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This paper provides a way to think formally about the aggregation processes that take
place in networks where individual actors (whether sensors, robots, or people) possess
data whose value may decay over time. The various actors use data to make decisions: the
larger the value, the better (i.e. more informed) the decision. At every moment, individ-
ual actors have the choice of making a decision or else to defer the decision to a later time.
However, the longer they wait, the lower the value of the data they hold. To counter-balance
the effect of time discounting, we define an algebraic operation that we call aggregation,
whereby two or more actors integrate their data in the hope of increasing its value.

Our main contribution is a formal look at the value of time-discounted information and
at the algebra of its aggregation. We allow aggregation of time-discounted information to
proceed in an arbitrary, not necessarily pairwise, manner. Our model relates aggregation
decisions to the ensuing value of information and suggests natural thresholding strategies
for the aggregation of the information collected by sets of network actors. Extensive simu-

lations have confirmed the accuracy of our theoretical predictions.

I. Introduction

The designers of mission-oriented systems know that
timely information aggregation is important, but they
do not have an obvious way of measuring its value.
There is a good reason for this: aggregation is a com-
plex concept whose semantics are time-driven and
context-dependent. Yet failure to aggregate informa-
tion in a timely manner may have catastrophic con-
sequences: terrorists penetrate our perimeters, natural
disasters overwhelm local governments, and foreign
hackers tamper with our national infrastructure.

The value of information has been a perennial topic
of research in economics [11]. The economic argu-
ment is that information is a good that has value and
hence can be traded [7]. Moreover, this value is of-
ten subject to deteriorating over time [2]. In the light
of this, it is somewhat surprising that the dynamics of
information deterioration over time has received very
little attention in the literature [4].

It has long been recognized that assessing the value
of time-discounted information is hard to evaluate be-
ing too dependent on subjective human valuation [3].
It is, thus, important to consider formal ways of defin-
ing the aggregation of time-discounted information so
that aggregation might be better described and under-
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stood. This may lead to better designs for mission-
oriented systems.

Against the backdrop of time pressure is the act of
aggregation itself. While it is commonly accepted that
the value of information often increases as a result of
aggregation, almost nothing is known about the dy-
namics of aggregation and about the value of the re-
sulting information, especially in the presence of time
discounting.

The main contribution of this work is to provide a
theoretical base upon which decisions about informa-
tion aggregation can be made, measurements taken,
and experiments performed. More specifically, our
main contribution is a formal look at time-discounted
information and at the algebra of its aggregation. In
addition, this work suggests decision strategies for the
aggregation of the information collected by sets of ac-
tors, whether sensors, robots, or people.

Our results find applications to fields in which hy-
brid networks of humans and machines need to be
formed, such as mobile ad hoc and sensor network de-
signs deployed in support of various missions. In both
areas, there is a strong need to model not only aggre-
gation, but also the dynamics of aggregation, as the
links between different nodes shift in response to the
actions of the network actors, who are in turn shaped
by the mission at hand [8].

While our results have a wide applicability, we use
sensor networks as an illustration of the concepts we
discuss. This choice was suggested, in part, by the fact
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that sensor networks are key ingredients in mission-
oriented systems, and also by the fact that in these
networks the value of the information often changes
so rapidly as to defy deterministic modeling [6].

The remainder of the paper is organized as follows:
Section II presents our motivating scenarios. We dis-
cuss our assumption about aggregation dynamics in
Section III. Further, Section IV provides a formal-
ism for time-discounted information. Section V inves-
tigates the aggregation operator independent of time
discounting. Section VI introduces in a formal way
the algebra of aggregation. Next, Section VII dis-
cusses aggregation in conjunction with the effect of
time discounting. In Section VIII we put our theoreti-
cal results to work by considering a simple but realis-
tic aggregation scenario. In Section IX, we present our
simulation results. Finally, Section X offers conclud-
ing remarks and directions for future investigations.

II. Motivating Scenarios

Consider a sensor network deployed with the specific
mission of protecting a power plant. The informa-
tion about a possible attack on the power plant will be
more valuable the less it is delayed. It will lose value
continuously as there will not be adequate time to pre-
pare. Thus, there are powerful incentives for reporting
an attack as soon as possible. However, the cost of a
false alarm is considered to be prohibitive in terms of
the amount of human attention it requires. Thus, there
are powerful incentives for aggregating individual ac-
tor information before reporting.

To begin, imagine that the power plant is threatened
by an intruder who intends to sabotage the turbines.
Again, the less delay in the information about the in-
trusion event, the better. The sensors that have de-
tected the event need to decide whether to report an
intrusion (and risk triggering a false alarm) or wait
until several other sensors have corroborated the in-
trusion. With each moment of delay in notification of
the intrusion, the ability to find the intruder decreases,
as the intruder may be moving, and the area to search
increased quadratically in the time since detection.

Next, imagine a foreign hacker who launches an at-
tack on the network equipment controlling the power
plant. The earlier the cyber-attack is detected, the
higher the chance of thwarting the intruder. But as
time goes on, the worse the attack gets. This type of
cyber-attack may well double or triple the malicious
network traffic with each time increment. Thus, the
value of the information to the decision maker will
deteriorate rapidly, as it becomes harder and harder to

fight the attack as the network becomes overwhelmed.

The common characteristic of all the above scenar-
ios is that getting information quickly has value. On
the other hand, there are costs associated with obtain-
ing information.

III. Aggregation dynamics

We assume a set of actors associated with particular
pieces of information. This may be both sensor net-
works, where the actors are sensors, and social net-
works, where the actors are people. Computer net-
works can also be modeled in this way. Such situ-
ations are complex, with new and emerging external
inputs, feedback loops, etc. Here we simplify by con-
sidering a situation in which the network actors have
values, which are deteriorating with time, and must
decide to aggregate or not with others. There are pow-
erful incentives for aggregation. For example, indi-
vidual actors may report an event based solely on the
information they hold but they risk reporting a false
positive. In many systems, the cost of a false alarm
is considered to be prohibitive and must be avoided.
On the other hand, aggregation involves costs, too.
Chief among these costs is inter-actor communication
which, in wireless environments, may be high. Also,
aggregation takes time and during this time the value
of the information continues to decay. As a result, oc-
casionally, aggregation may not return as much value
as it costs to perform the aggregation [10].

IV. Time-Discounted Information

Before we begin, we feel it is important to point out
that in this paper we do not distinguish between raw
data and processed data, using the term information
for both. We trust that the context will disambiguate.

The phenomena we discuss occur in continuous
time. Consider an arbitrary sensor and let X be the
random variable that describes the “amplitude” of the
sensed attribute. To specify that the sensor has col-
lected the data at time r we shall write X (r) and refer
to it as the value of the data at time r. To avoid trivi-
alities, in the sequel of this work we shall assume that
X(r) #0.

In general, the value of information may decay with
time. In its most general form, for ¢ > 7, the dis-
counted value, X (t), of X (r) at time ¢ is given by

X(t) = X(r)g(r,t) (D

where g : RT U {0} x RT U {0} — [0, 1] is referred
to as a discount function.
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In a variety of practical applications, the discount
function in (1) is, actually, a function of the difference
t —r only, that is, a function of the difference between
the time of data collection and the current time. With
this in mind, in this paper we are interested in discount
functions satisfying the condition

X(t) = X(r)o(t —r) 2)

with 6 : RT U {0} — [0, 1].

Equation (2) tells us that the penalty of waiting for
t —r time is that the value of the information collected
by the sensor decreases from X (7) to X (¢). Refer to
Figure 1 for an illustration.

value

X(r)

X (1)

r t time
Figure 1: lllustrating information decay.
Obviously, X (r) = X (r)d(0) implies
0(0) = 1. 3)

Further, we assume that after a very long time, the
value of information vanishes. Formally, we assume
that

lim §(z) = 0. 4)

T—00

We begin by proving the following useful result that
will be instrumental in obtaining a closed form for .

Lemma IV.1. If X (r) # O then for all v, s, t with
0<r<s<t

S(t—r)=05(s—r)o(t—s). 3)

Proof. Applying (2) to the pairs (r,s), (s,t), (r,t)

we obtain X (s) = X (r)d(s —r), X(t) = X(s)d(t —

s)and X (t) = X (r)o(t — r) which, combined, yield
X(r)o(t—r)=X(r)d(s—r)o(t — s).

Since X (1) # 0 the conclusion follows. O

Observe that by virtue of (4), § cannot be identically
1 on R* U {0}. Our next result shows that, in fact, &
takes on the value 1 if and only if z = 0.

Lemma IV.2. §(x) = 1 ifand only if = 0.

Proof. Recall that by (3), if o = 0 then d(zp) =
1. To prove the converse, let xy be the largest non-
negative real for which §(zg) = 1. It suffices to show
that 29 = 0. Suppose not and consider §(2zg). We
can write

d(2x0) d(2x0 — 0)
= 0(2x9 — x0)d(zp — 0) [by (5)]
= 6(20)d(z0)

= 1, [since 6(zp) = 1]

contradicting the maximality of xg. Thus, g = 0 and
the proof of the lemma is complete. O

Corollary IV.3. Forallz > 0, 0 < 6(x) < 1.

Proof. Follows immediately from (3) and Lemma
IV.2, combined. O

Forallr, s, twith0 < r < s < tletx and y
stand for s —r and ¢ — s, respectively. In this notation,
t —r = x + y and (5) can be written in the equivalent
form

6(z +y) =6(x)d(y) (6)

with both x and y non-negative. As it turns out, the
functional equation (6) has a simple solution that we
discuss next.

Theorem IV4. If the function f : [0,00) — R sat-
isfies the functional equation f(x +y) = f(x)f(y)
and is not identically zero then there exists a constant
a such that

f(z) =e™ (7
Our proof of Theorem IV.4 can be found in [9].

We are now in a position to show that the discount
function ¢ is, in fact, an exponential. The details are
spelled out by the following theorem.

Theorem IV.5. Forall r and t with 0 < r < t,
ot—r)= e H(t=T)

where
p=—Indé(l) >0

Proof. Recall that by (6) the discount function ¢ sat-
isfies the conditions of Theorem IV.4. Moreover, by
Corollary IV3 0 < §(1) < 1 and so Ind(1) < 0.
Thus, with

p=—Indé(l) >0

the expression of &(¢ — r) becomes (¢t — )
e M=) ag claimed.

Ol
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Theorem IV.5 shows that, under mild assumptions,
the discount function is an exponential. We note that
a similar result was derived by [6, 10] in the case of
discrete time.

IV.AA. A Related Discount Function

The goal of this subsection is to present a variant of
the discount function ¢ defined in (2). Indeed, in some
applications, the discounted value of the information
at time ¢ > r may be naturally expressed as

X(t) = X(r) = X(r)y(t —7) (®)

where ¢ : RT U {0} — [0,1]. As we are about to
show, the discount functions ¢ and ) are related in a
simple fashion. To see this, consider three reals r, s, ¢
with 0 < r < s < ¢ and assume that X (r) # 0. Itis
easy to see that, by virtue of (8), we can write

p(t )]
P(t =)L = (s — )]

X(t) = X(n[t-
= X()[1-
implying that

L=g(t—r) =[1 =9t = s)][1 — (s —7)].

By writing {(t —r) = 1 —(t —r), &(s —r) =
1—4(s—r)and {(t — s) = 1 — ¢(t — s) we obtain

£t —r) =&(s — )&t — s)

which is, essentially, identical to (5). As an immediate
consequence of Theorem IV.5

1—wt—r)= e ME=T)

where A = —In[1 — ¢ (1)] > 0.
Finally, simple algebra reveals that

X(t) = X (r)e M=

which is of the same form as (2) and so the discount
functions ¢ and ) are, essentially, the same.

V. Instantaneous Aggregation

Information aggregation can be thought of as being
orthogonal to the effect of time on its value. In this
section we discuss the basics of aggregation and look
at the aggregation of information independent of time
discounting. The full effect of time discounting and
its effect on aggregation will be discussed in detail in
Section VII.

Assume a number of sensors have witnessed a
short-lived event (e.g. an explosion) and have col-
lected relevant information. In some applications it

may well be feasible to proceed with a relatively sim-
ple aggregation. Specifically, let X, Xo, -+, Xy, -+
be the readings of a relevant attribute (e.g., seismic
tremors caused by the explosion mentioned above)
collected by the sensors. Due to spatial diversity of
sensor locations, we assume that the X;s are indepen-
dent random variables with a common underlying dis-
tribution function F'. We further assume that the X;s
have finite first and second moments.

In order to proceed to an instantaneous aggrega-
tion the data collected by the sensors, we define an
application-dependent threshold A and seek to char-
acterize those readings X, that exceed A. What is the
expected value and variance of such an X,? To an-

swer this question, let G be the distribution function
of X,,.

For z > A,

G(z) = Pr[X, <7z]
= PrX <z |X>A]
Pri{X <z} n{X > A}]
Pr[X > A]
PrjA < X < z]
1-F(A)
F(z) — F(A)

= TIZFQ) 2

By (9), we write

0 forx < A
G(z) = (10)

%{X)A) for z > A.

Now that we have the distribution of X,, we turn
our attention to computing both E[X,,] and Var[X,,].
First, by definition

/000 udG(u)

_ /{)AudG(u)—i—/:oudG(u) [by (10)]
— /ooudG(u)

A
*©  dF(u)
/A Um [by (10)]

1 o
= 1—F(A)/A udF(u). (11)

E[Xn] =
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To evaluate Var[X,,] we proceed as follows:

Var[X,) E[XTQL] - E[Xn]2

= / OOUQdG(u)—E[XnF
A

= 71 Oou2 U

B 1—F(A)/A A (u)

<1—1F(A) /:O “dF(U))2 (12)

We note that if the threshold A as well as the dis-
tribution function F' are known to the sensors, each of
them can determine the conditional expectation and
variance of those readings that exceed A. This trick
allows the sensors to judge if the values they hold are
“relevant”. The sensors with relevant data will trans-
mit them without delay to a local sink which will make
the final determination.

VI. The Algebra of Aggregation

Consider two sensors that have collected data about
some attribute of an event they have witnessed and
let X and Y be, respectively, the values collected. It
is usually important for X and Y to be integrated in
order to obtain a more reliable and, perhaps, more rel-
evant information about the event at hand. We refer
to the operation of integrating sensor data as aggre-
gation and denote the result by X Y. Here, { is an
application-dependent operator. Natural instances of
¢ include 4, max, min, XOR, OR, among many Sim-
ilar ones. It is obvious that the aggregation operator
can be extended to an arbitrary number of values that
need to be aggregated.

To conform to our empirical experience, the aggre-
gation operator <> is assumed to have the following
fundamental properties:

Commutativity: XY = YOX forall X and Y.
The result of the aggregation does not depend on
the order in which the values are aggregated.

Associativity: [XOY]OZ = XO[YOZ] for all
X, Y, Z. If several values are aggregated in
groups, the value of the aggregated information
does not depend on the order in which groups
are formed. It is customary to write XY OZ
instead of the cumbersome parenthesized expres-
sions. More generally, we shall write {7, X in-
stead of X1 OX00 - - - OX,.

Idempotency: If Y = 0 then XY = X. In other
words, aggregation with information of value 0

has no effect. This is the view we take in this
paper. We note however, that the idempotency
property may be extended to read X{OY = X
whenever Y < X, mirroring our intuitive idea
that one does not stand to gain by aggregating
with information of lesser value.

As an example, it is easy to verify that the operator >
defined as

XPY =X+Y - XY 13)

satisfies the associativity, commutativity and idempo-
tency properties defined above. A straightforward in-
ductive argument shows that for an arbitrary collec-
tion Xy, Xo, ---, X,, we have

Ci 1 Xs = X100 (X0X30 - 0Xy)

and, moreover,

n _
i Xi =

> XX

1<i<j<n

n
>
i=1

1<i<j<k<n

+ o+ (D)X X X (14)

For later reference, we now state and prove a tech-
nical result involving the operator <) defined in (13).

Lemma VL1. Let X1, Xo,---, X, be reals with 0 <
X;<1lforalli=1,2,---n. Then

The proof of Lemma VI.1 can be found in the Ap-
pendix.

In order to illustrate the discussion above, consider
an emergency event, say fire, witnessed by a number
of sensors. Each of the sensors obtains a temperature
reading and we wish to aggregate this information as
soon as possible. For this purpose, consider a generic
sensor, in close proximity to the fire, that has obtained
a temperature reading ¢;. Consider the event 7; that
the sensor temperature reading is ¢;. We define the
“value” X; of this temperature reading as follows:

X; = Pr[T; | F]. (15)

In other words, the value of the information collected
by the sensor is the conditional probability of a sensor
witnessing fire to obtain a temperature reading of ¢;
given that the event F (i.e., fire) has occurred.
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Importantly, individual sensors, once their tempera- and Y'(s) be, respectively, the values of the informa-

ture reading is available, can evaluate the correspond- tion collected by the two sensors. At some later time ¢,
ing X; by a simple table lookup. the two sensors decide to integrate their information.
The aggregated value of the various X;s is Observe that since t > r and t > s, what is be-

ing aggregated at time ¢ are the discounted values

n
noX; = ZPT[Ti | F] — Z Pr[T; N T} | F] X(r)é(t—r)and Y (s)o(t — s) as illustrated in Figure
i=1

1<igi<n 2. Thus, we write

+ Y PLNTNT | F)

1<i<j<k<n

X()QY (t) = [X(r)o(t — )] & [Y (5)d(t — s)]-

X (18)
+ e (=DM PN TN NT, | F
= PI‘[T1UT2UUTR‘F] value
Assuming that the 7;s are independent, Lemma VI.1
allows us to write
n
PaX; = ) Pr(T|F] X(r) X))oy (1)
i=1 Y (s) = [X(r)8(t — )] O [V (5)5(t — 5)]
— Y PuTF] Py |F] .
1<i<j<n r s t time
Pr[T;|F| Pr[T;| F)| Pr[T|F
+ Z [T F] Pr{T; | F] Pr{Tk|F] Figure 2: [llustrating the aggregation at time t of
1<i<j<k<n
" X(r)and Y (s).
+ (=)™ Pr[Ty|F] Pr[To| F) - - - Pr[T,| F]

In order to be able to understand how time discount-

= 1=, (1= Pr[TG|F]). (16) ing affects aggregated values we shall find it conve-

As a final step. a suitable thresholding procedure de- 21:? <t>o assume that the discount function § distributes
termines whether or not the event is worth report- ’

ing. The thresholding strategy is suggested by Lemma

VI.1. The intention is to prevent potentially numerous Distributivity: For all ¢, 7 with 0 < ¢ <

relatively small temperature readings from aggregat- T, we can write [X()OY (D)]d(r — t) =

ing into a value that exceeds the threshold. To imple- (X ()o(r =) Y (t)o(T —t)]. The dis-

ment this idea, it suffices to set the threshold counted value at time 7 — ¢t of the information

X (t)QY (t) aggregated at time ¢ matches the ag-

A=1-10"" (17) gregated value at time 7 of X (¢)0(7 — ¢) and

Y (t)6(r — t). In other words, it does not mat-

where the choice of k£ will be explained shortly. ter whether we first aggregate and then discount

For example, we may well decide to take the con- the aggregated information or vice versa.

ditional probability of a reading in the critical range,
say 100°C to 500°C, given that fire has occurred as 0.9 o ) )
and 0 for readings outside of this range. By Lemma The distributivity property is fundamental in under-

VL1 for a given value of k, the threshold A in (17) is standing the interplay between time discounting and
aggregation. We mention in passing that, in general

the distributivity property need not be verified. How-
ever, in this paper we look specifically at aggregation
operators where distributivity holds.

reached if and only if at least £ sensors have obtained
readings in the critical range.

VII. Aggregating time-discounted in-

formation
Lemma VIL.1. Assuming the distributivity property,

To counter-balance the effect of time discounting, we forall0 <r <s<1t<T,wehave

define an algebraic operation on sensor data that we

call aggregation. Consider two sensors that have col- (X ()OY (1) 6(m—t) = [X(r)d(T — r)] O [Y (s)d(T — 9)] .
lected data about an event at times 7 and s. Let X (7) (19)
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Proof. By using distributivity we write

[(X@)QY ()] o(r — 1)
= [X@)o(t =)oY (t)o(t
(X (@)t —r)o(r =) &
= X(r)o(r —r)QY ()o(r

—s)]o(r —1) [by )]

—s) [by Lemma IV.1]
O

The left-hand side of (19) is the discounted value
of X(t)QY (t) at time 7, while the right-hand is the
aggregated value of the discounted values of X (r) and
Y(s) at time 7.

VII.A. Discounted Value of Aggregated
Information

Consider an event witnessed by n, (n > 2), sen-
sors and let the sensed values be X1, Xo, - -+, X,,, col-
lected, respectively, at times t1,to, -+, t,. Assume,
further, that various groups of sensors have aggregated
their information before time ¢ and that, finally, at time
t the aggregation has been completed. We are inter-
ested in evaluating the time-discounted value of the
information collected by the sensors at time ¢, where
t > max{ty,ta,---,t,}. The answer to this natural
question is provided by the following fundamental re-
sult.

Theorem VIL.2. Assuming distributivity, the dis-
counted value V (t) of the aggregated information at
time t is

V(t) = Qs Xi(t:)o(t — i), (20)
regardless of the order in which the values were ag-
gregated.

Proof. The proof is by induction on n. For n = 2, the
conclusion follows at once from Lemma VII.1. Now,
let n > 2, be arbitrary and assume the statement true
for all m, (m < n). We assume, without loss of
generality, that the last aggregation takes place at time
t. This aggregation must have involved a number of
disjoint groups G'1,G?, ..., G, each of them the re-
sult of a previous aggregation at times, respectively,
u1, U2, ..., up. Observe that we can always relabel
the groups in such a way that their aggregation times
are ordered as u1 < ug < - -+ < Up.

Let us look at group G. By the induction hypoth-
esis, the value of information in group G, aggregated
at time uy, was

V(ug) = O7Ey X, 0 (ug, — ;)

[Y(#)o(t — s)o(7 —t)]
[

where, of course, we assume that group Gy, involves
ny sensors whose values were aggregated.

Assuming t > wuy, the discounted value of V (uy)
at time ¢ is

Vie(t) Ok Xy 0 (up, — ty;) | 0t — up,)

= QUL X, 0(up — tiy)o(t — ug)
= OFE Xk;0(t — tx;) [by LemmaIV.1].

which is exactly the discounted value of information
collected by sensors in group (G, had it been aggre-
gated at time t. Since GG, was arbitrary, the conclusion
follows. 0

Theorem VIL.2, in effect, says that the order in which
the values are aggregated does not matter as long as
each is aggregated only once. In practical terms, The-
orem VIIL.2 gives the algorithm designer the freedom
to schedule aggregation in a random manner, much in
line with the stochastic nature of wireless communi-
cation and sensor data aggregation.

VIL.B. Thresholding

Recall that, as already mentioned, we assume that re-
porting a false positive involves a huge overhead and
is considered prohibitively expensive. Mindful of this
state of affairs, having aggregated, at time ¢, the infor-
mation collected by the various sensors, it is important
to decide whether this information warrants reporting.

One of the natural strategies employed is threshold-
ing. Specifically, a policy is followed of first setting
up an application-dependent threshold A and then re-
porting an event only if the aggregated information
exceeds A.

As Figure 3 illustrates, the time at which the ag-
gregation is performed is critical. Indeed, in the fig-
ure the aggregated value X (¢)<{X2(t) barely exceeds
the threshold A. Aggregation at a slightly later time
would not exceed the threshold and a relevant event
would go unreported.

VIII. Putting all this to work

The main goal of this section is to show how the the-
oretical concepts developed in the previous sections
apply to a practically relevant scenario.

Consider a fire event witnessed by a number of sen-
sors deployed in a given area. For simplicity, assume
that each sensor has collected a temperature value.
Let X1, Xo,--- be, respectively, the sensed temper-
ature values collected by the various sensors at times
t1,t2, - -. Since the sensors have witnessed the same
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Figure 3: lllustrating thresholding.

event, it 1s natural to assume that the random variables
X1, Xo, -+ come from the same underlying distribu-
tion X with finite expectation E[X| < occ.

We assume that the X;s are independent and, more-
over, they are independent of the times ¢1,%s,--- at
which the data was collected. These assumptions can
be justified by the spatial diversity of the sensors.

For a generic sensor that has collected data at time
t;, we let X;(t;) denote the value of this information
when it was collected. By Theorem (IV.5) the dis-
counted value of this information at a later time ¢ is

Xi(t) = X;(t;)e M=t 1)

Further, as a QoS parameter intended to avoid re-
porting a false positive, we need a minimum of &
individual temperatures to be aggregated. Given an
expected temperature reported of 300°C, this require-
ment is tantamount to insisting on accumulating a to-
tal of A = k x 300 “temperature points” as a result of
aggregation. In turn, this suggests $ = “+” as a suit-
able aggregation operator. It is easy to confirm that
for the chosen <) the distributivity property holds and
so the results of Section VII apply.

In this context, we are interested in evaluating the
expected time-discounted value, V'(t), at time ¢, of
the information collected by the sensors where ¢ >
max{t1,t2,---}. To answer this natural question we
make the simplifying assumption that ¢;,%s,--- are
the times of a Poisson process with parameter A > 0.
In other words, A is the rate at which the sensors that
witnessed an event are ready to report their sensory
data.

Theorem VIIL.1. The expected time-discounted
value, E[V(t)], of the information collected by sensors

at times ti,to, - - - is

A
“EX][1-e*] (22)
1

where A > 0 is the rate at which the sensors col-
lect their data and E|X| is the common expectation

of X1, Xo,.. ..

EV(t)] =

Proof. Recall that we assumed that the sensors col-
lected their data at the times of a Poisson process with
parameter A. By the Law of Total Expectation,

=) ElV {N = n}]

n>1
(23)
where N is the random variable that counts the num-
ber of sensors that have data ready for aggregation by
time ¢. By (21), Theorem IV.4 the conditional expec-
tation, E[V (t)|N = n], can be written as

N
E[ZXl-(t
- ZE

It is well known that, given that n Poisson events were
recorded in (0, ¢], their conditional distribution is uni-
form. Thus,

[ (t){N = n}]
— ZE

:ZE

[Where the U;s are uniform in (0, ¢]]

= Z E[Xz(tz)]E[ei

[because the X;s and U;s are independent]

:ZE

[recall, X is the common distribution of the X;s]

= E[X]e ™ Zn: E[erU

O{N =n}]P

BN =n}] =

Je —p(t— t)]

)e —p(t— t)]

_M(t Ul)]

M(t*Ui)]

—ut U)]

= [1—e M. (24)

92 Mobile Computing and Communications Review, Volume 18, Number 1, January 2014

Je N = n})



On plugging (24) back into (23), we obtain
pv) = Y0 PR o pin <y

n>1 Mt

= Z M[l _ e—ut]Me_)\t

e ut n!

e MEX][1— e M 3 (At)(—1)
ut = (n—1)!

e MEX]1 - e_“t]/\te/\t
= i
= 5E[X][1 — e M.

il

O

There are a number of interesting things to note
here:

e The actual distribution of the X;s does not ap-
pear explicitly in Theorem VIII.1. This is telling
us that two quite different distributions with the
same expectation are equivalent as far as Theo-
rem VIII.1 is concerned;

e E[V(t)] = ﬁE[X][l — e M] is an increasing
function of time and

A
lim E[V(t)] = = E[X].
t—o0 o)
Thus, for every application-dependent threshold
A, there exists an earliest time when A is ex-
ceeded.

Note that, as mentioned above, Theorem VIII.1 al-
lows us to evaluate the earliest time ¢ at which the
expected discounted value of the information col-
lected by the sensors exceed an application-dependent
threshold A. Thus, at time ¢, E[V (t)] > A, or equiv-
alently,

5E[X][1 —e M > A,
“
Solving for ¢, we obtain

t> lln AE[X]

po AE[X] = Ap )

In fact, (25) states that a value of ¢ exists only if
AE[X] > Ap or, equivalently,
A
A < —E[X]. (26)
7

Observe that in practice it is the case that E[X] < A,
for otherwise there are no incentives for aggregation.

IX. Simulation Results

In this section, we evaluate our theoretical model
through simulation.

IX.A. Discounted Value of Information

As a simple example, assume that the sensors are
monitoring temperature to detect fire. The sensors re-
port their sensed temperature over time, modeled as a
uniform random variable in the range [30, 450]°C. For
simplicity, temperature values are used as the value of
information, and as discussed in Section VIII, we use
& = “+' as the aggregation function. In our scenario,
an alarm is generated if the value of aggregated in-
formation for temperatures above 100°C exceeds 400.
We assume that the value of information degrades ex-
ponentially with parameter ;1 = 5 x 1073,

Figure 4 shows the value of the discounted infor-
mation over time (as described in Section IV). Each
jump indicates an aggregation operation, increasing
the value of the information. Then, the value de-
creases as time goes by until the next aggregation op-
eration. This behavior repeats until the total value of
the aggregated information exceeds 400. The increase
in the value of information could also cease if there
are no sensors left to report new information. After
this point in time, the value of aggregated information
decreases over time.
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Figure 4: Value of aggregated information over time

IX.B. Effect of Aggregation Method

In this section, we simulate a scenario in which the
sensors collect information and report it to a central
node. We want to evaluate the effect of wireless com-
munication and aggregation methods on the average
time to aggregate. Collisions in the wireless channel
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typically garble messages beyond recognition. Thus
messages need to be retransmitted which will increase
the time to receive all pieces of information to be ag-
gregated. Clearly, the denser the traffic the more colli-
sions and the more retransmissions causing delays in
aggregation. A non-negligeable side-effect of all this
is that due to collision-caused time delays, the value
of individual pieces of information decays and what is
being aggregated has lesser value.

Furthermore, the aggregation method could affect
the time to achieve the defined aggregation. This la-
tency is due, to a large extent, to the logic behind the
transfer of information for aggregation. For example,
the aggregation method i may use one of the following
strategies:

(D : wait for reports from at least k& nodes;

(I) : wait until the aggregated value exceeds a
threshold;

(IIT) : wait until there is enough spatial diversity in
the reported information.

In all these examples, the sensors can decide about
reporting in a way that only the effective ones re-
port. For example, in the former method, it would be
enough if only one node out of several neighbor nodes
transmits the message. This can be performed through
many methods such as cluster head or a probabilistic
transmission policy. Independent of the policy, trans-
mitting fewer messages would reduce the traffic and
result in faster reception of the required information.
In this section, we develop a general simulation sce-
nario that will show the effect of these two factors, i.e.
wireless channel condition and aggregation method,
on the increase in the time to aggregate, which con-
sequently avoids reducing the value of information.
This simulation scenario is designed in a way that is
independent of the aggregation method.

In our simulation, the sensors are deployed uni-
formly at random over an area of 750m x 750m. The
sensors can communicate with the aggregator node in
a single hop. At least two nodes are required to re-
port to aggregator. The number of sensors vary from
4 to 100. A sensor will periodically send its sensed
information with rate \. We simulate this process in
NS 2.29 [1]. The simulation parameters are shown in
Table 1.

To show the effect of the aggregation method, we
evaluate scenarios where only some portion (p) of the
nodes send their sensed information. The aggregator
waits until it receives the information from p portion
of nodes. This is a general model for many aggre-
gation strategies in sensor networks. For example,

Table 1: Simulation Parameters

Nodes | 4-100
Simulation Time | 2500 s
Data Rate | 250 kbps
MAC | CSMA/CA
Communication Range | 700 m
Packet Size | 1000 B
Reporting rate (\) | 0.2 (1/s)

if sensors are programmed to report their tempera-
ture only if they sense temperature between 100°C to
500°C, then in a fire detection scenario, only the sen-
sors that are close to the fire and can detect it will send
temperature readings. This strategy will avoid colli-
sions among all nodes as well as save energy in com-
parison to the scenario where all nodes try to transmit
information. Therefore, we present the results for sev-
eral values of p. Note that p = 1 is the worst case sce-
nario, where all nodes report their sensed information.

Figure 5 shows the average time to aggregate when
various portions of nodes are involved in transmitting
information for aggregation. With fewer nodes, of
course, aggregation happens faster. For example, with
p = 0.25 and 10 nodes, the average time to aggregate
is 1.7s, but when the number of nodes is increased to
20, the average time to aggregate increases to 4.7s.
Figure 5 shows the effect of the aggregation method
(here, p) on the average time to aggregate. For ex-
ample, with 4 nodes, the average time to aggregate
changes from 1.7 seconds to 4.7 seconds when p is
increased from 0.5 to 1. Recall that because of value
decay, the longer the average time to aggregate, the
lower the value of the aggregated information.

Average Time to Aggregate (sec)

25 50 75 100

Percentage of Reporting Nodes

Figure 5: Average time to aggregate for various num-
ber of nodes. At least two nodes are required for ag-
gregation.

The delay due to waiting for arriving pieces of in-
formation as well as collision in the reception of those
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pieces of information will result in reducing the value
of information. Figure 6 illustrates the effect of those
delays on the loss of information value for several ex-
ponential decay functions.
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Figure 6: Percentage of value of information loss over
time for several exponential decay functions.

As can be seen even with 2 seconds of delay, the
loss of value can be up to 80%. This delay may be
due to waiting for pieces of information to be gener-
ated by different sources and arriving at the aggrega-
tor, as well as delay due to the wireless channel con-
ditions. In the next simulation, we investigate how
the rate of information generation in relation to decay
should be designed to achieve the value of informa-
tion as soon as possible, so that a decision maker can
make a proper determination.

IX.C. Time to Exceed a Threshold

Here, we evaluate the applicability of the defined
threshold time in (25). Recall that (25) shows the min-
imum time at which the expected value of information
will exceed the threshold. This can be useful, for ex-
ample, to plan for capturing an intruder. If we assume
that the intruder’s staying time in the monitored area
is an exponential random variable S with expected
value FE[S] < oo and the reaction time of the secu-
rity personnel to arrive at the location after receiving
the alarm is a random variable R with expected value
E[R], then the expected detection time D can be writ-
ten as D < E[S]| — E[R]. In other words, the design
of ), i.e., sensor reporting periods, should not let ¢
in (25) exceed D. In the following, we simulate this
scenario to show how A and u can affect the effec-
tiveness of the monitoring application. Assume that
E[S] = 300s and E[R] = 100s. This means that the
detection time should be less than 200 seconds. In this

simulation, we assume that V' is selected uniformly in
the range [Vinin, Vinaz], Which are set to 0 and 100,
respectively. This can be a valid setting since it could
mean a direct functional mapping from the percent-
age of confidence that a sensor has in detecting the
intruder. Then, we could set the threshold A to 196,
which means that we need to have a confidence equal
to two reports with the 98% confidence in detection of
intrusion before reporting. Letting VoI (t) stand for
the random variable that keeps track of the value of
information at time ¢, Table 2 shows the moments in
time when the expected value, E[VoI(t)], of VoI(t)
will be above A for theory and simulation. We show
the average time over 10,000 trials for various values
of A and .

Table 2: Time when E[V0I(t)] exceeds a threshold

Config A | p- decay par. | Theory Sim.
1 0.01 | 2.50 x 1073 | 1475s | 1700 s
2 0.01 | 1.25 x 1073 534s | 557s
3 0.02 | 2.50 x 1073 267s | 280s
4 0.02 | 1.25 x 1073 223s | 247s
5 0.10 | 2.50 x 1073 41 s 47 s
6 0.10 | 1.25 x 1073 40 s 46's

As it turns out, the simulation results match the the-
oretical predictions well. In our defined scenario, we
required that E[Vol(t)] exceed A within 200 sec-
onds. Table 2 shows that only configurations 5 and
6 meet that requirement, due to the arrival rate of 0.1,
which has sensors reporting every 10 seconds.

X. Concluding Remarks and Direc-
tions for Future Work

This paper provided a formal way of looking at ag-
gregation of information in sensor networks. Of par-
ticular interest is the aggregation process in networks
where individual actors possess information whose
value decays over time. We offered a formal model
for the valuation of time-discounted information and
of the algebra of its aggregation. We allow aggrega-
tion of time-discounted information to proceed in an
arbitrary, not necessarily pairwise, manner. We have
shown that the resulting value of the aggregate does
not depend on the order in which aggregation of indi-
vidual values take place. Our results suggest natural
thresholding strategies for the aggregation of the in-
formation collected by sets of network actors. Our
theoretical predictions were confirmed by extensive
simulation.
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In spite of these results, a number of problems are
open and are getting attention.

It would be of great theoretical interest to consider
other time discounting regimens that do not conform
(and are not amenable) to (2). Examples of such dis-
count regimens are known to exist; step functions be-
ing a prime example. The question that we are ad-
dressing at the moment is that of approximating a step
function and, indeed, other similar decay functions
by polynomials. It is a classic result of Karl Weier-
strass that every real function can be approximated by
a suitable sequence of polynomials [5]. Since we have
a good understanding a exponential decay functions
and since every exponential can be approximated by
a polynomial consisting of the first few terms in its
Taylor expansion, this approach seems to be natural.

While a lot of attention had been devoted to detect-
ing and mitigating the effects of collisions on the wire-
less channel, to the best of our knowledge, the effects
of collisions on the value of information to be aggre-
gated has not been addressed in the literature. As our
simulations showed, due to the significant retransmis-
sion delays, the value of the information may be dra-
matically impacted.

Finally, it is of great practical interest to be able
to retask the sensors as the mission dynamics evolve.
Retasking may involve moving from one set of sensed
attributes to another and also inferring an attribute for
which the sensor does not have a direct sensing capa-
bility. This promises to be an exciting area of work.
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Appendix
A. Proof of Lemma VI.1

The proof is by induction. To settle the basis, consider
n = 2 and assume that both X7 and X5 are reals in
the interval [0, 1]. Observe that 1 — (X0 Xs) =1 —
(Xl + X9 — XlXQ) = (1 — Xl)(l — X2) .

For the inductive step, let n be arbitrary and assume
that the statement of the lemma true for the chosen
value of n. With this in hand, we need to show that 1—
OMLX; =TI N1 — X;). Write Y = 1 — 117, (1 —
X;). In this notation

1=0M X = 1— (01 X) O X
= 1-YOXn
= 1-Y-Xp1 +YXnp

= I (1 - X;) = X I (1 — X5)

= H?;f(l - Xi)

and the proof of the lemma is complete.
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