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Abstract
It is hard to reason about the state of a multicore system-on-chip,
because operations on memory need multiple cycles to complete,
since cores communicate via an interconnect like a network-on-
chip. To simplify programming, atomicity is required, by means of
atomic read-modify-write (RMW) operations, a strong memory
model, and hardware cache coherency. As a result, multicore
architectures are very complex, but this stems from the fact that
they are designed with an imperative programming paradigm in
mind, i.e. based on threads that communicate via shared memory.

In this paper, we show the impact on a multicore architecture,
when the programming paradigm is changed and a λ-calculus-
based (functional) language is used instead. Ordering requirements
of memory operations are more relaxed and synchronization is
simplified, because λ-calculus does not have a notion of state or
memory, and therefore does not impose ordering requirements on
the platform. We implemented a functional language for multicores
with a weak memory model, without the need of hardware cache
coherency, any atomic RMW operation, or mutex—the execution
is atomic-free. Experiments show that even on a system with
(transparently applied) software cache coherency, execution scales
properly up to 32 cores. This shows that concurrent hardware
complexity can be reduced by making different choices in the
software layers on top.

Categories and Subject Descriptors C.1.3 [Processor Architec-
tures]: Other Architecture Styles; D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Design, Performance, Languages

Keywords memory model, cache coherency, distributed shared
memory, embedded system, functional language

1. Introduction
Multicore processors are generally accepted as computing platform.
From a peak-performance point of view, it seems logical to keep on
adding more cores on a chip in order to get more performance [1].
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However, scaling a few-core symmetric multiprocessing architec-
ture to a many-core one introduces several problems in the hardware
architecture. Where two cores can share one bus, larger systems of-
ten have complex interconnection structures like a network-on-chip,
which increase the latency of the communication between cores.
This complicates operations that need atomic global communica-
tion, where the result of such an operation becomes visible to all
cores, without any (observable) intermediate state during the state
transition. Examples of such global communication are: a hardware
cache coherency protocol that is getting exclusive access to perform
a write [1, 2]; executing an atomic read-modify-write (RMW) oper-
ation, like a compare-and-swap; and even a single write operation in
a system with a memory model that requires a total store order [3].

Alternatives that avoid atomics, and are therefore easier to
realize in hardware, are software cache coherency [2], or not
to use cache coherency at all, like the 48-core Intel SCC [4].
Additionally, when a weak memory model is used, a total order of
memory operations might not have to be guaranteed. However, these
alternatives complicate programming. When state changes are not
instant anymore, and need some time to complete, the transient state
is unpredictable, but still observable in a multicore environment.
The hardware often exposes these issues to the programmer, which
makes reasoning about correct program behavior very hard [5].

The problems mentioned above are all related to memory con-
sistency and synchronization, or concurrency in general. A widely-
used concurrent programming paradigm to harness the power of a
parallel machine is threading in combination with shared memory.
However, Lee [6] argues that threads (in combination with an imper-
ative language like C) induce non-determinism, which all should be
pruned away by the programmer. Having a strong memory model
and efficient synchronization makes this task a bit easier, but also
make the hardware more complex and less scalable, which leads to
the problems above. Hence, the choice of a programming paradigm
strongly influences the design choices regarding the hardware plat-
form. We argue that the synergy of the programming model and the
platform should be exploited, and we want to demonstrate that the
atomic communication issues mentioned above can be solved at a
higher level by changing the programming paradigm.

In this paper, we show that the requirements for a multicore
architecture relax, when assuming that it is programmed using a
functional language. More specifically:

1. We show that concurrent execution can be achieved without
locks and atomic RMW operations, even on hardware with a
weak memory model, based on properties of the programming
paradigm. Hence, the execution is atomic-free; it does not
rely on any sequence of operations that should be observed
by or communicated to other processors atomically, in either
hardware or software. This opens the possibility to reduce



hardware complexity, and therefore makes the hardware more
scalable. We acknowledge that avoiding all atomics is a very
strong requirement, and that practical systems might benefit
by allowing some of them anyway. However, we show that it
is possible to do so, and still provide a proper programming
interface.

2. We show that carefully introducing data races in the run-time
system does not harm the deterministic behavior of the applica-
tion, which is in contrast to data races in the C11 standard.

3. We derive rules for a weak memory model, and show the relation
to different memory models and (transparently applied) software
cache coherency.

4. Experiments show the feasibility of the approach.

This can be achieved, because of the nature of the λ-calculus, which
is the mathematical basis of the functional programming paradigm.
Its distinctive properties include that it does not have the notion of
state or memory, which eases dealing with weak memory models.
Moreover, functional programs naturally allow concurrency, be-
cause all dependencies between calculations are explicitly defined.
Furthermore, since a functional language is single-assignment, cal-
culating the same expression twice gives the same result, which
allows simplification of synchronizing concurrent calculations.

1.1 Basic Idea
The basic idea of this approach is exemplified as follows. Consider
the following pseudo-code:

x = foo();
y = bar() + x;

If this code snippet was C, the assignments of x and y should be
done in the specified order, otherwise the initial value of x is used
for addition instead. When both lines are calculated by different
threads, the computation of y by one thread should be stalled until
it is guaranteed that the other thread finished computing x.

In a functional language, variables are single-assignment, so
‘=’ means definition instead. One can imagine that the thread
calculating y checks whether x has been computed yet, and if not,
it can do it by itself. Hence, a data race exists in the calculation and
assignment of x. However, even if x is evaluated twice because of
this data race, the result is the same.

Allowing this data race can be used for optimizations, without
influencing the outcome of the program. Threads might decide to
compute variables repeatedly to prevent fetching it from shared
memory and consuming precious memory bandwidth. Additionally,
distributing work among worker threads without proper synchro-
nization might also (safely) result in duplicates. Moreover, commu-
nication of results to other cores can be postponed when that seems
to be beneficial for cache coherency protocols, for example.

However, there is no free lunch. In contrast to C, it is not obvious
to decide whether a variable is still in use, as the source code does
not define when a variable is not used anymore. Keeping adminis-
tration at run time is possible, but data races might complicate such
analysis. So, there is a balance between allowing races and arbitrary
ordering of memory operations during evaluation, and guarantees
about the memory state for garbage analysis.

The rest of the paper works out this basic idea and is structured
as follows. Related work is discussed in Section 2. To evaluate the
principles of λ-calculus in a many-core environment, we imple-
mented an untyped functional language. Section 3 elaborates on
the details. As suggested above, orderings of reads and writes can
be less strict. Section 4 discusses the impact of this on the mem-
ory model, and presents a simple though efficient software cache
coherency protocol as a proof-of-concept. Section 5 presents the

results of running applications of the NoFib Benchmark Suite on
a 24-core Intel machine and a non-cache-coherent 32-core Micro-
Blaze system on FPGA. Section 6 concludes the paper.

2. Related Work
Many functional languages exist, and they handle concurrency (and
the related problems) differently. Clojure [7] runs in the Java VM
and assumes worker threads on top of a shared-memory machine.
SAC is based on a fork-join approach [8]. Haskell supports different
flavors of parallelism, based on the Glasgow Haskell Compiler
(GHC): annotations and implicit concurrency [9], explicit threads
and channels [10], and data parallelism [11]. All implementations
assume running on an SMP machine, with a POSIX-like OS, which
implies having a strong memory model and threads. Ports of Haskell
to other architectures include House [12] and GHC’s port to ARM,
but they do not support multiple cores. This paper focuses on
the fundamental requirements of executing a parallel functional
program, instead of assuming a common architecture. To the best
of our knowledge, no work focuses on the direct relation between
these languages and an underlying hardware architecture.

Other parallel functional languages are based on message pass-
ing, like Erlang [13], Eden [14] and Multi-MLton [15]. These lan-
guages can be ported to many architectures, because the message-
passing abstraction hides issues related to memory consistency, and
the model fits nicely to networks of computers. The same holds for
stream processing applications that are implemented using message
passing. However, sending and receiving messages has overhead
by (unnecessary) data duplication, and it enforces a specific form
of synchronization. As shared memory is more generic [16], and
we focus on concurrency within a single system-on-chip, message
passing is not considered in this paper.

In a different direction, the functional programming paradigm
can also influence processor design instead of the system architec-
ture. PilGRIM [17] is an example of a specialized processor for lazy
languages. The authors propose a multicore system as future work.
However, it likely encounters the same memory consistency issues
as any other multicore system, as the memory layout of expressions
during execution is similar to the one discussed in Section 3.3.

Although not specifically for functional languages, Bhattachar-
jee et al. [18] measured the synchronization primitive overhead of
the parallelization libraries OpenMP and Intel’s TBB. Even though
the authors propose optimizations to improve the measured over-
head of respectively 47% and 80% of the benchmark run time, they
conclude that the overhead remains high at higher core counts. In
contrast, we eliminate the need for such synchronization primitives,
by choosing a different programming paradigm than the one of C.

Avoiding locks and atomic instructions is also proposed by Tithi
et al. [19] for breadth-first search algorithms. These operations
are recognized as costly, and their proposed solution outperforms
state-of-the-art algorithms. Nasre et al. [20] also conclude that
RMW operations are costly and discuss transformations of graph
algorithms to eliminate them, specifically targeting GPUs. These
techniques modify the algorithm, where we avoid atomic operations
in general at the level of the programming paradigm. Optimizing
the algorithm itself is beneficial, and it is an orthogonal technique
to the modifications to the platform, as discussed in this paper.

On larger scale systems like cluster computers, MapReduce [21]
is a popular approach to program for concurrency. In this model,
a function is concurrently applied to every element of a large
dataset (map), and the individual results are combined into a smaller
dataset, like the sum of the inputs (reduce). Because both phases
do not modify the dataset, they can be considered side-effect free,
which in turn can tolerate processing node failures by reissuing
work. Although MapReduce assumes ‘embarrassingly’ parallel
applications and large datasets on disks, the benefits also apply



to functional languages in a smaller scale, like a single multicore
system. However, functional languages are more generic, as they do
not assume such a specific form of parallelism in the application.

3. Shift in Paradigm: λ-Calculus and Its
Implementation

To understand the execution and memory related issues of programs
written in a functional language, we (informally) explain the fun-
damentals of such a language. Afterwards, the implementation of
our functional language is discussed, which closely follows these
fundamentals.

3.1 Background on λ-Calculus
Functional languages are based on their counter part in mathemat-
ical logic, λ-calculus. This formal system defines expressions or
λ-terms as

M ::= c | x |M M | λx.M
where c can be any constant or primitive function, x is a variable
that binds a name to another λ-term, M M is an application of the
second λ-term to the first one, and λx.M is a function that takes one
argument and binds it to all occurrences of x in M . Prefix notation
is used for function application. For example, (λx.((+ 2) x)), or
just written λx. + 2 x, is a function that takes one argument and
adds 2 to it (although the + operator does not exist in λ-calculus,
but assume that its behavior is defined).

In this simple example, + is (assumed to be) a function that
takes two arguments. If only one argument is applied to it, like
(+ 2), the result is still a function, but now requires one argument—
supplying fewer arguments than the function requires is partial
application. Functions can also be used as arguments. Functions
that can take and/or return functions are higher-order functions.
An example is function composition, f ◦ g, which is defined as
C := λf.λg.λx.f (g x). When both f and g are applied to C, the
result is a function that still requires one argument.

Next, the only rule of computation is called β-reduction, which
substitutes a formal argument by an actual one. So, (λx.+ x 2) 3
is reduced to + 3 2, which then can be computed as 5.

The order in which expressions should be reduced is not defined.
For example, (λx.f x) ((λy.g y) 7) can first be reduced to either
(λx.f x) (g 7) or f ((λy.g y) 7). However, based on the Church-
Rosser Theorem [22], the fully reduced result is always the same—
in this case f (g 7). Evaluating a function is side-effect free; it
only computes a result, but does not change the system in any other
way. Therefore, reducing a term can be postponed until its value is
required, which is exactly what a lazy functional language does.

A more program-like example is the following definition of the
volume of a cylinder with radius 2 and length 5:

main = cylinder 2 5

cylinder = λr.× (× π (sqr r))

sqr = λx.× x x

When we repeatedly reduce main, the result is computed:

main →substitute

cylinder 2 5 →substitute

(λr.× (× π (sqr r))) 2 5 →β

(× (× π (sqr 2))) 5 →substitute

(× (× π ((λx.× x x) 2))) 5 →β

(× (× π (× 2 2))) 5 →
(× (× π 4)) 5 →
62.83...

1 // library
2 class Term {
3 Term& operator()(int c){
4 return *new Application(*this,*new Constant(c));}
5 Term& operator()(Term& t){
6 return *new Application(*this,t);}
7 // beta-reduce this term
8 virtual Term& Reduce(){return *this;}
9 virtual Term& Apply(Term& args...);

10 };
11 class Constant : public Term {
12 Constant(int i); };
13 class Application : public Term {
14 Application(Term& func,Term& arg);
15 virtual Term& Reduce(){return func.Apply(arg);}
16 virtual Term& Apply(Term& args...){
17 return func.Apply(arg,args...);}
18 };
19 class Function : public Term {
20 Function(Term& (*func)(...));
21 // omitted: handling superfluous arguments
22 virtual Term& Apply(Term& args...){
23 return func(args...);}
24 };
25

26 // standard library with many functions, including:
27 Function mult;

Listing 1. Simplified implementation of LambdaC++

We implemented a simple functional language that closely
follows the definition of λ-calculus and the β-reduction rule, which
is discussed next.

3.2 Our Simple Functional Language: LambdaC++
Based on the definition of λ-calculus, it does not fundamentally
require hardware features such as a strong memory model and
fully deterministic execution. As a proof-of-concept to show that
it is possible to realize an atomic-free execution of a concurrent
program, we implemented an untyped functional language1. In
fact, the language is just C++, where λ-terms are represented
by functors—classes that overload the ()-operator, such that the
syntax resembles λ-calculus somewhat and functions can be used
as function arguments. In this paper, we will refer to this language
and its implementation as LambdaC++.

We will discuss the aspects of the implementation where usually
atomics are involved. Notably, the focus is on data races during
β-reductions, and the distribution of work via a lossy work queue.

3.2.1 General Setup
A simplified implementation of the (program-independent) C++
classes is shown in Listing 1. Among many other details, handling
of multiple arguments and partial function application are left
out for simplicity. The example of the previous section can be
implemented as depicted by Listing 2. Because g++ is used as the
compiler, optimizations are only applied at the C++ level; g++ is
oblivious to the functional behavior and properties of the program.
Although adapting GHC and using Haskell would be better and
possible, modifying the fundamentals of such a large project is
practically not feasible for us at the moment.

The implementation supports integers, (complex) doubles, and
arbitrary large numbers via the GNU MP library, although the
language is in principle untyped and the compiler does not check
these types. A list is defined as a chain of Church pairs, which is a
function λr.λl.λc.c r l assuming that the function c returns either r

1 The implementation is available under the GPLv3 license at
https://sites.google.com/site/jochemrutgers/
lambdacpp.

https://sites.google.com/site/jochemrutgers/lambdacpp
https://sites.google.com/site/jochemrutgers/lambdacpp


1 Term& sqr_func(Term& x){
2 return mult (x) (x);}
3 Function sqr(sqr_func);
4

5 Term& cylinder_func(Term& r){
6 return mult (mult (pi) (sqr (r))); }
7 Function cylinder(cylinder_func);
8

9 Term& main_func(){
10 return cylinder (2) (5); }
11 Function main(main_func);

Listing 2. Example program in LambdaC++

or l, depending whether the right or left term is requested. Because
C++03 does not allow anonymous functions, the λ-expression of
the form λx.M should be lambda lifted [23]; it can only be defined
as a named function, like sqr and cylinder in Listing 2, and not
occur somewhere inline.

3.2.2 Worker Threads
Concurrency is exploited by running one worker thread per core,
which all concurrently reduce parts of the program. Each thread
has its own heap that contains λ-terms. Parallelism is introduced
by the par function, which is very similar to the one of Parallel
Haskell. This function pushes one of its arguments on a work stack,
allowing other worker threads to pick it up and start to eagerly
reduce the term. This introduces the notion of local and shared data:
all data is local, until it is applied to par. Then, the terms are made
globally visible. The implementation ensures that local terms can
refer to both local and shared ones, but shared terms only refer to
other shared terms [24]. So, terms are either global or local and are
always owned by the worker thread that owns the heap it resides
in. To decide when a worker can free terms in its heap, garbage
collection (GC) is required. A worker can be in a few different
phases: idle when out of work, running β-reductions, and doing
GC. Unlike GHC, when evaluation of a term blocks (for example
on a term that is currently evaluated by another worker), the worker
thread just blocks; no context switching has been implemented
between evaluation of multiple (unrelated) terms.

Everything that happens at run-time, such as doing β-reductions,
handling of distribution of work among workers, allocation and
garbage collection of memory, are part of the run-time system
(RTS).

3.2.3 Local vs. Global Garbage Collection
Multiple approaches to garbage collection exist. As the presented
concepts in this paper are independent of the chosen approach, we
only briefly discuss a high-level overview of the approach we use.

We chose to use a mark-sweep approach [25]. The algorithm
works according to the following steps: 1) it marks all terms on its
heap as dead; then 2) it marks all terms that are pointed to from the
program stack as alive; next 3) it follows pointers from living terms
to other terms, until no new living term is found; and finally 4) all
dead terms are freed. To find the root of the computation, a shadow
stack [26] is used to track all active references to terms. There are
two flavors of GC:

• Local: Only local terms are cleaned from the heap. This can be
done independent of other workers, because it is guaranteed that
all local terms are not used by other workers. All encountered
shared, i.e. global, terms are assumed to be alive. Because only
locally accessible terms are processed during local GC, memory
consistency is irrelevant; no other worker reads or writes these
terms.

size: 1 word
type of λ-term

size: 1 word
state/flags (for GC)

size: arbitrary
raw data

(a) constant

size: 1 word
type of λ-term

size: 1 word
state/flags (for GC)

size: 1 word
function term ptr

size: 1 word
argument term ptr

size: 1 word
indirection pointer

(b) application

size: 1 word
type of λ-term

size: 1 word
state/flags (for GC)

size: 1 word
function pointer

size: 1 word
indirection pointer

(c) function

Figure 1. Memory layout of λ-terms

• Global: Local and shared terms are cleaned from all heaps.
This can only be done in a stop-the-world fashion, where all
workers stop the current evaluation and participate in a GC
run. The synchronization between workers can be done by a
(Pthread) barrier. Although such a barrier could be relatively
expensive, it does not influence the performance much, as this
is a relatively rare operation—β-reductions are done orders of
magnitude more often. For example, a shared-memory polling-
based algorithm like the bakery lock [27] suffices. As this paper
focuses on concurrency issues during evaluation, a discussion
about the internals or optimization of the GC is beyond the
scope of this paper. Moreover, as the GC is written in ‘normal’
C++, it uses weak memory models in a general fashion, which
has been covered in earlier work [28].

The local GC is invoked when the currently allocated heap memory
is exhausted. When not enough garbage is collected, more memory
is requested from the OS. Global collection is invoked every second,
but never in the midst of an arbitrary function; the RTS can only
switch to GC when it is idle, or a new term has to be created and
new memory is allocated. In contrast to interrupts, which can arrive
at any time, the execution of the program is therefore always in a
known state.

3.3 The Atomic-Free Core: Into Evaluation with Data Races
As discussed Section 3.1, computation in λ-calculus is done by
repeatedly doing β-reduction on a term, until it results in a constant,
or it is a partially applied function. Since a β-reduction is side-effect
free, it is safe to allow some non-determinism. First, we explain
how the data structures and reduction steps are organized.

The RTS replaces a reduced term by the reduction result, instead
of that it modifies the term. Because the result does not have to
be of the same size, it is easier to allocate new memory for the
result, and set an indirection pointer to that result. Therefore, the
contents of a term never changes, it can only get superseded when
its indirection pointer is set. Given the information required for
λ-terms in general and this approach to do β-reductions, we derive
a generic memory layout, which is depicted in Figure 1. Every
term has in common that it contains its type (the vpointer, in C++
lingo). Next, administrative fields are added, depending on the GC
approach. A constant then only has to contain the raw data. An
application requires a pointer to the argument that is applied and
the function that it is applied to—when a function requires multiple
arguments, a chain of applications is used. A (named) function,
like sqr, needs to store the function pointer, e.g., to sqr_func,
to call upon computation. Constants cannot be reduced further,
but functions without arguments and applications need to store the
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Figure 2. Steps in computation

indirection pointer to the reduction result. In the implementation,
when the indirection pointer is set, the function and argument that
are pointed to, are not considered to be required anymore and can
be garbage collected eventually. Therefore, all contents are constant
after initialization of the term, except for the indirection pointer.

To clarify the data structures, Figure 2(a) exemplifies a part of
the total graph of cylinder of the example of Listing 2. When the
application of sqr and 2 is reduced, the result is 4 and the application
term is indirected to this result. Figure 2(b) shows the graph when
two workers have reduced the same term at the same time. Both
workers can update the indirection pointer, which results in a data
race. However, it does not matter how others observe this update;
the result is the same either way. During GC, the race is reconciled
and one result is properly discarded.

The fact that the race condition can safely be ignored and that
setting the result does not require locks, is a great potential for
relaxing constraints on the memory model. Section 4 will define
what is required to allow these races.

3.4 Work Distribution via Work Queue with Data Races
As mentioned before, all workers get their work via a work queue.
A thread-safe queue usually requires mutual exclusive protection to
guarantee proper handling of the elements in the queue. However,
we will show that the evaluation model allows the queue to be lossy.
As a result, we can allow data races in the queue when pushing and
popping work.

The work queue is populated using par. We now take a closer
look how the par function works. Consider the following definition:

par = λx.λy.y , additionally, x will be pushed on a queue;
pseq = λx.λy.y , additionally, x will be fully reduced first;

fib = λn.1 , when n ≤ 2;
fib = λn.+ (fib (− n 1)) (fib (− n 2)) , otherwise;

pfib = λn.pseq (par a b) (+ a b)

, where a = fib (− n 1), and b = fib (− n 2).

par is used as an annotation to indicate that the value of its
argument is expected to be needed in the future and that the
computation might take some time. On the other hand, pseq breaks
the normal lazy reduction order by forcing to compute the first
argument before continuing with the rest. So, the functions par and
pseq do not influence the outcome of the program, but are just hints
how the program might be executed faster.

fib calculates (inefficiently) the Fibonacci number of a given
index in the sequence. pfib does the same, but first puts a on a work
queue, then calculates b, and adds them afterwards. Both a and b
are variables, and each of them is bound to an application that will

eventually indirect to a constant. When the addition of a and b is
calculated, the worker has to follow the indirection pointers, until it
encounters this constant term. However, par does not guarantee that
the computation of a will be finished before the addition. If a was
not computed yet at the time of the addition, it will be computed
when the value is needed.

As par hints that its argument requires a significant amount
of work to compute, it is probably wise to make sure that this
computation is done only once, in contrast to the example of
Figure 2. To this end, when one worker evaluates the term and
another one requires it meanwhile, the second worker should stall
until the first one has finished computation. If the second worker
would also start computing the term, performance is wasted. So,
par does the following:

1. Make sure that the term is globally visible, by duplicating it as
a global term. Such a global term can reside in the same heap
as the local term does, but the C++ class just handles accesses
to it differently.

2. Add a black hole to prevent double work, by marking a term
‘being under evaluation’, such that other workers can wait for
the result. In the implementation, a black hole is a subclass
of Term, which eagerly reduces the term it points to and sets
its indirection pointer to the result afterwards. When another
worker tries to reduce the black hole, it stalls until the indirection
pointer is written.

3. Put a reference to the black hole (and therefore the duplicated
term) on a work queue.

4. Set the local term’s indirection pointer to the newly created
(black hole that protects the) equivalent global term.

GHC implements such a queue as a lock-free (work-stealing)
FIFO queue. The implementation does not lock a mutex, which
otherwise might prevent other threads to progress when the thread
that locks it, is context-switched or blocks on another shared
resource, for example. However, a lock-free data structure is based
on atomic read-modify-write operations, such as a compare-and-
swap [29]. These operations are hard to implement in hardware and,
more importantly, not required for our queue.

We chose to design this queue as a lossy stack. The rationale
behind the choice for a stack instead of a FIFO queue, is that newly
pushed work onto the stack is more relevant to start computing than
older terms, as these older terms are more likely to be computed
by the thread that pushed it. The stack can be lossy, because it is
allowed that race conditions prevent terms from being pushed at
all, and popped terms might be popped twice at the same time. In
the former case, the thread that pushed the work will compute the
term by itself when required, in the latter case, the black hole will
prevent doing the work twice.

Here is a trade-off between allowing incidental losses/duplicates
over using locks or RMW operations. In systems with hardware
support for the latter, using them can be beneficial. However,
we show that the lossy stack allows avoiding atomics, but still
guarantees correct program behavior.

The implementation of the lossy stack is shown in Listing 3.
fence() is a full fence, i.e. memory barrier, equivalent to gcc’s
__sync_synchronize(), such that all preceding reads and
writes should be completed and visible for other threads before any
successive ones. flush() should make sure that any write should
be made visible to other threads, which can be used for software
cache coherency.

During global GC, the contents of the stack are also used as
the roots of computation. Although there are many race conditions
in the implementation of Listing 3, these are only relevant during
evaluation of the program. It is safe to walk over the stack during



1 class LossyStack {
2 int volatile m_top;
3 Term* volatile
4 m_queue[SIZE];
5 public:
6 LossyStack() : m_top() {}
7 void push(Term* term){
8 int top=m_top;
9 if(top<SIZE){

10 m_queue[top]=term;
11 flush(m_queue[top]);
12 fence();
13 m_top=top+1;
14 flush(m_top);
15 }
16 }

17 Term* pop(){
18 int top=m_top;
19 fence();
20 if(--top>=0){
21 Term* res=
22 m_queue[top];
23 m_top=top;
24 flush(m_top);
25 return res;
26 }else
27 return NULL;
28 }
29 };

Listing 3. Lossy stack

global GC, because no worker modifies the stack at that time. Race
conditions during evaluation are addressed in the next section.

4. Impact of λ-Calculus on Memory Consistency
and Synchronization

The previous section identified two possibilities to allow data races:
in the work queue, and during β-reductions of the program. For
the former, Section 3.4 presented an implementation. The latter is
discussed in this section.

When a functional program is executed concurrently, multiple
worker threads reduce terms at the same time and might even reduce
the same term simultaneously. Section 3.3 showed that λ-terms are
constant during their lifetime, except when the indirection pointer is
set after reduction and the term becomes superseded. Based on this
sequence, we can derive rules how the memory should behave such
that races are allowed, but the program’s result is deterministic. This
section relates the rules imposed by the programming paradigm to
the memory model of the platform. First, we briefly discuss memory
models in general. Then, we focus on operations on λ-terms, and
then make the translation to operations on memory locations and
existing memory models.

4.1 Memory Models
A memory (consistency) model prescribes the guarantees that
processes, i.e. worker threads, can use to deduct conclusions about
the memory state, based on the state changes they observe. These
guarantees involve the order in which effects of operations are
observed, such as whether it is guaranteed that different workers
see changes to different memory locations in the same order. To
this extend, an operation is said to be completed when every worker
will observe the result of that operation. Many different memory
models exist and are usually compared based on how strong the
models are. In this context, strong means that the model defines
many guarantees and it is easy to reason about state, and a weak
model offers less guarantees, but is therefore easier to implement
in hardware or is more scalable.

An example of a popular strong model is Sequential Consistency,
which is a model that is convenient to reason about; all operations
on the memory occur and complete instantly in a specific sequence
and all processes agree on that sequence. Because this is hard
to realize in hardware, hardware designers rather implement a
weaker model, but such a model offers fewer guarantees. Among
many other models, the x86 architecture implements a model that
ensures that all writes are in total order [30], but earlier executed
writes may be observed after specific later executed reads. So,
the architecture or the hardware cache coherency protocol has to

make sure that some form of synchronization is done at every
write to ensure such a total order. A very weak model is Entry
Consistency (EC) [31], which divides all reads and writes per
shared object—a region in shared memory—in sections with either
exclusive or shared access. Shared accesses are read-only and can be
done concurrent, where exclusive accesses cannot be concurrently
executed to other accesses (not even read-only) of the same memory
location. Hence, synchronization is required when any form of
access is requested. Finally, Slow Consistency defines only an order
per memory location, per processor. The interleaving of these orders
is undefined and different processors can even disagree about it, so
there is no synchronization required by the hardware. This might
sound obscure, but every processor already implements at least Slow
Consistency, otherwise any causality of single-threaded execution
is violated.

A memory model can be seen as a contract between the applica-
tion and the underlying platform. Languages like C++11 and Java
define a specific memory model. In this paper, the application is
based on λ-calculus, which does not have the notion of memory, so
there is no need to define the behavior of the memory at application-
level. The RTS, however, does need a memory model. Since it is ir-
relevant for the application how the RTS is implemented, the choice
of a memory model does not have to be a specific one, and could
as well be a memory model that is easy to implement in hardware.
It only has to be compatible with the requirements for executing a
functional language. Next, the memory operations are derived from
what happens during program execution.

4.2 A λ-Term’s Life
Every term has the following sequence of phases during its lifetime:

(1) Allocation on the worker’s heap
A term is either local or global, depend-
ing on the context in which it is created.
They can share the same heap, but access-
ing a global term requires attention regard-
ing memory consistency, which is discussed
in a moment.

(2) Initialization of the memory
In our case, the constructor of the C++ ob-
ject does this.

private access:

The term is
only accessed
by the owning
thread. The
term’s content
is constant after
initialization.

(3) Indirecting another term to this one
A term is always a result of a reduction, so
there exists a term that is replaced by the
newly created one. Setting an indirection
pointer to the new term will make it visible
for other workers, which might follow the
pointer.

(4) Replace the term by the result of a reduction
After β-reduction, the indirection pointer
is set, which is the same operation as (3),
but from a different perspective. A race
condition exists, because multiple workers
might reduce the same term simultaneously.

shared access:

The term is
valid and glob-
ally accessible.
Only the indi-
rection field can
be overwritten
by concurrent
threads.

(5) Term dies
When no pointer exists to this term, it be-
comes unused and can be garbage collected.
Because the number of pointers to a term
change at run-time, and it is subject to data
races, this event is not detected during eval-
uation. Only during GC, the application
graph is stable and can be analyzed.

(6) Deallocation during GC
At this point, the heap memory is freed.

private access:

The owning
thread destructs
and cleans up
the term.



From this list, we can identify all operations that can be executed
on a term, namely: construction (phase 1 and 2); read (during
phase 3 and 4), where a worker reads the term after following a
pointer to it; indirect (phase 4), where a worker sets the indirection
pointer to the reduction result; and destruction (phase 6). For these
operations, we discuss which guarantees, i.e. rules, are necessary to
be implemented by the platform. Such a guarantee is something a
worker thread can assume to be always valid.

4.3 Rules for Ordering and Practical Implementations
Although the intended behavior of the operations identified in the
previous section is rather straightforward, the interaction between
these rules is more complicated. In a similar manner as a memory
model defines how reads and writes behave, the four operations on
λ-terms have rules that define the required orderings to properly
allow the execution of a functional program. This section defines
these rules for all pairs of operations. Any platform should comply
to these rules, by hardware support, software layers or a combina-
tion of both.

For clarification, we discuss a mapping of the operations and
the rules to three different architectures: a PC, or x86 architecture,
with corresponding strong memory model; a fictive architecture
that implements the weak EC model; and a software cache coher-
ent system. For software cache coherency, we used a multicore
MicroBlaze setup [32]. In this system, every processor has its own
non-coherent cache and is connected via an in-order interconnect
to a single shared memory. The cache supports flushing and invali-
dating a specific cache line, where both operations remove the data
from the cache, but the former writes dirty data back and the latter
just discards it. Section 5 discusses the MicroBlaze system in more
detail. For these architectures, different measures should be taken
to implement the operations on λ-terms properly.

Construction of a term is obviously more than just a single read
or write of memory. However, only the worker that creates the
term can access this memory, because other workers do not have
knowledge about its existence yet. So from a memory consistency
point of view, this can be seen as a single operation. Any consecutive
operation on the term should see the constructed term, which leads
to the formulation of the following rule the memory subsystem must
comply to:

RULE 1 (Construction). Any worker that executes an operation
on an existing term should observe that its construction has been
completed.

Although this sounds trivial, it means that the underlying system
must make sure that the initialization of the term is completed and
globally visible before a pointer to it is exposed to another worker.
So, when another worker reads or sets the indirection pointer, the
platform must make sure that the term’s construction has been
completed.

Generally, the term should be flushed and a fence should be
executed after construction. In this context, a flush makes some
effort to communicate changes to others as soon as possible—but
not necessarily instantaneously. A fence (also known as a memory
barrier) ensures that operations of the same processor before the
fence should not be reordered with those after the fence. For x86,
no special care has to be taken to guarantee this rule; a flush in
hardware cache coherency is implicit and as stores are not reordered,
the construction will be completed before a pointer to the new term
is written2. For EC, the construction should be done with exclusive
access to the memory, where the complete term is considered

2 However, this is only valid for the memory model of the hardware. If an
optimizing compiler is not aware of the importance of the order of these two
writes, they might end up in different order. It is probably wise to declare
such a term volatile or atomic.

to be the shared object that is protected. In the case of software
cache coherency, the term’s memory should be flushed. Subsequent
writes cannot be reordered with the preceding flush, effectively
implementing a fence. Then, the background memory is up to date
and all workers accessing the term will load that version in their
cache.

When an indirection pointer of a term is set, the following rule
must apply:

RULE 2 (Indirect). Setting the indirection pointer from term t1 to
term t2 is atomic and in globally total order with respect to other
operations on term t1 by the same worker and the construction of
t2.

The restriction that writes should be atomic is usually already
fulfilled by hardware, because pointers have (usually) the size of
one machine word. If that is not the case, writing such a pointer
will have overhead by locking and unlocking the related memory
location. As described in Section 3.3, writing the indirection pointer
twice does not harm the outcome of the program. Therefore, such
writes do not have to be in total order, which is usually the case for
memory models. The non-determinism by this data race is allowed,
but should be solved by the GC later on.

For x86, an indirection pointer can just be written; all writes
are in total order—although this is over-restrictive. Similarly, EC
prescribes writing inside an exclusive access section, which not
only guarantees a total order, but also prevents concurrent reads of
the pointer. In a software cache coherency setup, the pointer can
just be written. Although not essential for correctness, the cache
line can be flushed afterwards to make the write visible for others.

Next, workers can read a term, possibly multiple times.

RULE 3 (Read). Reads of a term are in a total order with respect
to other operations on the same term by the same worker.

In general, a read can just be executed. However, to receive updates
of concurrent writes, a periodic flush is required. For x86, such a
flush is done automatically by the hardware for every read. In EC,
reads are done in shared (read-only) access, which always gets the
value of the latest write in an exclusive block. Hence, reads always
return the latest written value. However, it is not strictly necessary
that writes are communicated that fast. Non-determinism by data
races on a read and a concurrent write can be allowed, which in the
worst case only result in some performance degradation by doing
duplicate work. When it is more expensive to guarantee always
having the latest data compared to incidentally doing work twice,
an implementation for software cache coherency can just read the
value from the cache and flush the cache periodically, during a GC
run, for example. Then reads are mostly done from cache, but the
cache can be somewhat out of date.

Because reads and indirections are only ordered per worker per
term, interleavings of accesses of multiple terms or multiple workers
are not defined. Moreover, workers might disagree on the observed
orderings of these events. This is equal to Slow Consistency, which
is easy to implement in hardware, as it does not enforce inter-
processor orderings.

During GC, the program state is analyzed for dead terms. These
terms should not be accessed afterwards.

RULE 4 (Garbage collection). Before a worker destructs a term,
all reads and indirections by any worker should be completed first.

This also includes that after destruction, no worker should read
or indirect the term anymore—otherwise the garbage analysis
was faulty. Because the state of the memory is fixed during GC,
any non-determinism in the indirection pointers can be solved by
completing all outstanding writes first. This results in a single
state of the application, which every worker agrees on. In general,
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Table 1. Rules that pairs of operation on λ-terms are subject to

all outstanding writes should be flushed, after which a fence is
required. For x86, the flush is implicit, but a fence is required by all
participating workers before the terms are analyzed for liveliness. In
an EC system, nothing special has to be done, because the exclusive
sections already guarantee an up-to-date state. In the software cache
coherency system, all terms have to be reconciled, so the dirty cache
lines should be flushed.

Because memory is reused for another term, a copy of the old
term of every worker should be discarded between destruction of
the old and the construction of the new term. Since the destruction
of a term is not communicated to other cores—only the worker
owning the term decides that it is ready for GC, and keeping track
of where old copies might be has some overhead—a practical
implementation is to flush the complete cache during every global
garbage collection. Different solutions might exist, depending on
the method of garbage collection.

Finally, another data race is spotted: during garbage collection
analysis. In a mark-sweep approach, multiple workers might write
the flag of the same term concurrently. This data race can safely
be ignored; all writers write the same value to the flag memory.
Regardless of the ordering of these writes, the flag is set anyway,
and usage of a mutex to protect it is not required. In the case of
software cache coherency, a flush of the flags (or the whole cache
for simplicity) after the marking phase is sufficient.

For every pair of executed operations, one of the four rules
applies. Table 1 summarizes which rule applies for every pair of a
previously executed operation and a new one.

As discussed above, the requirements on the hardware side
are in general: support for a fence, which is only a processor-
local ordering; a flush, which ensures visibility of the data for
other processors, but no ordering is involved; and atomic (pointer)
writes. Although a strict memory model satisfies these requirements,
it might be beneficial to use a weaker model to allow the non-
determinism as discussed above. Moreover, the same argument
applies to hardware cache coherency; caches are always kept
coherent, which incurs more work—and potentially even more
problematic in future technologies, also more power—than strictly
necessary. The next section presents experiments with systems with
different memory architectures.

5. Experiments
We tested our functional language of Section 3.2 on two architec-
tures. The first architecture is a hyperthreaded 12-core Intel Xeon
system, which contains in this case 24 logical cores in total and
runs Linux. On this system, the scalability of our atomic-free Lamb-
daC++ and Haskell is tested.

The second architecture is a 32-core MicroBlaze system on
FPGA. Every core of this homogeneous MicroBlaze system has
a 16 KB instruction cache and 8 KB data cache. All cores share
128 MB DDR memory via an in-order interconnect [32]. Moreover,
the MicroBlaze system does not have support for atomic RMW op-
erations, but is capable to count micro-architectural events, includ-

ing instructions, stall cycles, cache misses and memory operations.
It runs a multi-threaded POSIX-like custom OS. The caches are not
kept coherent in hardware, so the approach of Section 4 is applied
to achieve software cache coherency.

The workload for the tests is delivered by applications from
the parallel section of the Haskell NoFib Benchmark Suite [33].
We implemented five of them in LambdaC++, namely coins,
parfib, partak, prsa and queens, and compare them to the
Haskell versions in the experiments.

5.1 Scalability and Speedup
All Haskell applications are compiled with GHC 7.4.2 for the Intel
platform. Our function language runs on both the Intel and the
MicroBlaze platform. The first experiment measures the speedup
of the application, depending on the number of cores used. Figure 3
shows the results for all applications and platforms. All applications
have been run five times, and the measurements have been averaged.

In the figure, the speedup is shown, which is the multicore
performance relative to the sequential run. So, with n cores, i.e.
worker threads, a speedup ofmmeans that the wall-clock execution
time is m times less when n cores are utilized in parallel, compared
to the execution time on one core. The execution of LambdaC++
requires about 400 instructions on average per created λ-term,
including allocation, β-reduction, and garbage collection. Even
though the absolute performance differs, the speedup shows similar
behavior on x86. Both the Haskell and LambdaC++ versions show
a close-to-linear speedup for about the first 10 cores3. After that,
the execution time does not improve when using more cores.

Linux’s perf performance counters indicate that there is a
memory bottleneck; the number of executed instructions is for every
run the same—even the number of created λ-terms by LambdaC++
is independent of the number of workers—but the number of
cycles the processors stall increased. The figure also shows the
speedup when artificially compensated for this effect, which is
labeled ‘no mem bottleneck’. In that case, we calculated the speedup
when the instructions, which are measured during the x86 runs
of LambdaC++, would have the same number of stall cycles as
during the sequential version. The straight line suggests that the
speedup trend of the first ten cores is continued, at least up to
24 cores. This shows that the applications scale properly to many
cores, although with some constant overhead. This also suggests
that the non-determinism in these experiments does not result in
performance loss by doubly calculated terms, although we cannot
measure it precisely without influencing the execution.

The memory bottleneck is even more prominent on the Micro-
Blaze system. The bandwidth is saturated when eight cores are used.
However, the same trend is visible; the workload scales properly
to more cores and the same number of instructions is executed, but
the processors just stall longer on every memory access. So, from a
parallel workload point of view, our proposed approach of avoiding
usage of locks and allowing data races seems to be viable.

5.2 Locality and Overhead
For every benchmark, we counted the amount of generated local
function applications, local constant and all global terms. The ratio
between local and global data for LambdaC++ running on the Intel
platform is listed in Table 2. This table lists the measurements when
using 12 cores, but the results are similar when another number of

3 If looked very carefully, the reader might notice that having two cores for
LambdaC++ does not improve the performance. This is due to the structure
of the program. In the implementation, the programs build up a list. Then,
all but one worker concurrently compute the contents of this list, and one
worker is dedicated to post-processing the list in-order, e.g., to generate
output. In practice, post-processing takes less time than computation, so
with two workers, one worker computes, and the other waits for its result.
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Figure 3. Speedup of NoFib parallel benchmarks

benchmark
local

applicationsa
local

constantsa globalsa

coins 0.418 0.582 1.36 · 10−4

parfib 0.379 0.621 1.44 · 10−4

partak 0.351 0.648 5.47 · 10−4

prsa 0.412 0.583 4.97 · 10−3

queens 0.445 0.555 9.10 · 10−5

a Fraction of sum of all global and local terms

Table 2. Generated terms during evaluation (LambdaC++, x86, 12
cores)

cores is used. The table shows that the number of local terms is
orders of magnitude higher than that of the global terms.

If all local terms can be kept local, traffic to main memory and
the effects of the memory bottleneck will be reduced significantly.
Although untested, a solution could involve having a (large) scratch-
pad memory for every processor, and using this memory for all new
local terms, i.e. the nursery of the GC. Anderson [24] reports that
99.8% of the data does not survive that private nursery stage, so
they are dead at the successive GC. Such a modification to the RTS
can be done transparently to the application. However, testing such
a setup is left as future work.

Finally, the distribution of where time is spent during execution
is measured. Figure 4 shows the most important states a worker
can be in: global GC; local GC; stalling on a black hole, where
another worker computes it; idle, because the work queue is empty;
and running the application, which involves doing β-reductions.
The time is the sum of of the time spent in such a phase, presented
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Figure 4. Time spent during execution (LambdaC++, x86, 12
cores)

as a fraction of the combined total time of all workers. Only a
small fraction is used for global GC, which is expected, because the
number of global terms is much smaller than local onces. Interesting
to see is that even local GC contributes only for 3.2% of the total
execution time.

6. Conclusion
One of the hardware design issues of a multiprocessor platform
is atomic global communication between cores, such as cache
coherency and synchronization. In this paper, we showed that these
hardware issues can be overcome at a different level. To this extend,



we described a rather extreme example: a programming paradigm
that allows an atomic-free implementation. Such an implementation
does not rely on any read-modify-write operations or (mutex) locks,
and does not rely on ordering guarantees of a strong memory model.
We carefully introduce data races, even though the application keeps
having a well-defined outcome.

For this, we implemented a functional language that strictly
follows the properties of λ-calculus. Since the language is single-
assignment, synchronization is simplified. Expressions that can
be evaluated concurrently, can safely be pushed onto and popped
from a work queue, without proper synchronization. When work
is lost due to a race condition during the push, it will eventually
be calculated when required. Moreover, because the evaluation of
an expression in λ-calculus always gives the same result, multiple
workers might evaluate expressions concurrently, and the doubly
calculated results are just garbage collected.

Based on the programming paradigm, we derived ordering rules
the memory subsystem must adhere to. These rules are weaker than
implemented by x86’s memory model, but can also be implemented
as software cache coherency. Experiments on a 24-core Intel and a
32-core MicroBlaze architecture show that regardless of the number
of worker threads and non-determinism in the execution, the amount
of β-reductions and overhead appears to remain the same, which
gives a good speedup when using more cores.

Atomic-free functional programs relax requirements on the hard-
ware. This exemplifies the relation between programming abstrac-
tion and hardware platform, where the programming approach can
reduce hardware complexity.
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