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Memory management searches for the resources required to store the concurrently alive elements. The
solution quality is affected by the representation of the element accesses: a sub-optimal representation
leads to overestimation and a non-scalable representation increases the exploration time. We propose a
methodology to near-optimal and scalable represent regular and irregular accesses. The representation
consists of a set of pattern entries to compactly describe the behavior of the memory accesses and of pattern
operations to consistently combine the pattern entries. The result is a final sequence of pattern entries which
represents the global access scheme without unnecessary overestimation.
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1. INTRODUCTION

Memory management techniques search for the minimum required resources to store
the data. They are applied in domains where the size is crucial, such as in the lower
layers of on-chip memory hierarchy of systems (e.g., scratchpad memories of the embed-
ded systems [Grösslinger 2009] and hardware controlled caches [Catthoor 1999]). The
near-optimal computation of the resources is essential, as it directly affects the cost,
area, and power consumption [Catthoor 1999]. For instance, many embedded systems
have tight memory space constraints [Ozturk et al. 2008], whereas the memory units
contribute to the cost [Panda et al. 1999], as the power is heavily dominated by array
storage [Catthoor 1999].
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13:2 A. Kritikakou et al.

The computation of the required number of storage resources is based on the access
scheme derived from the application under study (e.g., the loops, conditions state-
ments, and memory access statements). The consistent combination of this informa-
tion describes the global memory access scheme that defines the storage resources.
In commonly used embedded system applications, such as image, video, and signal
processing, arrays with very regular memory accesses are the dominated data inside
loops with conditions. The conditions disturb the regularity of the memory accesses,
creating “holes” in the iteration space (i.e., making parts of the iteration space invalid).
When a high number of holes and several array access statements exist, the iteration
space becomes highly complicated. Existing approaches describe the iteration space in
an enumerative way, in a symbolic way, or by worst-case approximation, as explained
in Section 3. The enumerative representations are optimal but not scalable, as the
exploration time is increased in the increase of the number of memory accesses. The
symbolic representations are scalable and near-optimal up to quite regular iteration
spaces. When applied in irregular spaces, they either have to approximate the space by,
for example, applying a convex hull, or they split the space into potentially too many
regular parts, increasing the exploration time, as no control over the splitting process
exists. The approximations consider the invalid parts as valid leading to resources
overestimation. Hence, a near-optimal and scalable representation is highly desired.

The proposed representation is scalable and near-optimal for complex iteration
spaces with both regular and irregular holes created by memory access statements
in loop structures with manifest conditions. Our first contribution is the concept and
the formulation of patterns. A pattern represents the iteration space of a statement
through a compact and repetitive description avoiding enumeration. A pattern is de-
fined by a sequence of segments. In each segment, the first value is the number of
consecutive iterators, where the statement has the same behavior to the memory. The
second values is the actual behavior—that is, Access (A) or Hole (H). By including the
holes, the invalid iteration space parts are described avoiding suboptimal approxima-
tions and the bear-optimality is controlled. For example, {1H 1A} repeated five times
represents a statement, which accesses only in the odd iterators from 0 to 10. The sec-
ond contribution is the proposed pattern operations required to consistently combine
the patterns in the iteration space under all possible cases of our target domain. The
third contribution is the application of the proposed representation in the intrasignal
in-place optimization step to compute the maximum number of concurrent alive ele-
ments, which is the minimum resources required to store an array. We also demonstrate
and evaluate the proposed representation for several benchmarks from the Polybench
[Pouchet et al. 2012], the Mibench [Guthaus et al. 2001], and the Mediabench [Lee
et al. 1997] suites.

The article is organized as follows. Section 2 motivates the proposed representa-
tion. Section 3 presents existing representations used in storage size management
approaches. Section 4 describes the problem and the target domain. Section 5 sum-
marizes the proposed representation. Section 6 describes the pattern formulation,
Section 7 presents the pattern operations, and Section 8 reviews the intrasignal in-
place computation. Section 9 evaluates our study, and Section 10 concludes this study.

2. MOTIVATION

When the memory access statements are regularly executed, the iteration space is
solid. A condition disturbs this regularity by potentially introducing a high number
of holes. When several conditions coexist, the iteration space becomes significantly
complex and quite irregular. To illustrate the aforementioned problem, we use the
simple example of Figure 1. The initial part of the access scheme up to k=6 and
i=24 is depicted in Figure 1(a). The black dots describe the iterations where the array
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Fig. 1. (a) 1D case: code and iteration space. The black dots and squares describe the iterations that access
the array for C1 and C2. The gray cells are the elements that are accessed each time. The gray cells describe
the accessed elements for 2D (b) and 3D (c) case.

elements are accessed due to condition C1: (i > 4k)&&(i < 4k + 3) and the black squares
due to condition C2: i == 6k + 1. The gray boxes show the corresponding accessed
elements. The enumeration approaches are not scalable, when the number of memory
accesses is increased (e.g., high loop bound). If only C1 condition exists, the access
shape is repetitive (i.e., the projection of the dots in i axis). By adding C2 condition
through the OR operation, it disturbs the repetition of initial access shape. The symbolic
approaches have to increase the number of constraint linear equations to describe the
space. In contrast, the proposed methodology represents the first and second condition
by pattern {2A 2H} repeated 900 times and the third condition by pattern {1A 5H}
repeated 600 times. After applying the pattern operations, the final pattern is {2A
2H 3A 1H 2A 2H} repeated 300 times. The maximum number of concurrent alive
elements is given by the summation of the accessed parts multiplied by the repetition
factor (i.e., (300) ∗ (2 + 3 + 2) = 2100). By increasing the array dimensions, the symbolic
approaches become less efficient in highly irregular spaces. In Figure 1(b), the symbolic
approaches approximate the accessed region by applying a convex hull approximation—
that is, the holes of size 2×2 and 1×2 are considered as accesses and the computed size
is 55. The alternative for a near-optimal computation is to split the iteration space to at
least six polytopes, which increases the number of linear equations required to describe
the iteration space. It can be readily extrapolated that this will further increase for
larger irregular spaces. In contrast, the proposed representation in the I dimension
uses the {2A 2H 3A 1H 1A 1H 1A} pattern and in J the {1A 2H 2A} pattern. The size is
computed by propagating the size of the outer dimension to the inner dimension. The
propagation multiplies the size of the I dimension with the size of loop J (i.e., 7 ∗ 5) and
explores potential new elements due to J dimension. The latter is given by multiplying
the holes in the I dimension by the size derived from the J pattern (i.e., 4 ∗ 3). The
result is 47. When another dimension is added in Figure 1(c), the size loss due to the
approximation is multiplied by the size of the third loop (e.g., in our example, the size
loss of 8 is multiplied by the size of k dimension).

3. RELATED WORK

Existing storage management techniques, such as those for evaluation of the working
set size or for memory mapping, represent the iteration space by enumeration or sym-
bolic approaches. The enumeration representation is optimal but not scalable in the
number of memory accesses. The symbolic representation is near-optimal and scalable
up to quite regular iteration spaces. However, when several irregular holes exist, the
symbolic approaches either approximate through convex hull or have to potentially
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highly increase the number of linear equations to describe the space, as they miss a
control mechanism over the polytopes splitting process.

Enumerative representations are reference list–based schemes used to describe each
array reference without any summarization [Paek et al. 2002]. For instance, back-
ground memory size estimation is performed by enumerating the indexed signals of
all index expressions [Nachtergaele et al. 1992]. In So et al. [2004], a custom memory
data layout is proposed to parallelize memory accesses based on the overall access
pattern. Several memory management techniques use profiling and instrumentation
tools to enumerate the memory accesses. Palem et al. [2002] select candidates for data
remapping through memory access patterns along program hot-spots. Rubin et al.
[2002] search the space with all possible memory data layouts by iteratively prototyp-
ing and evaluating candidate data layouts. Panda et al. [2001] present techniques for
memory data layout. A profiling-based strategy generates an access trace and exploits
through a heuristic the scratchpad memory hierarchy in Cho et al. [2007]. Several
instrumentation and profiling tools provide the memory accesses enumeration. For
example, SHMAP [Dongarra et al. 1990] and Gleipnir [Janjusic et al. 2011] collect
memory access traces. Pin [Luk et al. 2005] provides an instrumentation platform to
trace memory instructions size. MemSPy [Martonosi et al. 1992] analyzes by simula-
tion the memory accesses. Although the enumerative approaches are optimal, when
accesses are increased, the exploration time is prohibited.

An alternative representation describes the memory accesses using symbolic forms—
for example, linear constraint-based schemes where accesses are expressed as convex
regions in a geometrical space [Paek et al. 2002]. Quality is reduced when nontrivial ar-
ray reshaping is performed at boundaries, as the whole array is assumed to be accessed,
when regions must be widened to form a convex hull and when nonaffine expressions
are used, which removes the corresponding constraint equations [Paek et al. 2002].
Simplified constraint-based forms (e.g., Balasundaram and Kennedy [1989]) describe
Solid Iteration Spaces (SIS) (e.g., diagonal or triangular shapes) but are less efficient
for shapes with holes. Triple notation [Shen et al. 1990] (i.e., lower bound, upper bound,
and stride per dimension) has been used to describe regular spaces. Polytope theory
is very commonly used for regular spaces—for example, the space is represented by
placing polytopes of signals in a common place with ILP techniques [Kjeldsberg et al.
2003]. IMEC Atomium [Catthoor et al. 1998b] supports memory-related steps based
on the polyhedral dependency graph [Swaaij et al. 1992]. The Data Transfer and Stor-
age Exploration (DTSE) methodology uses the polyhedral dependency graph to explore
several substeps relevant to the memory data layout optimization step—for instance, a
two-stage heuristic DTSE approach in Wuytack et al. [1997], the platform independent
DTSE optimization step applied for a parallel cavity detection algorithm in Danckaert
et al. [1999], and a polytope data access graph of the array memory operations used
as input to the data reuse exploration in memory hierarchy design step in Wuytack
et al. [1998]. Estimation of storage requirements with a partial fixed ordering through
polytopes is proposed in Kjeldsberg et al. [2004]. Philips Phideo [Lippens et al. 1993] is
oriented to stream-based video applications and represents the space as linear function
of the iteration index. Jang et al. [2011] use memory access vectors, the loop nest depth,
and the array dimension. In Kandemir [2001], an access matrix describes the array
accesses to explore data locality. Clauss and Meister [2000] focus on spatial locality op-
timization using utilization vectors for references. Cong et al. [2011] use polytopes for
memory partition and scheduling. Distance vectors with data access matrices are used
for uniform references [Ramanujam et al. 2001]. However, the symbolic approaches for
solid spaces are not directly applicable in spaces with holes.

Some symbolic approaches have been extended to piecewise regular iteration
spaces—that is, spaces with few holes among polytopes. However, they are less
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efficient and less scalable for iteration spaces with increased number of irregular
holes, as they cannot efficiently represent them. For instance, SUIF [Maydan et al.
1993] and PIPS [Creusillet and Irigoin 1996] add additional constraint to the repre-
sentation in order to deal with a hole. As the holes are increased, the number of linear
expressions is also increased [Paek et al. 2002]. In Van Achteren and Lauwereins
[2000], the data-reuse exploration methodology is extended for holes in the signal
access patterns represented by the data access polytope graph. In Franssen et al.
[1993], piecewise linear and constant modulo indexing are handled by extending the
node space and transforming the spaces to a representation suitable for polyhedral
graph. In Balasa et al. [1994], a transformation is presented for modulo expressions to
affine expressions. In Darte et al. [2005], lattices represent the iteration space for the
memory allocation problem. Seghir et al. [2012] propose a lattice intersection to count
the integers in Z-polytopes. When the iteration space cannot be efficiently represented
by lattice, the aforementioned approaches either approximate the space by solidifying
holes or split it, leading to an increased number of linear equations and search time.

In this work, we propose a scalable and near-optimal representation for complex
iteration spaces with both regular and irregular holes, as shown in the next sections.

4. PROBLEM FORMULATION AND TARGET DOMAIN

4.1. Problem Formulation

Several design steps apply techniques to compute the size required to store the elements
of the arrays. For instance, the DTSE methodology of Catthoor et al. [1998a] exploits
the memory organization of embedded systems for the lower memory layers through
a series of steps—for example, data reuse and related data copy decisions, memory
hierarchy level assignment, memory allocation and assignment, intrasignal in-place
optimization, and intersignal in-place optimization. They are especially applied in
the lower layers of the on-chip background memory hierarchy, where size is crucial.
The lower memory layers are quite close to the processing part of the system and
should be relatively small in size to provide fast access to the stored elements. The
proposed representation and the optimization technique considered in this study are
less relevant for off-chip bulk memories and long-term storage, such as hard disk
drives, nonvolatile memories, flash-based or future MRAM-based solid-state storage.
In this context, near-optimality of the techniques is crucial, as a suboptimal result
leads to overestimation of the required resources. Then, either the on-chip memory
size is increased, which increases area, cost, and power consumption, or the array
elements are spilled to higher memory layers, which degrades performance due to the
memory misses. Hence, a tight (near-optimal) computation of the required resources
is crucial for the system design. Scalability of the techniques is of great importance,
since they are applied in industry applications, which involve substantial amount of
code with highly increased number of memory accesses. As time-to-market is crucial,
the increase in the number of accesses should not lead to prohibited exploration time
for the relevant design steps (beyond a few hours of CPU time). Otherwise, the design
process and the final design are delayed.

After the memory optimization steps are applied, the result is used by the address
generation design step. An efficient addressing is achieved, when the addresses are
mainly regular. A high irregularity increases the time of address generation and el-
ement accessing. For instance, the address generation and accessing of sequential
elements is very efficient (e.g., when the memory burst mode is used). Hence, the
memory optimization result should not introduce too much irregularity and still main-
tain its near-optimality. To achieve a near-optimal and scalable memory optimization
technique that supports efficient addressing for the different memory organization
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design steps, a representation is required for the memory access scheme, which meets
near-optimality, scalability, and addressing constraints, which is the goal of this article.

The proposed representation is applied in the context of intrasignal in-place opti-
mization step for nonoverlapping stores and loads. The intrasignal in-place result is
the size required to store the elements of each individual array [Catthoor et al. 1998a].
The intrasignal in-place computes the array window—that is, the maximum number
of concurrent alive elements during the application execution. The stores and the loads
are nonoverlapping when the loads are executed in later loop iterations after all of
the stores have been executed. As the stored array elements are valid until the first
load is executed, the maximum number of concurrently alive elements exists after
the execution of all stores and before the execution of any load. As the array window
computation is used by next memory optimization steps, the near-optimality of the re-
sult is important, since unnecessary overestimations should be avoided. For instance,
the array window is used by the intersignal in-place optimization step to compute the
near-optimal location of the arrays in the memories so that the reuse of memory loca-
tions between arrays is maximized, and then by the mapping to the physical memories
[Catthoor et al. 1998a]. Code transformations to improve the global data and control
flow or the data reuse (e.g., array restructuring in Leung and Zahorjan [1995]) have
been already applied upfront, as they belong to the early steps in the overall memory
management methodology (e.g., as explained in motivation in Catthoor et al. [1998a]).

4.2. Target Domain

The target domain consists of applications with deterministic behavior. If several
threads are accessing the same array, all memory accesses and condition statements
are considered by the representation. The applications are highly loop dominated and
data dominated (i.e., a high percentage of the executed code handles indexed array
signals in the context of loops)—for instance, high speed data intensive applications in
the fields of speech, image, and video processing, which require significant amount of
storage [Jha and Dutt 1997]. Due to the way of writing the code, that is, the enumer-
ative conditions that describe a part of the iteration space are few and the parametric
conditions are used to describe several parts, a finite and, usually, small set of mani-
fest condition statements exists in the application. The arrays are statically allocated.
When data-dependent applications exist with nonmanifest conditions and dynamically
allocated data, preprocessing is required. The system scenario approach [Gheorghita
et al. 2009] can be applied to convert the application into a set of individual system sce-
narios that have manifest code internally. Then, the proposed representation is applied
per scenario. For dynamically allocated data, Dynamic Data Type Refinement (DDTR)
[Bartzas et al. 2006] and Dynamic Memory Management Refinement (DMMR) [Atienza
et al. 2006] can be applied to convert dynamically allocated data into bounded virtual
memory segments, which can be treated as an array segment by our approach. The
applications of the target domain are described by a unified template, which is used to
describe the input to the proposed representation in a unified way. The unified template
has one to many loop nests and uses single assignment code—that is, an array element
is written once, although read several times. The index expressions of the access state-
ments are of “iterator+constant” (e.g., i + b) type, since it is a highly occurring case,
especially in multimedia applications such as those in Pouchet et al. [2012], Lee et al.
[1997], and Guthaus et al. [2001]. The selected index expression allows a better ex-
planation of the proposed principles. The “coefficient*iterator+constant” (e.g., a ∗ i + b)
index type is translated into “iterator+constant” index type and a set of parametric
manifest conditions, which describe the holes in the iteration space. For example, the
index expression 2i + 1 is expressed as index expression i + 1 and a parametric condi-
tion i == 2k. Index expressions with modulo operation on the iterator are expressed as
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“iterator+constant” index type and an extra loop with size equal to the constant (e.g.,
i%4 inserts one k loop from 0 to 4), the index expression becomes k or translated to
linear expressions by extending dimensions [Franssen et al. 1993].

The unified template consists of primitive conditions and primitive operations to
describe condition expressions. The conditions can be enumerative using constants
and parametric conditions using linear expressions and can describe an SIS, where
sequential array elements are accessed between iterations, and an Iteration Space
with Holes (ISH). We define the primitive conditions as follows:

Definition 4.1. The primitive conditions are:

(1) Enumerative Conditions for Solid iteration space (ECS), which are expressed
through the < and the > comparison operators, the combination of the < and
the > comparison operators with the AND logic operator (< && >), and the ==
comparison operator—that is, i < a, i > a, (i < a)&&(i > b) and i == a.

(2) Enumerative Conditions for iteration space with Holes (ECH), which are expressed
by ECS combined with || primitive operator.

(3) Parametric Conditions for Solid iteration space (PCS), which are expressed through
the < or > comparison operator with a linear expression—that is, i < c ∗ k + d and
i > c ∗ k + d. For one-dimension arrays and multiple loop structures, the PCS can
be mapped to the ECS of i < ((c ∗ UBk − 1) + d) + 1.

(4) Parametric Conditions for iteration space with Holes (PCH), which are expressed
with the == or �= comparison operator, a combination of < and > compari-
son operator with an && logic operator—that is, i == c ∗ k + d, i �= c ∗ k + d and
(i > c ∗ l + d1)&&(i < c ∗ k + d2) (with d1 < c and d2 < c).

When the ECS/PCS are combined with the || primitive operator, they create
ECH/PCH. If the conditions under study use another comparison operator, they are
mapped to the primitive conditions. For instance, the ECS condition i ≥ LB is mapped
to i > LB− 1 (e.g., i ≥ 5 is mapped to i > 4), the ECH condition i �= d is mapped to
(i < d)||(i > d) (e.g., i �= 3 is mapped to (i < 3)||(i > 3)), the PCS condition i ≥ c ∗ k + d
is mapped to i > c ∗ k + d − 1 (e.g., i ≥ 2 ∗ k is mapped to i > 2 ∗ k − 1), and so forth.

Definition 4.2. The primitive operations are OR and AND operations.

The remaining logical operations can be expressed by OR and AND operations. For
instance, (i == a) NAND ( j == b) is transformed to (i �= a)||( j �= b).

5. PATTERN-BASED REPRESENTATION: SYNOPSIS

The proposed pattern-based representation avoids the enumeration of the valid iter-
ation parts, as it symbolically describes a high number of parts. The proposed repre-
sentation consists of pattern entries and pattern operations over the pattern entries.
A pattern entry consists of a pattern and a set of parameters, as described in detail in
Section 6. The pattern operations are applied over the pattern entries to consistently
combine them in the iteration space, as described in Section 7.

Definition 5.1. The pattern-based representation consists of a finite set of pattern
entries and pattern operations used as combination methods over the pattern entries.

Initially, the application under study is mapped to the unified template, which is
instantiated—that is, the parameters of the template take specific values. In the first
step, the instantiated unified template is parsed to create a primitive pattern entry
per condition/access statement per dimension. In order to describe the global memory
access scheme, the pattern entries have to be consistently combined—that is, pattern
entries that are referring to the same iteration space have to be considered together.
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To achieve the consistent pattern combination, we define a set with the different cases
that may occur in the unified template, as explained in Section 7.1. Then, we provide
a scalable and near-optimal operation per combination case to systematically combine
the pattern entries, described in Section 7.2. Using the primitive operations of the
instantiated unified template and by applying the pattern operations, the partially/fully
overlapping pattern entries are combined and the nonoverlapping pattern entries are
virtually concatenated. The final result is a sequence of nonoverlapping pattern entries
that describes the global memory access scheme.

Compared with existing approaches, the proposed representation has a mechanism
to control the execution time and the near-optimality. When the holes of the new pat-
tern entries are too small to provide a gain in the quality of the intrasignal in-place
array window, although they introduce a high address generation cost due to increased
irregularity, they are allowed to be considered as “virtual” accesses. In contrast to ex-
isting approaches, the position and the number of virtual accesses in the final sequence
of patterns is controlled by the decision over the length of the holes that can be con-
sidered as virtual accesses. The smaller this value, the more close to optimal is the
representation.

In realistic contexts, the combination of patterns is applied in a finite small set of
pattern entries, since they are describing the iteration space in a repetitive way. The
initial number of pattern entries is defined by the number of conditions and access
statements. During operations, pattern entries are split and combined. If the number
of pattern segments is larger than an acceptable value, holes can be considered as
virtual accesses, or if the pattern has low repetition factor, it can be considered as
virtual accesses. Then, pattern segments are merged and the number of the segments
is decreased. In this way, a controllable approximation is applied whenever it is required
to decrease the exploration time.

As we present the proposed representation in the context of nonoverlapping intrasig-
nal in-place optimization, the maximum number of concurrent alive elements derives
from the regions that are accessed, as described in Section 8. The accessed regions are
described by the final sequence of the patterns per dimension and on the valid intrasig-
nal in-place case. In the one-dimension case, this result derives by the adding the size
of the pattern segments with A behavior multiplied by the repetition factor in the final
pattern sequence. In multiple dimensions, the representation is applied per dimension,
but the maximum number of concurrent alive elements derives by propagation of the
sizes from the outer dimension to the inner dimensions. The propagation between di-
mensions depends on the intrasignal in-place case that is valid, which is decided based
on the type of the final pattern entries in the representation sequence [Kritikakou et al.
2013a, 2013b]. As this work focuses on the pattern-based representation, we describe
the pattern entries and the operations and illustrate them in the intrasignal in-place
step for the one-dimension case, as the representation is applied per dimension.

6. PATTERN FORMULATION

We provide a list with the abbreviations used within this document in Table I.
The valid and the invalid part of iteration space defined by a primitive condition

or an access statement is described by a pattern entry—that is, a pattern with a set
of parameters. By including the invalid part (i.e. the holes), the iteration space can
be described in a regular and repetitive way due to the loop structure to which the
statement belongs.

Definition 6.1. A pattern is a sequence of segments, where a segment is described by
(1) the number of consecutive iterator values (Segment Iterator Range [SIR]), where
the statement describes the same type of behavior to the array, and (2) the type of the
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Table I. Table Summarizing the Abbreviations

Term Definition Term Definition
SIR Segment Iterator Range IR Iterator Range
ST Segment Type PS Pattern Size
LB Lower loop Bound UB Upper loop Bound
LCM Least Common Multiple GCD Greatest Common Divisor
SIS Solid Iteration Space ISH Iteration Space with Holes
ECS Enumerative Conditions for solid iteration Space UF Unrolling Factor
ECH Enumerative Conditions for iteration space with Holes
PCS Parametric Conditions for solid iteration Space
PCH Parametric Conditions for iteration space with Holes

Fig. 2. The pattern consists of N segments, each segment has an SIR and an ST, the pattern is valid from
LB up to UB, and it is repeated M times.

behavior (Segment Type[ST]), which is Access (A) or Hole (H)—that is, 1SIR 1PT . . .
nSIR nPT.

Definition 6.2. The pattern parameters are:

(1) Lower loop Bound (LB) is the iterator value before the pattern begins. For the
ECS/PCS and ECH conditions (I > a), the LB is max(LBI, a), and for PCH condi-
tions (I > c ∗ K + d), it is max(LBI, c ∗ (LBK + 1) + d − 1).

(2) Upper loop Bound (UB) is the iterator after the pattern ends. For the ECS/PCS
and ECH conditions (I < b), the UB is min(UBI, b), and for the PCH conditions
(I < c ∗ K + d), it is min(UBI, c ∗ (UBK − 1) + c + 1).

(3) Iterator Range (IR) is the range of the iterator values where the pattern is valid
(i.e., UB − LB − 1).

(4) Pattern Size (PS) is the summation of the lengths of all segments (i.e.,∑Segments
i=1 iSIR).

(5) Repetition factor (R) gives the times the pattern is repeated in the IR (i.e., IR
PS ).

(6) Iterator difference (Diff) is the array subscript index difference between the WR
and the RD access statements.

Figure 2 shows a pattern that consists of N segments, and each segment has an SIR
and an ST. The pattern is repeated M times starting from the LB and terminates at UB.

We present several representative examples to illustrate the primitive pattern
formulation:

(1) Access statement: The primitive pattern consists of one part with SIR equal to the
IR and ST of A type. For instance, in Figure 3(a), the A behavior is valid for all
iterations of the loop structure. As the loop bounds are LB = 2 and UB = 10, the
IR is 7 and the pattern is {7A} with repetition factor R = 1.

(2) ECS condition: The pattern is similar to the previous example, but it has re-
duced SIR due to the condition. For instance, in Figure 3(b), the LB is derived
from the maximum value between the condition expression and the LB of the loop
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Fig. 3. Application code examples: access statement (a), ECS (b), ECH (c), and PCH (d).

structure—that is, LB = max(LBI, a) = max(2, 6) = 6, the UB is 10, the IR is 3, the
PS is 3, the R = 1, and the pattern is {3A}.

(3) ECH condition: The ECH pattern derives from the combined ECS conditions
through the pattern operation. For instance, in Figure 3(c), the condition expression
(i < 4)||(i > 6) creates two pattern ECS entries—that is, {1A} with LB = 2, UB = 4,
IR = 1, R = 1 and {3A} with LB = 6, UB = 10, IR = 3, and R = 1. By combining the
pattern entries, the result is {1A 3H 3A} with LB = 2, UB= 10, IR = 7, and R = 1.

(4) PCS condition: The pattern is similar to the ECS condition, but with a repetition
factor larger than one and length of the segment equal to the pattern size.

(5) PCH condition: The pattern depends on the conditions, as the PS is given
by the coefficient of the linear expression and the comparison operator de-
scribes the type of the segment. For instance, in Figure 3(d), the PS is
2, LB of the pattern is max(2, (2 ∗ 0 + 1 − 1) = max(2, 0) = 2, and the UB is
min(11, (2 ∗ 3 + 2 + 1) = min(11, 9) = 9. The IR = 6, PS = 2, R = 3, the first seg-
ment has length 1, and A as ST due to the == PCH type. The second segment is
PS − 1 with ST equal to H—that is, {1A 1H}. If the UB of iterator K is increased to
5, the pattern is {1A 1H} with R = 5, since the UB = 11.

In realistic applications, several control statements with complicated conditions and
access statements exist creating complex spaces. We discuss how our methodology
handles this in the next sections.

7. DEFINITION OF PATTERN OPERATIONS

In order to find the global memory access scheme, the patterns entries of the primitive
conditions and the access statements should be consistently combined. This section de-
scribes the different cases under which the patterns entries can be combined, described
in detail in Section 7.1, and defines scalable and near-optimal pattern operations per
combination case, described in Section 7.2.

7.1. Pattern Combination Cases

The possible combination cases of the patterns derive from analyzing the pattern for-
mulation and the target domain. Figure 4 depicts the pattern combination cases (white
boxes) and the corresponding pattern operations (gray boxes). In the next paragraphs,
the combination cases (text in bold) are described and linked with the corresponding
pattern operations (text in italic).

The first split is the overlapping or nonoverlapping patterns. The overlapping pat-
terns have segments that are referring to the same iterators and, potentially, describe
different access behavior. For instance, the patterns in Figure 3(a) ({7A} from i > 2 until
i < 10) and in Figure 3(d) ({1A 1H} for i > 3 until i < 9) are overlapping. The nonover-
lapping patterns describe the access behavior for different iterators. The nonoverlap-
ping patterns may be sequential—that is, one pattern describes up to the iterator value
x and the other pattern describes from x + 1 and so on. For the nonsequential patterns,
iterator values exists between them, which are not described by either pattern—that
is, one pattern describes up to the value x and the other pattern from x + y. The sequen-
tial nonoverlapping and the nonsequential nonoverlapping operations are described in
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Fig. 4. Set of possible pattern combination cases with the corresponding operations.

Section 7.2.1. The overlapping patterns are further divided into the cases with same
or different PS. In case of same PS, the patterns may be fully aligned or not aligned.
When the patterns are fully aligned, the LB and UB of the patterns are equal and the
primitive operations can be safely applied. The primitive operation can be an OR oper-
ation, which is explained in Section 7.2.2, or an AND operation, which is described in
Section 7.2.2. The result may require postprocessing due to the existence of sequential
segments of same behavior or repetition of a smaller pattern reducing the number of
pattern segments. The sequential segments of same behavior in the resulting pattern
are merged during OR/AND primitive operation execution. The merging of the first
segment and the last segment with same behavior is explored by the skewing opera-
tion, which is described in Section 7.2.3. For instance, the PCH={3A 4H 3A} is modified
to PCH′={4H 6A}. The repetition of a smaller pattern is explored by repetition search
operation, described in Section 7.2.4. If PCH={3A 4H 3A 4H} with R = 10, the PCH
is modified to PCH′={3A 4H} with R=20. When the patterns have the same PS and
are not aligned, LB or/and UB misalignment may exist. The LB alignment operation,
described in Section 7.2.5, is applied first. Then, the UB alignment operation is applied,
described in Section 7.2.5.

When the patterns have different PS, operations for modifying the pattern size are
applied. The Least Common Multiple (LCM) of the PS of the patterns is computed—for
example, when PS1 = 3 and PS2 = 4, LCM is 12. The LCM is marked as acceptable
when the modified PS, after unrolling based on the LCM, is quite low and, thus, not
close to enumeration of the iteration space. If the LCM is acceptable, a PS modification
operation, described in Section 7.2.6, is applied, which partially unrolls the patterns to
LCM size. If the LCM is not acceptable due to the number of the LCM pattern segments
and the LCM pattern size of the application under study, the OR and AND operations
should be performed avoiding enumeration. We propose search operations based on the
relative PS of the patterns. If one pattern has a relative small PS comparing with the
other pattern, two cases exist: the small pattern is a factor of the PS of the other pattern
(Divisible PS) or the PS of the patterns are Indivisible. In the first case, the regularity
small search operations of Section 7.2.9 are applied to search for subpattern repetition.
In the latter case, the subpattern search operations of Section 7.2.7 apply an iterative
partial OR between the small pattern and a segment of the other pattern and search
for repetition in the result. When both patterns have large PS, the PS of one pattern
(medium pattern) may be a factor of the PS of the other pattern (Divisible PS) or the PS
of the patterns are Indivisible. In the first case, regularity medium search operations of
Section 7.2.10 are applied to search for pattern repetition. The decomposition operation
to small patterns of Section 7.2.7 is introduced to split the medium pattern to smaller
patterns.
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Fig. 5. Result of nonoverlapping operations.

7.2. Pattern Operations

The next sections describe the pattern operations. The operations’ execution time de-
pends on the number of pattern segments n and not on the size of the application
loops, as happens with the enumeration approach. When the application code is writ-
ten, the designers do not fully unroll the large loops and use parametric conditions to
express several holes in space. As the number of primitive pattern entries is defined
by the number of condition and access statements in the loop kernel, it cannot be sig-
nificantly increased. Since the pattern operations over the pattern entries allow only
low unrolling factors to occur, the number of pattern segments will never increase to
unacceptable values due to the operations. In addition, the control mechanism of the
proposed methodology over the near-optimality ensures that the number of pattern
segments cannot be uncontrollably increased.

7.2.1. Nonoverlapping Operations. Nonoverlapping operations “virtually” join two pat-
terns (PCH1, PCH2) that refer to different iterators. It is virtual because the operation
does not modify the pattern entries and orders them in a sequence of patterns. The
LB and UB determine that the patterns are nonoverlapping. The OR primitive opera-
tion results to a pattern concatenation. The AND operation results to the null pattern
due to the nonoverlapping case. As the patterns are not modified, near-optimality
is maintained. The complexity is O(1). In the Sequential Operation, the UB of the
first pattern is equal to the LB of the second pattern. The OR operation results to
virtual pattern concatenation depicted in Figure 5(a). In case the patterns are the
same, one pattern entry is maintained with modified parameters. The Nonsequential
Operation is a virtual concatenation of the two patterns and a new segment with holes,
which is expressed in the operation by the difference of the loop bounds of the first and
the second pattern, as depicted in Figure 5(b).
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Fig. 6. Pseudocode of fully aligned OR operation.

7.2.2. Fully Aligned Operations. Fully aligned operations are applied to patterns with the
same PS and aligned bounds. The operations are applied segment by segment, thus the
complexity is O(n). As the PS is acceptable, the type of the segments is not modified,
maintaining near-optimality.

OR operation (|| ). The initial pattern entries (PCH1, PCH2) are removed from the
representation, and the resulting pattern entry (PCH) is inserted. The bounds and
the PS remain the same. The PCH depends on the type and the length of the initial
segments. The operation is iteratively applied segment by segment until the PCH
reaches the pattern size.

The pseudocode of the operation is described in Figure 6. In each iteration, an OR
operation is applied between a segment of the first and of the second pattern. The
segments length of the initial patterns is potentially modified, depending on the size
of the dominant type segment. In case the lengths of the two segments are equal, the
length of the segment in the resulting pattern is equal to SIR(PCH1). If the type of both
initial segments is H, the type of the resulting segment is also H. Otherwise, it is A.
When the lengths of the initial segments are different, the length of the result depends
on the segment types. If both segments are of H type, the length is defined by the
minimum segment length and the type is H. The segment with the large length is split
into two segments: one with length equal to the small length of the initial segments
and another segment with length equal to the difference of the lengths of the initial
segments (i.e., large(SIR)-small(SIR)) used in the next iteration. This modification is
depicted in Figure 7. The initial segments are depicted in Figure 7(a). Figure 7(b)
shows the PCH2 with the larger length split into a segment equal to the segment
length of PCH1 and a gray part left for the next iteration. If at least one segment has
A type, the type of the result is A. The length of the result segment depends on which
segment has PT=A. If the segment with the large length has A type, the length of the
resulting segment is equal to the large length. Then, the pattern with the small length
is modified: the SIR of the next segment is reduced by the difference of the SIRs, as
depicted in Figure 7(c). The next segment of the PCH1 is reduced by the gray part. If
only the segment with the small length is of A type, the segment length of the result is
the small length. The segment with the large length is split into a segment with length
equal to the small length for the current iteration and a part with length equal to the
SIRs’ difference. If the ST is equal to the ST of the previous PCH segment, the result
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Fig. 7. Fully aligned OR operation. (a) Two segments of the PCH1 and PCH2. (b) When ST of both segments
is H or the segment with the smaller SIR is A, the SIR of the result is equal to the small SIR. A new
next segment in the pattern with the larger SIR is created with SIR equal to the SIRs’ difference—that is,
large(SIR)-small(SIR). (c) When ST of both segments is A or the segment with the larger SIR has ST=A, the
SIR of the result is equal to the larger SIR. The SIR of the next segment of the pattern with the small SIR
is reduced by the SIRs’ difference.

is stored in one segment, reducing the total number of pattern segments. The process
is repeated for the next PCH1 and PCH2 segments.

AND operation (&&). The AND operation is similar to the OR operation, but with
adapted modification of the segments and the types of the patterns. When the length
of the segments of the initial patterns is the same, the length of the result segment is
equal to the initial length. If the type of the PCH1 and PCH2 segments is A, the type
of the result is A. If at least one of the initial segments has H type, the type of the
result is H. If the lengths of the initial segments are different, the length of the result
depends on the type. If both segments have A type, the result is the minimum segment
length and the ST is A. The segment with the large length is split into (1) one segment
with length equal to the small length and one segment with length equal to the lengths
difference. When at least one of the initial segments has ST of H type, the type of the
result is H. The length depends on which of the two initial segments has ST equal to H.
If the large length is H, the result is the large length. The length of the next segment
of the pattern with the small length is reduced by the difference of the SIRs. If only
the small length is of H type, the result is equal to the small length. The segment with
the large length is split into a segment with length equal to the small length and a
segment with length equal to the SIR difference. If the ST of the PCH segment is equal
to the ST of the previous PCH segment, the segments are stored as one segment. The
process is repeated for the next couple of initial segments.

7.2.3. Skew Operation. This operation merges the first and the last segment of a pat-
tern (PCH) when they have the same type. This results to reducing the number of
pattern segments by increasing their length. The ST of the segments is not modified,
maintaining near-optimality. The operation splits one instance of the pattern repetition
and extracts the first segment. The PCH is modified by combining the last segment
of the first instance with the first segments of the second instance, and so forth. An
additional pattern with the remaining segments of the final instance of the initial pat-
terns is created. As the segments are not traversed, the complexity is O(1). An example
is Figure 8, where the new ECS pattern entry (ECS1) describes the first segment of
the first instance of the pattern, the modified PCH (PCH’) with the first and the last
segments merged, and a new ECH (ECH2) that describes the remaining segments of
the last instance of the initial PCH. The new patterns are given by:
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Fig. 8. Example of applying the skew operation. The initial PCH pattern is {3A 2H 3A 5H 2A}; after applying
the skew operation, the ECS1, ECH2, and PCH’ are created.

(1) ECS1: {1SIR 1PT}, LB = LB(PCH), UB = LB + 1SIR + 1,
(2) PCH’: {2SIR 2PT . . . (NSIR+1SIR) NPT}, LB = UB(ECS1) − 1, UB = UB(PCH)−∑PCHParts

i=1 iSIR, R = R(PCH) − 1, and
(3) ECS2: {2SIR 2PT . . . NSIR NPT}, LB = UB(PCH′) − 1, UB = UB(PCH).

For instance, in Figure 8, the PCH is {3A 2H 3A 5H 2A} with LB = 0, PS = 15, R = 4,
and UB = 61. After skew operation, the ECS1={3A} with LB = 0, PS = 3, UB = 4, the
PCH’ is {2H 3A 5H 5A} with LB = 3, PS = 15, R = 3, and UB = 49, and the ECS2=
{2H 3A 5H 2A} with LB = 48 and UB = 61.

7.2.4. Repetition Search Operation. The repetition search operation searches the PCH to
identify repetition of smaller patterns inside PCH to reduce the number of segments.
The result is either a modified or not PCH pattern entry. The operation is applied
in groups of segments and is repeated for a small number of times—that is, half
the number of the pattern segments having O(nlog(n)) complexity. The potential new
internal pattern is initialized with the first two segments. The remaining segments are
compared in groups of two for potential repetition. The search continues by increasing
the new internal pattern by one segment and comparing the remaining patterns in
groups of three, and so forth. The operation terminates when the internal pattern
has half the initial pattern segments. The segment type is not modified, maintaining
near-optimality.

7.2.5. Alignment Operations. In alignment operations, the pattern is split into one pat-
tern aligned with the bound and one nonoverlapping sequential pattern. The new
patterns depend on where the bound cuts the pattern. As the operations are applied
over the segments, they have O(n) complexity. The segments type is identical to the
segments type of the initial pattern, maintaining near-optimality.

LB alignment. The operation may split the initial pattern (PCH) into four new pat-
tern entries, depending on the new LB position. After the operation, the initial pattern
entry is removed. When the bound cuts the PCH somewhere in the middle of the pat-
tern and in half of the repetitions, two pattern entries with repetition (i.e., PCH1 and
PCH2 in Figure 9(a)), and two pattern entries without repetition (i.e., ECH1 and ECH2
in Figure 9(a)) are created. The PCH is explored segment by segment to define the new
patterns, thus the complexity is O(n). The PCH section on the left of the bound has
size equal to (bound + 1) − LB(PCH) − 1. If this size is larger than two times the PS,
a pattern with repetition (PCH1) occurs with lower bound equal to LB(PCH), repeti-
tion factor equal to (int) IR

PS , and upper bound equal to LB+ R ∗ PS + 1. The cut of the
PCH creates the ECH1 and ECH2 patterns. The PCH segments are traversed to find in
which segment the bound cuts the pattern (PartBound). The ECH1 segments are the seg-
ments before the bound, and ECH2 has the segments after the bound. The ECH1 has
LB equal to the maximum value of the UB(PCH1) − 1 and the LB(PCH) and UB equal
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Fig. 9. LB alignment. (a) General case. The PCH is the initial pattern, and the bound is the new LB. The
result creates the PCH1, ECS1, ECS2, and PCH2. The right section is skewed to align the PCH2 to the
bound. (b) Example. The PCH is {3A 3H 2A 4H}, and the bound is 25.

to bound+1. To align the LB of the initial pattern, the ECH2 is moved after the PCH2
by skewing the PCH2. The skewed PCH2 pattern (i.e., PCH2’ in Figure 9(a)) is {ECH2
ECS1}, the LB is equal to the bound, and the UB is given by R2 ∗ PS + bound + 1. The
ECH2 has LB equal to R2 ∗ PS + bound and UB equal to the UB(PCH). A degenerate
case exists when the bound is a factor of the pattern size of the PCH. The PCH is split
into PCH1 and PCH2 patterns with same segments. The PCH1 has LB equal to the
LB(PCH), UB equal to bound+1, and repetition factor equal to IR(PCH1)

PS . The PCH2 has
LB equal to bound, UB equal to the UB(PCH), and R = IR(PCH2)

PS . An example is {3A
3H 2A 4H} of Figure 9(b). The LB = 0, UB = 61, R = 5, PS = 12, and bound at 25.
The LB alignment operation splits the pattern to {1A} | {2A 3H 2A 4H}. The PCH1
is {3A 3H 2A 4H} with LB = 1, UB = 2 ∗ 12 + 1 = 25, R = 2, IR = 24, PS = 12. The
ECS1={1A} with LB = 24, UB = 26, R = 1, PS = 1. The ECS2 is {2A 3H 2A 4H}. The
PCH2 is skewed to PCH2’={2A 3H 2A 4H 1A}, as depicted in Figure 9(c). The PCH2’
has LB = 25, UB = 50, R = 2, PS = 12. The ECS2 has LB = 49, UB = 61, PS = 11,
and R = 1.

UB alignment. As the operation is applied after LB alignment, the LBs are already
aligned. Since the PS of both patterns is the same, the position of the new aligned UB
(i.e., the smaller UB) is always a factor of the PS. Hence, the pattern is not modified.
The initial PCH pattern entry is split into two new pattern entries describing the left
and the right section of the new bound without traversing the patterns. Hence, the
complexity is O(1). The LB of the left pattern is the LB(PCH), the UB is the new UB,
and the repetition factor is IR(PCH1)

PS . The remaining pattern has LB equal to the bound-1,
UB equal to the UB(PCH), and the repetition factor is IR(PCH2)

PS . Both new patterns
can be a PCH1 (R > 1) or an ECS1 (R = 1). The ST is not modified, maintaining
near-optimality.

7.2.6. PS Modification Operation. When the LCM of the pattern sizes is acceptable (i.e.,
has a low value avoiding enumeration), the pattern entries are modified to have size
equal to the LCM. The new size is achieved by unrolling each pattern by the required
Unrolling Factor (UF), which is quite low because of the acceptable LCM. The UF
for a pattern PCH derives from UF(PCH) = LCM

PS(PCH) , thus the complexity is O(1). The
pattern is modified by inserting UF(PCH) times the initial pattern and updating the R
to R(PCH)

UF(PCH) . The segments of the patterns are not modified, and thus near-optimality is
not affected. For instance, the PCH1 is {2A 2H} with PS = 4, R = 30, and PCH2 is
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{2A 1H} with PS = 3 and R = 20. The LCM is 12. The modified patterns are PCH1=
{2A 2H 2A 2H 2A 2H} with PS = 12, R = 10 and PCH2={2A 1H 2A 1H 2A 1H 2A 1H}
with PS = 12, R = 10.

7.2.7. Subpattern Search Operation. The operation is applied between a pattern with
small PS and a pattern with large PS with nonacceptable LCM. If a primitive opera-
tion is fully applied, it requires a high UF leading to results close to enumeration. To
maintain scalability, the subpattern search operation is proposed, which applies the
operation in sections. It searches for repetitive subpatterns in the complete result of
the operation, but without computing the complete operation result with unacceptable
size. The initial pattern entries are removed, and the new pattern entries are inserted,
which describe the subpatterns. The operation is applied in iterations where a subpat-
tern is explored. The subpatterns are described by the segments where the result is
not defined upfront. For instance, for the OR operation, the result may not be A only
in the positions where both segments have ST=H. Hence, it is sufficient to search for
subpatterns with segments of H type. We present the OR operation, but a similar rea-
soning holds for the AND. In each iteration, the small pattern and a section of the large
pattern with size equal to the small pattern are explored. The exploration is performed
in a finite set of positions. Variable x defines the starting point of the positions—that is,
the start of the large pattern section. To define the complete section, we start from the
x position and add segments from the large pattern until the section size is equal to the
small PS. Then, the OR operation is applied between the small pattern and the section.
If the subpattern contains H, the x position and the subpattern are stored. If the sub-
pattern already exists, only the x position is stored and the R is increased. The process
has exploration time O(nlog(n)), as for each subpattern, the previous subpatterns are
searched to find if the subpattern exists. Then, the repetition period of the subpatterns
is computed, which affects the near-optimality. If the subpattern is not repetitive or
with a low R, it can be assumed as accesses. The gain of nonrepetitive patterns cannot
be compensated with the significant overhead in the address generation. In this way,
we control the introduced near-optimalities. If the subpattern starting positions are
regular, the subpattern is maintained with LB = min(x) and UB = R ∗ PS. Otherwise,
the subpattern is split to smaller subpatterns and regularity is explored. The process
is repeated few times—that is, from small PS(sub − pattern) up to a PS equal to 2 (i.e.,
O(n)). Hence, the operation complexity is O(nlog(n)).

7.2.8. Decomposition to Small Patterns Operation. This operation is similar to the subpat-
tern search operation but applied for patterns with large PS. The operation is applied
in iterations with complexity is O(nlog(n)). In each iteration, the operation is applied
between the medium pattern and a section of the large pattern of medium size. The
positions that are searched are factors of the medium PS. If the resulting pattern con-
tains H, the start position and the resulting pattern (small pattern) are stored. If the
small pattern has been already identified, the new start position is stored and the R
is increased. The repetition period is also computed. If the small pattern is not repeti-
tive (or has a low R), it can be assumed as virtual accesses due to address generation
overhead. These cases are few in number, due to low repetition factor. In this way, the
methodology controls the near-optimalities.

7.2.9. Regularity Small Search Operation. This operation is applied when the LCM is not
acceptable for a small and a large pattern and the PS of the small pattern is a factor
of the PS of the large pattern. The potential repetition of smaller patterns in the
result is explored. The operation is applied in pattern sections in a similar way to
the postprocessing repetition search, which, however, is applied in pattern segments.
Hence, the complexity is O(nlog(n)). The potential repetitive pattern is computed by a
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partial OR operation between the first small pattern and a section of the large pattern,
with size equal to the small PS. The next candidate to be searched is computed by a
partial OR operation between the second small pattern and the corresponding large
pattern section. If the result is equal to the first result, the pattern is repetitive. The
next iteration searches the remaining sections. Otherwise, the potential repetitive
pattern is increased by one small pattern (until half the size of the large pattern)
and the process is repeated. The scalability is maintained, as the operation is applied
in a few pattern sizes (PScnt) each time and in a limited set of specific positions in
the large pattern (POScnt). When scaling up the size, PScnt and POScnt will not rise
proportionally in practical cases.

7.2.10. Regularity Medium Search Operation. The operation is similar to the regularity
small search operation, but it is applied when both patterns are large and uses the
medium pattern in the position of the small pattern.

8. FINAL SEQUENCE OF PATTERNS AND ARRAY WINDOW

This section describes how the proposed representation is used to compute the array
window size for the problem under study in Section 4. Each primitive condition and
access statement is described by a pattern entry. Pattern operations over pattern
entries are applied to combine them in space and create a final sequence of pattern
entries. When several access statements exists, the relevant pattern entries are com-
bined by applying the OR operation. The array window derives from the summation of
the lengths of the segments with A behavior in the final sequence of patterns entries.
To compute the final sequence of patterns, the operations are applied on a sorted list
of pattern entries in increasing LBs and in increasing IR, as second criteria. The first
and the second pattern entries are selected, and their parameters are compared to
decide in which pattern combination case they belong. Initially, the PS of the patterns
are compared. When the patterns have different PS, the pattern with the larger PS
is defined (max pattern). The Greatest Common Divisor (GCD) and the LCM of the
pattern sizes are computed. If the LCM has a value that is lower than the acceptable
LCM threshold, the acceptable LCM case is active and the PS modification operation is
applied over the pattern entries. If the LCM is not acceptable, the PS of both patterns
is compared with the PS threshold to distinguish between the Large PS and the Small
PS cases. The value of the GCD decides between the Divisible PS case (GCD>1) or
the Indivisible PS case (GCD=1). When the patterns have the same PS, potential
overlapping of the patterns is explored. When the sum of the LB and the IR of the
PCH1 is larger than the LB of the PCH2, the overlapping case is active. To distinguish
the different overlapping cases, the sum of the LB and IR of the two patterns are
compared. If they are different, the patterns are not aligned. The LBs and the UBs are
respectively compared to define where the misalignment occurs. In the UB alignment
case, the repetition factor is compared to define the larger pattern. When the sums
of the LB and IR of the two patterns are equal, the fully aligned case is active. Based
on the type of the primitive operation, the OR or AND case is selected. When the sum
of the LB and IR of the PCH1 is equal to the LB of the PCH2, the active case is the
nonoverlapping sequential patterns. When the sum of the LB and IR of the PCH1 is
less than the LB of the PCH2, the active case is the nonoverlapping nonsequential pat-
terns. The corresponding operations are performed in the way described in Section 7.2.
The resulting pattern is stored, and the initial patterns are removed from the sorted
list. The new patterns created during the pattern operation are also sorted in the list.
The process is repeated until the list has a sequence of nonoverlapping pattern entries.

After the computation of the final sequence, it is used to find the number of concurrent
alive elements. For the nonoverlapping intrasignal in-place case of one dimension, each
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segment in the pattern sequence with a ST equal to A has elements that are accessed
and thus are required to be stored. The segments with H behavior describe zero resource
requirements. The repetition factor describes the times each PCH pattern is applied in
the iteration space. The array window is given by Equation 1.

SizeA =
NumPCH∑

j=0

Segments( j)∑

i=0

SIR(i)(PT==A) ∗ R +
NumECH∑

j=0

Segments∑

i=0

SIR(i)(PT==A) (1)

9. EVALUATION

This section uses a case study to demonstrate the proposed representation and presents
evaluation results for the case study and for several benchmarks.

9.1. Demonstration Case Study

This section demonstrates how the proposed pattern representation is applied to find
the sequence of pattern entries. The application code consists of two for nested loops
and three manifest conditions over the iterator I, as depicted in Figure 10. For the
PCH conditions (I ≥ 8K)&&(I ≤ 8K + 2)&&(I < 1024), the LB of loop I is defined
by LB = max(−1, 8 ∗ (LBK + 1) − 1) = max(−1,−1) = −1, and the UB is defined by
UB = min(1,024, 8 ∗ (UBK − 1) + 8= min(1,024, 8(256 − 1) + 8) = 1,024. The PCH con-
dition i == 4k + 1 has LB = max(−1, 4 ∗ (LBk + 1) + 1 − 1) = max(−1, 0) = 0. The UB
is defined by UB = min(1,025, (LBk + 1) + 4 ∗ (UBk − 1) + 4=min(1,025, 1 + 4(256 − 1) +
4)=1,025. Figure 10(a) schematically depicts the patterns of the three conditions. The
OR primitive operation is applied between the patterns. The result of merging PCH1
and PCH2 is merged with ECS1. The PCH1 and PCH2 have different PS—that is,
PS(PCH1) = 8 and PS(PCH2) = 4, with an acceptable LCM (i.e., 8). The pattern PCH2
is modified to PCH2’ by applying the PS modification operation, as depicted in Figure
10(b). The PCH1 and new PCH2 patterns have both the LB and the UB not aligned.
First, the LB alignment operation is applied. The result is depicted in Figure 10(c).
The PCH1 has been divided into an ECS2, an ECS3, and a new PCH1 (PCH1’). The
UB of the PCH2’ is aligned in order to create two fully aligned patterns. The result
is depicted in Figure 10(d), where UB of PCH2’ has been reduced to the UB(PCH1′)
and a new ECS4 has been inserted. The PCH1 and PCH2 are fully aligned and the OR
operation is applied in Figure 10(e). The ECS conditions are also merged to compose
the final sequence of patterns (Figure 10(f)). The array window is given by the A in the
final sequence—that is, 1 + 1,024/8 ∗ (2 + 1 + 1) + 3.

9.2. Results

To evaluate the performance of the proposed methodology, we compare it with ap-
proaches that are applicable in both regular and irregular iteration spaces—that is,
enumerative, symbolic, and approximation approaches. The enumerative approach
uses explicitly each access to compute the array window by consistently adding the
accesses taking into account all of the read statements. Hence, the enumerative ap-
proach has optimal results. The symbolic approaches derive from polytope approaches
using barvinok/polylib tool [Verdoolaege 2013] using linear equations to describe the
space. An approximation approach to estimate an upper storage size bound in ISH cases
derives from approximating the H of the patterns with A (i.e., solidifying the explo-
ration window), which is similar to the approximation of nonuniform access described in
Ramanujam et al. [2001]. The upper bound is given by Size = max(UBx) − min(LBx)+
1, where LBx = fx(i = LBi, j = LBj, . . .), UBx = fx(i = UBi, j = UBj, . . .), and fx is in-
dex expression of each access. This approach mimics an approximation applied by the
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Fig. 10. Computing storage requirements: application code (a); initial patterns of primitive conditions (b);
new PCH2 after PS modification operation (c); new PCH1, ECS2, and ECS3 after LB alignment operation
(d); new PCH2 and ECS4 after UB alignment operation (e); result pattern after fully aligned OR operation
(f); and final sequence describing the storage requirements (g).
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Table II. Comparison Results: Demonstration Case Study, PolyBench(1) and MiBench(2)

Near-Optimal Approx.
Bound Size Execution Time (ms) Size

Alg.: Array (init.bounds) Inc.Factor (Elem.) Proposed Polytopes Enumerative (Elem.)
Demonstration case: A
(64)

1 32 0.799 50 0.487 507
3 128 0.804 56 1.694 2,043
5 512 0.798 56 6.308 8,187
7 2,048 0.810 59 25.776 32,763
9 8,192 0.793 60 97.852 131,067
11 32,768 0.796 58 395.624 524,283
13 131,072 0.793 59 1,629.237 2,097,147

Correlation: data (1) (32) 1 0.25M 0.343 29 2,886.159 0.25M
2 1M 0.340 30 11,732.231 1M
3 4M 0.337 30 48,614.943 4M
4 16M 0.347 29 188,547.256 16M
5 64M 0.333 30 780,152.034 64M
6 256M 0.345 29 - 256M

Jacobi-1D: A (1) (500) 1 1,004 0.674 69 5.428 1,004
2 2,004 0.660 68 9.998 2,004
3 4,004 0.676 68 21.646 4,004
4 8,004 0.664 70 40.701 8,004
5 16,004 0.656 68 78.056 16,004
6 32,004 0.658 69 159.161 32,004

Blowfish Decode/Encode:
p (2) (2,048)

1 256 0.146 30 6.899 2,040
7 1,792 0.149 31 45.805 14,328
13 3,328 0.148 29 86.228 26,616
19 4,864 0.149 30 120.938 38,904

-:Memory Error produced during simulation.

symbolic/polyhedral approaches, which computes the size by creating the convex hull
in the iteration space between the WR and the RD of the elements. For instance, in
Figure 1(b) the polyhedral approaches approximate the 2×2 and 1×2 holes by accesses
to have a convex hull 11×5. We implemented the proposed representation and the
enumerative approach for the nonoverlapping intrasignal in-place optimization step
into a Python framework. Code parsing is manually applied in the relevant part of
the original code (i.e., the condition statements, the access statements and the loop
structure) to derive the initial primitive patterns. The framework takes as input the
patterns with the lower and upper bounds of the loops per dimension and creates
the patterns entries. The framework sorts the patterns, decides which pattern oper-
ations would be applied, and applies them to create the final pattern sequence. The
array window is computed based on the different nonoverlapping intrasignal in-place
cases. We performed experiments for a set of arrays from benchmarks of the PolyBench
[Pouchet et al. 2012], which describe regular spaces, and the MiBench [Guthaus et al.
2001], selected to have ISH to evaluate both the exploration time and the quality of
the results in regular and irregular iteration spaces. For each benchmark, we explore
different loop bounds by applying a factor in order to increase the number of accesses
exploring scalability. The results for the demonstration case study, the PolyBench and
the MiBench, are depicted in Table II. The results for MediaBench are depicted in
Table III. From the experimental results, it is shown that the proposed methodology
achieves optimal results. Only few parameters are changed (i.e., R, UB and IR), not
affecting the exploration time, which remains stable as the loop bounds are increased.
The exploration times for the proposed methodology are quite close to each other for
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Table III. Comparison Results for MediaBench

Near-Optimal Approx.
Alg.: Array
(init.bounds)

Bound
Inc.Factor

Execution Time (ms)
Size (Elem.) Proposed Polytopes Enumerative Size (Elem.)

Jpeg-
Decode&Quant.:
DCTblock (256)

1 7,680 0.148 29 34.667 10,239
5 38,400 0.149 29 162.533 51,199
9 69,120 0.147 30 281.893 92,159
13 99,840 0.145 29 413.799 133,119

Epic: image (240) 1 4,257 0.527 125 101.116 11,520
3 34,609 0.524 127 3,888.289 522,016
5 138,673 0.529 125 64,824.346 7,986,208

Mpeg: curr_frame
(64×32)

1 34,833 1.801 84 852.955 65,537
2 69,649 1.840 84 1,703.624 131,073
3 139,281 1.806 86 3,317.909 262,145
4 278,545 1.813 87 7,167.751 524,289

Motion
estimation-full
pel: p1/p2 (32)

1 3,576 0.147 31 51.922 12,759
2 11,512 0.146 29 232.104 65,991
3 39,672 0.147 30 1,399.778 389,031
4 145,144 0.147 28 9,093.884 2,589,543
5 552,696 0.146 32 66,325.246 18,713,319
6 2,154,232 0.147 29 — 141,892,071

Motion
estimation-half
pel: p1/p2 (272)

1 40,800 0.149 58 2,181.419 657,152
2 79,200 0.151 58 8,034 2,492,160
3 156,000 0.149 59 34,129.439 9,701,120
4 309,600 0.149 60 133,794.569 38,274,816
5 616,800 0.148 57 — 152,045,312

Motion
estimation-half
pel: p1a (272)

1 27,200 0.157 92 2,239.512 657,183
2 52,800 0.154 89 8,325.536 2,492,191
3 104,000 0.159 94 36,410.136 9,701,151
4 206,400 0.156 93 129,134.210 38,274,847
5 411,200 0.165 90 — 152,045,343

Pgp-outdec: p
(128)

1 4,096 0.149 32 45.23 6,144
6 131,072 0.149 31 683.534 196,608
11 4,192,304 0.146 29 21,838.798 6,291,456
16 134,217,728 0.150 32 — 201,326,592

-:Memory Error produced during simulation.

all benchmarks, which is a very promising indication for the limited complexity of our
approach. The cases where the time is slightly increased is when more operations are
required—for example, increased number of patterns that are misaligned (benchmarks
demonstration case study, epic, mpeg). The exploration time of enumerative approach
is highly coupled with the number of accesses. The Symbolic/polytope approaches use
a set of linear equations that is not modified with an increase over the loop bounds. We
observe a gain in exploration time of two orders of magnitude compared with the poly-
tope approach. The approximation leads to high quality loss depending on the number
of holes considered as accesses.

Figure 11(a) experimentally describes the exploration time of the proposed method-
ology relative to (1) an increase factor in the loop bounds (dark gray line) and (2) an
increase factor in the number of patterns (i.e., access or condition statements) in the
kernel, for benchmark Blowfish-decode/encode. The corresponding exploration times
of the enumerative approach are depicted in Figure 11(b). It is verified that the ex-
ploration time of the enumerative approach is highly increased with the loops bounds,
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Fig. 11. Exploration time comparison (1) when the loop bounds are increased and (2) when the number of
patterns in one iteration of the application are increased.

Fig. 12. Exploration time comparison of proposed methodology and barvinok/polylib when the number of
accessed regions in one iteration of the application are increased.

whereas the exploration time of the proposed approach remains stable, as the pat-
tern are not modified. When the number of patterns is increased, the exploration time
of the enumerative approach is significantly increased, whereas the exploration time
of the proposed technique is lower by two orders of magnitude. In realistic applica-
tions, the number of patterns is not significantly high, as it is defined by the number
of condition and access statements and the pattern operations control the number of
new inserted patterns. We also compare the times of the proposed methodology and the
symbolic/polytope approaches, as depicted in Figure 12. When the number of accessed
regions is increased, the proposed methodology has at least a gain of two orders of
magnitude compared to the polytope approaches. As the symbolic approaches do not
provide mechanism to trade off between the exploration time and the optimality of the
solutions, they cannot control the exploration time of their approach when the number
of required linear inequalities to describe the space is highly increased.

10. CONCLUSIONS

This work presents a near-optimal and scalable representation of memory accesses
that is applicable for iteration spaces with regular and irregular holes. The proposed
methodology (1) introduces the patterns to describe the condition and the access
statements, (2) defines the pattern combination cases and presents scalable and
near-optimal operations, and (3) applies the patterns and the operations to compute
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the maximum number of concurrent alive elements. The results demonstrated that
the proposed methodology achieves near-optimal results in low time. The proposed
memory accesses representation is useful for the back end of compilers to explore
optimizations to reduce the memory size and the transfers in the memory hierarchy
and for the memory data layout.
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A. Grösslinger. 2009. Precise management of scratchpad memories for localising array accesses in scientific
codes. In Proceedings of the International Conference on Compiler Construction. Springer, Berlin, 236–
250.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. 2001. MiBench: A free,
commercially representative embedded benchmark suite. In Proceedings of the International Workshop
on Workload Characterization. IEEE, Washington, DC, 3–14.

B. Jang, D. Schaa, P. Mistry, and D. Kaeli. 2011. Exploiting memory access patterns to improve memory
performance in data-parallel architectures. TPDS 22, 105–118.

T. Janjusic, K. M. Kavi, and B. Potter. 2011. Gleipnir: A memory analysis tool. In Proceedings of the Interna-
tional Conference on Computational Science. Springer, Netherlands, 2058–2067.

P. K. Jha and N. D. Dutt. 1997. Library mapping for memories. In Proceedings of EDAC. IEEE, 288.
M. T. Kandemir. 2001. A compiler technique for improving whole-program locality. SIGPLAN Not. 36, 3,

179–192.
P. G. Kjeldsberg, F. Catthoor, and E. J. Aas. 2003. Data dependency size estimation for use in memory

optimization. TCAD 22, 908–921.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 13, Publication date: February 2014.



A Scalable and Near-Optimal Representation of Access Schemes for Memory Management 13:25

P. G. Kjeldsberg, F. Catthoor, and E. J. Aas. 2004. Storage requirement estimation for optimized design of
data intensive applications. ACM TODAES 9, 2, 133–158.

A. Kritikakou, F. Catthoor, V. Kelefouras, and C. Goutis. 2013a. Near-optimal & scalable intra-signal in-place
optimization for non-overlapping & irregular access schemes. ACM TODAES 19, 1, Article 4.

A. Kritikakou, F. Catthoor, V. Kelefouras, and C. Goutis. 2013b. Scalable & near-optimal array size under
overlapping & irregular accesses. IEEE Trans. Comput. Under revision.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. 1997. MediaBench: A tool for evaluating & synthesizing
multimedia & communications systems. In Proceedings of MICRO. IEEE, 330–335.

S.-T. Leung and J. Zahorjan. 1995. Optimizing Data Locality by Array Restructuring. Technical Report.
P. E. R. Lippens, J. L. Van Meerbergen, W. F. J. Verhaegh, and A. Van Der Werf. 1993. Allocation of multiport

memories for hierarchical data stream. In Proceedings of CAD. IEEE, 728–735.
C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. f. Lowney, S. Wallace, V. Janapa Reddi, and K. Hazelwood.

2005. Pin: Building customized program analysis tools with dynamic instrumentation. SIGPLAN Not.
40, 6, 190–200.

M. Martonosi, A. Gupta, and T. Anderson. 1992. MemSpy: Analyzing memory system bottlenecks in pro-
grams. SIGMETRICS Perform. Eval. Rev. 20, 1, 1–12.

D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. 1993. Array-data flow analysis and its use in array priva-
tization. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 2–15.

L. Nachtergaele, I. Bolsens, and H. De Man. 1992. A specification and simulation front-end for hardware
synthesis of digital signal processing applications. Int. J. Comp. Simulation 2, 213–229.

O. Ozturk, M. Kandemir, and G. Chen. 2008. Access pattern-based code compression for memory-constrained
systems. ACM Trans. Des. Autom. Electron. Syst. 13, 4, 60:1–60:30.

Y. Paek, J. Hoeflinger, and D. Padua. 2002. Efficient and precise array access analysis. ACM TOPLAS 24, 1,
65–109.

K. V. Palem, R. M. Rabbah, V. J. Mooney, P. Korkmaz, and K. Puttaswamy. 2002. Design space optimization
of embedded memory systems via data remapping. In Proceedings of LCTES. ACM, 28–37.

P. R. Panda, N. D. Dutt, and A. Nicolau. 1999. Local memory exploration and optimization in embedded
systems. TCAD 18, 1, 3–13.

P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni, A. Vandercappelle, and P. G.
Kjeldsberg. 2001. Data and memory optimization techniques for embedded systems. ACM Trans. Des.
Autom. Electron. Syst. 6, 2, 149–206.

L. N. Pouchet, J. Cavazos, and S. Grauer-Gray. 2012. PolyBench/C:The Polyhedral Benchmark Suite. Re-
trieved from http://www.cse.ohio-state.edu/∼pouchet/software/polybench/.

J. Ramanujam, J. Hong, M. Kandemir, and A. Narayan. 2001. Reducing memory requirements of nested
loops for embedded systems. In Proceedings of DAC. ACM, 359–364.

S. Rubin, R. Bodı́k, and T. Chilimbi. 2002. An efficient profile-analysis framework for data-layout optimiza-
tions. SIGPLAN Not. 37, 1, 140–153.

R. Seghir, V. Loechner, and B. Meister. 2012. Integer affine transformations of parametric polytopes and
applications to loop nest optimization. ACM TACO 9, 2, 8:1–8:27.

Z. Shen, Z. Li, and P.-C. Yew. 1990. An empirical study of Fortran programs for parallelizing compilers. Trans.
Parallel Distrib. Syst. 1, 356–364.

B. So, M. W. Hall, and H. E. Ziegler. 2004. Custom data layout for memory parallelism. In Proceedings of
ISSGO. IEEE, 291.

S. Verdoolaege. 2013. Barvinok. Retrieved from http://barvinok.gforge.inria.fr/.
M. Swaaij, F. Franssen, F. Catthoor, and H. De Man. 1992. Automating high level control flow transformations

for DSP memory management. In Proceedings of the Workshop on VLSI Signal Processing. IEEE, 397–
406.

T. Van Achteren and R. Lauwereins. 2000. Systematic data reuse exploration methodology for irregular
access patterns. In Proceedings of the International Symposium on System Synthesis. IEEE, 115–121.

S. Wuytack, J.-P. Diguet, F. Catthoor, and H. De Man. 1997. Formalized methodology for data reuse explo-
ration in hierarchical memory mappings. In Proceedings of ISLPED. IEEE, 30–35.

S. Wuytack, J.-P. Diguet, F. Catthoor, and H. De Man. 1998. Formalized methodology for data reuse explo-
ration for low-power hierarchical memory mappings. TVLSI 6, 4, 529–537.

Received November 2013; accepted January 2014

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 13, Publication date: February 2014.

http://www.cse.ohio-state.edu/protect $elax sim $pouchet/software/polybench/
http://barvinok.gforge.inria.fr/.

