2008.

[HK05] J. Han and M. Kamber. Data Mining: Concepts and
 Techniques. Morgan Kaufmann Publishers Inc., San Francisco,
 CA, USA, 2005.

[HM06] P. Hinds and C. McGrath. Structures that Work: Social
 Structure, Work Structure and Coordination Ease in
 Geographically Distributed Teams. In Proceedings of the 20th
 Anniversary Conference on Computer Supported Cooperative
 Work (CSCW ’06), pages 343–352, New York, NY, USA, 2006.
 ACM.

[HRG+08] T. Hildenbrand, F. Rothlauf, M. Geisser, A. Heinzl, T. Kude,
 Approaches to Collaborative Software Development. In
 Proceedings of the International Conference on Complex,
 Intelligent and Software Intensive Systems (CISIS '08). pages
 523-528, IEEE Computer Society, Washington, DC, USA,

[HWC06] L. Hossain, A. Wu, and K. K. S. Chung. Actor Centrality
 Correlates to Project Based Coordination. In Proceedings of
 the 20th Anniversary Conference on Computer Supported
 Cooperative Work (CSCW ’06), pages 363–372, New York, NY,
 USA, 2006. ACM.

[HZD09] T. Holmes, U. Zdun, and S. Dustdar. MORSE: A Model-Aware
 Service Environment. In Proceedings of the 4th IEEE Asia-
 Pacific Services Computing Conference (APSCC ‘09), pages
 470–477. Dec. 2009.

[KH10] M. Koegel and J. Helming. EMFStore: A Model Repository for
 EMF Models, In Proceedings of the 32nd ACM/IEEE International
 Conference on Software Engineering - Volume 2, (ICSE ’10),
 pages 307–308, New York, NY, USA, 2010. ACM.

[Lan09] F. Lanubile. Collaboration in Distributed Software
 Development. In Software Engineering, A. Lucia and
 F. Ferrucci (Eds.). Lecture Notes In Computer Science, Vol. 5413,
 pages 174-193, Springer-Verlag, Berlin, Heidelberg, 2009.

[MH02] A. Mockus and J. D. Herbsleb. Expertise Browser: A
 Quantitative Approach to Identifying Expertise. In
 Proceedings of the 24th International Conference on Software
 Engineering (ICSE ’02), pages 503–512, New York, NY, USA,
 2002. ACM.

[MHG+10] I. Mistrik, A. van der Hoek, J. Grundy, and J. Whitehead (Eds.),
 Collaborative Software Engineering. Springer, 2010.

[RJ02] L. Rising, N. S. Janoff. The Scrum Software Development
 Process for Small Teams, in IEEE Software, Vol. 17, No. 4.
 August 2002), pp. 26-32.

[Sch06] D. C. Schmidt. Model-Driven Engineering. IEEE Computer,
 39(2), February 2006.

[SIG+05] A. Scott, L. Izquierdo, S. Gupta, R. Elves, and D. Damian.
 Leveraging design patterns in global software development.
 Proc. of the Int. Workshop on Distributed Software Engineering,
 Paris, Aug. 2005.

[SR07] C. de Souza and D. Redmiles. The Awareness Network: To
 Whom Should I Display My Actions? And, Whose Actions
 Should I Monitor? In Proceedings of the 10th European
 Conference on Computer-Supported Cooperative Work (ECSCW
 ’07), pages 99–117, Springer London, 2007.

[WF94] S. Wasserman and K. Faust. Social Network Analysis:
 Methods and Applications. Cambridge University Press, 1994.

[WSD+09] T. Wolf, A. Schröter, D. Damian, L. D. Panjer, and T. H. D.
 Nguyen. Mining Task-Based Social Networks to Explore
 Collaboration in Software Teams. IEEE Software, 26:58–66,
 January 2009.

