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TWO-POINT L1 SHORTEST PATH QUERIES IN THE PLANE∗

Danny Z. Chen,†Rajasekhar Inkulu,‡ and Haitao Wang§

Abstract. Let P be a set of h pairwise-disjoint polygonal obstacles with a total of n vertices
in the plane. We consider the problem of building a data structure that can quickly compute
an L1 shortest obstacle-avoiding path between any two query points s and t. Previously,
a data structure of size O(n2 log n) was constructed in O(n2 log2 n) time that answers each
two-point query in O(log2 n+ k) time, i.e., the shortest path length is reported in O(log2 n)
time and an actual path is reported in additional O(k) time, where k is the number of edges
of the output path. In this paper, we build a new data structure of size O(n+h2·log h·4

√
log h)

in O(n+h2 · log2 h ·4
√
log h) time that answers each query in O(log n+k) time. (In contrast,

for the Euclidean version of this two-point query problem, the best known algorithm uses
O(n11) space to achieve an O(log n + k) query time.) Further, we extend our techniques
to the weighted rectilinear version in which the “obstacles” of P are rectilinear regions with
“weights” and allow L1 paths to travel through them with weighted costs. Previously, a
data structure of size O(n2 log2 n) was built in O(n2 log2 n) time that answers each query
in O(log2 n + k) time. Our new algorithm answers each query in O(log n + k) time with a
data structure of size O(n2 · log n · 4

√
logn) that is built in O(n2 · log2 n · 4

√
logn) time.

1 Introduction

Let P be a set of h pairwise-disjoint polygonal obstacles in the plane with a total of n vertices.
We consider two-point shortest obstacle-avoiding path queries for which the path lengths
are measured in the L1 metric. The plane minus the interior of the obstacles is called the
free space. Our goal is to build a data structure to quickly compute an L1 shortest path in
the free space between any two query points s and t. Previously, Chen et al. [7] constructed
a data structure of size O(n2 log n) in O(n2 log2 n) time that computes the length of the L1

shortest s-t path in O(log2 n) time and an actual path in additional O(k) time, where k is
the number of edges of the output path.

Throughout this paper, unless otherwise stated, when we say that the query time of
a data structure is O(f(n, h)) (which may be a function of both n and h), we mean that the
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shortest path length can be reported in O(f(n, h)) time and an actual path can be found in
additional time linear in the number of edges of the output path.

In this paper, we build a new data structure of size O(n + h2 · log h · 4
√
log h) in

O(n+h2 · log2 h ·4
√
log h) time, with O(log n) query time. Note that n+h2 · log2 h ·4

√
log h =

O(n+ h2+ε) for any constant ε > 0. Comparing with the results in [7], we reduce the query
time by a logarithmic factor, and use less preprocessing time and space when h is small, e.g.,
h = O(nδ) for any constant δ < 1. In particular, if h = O(nδ) for any constant δ < 1/2,
then the size and the construction time of our data structure are both bounded by O(n).

Further, we extend our techniques to the weighted rectilinear version in which each
“obstacle” P ∈ P is a region with a nonnegative weight w(P ) and the edges of the obstacles
in P are all axis-parallel; a path intersecting the interior of P is charged a cost depending
on w(P ). For this problem, Chen et al. [7] constructed a data structure of size O(n2 log2 n)
in O(n2 log2 n) time that answers each two-point shortest path query in O(log2 n) time. We
build a new data structure of size O(n2 · log n · 4

√
logn) in O(n2 · log2 n · 4

√
logn) time that

answers each query in O(log n) time. Note that n2 · log2 n · 4
√
logn = O(n2+ε) for any ε > 0.

1.1 Related Work

The problems of computing shortest paths among obstacles in the plane have been studied
extensively (e.g., [6, 7, 8, 9, 12, 11, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38,
39]). There are three main types of problems: finding a single shortest s-t path (both s and t
are given as part of the input and the goal is to find a single shortest s-t path), single-source
shortest path queries (s is given as part of the input and the goal is to build a data structure
to answer shortest path queries for any query point t), and two-point shortest path queries
(as defined and considered in this paper). The distance metrics can be the Euclidean (i.e.,
L2) or L1. Refer to Mitchell [40] for a comprehensive survey on this topic.

For the simple polygon case, in which P is a single simple polygon, all three types
of problems have been solved optimally [20, 21, 22, 24, 34], in both the Euclidean and L1

metrics. Specifically, an O(n)-size data structure can be built in O(n) time that answers
each two-point Euclidean shortest path query in O(log n) time [20, 22]. Since in a simple
polygon a Euclidean shortest path is also an L1 shortest path [24], the results in [20, 22]
hold for the L1 metric as well.

The polygonal domain case (or “a polygon with holes”), in which P has h obstacles as
defined above, is more difficult. For the Euclidean metric, Hershberger and Suri [25] built a
single source shortest path map of size O(n log n) in O(n log n) time that answers each query
in O(log n) time. For the L1 metric, Mitchell [36, 38] built an O(n)-size single source shortest
path map in O(n log n) time that answers each query in O(log n) time. Later, Chen and
Wang [8, 9, 11] built an L1 single source shortest path map of size O(n) in O(n+h log h) time,
with an O(log n) query time, for a triangulated free space (the current best triangulation
algorithm runs in O(n log n) or O(n + h log1+ε h) time for any constant ε > 0 [2]). For
two-point L1 shortest path queries, Chen et al. [7] gave the previously best solution, as
mentioned above; for a special case where the obstacles are rectangles, ElGindy and Mitra
[19] gave an O(n2) size data structure that supports O(log n) time queries. For two-point
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queries in the Euclidean metric, Chiang and Mitchell [15] constructed a data structure of
size O(n11) that answers each query in O(log n) time, and alternatively, a data structure of
size O(n+ h5) with an O(h log n) query time; other data structures with trade-off between
preprocessing and query time were also given in [15]. If the query points s and t are both
restricted to the boundaries of the obstacles of P, Bae and Okamoto [1] built a data structure
of size O(n5poly(log n)) that answers each query in O(log n) time, where poly(log n) is a
polylogarithmic factor. Efficient algorithms were also given for the case when the obstacles
have curved boundaries [6, 12, 14, 23, 26].

For the weighted region case, in which the “obstacles” allow paths to pass through
their interior with weighted costs, Mitchell and Papadimitriou [41] gave an algorithm that
finds a weighted Euclidean shortest path in a time of O(n8) times a factor related to the
precision of the problem instance. Carufel et al. [3] shows that the problem essentially
cannot be solved in the algebraic computation model over the rational numbers. For the
weighted rectilinear case, Lee et al. [35] presented two algorithms for finding a weighted L1

shortest path, and Chen et al. [7] gave an improved algorithm with O(n log3/2 n) time and
O(n log n) space. Chen et al. [7] also presented a data structure for two-point weighted L1

shortest path queries among weighted rectilinear obstacles, whose performance has already
been discussed above.

1.2 Our Approaches

Our first main idea is to propose an enhanced graph model based on the scheme in [7, 16, 17],
to reduce the query time from O(log2 n) to O(log n). In [7, 16, 17], to build a graph, a total
of n vertical lines (called “cut-lines”) are created recursively in O(log n) levels. Then, each
obstacle vertex v is projected to O(log n) cut-lines (one cut-line per level) to create “Steiner
points” if v is horizontally visible to such cut-lines. For any two query points s and t, to
report an L1 shortest s-t path, the algorithm in [7] finds O(log n) Steiner points (called
“gateways”) on O(log n) cut-lines for each of s and t, such that there must be a shortest s-t
path containing a gateway of s and a gateway of t. Consequently, a shortest path is obtained
in O(log2 n) time using the O(log n) gateways of s and t.

We propose an enhanced graph GE by adding more Steiner points onto the cut-
lines such that we need only O(

√
log n) gateways for any query point, and consequently,

computing the shortest path length takes O(log n) time. More specifically, for each obstacle
vertex, instead of projecting it to a single vertical cut-line at each level, we project it to
O(2

√
logn) cut-lines in every O(

√
log n) consecutive levels (thus creating O(2

√
logn) Steiner

points); in fact, these cut-lines form a binary tree structure of height O(
√

log n) and they
are carefully chosen to ensure that O(

√
log n) gateways are sufficient for any query point.

Hence, the size of the graph GE is O(n
√

log n2
√
logn).

To improve the data structure construction so that its time and space bounds depend
linearly on n, we utilize the extended corridor structure [8, 9, 11], which partitions the free
space of P into an “ocean” M, and multiple “bays” and “canals”. We build a graph GE(M)
of size O(h

√
log h2

√
log h) on M similar to GE , such that if both query points are in M,

then the query can be answered in O(log n) time. It remains to deal with the general case
when at least one query point is not inM. This is a major difficulty of our approach and
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our algorithm for this case is another of our main contributions. Below, we use a bay as an
example to illustrate our main idea for this algorithm.

For two query points s and t, suppose s is in a bay B and t is outside B. Since B is
a simple polygon, any shortest s-t path must cross the “gate” g of B, which is a single edge
shared by B andM. We prove that there exists a shortest s-t path that must contain one
of three special points z(s), z1(s), and z2(s), where z(s) is in B and the other two points are
on g (and thus inM). For the case when a shortest s-t path contains either z1(s) or z2(s),
we can use the graph GE(M) to find such a shortest path. For the other case, we build
another graph GE(g) based on the horizontal projections of the vertices of GE(M) on g,
and use GE(g) to find such a shortest path (along with a set of interesting observations) by
a merge of GE(g) and GE(M). Intuitively, GE(g) plays the role of connecting the shortest
path structure inside B with those inM.

The case when a query point is in a canal can be handled similarly, although it is
more complicated because each canal has two gates.

The rest of the paper is organized as follows. In Section 2, we introduce notation and
sketch the previous results that will be needed by our algorithms. In Section 3, we propose
our enhanced graph GE that helps reduce the query time to O(log n). In Section 4, we
further reduce the preprocessing time and space by using the extended corridor structure.
In Section 5, we extend our techniques in Section 3 to the weighted rectilinear case.

Henceforth, unless otherwise stated, “shortest paths” always refer to L1 shortest
paths and “distances” and “lengths” always refer to L1 distances and lengths. To distinguish
from graphs, the vertices/edges of P are always referred to as obstacle vertices/edges, and
graph vertices are referred to as “nodes”. For simplicity of discussion, we make a general
position assumption that no two obstacle vertices have the same x- or y-coordinate except
for the weighted rectilinear case. This assumption is made without loss of generality, since
we can always perturb the input slightly to achieve the assumption, as does in [38].

2 Preliminaries

A path in the plane is x-monotone (resp., y-monotone) if its intersection with any vertical
(resp., horizontal) line is either empty or connected. A path is xy-monotone if it is both
x-monotone and y-monotone. Note that any xy-monotone path is an L1 shortest path.

A point p is visible to another point q if the line segment pq is in the free space. A
point p is horizontally visible to a line l if there is a point q on l such that pq is horizontal
and is in the free space. For a line l and a point p, the point q ∈ l is the horizontal projection
of p on l if pq is horizontal, and we denote it by ph(l) = q. Let ∂P denote the boundaries of
all obstacles in P. For a point p in the free space of P, if we shoot a horizontal ray from p
to the left, the first point on ∂P hit by the ray is called the leftward projection of p on ∂P,
denoted by pl; similarly, we define the rightward, upward, and downward projections of p on
∂P, denoted by pr, pu, and pd, respectively.

We sketch the graph in [7], denoted by Gold, for answering two-point queries, which
was originally proposed in [16, 17] for computing a single shortest path. To define Gold,
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two types of Steiner points are specified, as follows. For each obstacle vertex p, its four
projections on ∂P, i.e., pl, pr, pu, and pd, are type-1 Steiner points. Clearly, there are O(n)
type-1 Steiner points in total.

The type-2 Steiner points are on cut-lines. In order to facilitate an explanation on
our new graph model in Section 3, we organize the cut-lines in a binary tree structure, called
the cut-line tree and denoted by T (P). The tree T (P) is defined as follows. For each node u
of T (P), a set V (u) of obstacle vertices and a cut-line l(u) are associated with u, where l(u)
is a vertical line through the median of the x-coordinates of the obstacle vertices in V (u).
For the root r of T (P), V (r) is the set of all obstacle vertices of P. For the left (resp., right)
child v of u, V (v) consists of the obstacle vertices of V (u) on the left (resp., right) of l(u).
Since the number of vertices of P is n, the height of T (P) is O(log n). For every node u of
T (P), for each vertex p ∈ V (u), if p is horizontally visible to l(u), then the point ph(l(u)),
i.e., the horizontal projection of p on l(u), is a type-2 Steiner point. Since each obstacle
vertex defines a type-2 Steiner point on at most one cut-line at each level of T (P), there are
O(n log n) type-2 Steiner points.

The node set of Gold consists of all obstacle vertices of P and all Steiner points thus
defined.

The edges of Gold are defined as follows. First, for every obstacle vertex p, there is
an edge pq in Gold for each q ∈ {pl, pr, pu, pd}. Second, for every obstacle edge e of P, e may
contain multiple type-1 Steiner points, and these Steiner points and the two endpoints of
e are the nodes of Gold on e; the segment connecting each pair of consecutive graph nodes
on e defines an edge in Gold. Third, for each cut-line l, any two consecutive type-2 Steiner
points on l define an edge in Gold if they are visible to each other. Finally, for each obstacle
vertex p, if p defines a type-2 Steiner point p′ on a cut-line, then pp′ defines an edge in Gold.
Clearly, Gold has O(n log n) nodes and O(n log n) edges.

It was shown in [16, 17] that Gold contains a shortest path between any two obstacle
vertices. Chen et al. [7] used Gold to answer two-point queries by “inserting” the query
points s and t into Gold so that shortest s-t paths are “controlled” by only O(log n) nodes
of Gold, called “gateways”. The set of gateways of s, denoted by Vg(s,Gold), is defined
as follows. Vg(s,Gold) consists of two subsets V 1

g (s,Gold) and V 2
g (s,Gold). We first define

V 1
g (s,Gold), whose size is O(1). For each q ∈ {sl, sr, su, sd}, let v1 and v2 be the two graph

nodes adjacent to q on the obstacle edge containing q; then v1 and v2 are in V 1
g (s,Gold),

and the paths sq ∪ qv1 and sq ∪ qv2 are the gateway edges from s to v1 and v2, respectively.
Next, we define V 2

g (s,Gold), recursively, on the cut-line tree T (P). Let v be the root of
T (P). Suppose s is horizontally visible to the cut-line l(v). Let q be the Steiner point on
l(v) immediately above (resp., below) the projection point sh(l(v)); if q is visible to sh(l(v)),
then q is in V 2

g (s,Gold) and the path ssh(l(v)) ∪ sh(l(v))q is the gateway edge from s to q.
We also call l(v) a projection cut-line of s if s is horizontally visible to l(v). We proceed to
the left (resp., right) child of v in T (P) recursively if s is to the left (resp., right) of l(v),
until we reach a leaf of T (P). Therefore, V 2

g (s,Gold) contains O(log n) type-2 Steiner points
on O(log n) projection cut-lines.

The above defines Vg(s,Gold), and each gateway q ∈ Vg(s,Gold) is associated with a
gateway edge between s and q. Henceforth, when we say “a path from s contains a gateway
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q”, we implicitly mean that the path contains the corresponding gateway edge as well. The
above also defines O(log n) projection cut-lines for s, which will be used later in Section 3.
It was shown in [7] that for any obstacle vertex v, there is a shortest s-v path in Gold that
contains a gateway of s.

Similarly, we define the gateway set Vg(t, Gold) for t. Assume that there is a shortest
s-t path containing an obstacle vertex. Then, there must be a shortest s-t path that contains
a gateway vs ∈ Vg(s,Gold), a gateway vt ∈ Vg(t, Gold), and a shortest path from vs to vt
in the graph Gold [7]. Based on this result, a gateway graph Gg(s, t) is built for the query
on s and t, as follows. The node set of Gg(s, t) is {s, t} ∪ Vg(s,Gold) ∪ Vg(t, Gold). Its edge
set consists of all gateway edges and the edges (vs, vt) for each vs ∈ Vg(s,Gold) and each
vt ∈ Vg(t, Gold), where the weight of (vs, vt) is the length of a shortest path from vs to vt in
Gold. Hence, Gg(s, t) has O(log n) nodes and O(log2 n) edges, and if we know the weights
of all edges (vs, vt), then a shortest s-t path in Gg(s, t) can be found in O(log2 n) time. To
obtain the weights of all edges (vs, vt), we compute a single source shortest path tree in Gold
from each node of Gold in the preprocessing. Then, the weight of each such edge (vs, vt) is
obtained in O(1) time. Further, suppose we find a shortest s-t path in Gg(s, t) that contains
a gateway vs ∈ Vg(s,Gold) and a gateway vt ∈ Vg(t, Gold); then we can report an actual
shortest s-t path in time linear in the number of edges of the output path by using the
shortest path tree from vs in Gold (which has been computed in the preprocessing).

As discussed in [7], it is possible that no shortest s-t path contains any obstacle
vertex. For example, consider a projection point sr of s and a projection point td of t. If
ssr intersects ttd, say at a point q, then sq ∪ qt is a shortest s-t path; otherwise, if sr and
td are both on the same obstacle edge, then ssr ∪ srtd ∪ tdt is a shortest s-t path. We call
such shortest s-t paths trivial shortest paths. Similarly, trivial shortest s-t paths can also be
defined by other projection points in {sl, sr, su, sd} and {tl, tr, tu, td}. It was shown in [7]
that if there is no trivial shortest s-t path, then there exists a shortest s-t path that contains
an obstacle vertex. If we know {sl, sr, su, sd} and {tl, tr, tu, td}, then we can determine
whether there exists a trivial shortest s-t path in O(1) time. For any query points s and t,
their projection points can be computed easily in O(log n) time by using the horizontal and
vertical visibility decompositions of P, as shown in [7].

3 Reducing the Query Time Based on an Enhanced Graph

In this section, we propose an “enhanced graph” GE that allows us to reduce the query time
to O(log n). We first define GE , and then show how to answer two-point queries.

3.1 The Enhanced Graph GE

First, every node of Gold is also a node in GE . In addition, GE contains the following
type-3 Steiner points as nodes. To define them, we introduce the concepts of “levels” and
“super-levels” on the cut-line tree T (P) defined in Section 2. T (P) has O(log n) levels. We
define the level numbers recursively: The root v is at the first level, and its level number is
denoted by ln(v) = 1; for any node v of T (P), if u is a child of v, then ln(u) = ln(v) + 1.
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u

v1

v2

Figure 1: Illustrating Tu(P), i.e., the portion of the tree in the dotted box, where
√
logn = 3.

We further partition the O(log n) levels of T (P) into O(
√

log n) super-levels: For any i,
1 ≤ i ≤ O(

√
log n), the i-th super-level contains the levels from (i − 1) · √log n + 1 to

i · √log n.

Consider the i-th super-level. Let u be any node at the highest level of this super-
level. Let Tu(P) denote the subtree of T (P) rooted at u without including any node outside
the i-th super-level (e.g., see Fig. 1 and its corresponding cut-lines and level numbers in
Fig. 2). Since Tu(P) has O(

√
log n) levels, Tu(P) has O(2

√
logn) nodes. Recall that u is

associated with a subset V (u) of obstacle vertices and a vertical cut-line l(u), and for any
vertex p in V (u), if p is horizontally visible to l(u), then its projection point ph(l(u)) is a
type-2 Steiner point. Each point p ∈ V (u) defines the following type-3 Steiner points. For
each node v in Tu(P), if p is horizontally visible to l(v), then its projection point ph(l(v)) is
a type-3 Steiner point (e.g., see Fig. 2; note that if p ∈ V (v), then the Steiner point is also
a type-2 Steiner point). Hence, p defines O(2

√
logn) type-3 Steiner points in the i-th super-

level of T (P). Let S(p) be the set of all type-2 and type-3 Steiner points on the cut-lines
of the subtree Tu(P) induced by p, and let S(p) also contain p. In the order of the points
in S(p) from left to right, we put an edge in GE connecting every two consecutive points in
S(p) (e.g., see Fig. 2). Since the total number of obstacle vertices in V (u) for all nodes u at
the same level of T (P) is n, the number of type-3 Steiner points thus defined in each super-
level is O(n2

√
logn), and the total number of type-3 Steiner points on all cut-lines in T (P)

is O(n
√

log n2
√
logn). The number of edges thus added to GE is also O(n

√
log n2

√
logn).

Hence, the total number of nodes in GE is O(n
√

log n2
√
logn), which is dominated by

the number of type-3 Steiner points. We have also defined above some edges in GE . Other
edges of GE are defined similarly as in Gold. Specifically, first, as in Gold, for every obstacle
vertex p, there is an edge pq in GE for each q ∈ {pl, pr, pu, pd}. Second, as in Gold, for each
obstacle edge e, the segment connecting each pair of consecutive graph nodes on e defines
an edge in GE . Third, for each cut-line l, every pair of consecutive Steiner points (type-2
or type-3) on l defines an edge in GE if these two points are visible to each other. Clearly,
the total number of edges in GE is O(n

√
log n2

√
logn).

This finishes the definition of the graph GE , which has O(n
√

log n2
√
logn) nodes and

O(n
√

log n2
√
logn) edges. The following lemma gives an algorithm for computing GE .

Lemma 1. The enhanced graph GE can be constructed in O(n log3/2 n2
√
logn) time.

Proof. First of all, all type-1 Steiner points are computed easily in O(n log n) time, e.g., by
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aa+ 1a+ 2 a+ 2 a+ 2 a+ 2a+ 1level numbers:

l(u)l(v1) l(v2)

s

p

Figure 2: Illustrating the cut-lines and level numbers of the subtree Tu(P) in Fig. 1, where a is the level
number ln(u) of the node u. p is an obstacle vertex. If p is visible to all cut-lines, then the red points are
type-2 and type-3 Steiner points defined by p and the (red) dotted segments are the corresponding graph
edges.

using the vertical and horizontal visibility decompositions of P. The edges of GE connecting
the obstacle vertices and their corresponding type-1 Steiner points can also be computed.
For each obstacle edge e, we sort all graph nodes on e and then compute the edges of
GE connecting the consecutive nodes on e. Since there are O(n) type-1 Steiner points,
computing these edges takes O(n log n) time.

Next, we compute both the type-2 and type-3 Steiner points and their adjacent
edges. For this, we need to use the two projection points pl and pr for each obstacle vertex p
of P, which have been computed as type-1 Steiner points. Consider an obstacle vertex p in
V (u) for a node u at the highest level of a super-level. For each node v in Tu(P), we need to
determine whether p is horizontally visible to l(v), which can be done in O(1) time since pl

and pr are already known. We also need to have a sorted order of all cut-lines in Tu(P) from
left to right, and this ordered list can be obtained by an in-order traversal of Tu(P) in linear
time. Therefore, the edges of GE connecting the Steiner points defined by p on consecutive
cut-lines in this super-level can be computed in time linear in the number of nodes in Tu(P).
Since there are O(n

√
log n2

√
logn) type-2 and type-3 Steiner points, computing all such edges

takes O(n
√

log n2
√
logn) time.

It remains to compute the graph edges on all cut-lines connecting consecutive Steiner
points (if they are visible to each other). This step is done in O(n log3/2 n2

√
logn) time by a

sweeping algorithm, as follows. For each cut-line l, we sort the Steiner points on l by their
y-coordinates, and determine whether every two consecutive Steiner points on l are visible
to each other. For this, we sweep a vertical line L from left to right. During the sweeping,
we use a balanced binary search tree T to maintain the maximal intervals of L that are in
the free space of P (there are O(n) such intervals). At each obstacle vertex, we update T
in O(log n) time. At each (vertical) cut-line l, for every two consecutive Steiner points, we
determine whether they are visible to each other in O(log n) time by checking whether they
are in the same maximal interval maintained by T . Since there are O(n

√
log n2

√
logn) pairs

of consecutive Steiner points on all cut-lines, computing all edges of GE on the cut-lines
takes O(n log3/2 n2

√
logn) time.

In summary, the graph GE can be computed in O(n log3/2 n2
√
logn) time.
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3.2 Reducing the Query Time

We use the enhanced graph GE to reduce the query time to O(log n). Consider two query
points s and t. The key idea is as follows. We define a new set of gateways for s, denoted
by Vg(s,GE), which contains O(

√
log n) nodes of GE , such that for any obstacle vertex p

of P, there exists a shortest path from s to p through a gateway of Vg(s,GE). The set
Vg(s,GE) can be partitioned into two subsets V 1

g (s,GE) and V 2
g (s,GE), where V 1

g (s,GE)
(of size O(1)) is exactly the same as V 1

g (s,Gold) defined on Gold in Section 2. Below, we
define the subset V 2

g (s,GE).

Recall that s has O(log n) projection cut-lines, as defined in Section 2. By definition,
s is horizontally visible to all its projection cut-lines. Since GE has more Steiner points than
Gold, the intuition is that we do not have to include gateways in each projection cut-line of
s. More specifically, we only need to include gateways in two projection cut-lines in each
super-level (one to the left of s and the other to the right of s). The details are given below.

We define the relevant projection cut-lines of s, as follows. Let S be the set of
projection cut-lines of s to the right of s. Consider a cut-line l ∈ S and suppose l is
associated with a node u in the i-th super-level of the cut-line tree T (P) for some i. Then
l is a relevant projection cut-line of s if ln(u) > ln(v) (i.e., their level numbers) for every
node v with v 6= u in the i-th super-level of T (P) such that the cut-line l(v) of v is also in
S. In other words, l(u) is a relevant projection cut-line of s if u has the largest distance in
T (P) from the root among all nodes v in the i-th super-level of T (P) whose cut-lines l(v)
are in S. For example, in Fig. 1 and Fig. 2, suppose s is between the cut-lines l(v1) and l(v2)
and both l(u) and l(v2) are horizontally visible to s; then among the cut-lines of all nodes
in Tu(P), only l(v2) and l(u) are in S, but only l(v2) is the relevant projection cut-line of
s. The relevant projection cut-lines of s to the left of s are defined similarly. Since s has
O(log n) projection cut-lines and any two of them are at different levels of T (P), the number
of relevant projection cut-lines of s is O(

√
log n), i.e., at most two from each super-level of

T (P) (one to the left of s and the other to the right of s). For each relevant projection
cut-line l of s, the Steiner point p (if any) immediately above (resp., below) the projection
point sh(l) of s on l is in V 2

g (s,GE) if p is visible to sh(l). Thus, |V 2
g (s,GE)| = O(

√
log n).

Clearly, the size of Vg(s,GE) is O(
√

log n). We also define the gateway edge for each
gateway of Vg(s,GE) and s in the same way as in Section 2. Below, when we say a shortest
path from s containing a gateway, we mean the path containing the corresponding gateway
edge as well.

Lemma 2. For any obstacle vertex p of P, there exists a shortest path from s to p using
GE that contains a gateway of s in Vg(s,GE).

Proof. Recall that Vg(s,Gold) is the gateway set of s defined on Gold in Section 2, and
by [7], there exists a shortest path π(s, p) from s to p using Gold that contains a point
a ∈ Vg(s,Gold).

By the definition of GE , if any edge e of Gold connecting two nodes u and v is not
an edge of GE , then e is path in GE . Hence, π(s, p) is still a shortest path in GE . For any
point a ∈ Vg(s,Gold) that is on a shortest s-p path, we call it a via point. If any via point
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qa

l(v)l(v′)

b

qh(l(v
′))

s

Figure 3: Illustrating the proof of Lemma 2: q is the obstacle vertex that defines the Steiner point a; l(v′)
is between s and l(v).

a is in V 1
g (s,Gold), then a is in Vg(s,GE) since V 1

g (s,GE) = V 1
g (s,Gold), and we are done.

Otherwise, all via points must be in V 2
g (s,Gold). If any such via point a ∈ V 2

g (s,Gold) is also
in V 2

g (s,GE), then we are done as well. It remains to prove the case where for each via point
a, we have a ∈ V 2

g (s,Gold) and a 6∈ V 2
g (s,GE). Recall that every node of Gold, including

each via point a, is also a node of GE . Below, we find an xy-monotone path from s to such
a via point a along GE that contains a gateway b ∈ V 2

g (s,GE). Since any xy-monotone path
is a shortest path, this gives a shortest s-p path (through a) containing a gateway b of s in
Vg(s,GE), thus proving the lemma.

Without loss of generality, we assume that a is to the right of s and above s (i.e., a
is to the northeast of s, see Fig. 3). Suppose a is on the cut-line l(v) of a node v in the i-th
super-level of T (P). If l(v) is a relevant cut-line of s, then there must be a gateway b of s
in V 2

g (s,GE) lying in the vertical segment sh(l(v))a on l(v) (possibly b = a), and thus we
are done. Otherwise, l(v) is not a relevant cut-line of s, and there exists a relevant cut-line
l(v′) of s to the right of s such that v′ is in the i-th super-level of T (P) and ln(v′) > ln(v).
Next, we show that b lies on l(v′).

It was shown in [7] (Lemma 3.4) that the level numbers of the projection cut-lines
of s to the right of s, in the left-to-right order, are decreasing. This observation can also be
seen easily by considering the projection cut-lines of T (P) in a top-down manner. Hence,
l(v′) is to the left of l(v) (see Fig. 3). Let q be the obstacle vertex that defines the Steiner
point a on l(v). By our definition of Steiner points, q must be in V (u) for the node u that is
the highest ancestor of v (and v′) in the i-th super-level. Therefore, if q is horizontally visible
to l(v′), then q also defines a Steiner point on l(v′). We now show that q is horizontally
visible to l(v′), and for this, it suffices to prove that a is horizontally visible to l(v′) since
q is horizontally visible to a. Because a ∈ V 2

g (s,Gold) and no via point is in V 1
g (s,Gold), it

was shown in [7] that a must be horizontally visible to the vertical line through s. Since
l(v′) is between s and a ∈ l(v), a is also horizontally visible to l(v′).

Thus, q defines a Steiner point on l(v′), i.e., the point qh(l(v′)) (see Fig. 3). By the
definition of V 2

g (s,GE), the lowest Steiner point b on l(v′) above s must be a gateway in
V 2
g (s,GE). Note that b may or may not be qh(l(v′)), but b cannot be higher than qh(l(v′)).

Thus, the concatenation of the gateway edge from s to b, bqh(l(v′)), and qh(l(v′))a, which
is an xy-monotone path from s to a using GE , contains the gateway b of V 2

g (s,GE). The
lemma thus follows.

Similarly, we define the gateway set Vg(t, GE) for t in GE . The similar result for t
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as Lemma 2 for s also holds. Thus, we have the following corollary.

Corollary 1. If there exists a shortest s-t path through an obstacle vertex of P, then there
exists a shortest s-t path through a gateway of s in Vg(s,GE) and a gateway of t in Vg(t, GE).

Next, we give an algorithm for computing the two gateway sets Vg(s,GE) and
Vg(t, GE).

Lemma 3. With a preprocessing of O(n log3/2 n2
√
logn) time and O(n

√
log n2

√
logn) space,

we can compute the gateway sets Vg(s,GE) and Vg(t, GE) in O(log n) time for any query
points s and t.

Proof. We only discuss the case for computing Vg(s,GE) since Vg(t, GE) can be computed
similarly. To compute the set V 1

g (s,GE), it suffices to determine the four projection points
{sl, sr, su, sd} of s on ∂P, which can be computed in O(log n) time by using the horizontal
and vertical visibility decompositions of P. These two visibility decompositions can be built
in O(n log n) time by standard sweeping algorithms. After that, we also need to build a
point location data structure [18, 32] on each of the two decompositions in additional O(n)
time.

To compute the set V 2
g (s,GE), it might be possible to modify the approach in [7].

However, to explain the approach in [7], we may have to review a number of observations
given in [7]. To avoid a tedious discussion, we propose the following algorithm that is simple.

We first obtain the set S of all relevant projection cut-lines of s. This can be done
in O(log n) time by following the cut-line tree T (P) from the root and using sl and sr to
determine the horizontal visibility of s. Note that the cut-lines of S are at some nodes on
a path from the root to a leaf. To obtain V 2

g (s,GE), for each cut-line l ∈ S, we need to:
(1) find the Steiner point p on l immediately above (resp., below) sh(l), and (2) determine
whether p is visible to sh(l).

Consider a cut-line l ∈ S. Let v1(l) and v2(l) be the two gateways of V 2
g (s,GE) on

l (if any) such that v1(l) is above v2(l). That is, v1(l) (resp., v2(l)) is the Steiner point on
l immediately above (resp., below) sh(l) and visible to sh(l). If we maintain a sorted list
of all Steiner points on l, then v1(l) and v2(l) can be found by binary search on the sorted
list. However, there are two issues with this approach. First, if we do binary search on each
cut-line of S, since |S| = O(

√
log n), it takes O(log3/2 n) time on all cut-lines of S. Second,

even if we find v1(l) and v2(l), we still need to check whether sh(l) is visible to them. To
resolve these two issues, we take the following approach.

For every Steiner point p on the cut-line l, suppose we associate with p its upward
and downward projection points pu and pd on ∂P. Then once we find the Steiner point q
on l immediately above (resp., below) sh(l), we can determine easily whether q is visible to
sh(l) using qu and qd; if q is visible to sh(l), then v1(l) = q (resp., v2(l) = q), or else v1(l)
(resp., v2(l)) does not exist. For any Steiner point p on l, pl and pr can be found in O(log n)
time by using the vertical visibility decomposition of P. Since there are O(n

√
log n2

√
logn)

Steiner points p on all cut-lines of T (P), their projection points pu and pd can be computed
in totally O(n log3/2 n2

√
logn) time.
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Next, for each cut-line l, we sort all Steiner points on l. With this, one can com-
pute all gateways of V 2

g (s,GE) in O(log2 n) time by doing binary search on each relevant
projection cut-line of s. To reduce the query time to O(log n), we make use of the fact that
all relevant projection cut-lines of s are at the nodes on a path of T (P) from the root to a
leaf. We build a fractional cascading structure [5] on the sorted lists of Steiner points on
all cut-lines along T (P), such that the searches on all cut-lines at the nodes on any path of
T (P) from the root to a leaf take O(log n) time. Hence, all gateways of V 2

g (s,GE) can be
computed in O(log n) time. Since the total number of Steiner points in the sorted lists of
all cut-lines of T (P) is O(n

√
log n2

√
logn), the fractional cascading structure can be built in

O(n
√

log n2
√
logn) space and O(n log3/2 n2

√
logn) time. The lemma thus follows.

Theorem 1. We can build a data structure of size O(n2·log n·4
√
logn) in O(n2·log2 n·4

√
logn)

time such that each two-point L1 shortest path query can be answered in O(log n) time (i.e.,
for any two query points s and t, the length of a shortest s-t path can be found in O(log n)
time and an actual path can be reported in additional time linear in the number of edges of
the output path).

Proof. In the preprocessing, we first build the graph GE . Then, for each node v of GE , we
compute a shortest path tree in GE from v. We also maintain a shortest path length table
such that for any two nodes u and v, the shortest u-v path length in GE can be obtained
in O(1) time. Since GE is of a size O(n

√
log n2

√
logn), computing and maintaining all these

shortest path trees in GE take O(n2 log n4
√
logn) space and O(n2 log2 n4

√
logn) time. We

also do the preprocessing for Lemma 3.

Given any two query points s and t, we first check whether there is a trivial shortest
s-t path, as discussed in Section 2, in O(log n) time by using the algorithm in [7] (with
an O(n log n) time preprocessing). If there is a trivial shortest s-t path, then we are done.
Otherwise, there must be a shortest s-t path that contains an obstacle vertex of P. Then,
we first compute the gateway sets Vg(s,GE) and Vg(t, GE) in O(log n) time by Lemma 3.
Finally, we determine the shortest s-t path length by using the gateway graph as discussed
in Section 2, in O(log n) time, since there are O(

√
log n) gateways and thus the gateway

graph has O(
√

log n) nodes and O(log n) edges.

We can report an actual shortest s-t path in additional time linear in the number of
edges of the output path by using the shortest path trees ofGE . This proves the theorem.

4 Reducing the Time and Space Bounds of the Preprocessing

In this section, we improve the preprocessing in Theorem 1 to O(n+h2 · log h ·4
√
log h) space

and O(n+h2 · log2 h · 4
√
log h) time, while maintaining the O(log n) query time. For this, we

shall make use of the extended corridor data structure [8, 9, 11, 31], and more importantly,
explore a number of new observations, which may be interesting in their own right.

The corridor structure has been used to solve shortest path problems (e.g., [27, 30,
31]), and new concepts like “ocean”, “bays”, and “canals” have been introduced [8, 9, 10, 12,
11, 13], which we refer to as the “extended corridor structure”. This structure is a subdivision
of the free space on which algorithms for specific problems rely. While the extended corridor
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structure itself is relatively simple, the main difficulty is to design efficient algorithms to
exploit it. In some sense, the role played by the extended corridor structure is similar to
that of triangulations for many geometric algorithms. We briefly review it in Section 4.1,
since our presentation uses many notations introduced in it.

4.1 The Extended Corridor Structure

For simplicity of discussion, we assume that the obstacles of P are all contained in a rectangle
R. Let F denote the free space in R, and Tri(F) denote a triangulation of F (see Fig. 4).
The line segments of Tri(F) that are not obstacle edges are referred to as diagonals.

Let G(F) denote the dual graph of Tri(F), i.e., each node of G(F) corresponds to a
triangle of Tri(F) and each edge connects two nodes corresponding to two triangles sharing
a diagonal of Tri(F). Based on G(F), we compute a planar 3-regular graph, denoted by G3

(the degree of every node in G3 is three), possibly with loops and multi-edges, as follows.
First, we remove each degree-one node from G(F) along with its incident edge; repeat this
process until no degree-one node remains in the graph. Second, remove every degree-two
node from G(F) and replace its two incident edges by a single edge; repeat this process
until no degree-two node remains. The resulting graph is G3 (see Fig. 4), which has O(h)
faces, nodes, and edges [31]. Every node of G3 corresponds to a triangle in Tri(F), called a
junction triangle (see Fig. 4). The removal of the nodes for all junction triangles from G3

results in O(h) corridors, each of which corresponds to an edge of G3.

The boundary of each corridor C consists of four parts (see Fig. 5): (1) A boundary
portion of an obstacle Pi ∈ P, from a point a to a point b; (2) a diagonal of a junction
triangle from b to a point e on an obstacle Pj ∈ P (Pi = Pj is possible); (3) a boundary
portion of the obstacle Pj from e to a point f ; (4) a diagonal of a junction triangle from f
to a. The corridor C is a simple polygon, and the two boundary portions defined above in
(1) and (3) are two sides of C. Let π(a, b) (resp., π(e, f)) be the Euclidean shortest path
from a to b (resp., e to f) in C. The region HC bounded by π(a, b), π(e, f), be, and fa is
called an hourglass, which is open if π(a, b)∩π(e, f) = ∅ and closed otherwise. If HC is open,
then both π(a, b) and π(e, f) are convex chains and are called the sides of HC ; otherwise,
HC consists of two “funnel” and a path πC = π(a, b) ∩ π(e, f) joining the two apices of the
two funnels, and πC is called the corridor path of C. The two funnel apices (e.g., x and y in
Fig. 5) are called corridor path terminals. Each side of a funnel is also a convex chain.

Let M be the union of the O(h) junction triangles, open hourglasses, and funnels.
Then M ⊆ F . We call M the ocean. Since the sides of open hourglasses and funnels are
all convex, the boundary ∂M of M consists of O(h) convex chains with a total of O(n)
vertices; also, there are O(h) reflex vertices on ∂M, which are corridor path terminals. We
further partition the free space F \M into regions called bays and canals, as follows.

Consider the hourglass HC of a corridor C. If HC is open, then HC has two sides.
Let S1(HC) be one side of HC . The obstacle vertices on S1(HC) all lie on the same side of
C. Let c and d be any two consecutive vertices on S1(HC) such that cd is not an edge of C
(e.g., see the left figure in Fig. 5). The free region enclosed by cd and the boundary portion
of C between c and d is called a bay, denoted by bay(cd). We call cd the gate of bay(cd),
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Figure 4: [9, 10] Illustrating a triangulation of
the free space among two obstacles and the corri-
dors (indicated by red solid curves). There are two
junction triangles marked by a large dot inside each
of them, connected by three solid (red) curves. Re-
moving the two junction triangles results in three
corridors.

x

e

f

a

y

b e

f

a

Pj

Pjc

d
z

d

bay(cd)

canal(x,y)

b

Pi

Pi

Figure 5: [9, 10] Illustrating an open hourglass (left)
and a closed hourglass (right) with a corridor path con-
necting the apices x and y of the two funnels. The dashed
segments are diagonals. The paths π(a, b) and π(e, f) are
shown with thick solid curves. A bay bay(cd) with gate
cd (left) and a canal canal(x, y) with gates xd and yz
(right) are also indicated.

which is an edge shared by bay(cd) andM. If HC is closed, let x and y be the two apices
of its two funnels. Consider two consecutive vertices c and d on a side of any funnel such
that cd is not an obstacle edge. If neither c nor d is a funnel apex, then c and d must lie
on the same side of C and the segment cd also defines a bay. However, if c or d is a funnel
apex (say, c = x), then c and d may lie on different sides of C. If they lie on the same
side of C, then they also define a bay; otherwise, we call xd the canal gate at x = c (see
Fig. 5). Similarly, there is a canal gate at the other funnel apex y, say yz. The sub-region
of C between xd and yz that contains the corridor path of HC is called a canal, denoted by
canal(x, y).

Every bay or canal is a simple polygon. The ocean, bays, and canals together
constitute the free space F . While the total number of all bays is O(n), the total number
of all canals is O(h).

4.2 Queries in the Ocean M

For any two points s and t in the ocean M, it has been proved that there exists an L1

shortest s-t path in the free space of the union ofM and all corridor paths [8, 9, 11]. Let
M′ be the union ofM and all corridor paths. Thus, if s and t are both inM, then there
is a shortest s-t path inM′.

In this subsection, we will first construct a graph GE(M) of size O(h ·√log h ·2
√
log h)

onM, in a similar fashion as GE in Section 3. Using the graph GE(M) and with additional
O(n) space, for any query points s and t inM, the shortest path query can be answered in
O(log n) time.

Recall that R is the rectangle that contains all obstacles of P. Let Q = R\M. Note
that ∂Q is ∂M. Hence, ∂Q consists of O(h) convex chains with a total of O(n) vertices,
and ∂Q also contains O(h) reflex vertices that are corridor path terminals. Since P has h
obstacles, Q contains at most h connected components and each obstacle of P is contained
in a component of Q. For any point q inM, in this subsection, let ql, qr, qu, and qd denote
the leftward, rightward, upward, and downward projection points of q on ∂Q, respectively.

An obstacle vertex p on ∂Q is said to be extreme if both its incident edges on ∂Q

http://jocg.org/


JoCG 7(1), 473–519, 2016 487

Journal of Computational Geometry jocg.org

are on the same side of the vertical or horizontal line through p. Let Ve(Q) denote the set
of all extreme vertices and corridor path terminals of Q. Since ∂Q consists of O(h) convex
chains and O(h) reflex vertices that are corridor path terminals, |Ve(Q)| = O(h). We could
build a graph on Ve(Q) with respect to Q in a similar way as we built GE on the obstacle
vertices of P in Section 3, and then use this graph to answer queries when both query points
are in M. However, in order to handle the general queries (in Section 4.3) for which at
least one query point is not inM, we need to consider more points for building the graph.
Specifically, let V(Q) = {pl, pr, pu, pd | p ∈ Ve(Q)} ∪ Ve(Q), i.e., in addition to Ve(Q), V(Q)
also contains the four projections of all points in Ve(Q) on ∂Q. Since |Ve(Q)| = O(h), we
have |V(Q)| = O(h).

For each connected component Q of Q, let V(Q) denote the set of points of V(Q) on
Q. Consider any two points a and b of V(Q) that are consecutive on the boundary ∂Q of
Q. By the definition of a and b, the boundary portion of ∂Q between a and b that contains
no other points of V(Q) must be an xy-monotone path (similar results were also given in
[8, 9, 11, 27]), and we call it an elementary curve of ∂Q. Hence, for any two points on an
elementary curve, the portion of the curve between the two points is a shortest path between
the two points.

Our goal is to build a graph, denoted by GE(M), on V(Q) with respect to Q in
a similar way as we built GE in Section 3, and use it to answer queries. To argue the
correctness of our approach, we also define a graph Gold(M) on V(Q) and Q in a similar
way as Gold on P. Again, Gold(M) is only for showing the correctness of our approach based
on GE(M) (recall that we use Gold to show the correctness of using GE). Below, we define
GE(M) and Gold(M) simultaneously.

We first define their node sets. Each point of V(Q) defines a node in both graphs.
In addition, Gold(M) has type-1 and type-2 Steiner points as nodes; GE(M) has type-1,
type-2, and type-3 Steiner points as nodes. Such Steiner points are defined using V(Q) in a
similar way as before, but with respect to ∂Q. Specifically, for each point p ∈ V(Q), its four
projections pl, pr, pu, and pd on ∂Q are type-1 Steiner points. Let T (M) be the cut-line tree
defined on the points of V(Q), similar to T (P). Each node u of T (M) is associated with a
subset V (u) ⊆ V(Q) and a vertical cut-line l(u) through the median of the x-coordinates of
the points in V (u). Since |V(Q)| = O(h), T (M) has O(log h) levels and O(

√
log h) super-

levels. For every node u ∈ T (M), for each point p ∈ V (u), if p is horizontally visible to l(u),
then the projection of p on l(u) is a type-2 Steiner point. Also, there are O(h

√
log h2

√
log h)

type-3 Steiner points on the cut-lines of T (M), which are defined in a similar way as in
Section 3, and we omit the details.

The edge sets of the two graphs are defined similarly as those in Gold and GE . We
only point out the differences here. The first difference is that for each corridor path, since its
two terminals define two nodes in Gold(M) (resp., GE(M)), we define an edge in Gold(M)
(resp., GE(M)) that connects these two nodes and the weight of the edge is the length of
the corridor path. The second difference is as follows. In Gold and GE , for each obstacle
edge e of P, both graphs have an edge connecting each pair of consecutive graph nodes
on e. In contrast, here we consider each individual elementary curve of Q instead of each
individual edge of Q because not every vertex of Q defines a node in Gold(M) and GE(M).
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p

q

an ear

β

Figure 6: Illustrating an ear bounded by pq and an elementary curve β.

Specifically, consider each elementary curve β of Q. Note that the two endpoints of β must
be in V(Q) and thus define two nodes in both graphs. For each pair of consecutive graph
nodes along β, we put an edge in both Gold(M) and GE(M) whose weight is the length of
the portion of β between these two points. We then have the following lemma.

Lemma 4. For any two points u and v in V(Q), a shortest path from u to v in Gold(M)
corresponds to a shortest path from u to v in the plane, and a shortest path from u to v in
GE(M) also corresponds to a shortest path from u to v in the plane.

Proof. We first show that a shortest path from u to v in Gold(M) corresponds to a shortest
path from u to v in the plane, and then show a shortest path from u to v in GE(M)
corresponds to a shortest path from u to v in Gold(M). This will prove the lemma.

To show a shortest path from u to v in Gold(M) corresponds to a shortest path from
u to v in the plane, we will build a new graph G and prove the following: (1) a shortest
path from u to v in G corresponds to a shortest path from u to v in Gold(M), and (2) a
shortest path from u to v in G corresponds to a shortest path from u to v in the plane.
Below, to define the graph G, we first review some observations that have been discovered
in the previous work.

Let Q be any connected component of Q. Consider an elementary curve β of Q with
endpoints p and q. By the definition of elementary curves, the line segment pq must be
inside Q (similar results were given in [8, 9, 11]). We call the region enclosed by β and pq
an ear of Q (e.g., see Fig. 6), pq the base of the ear, and β the elementary curve of the ear.
It is possible that β is pq, in which case the ear is pq. It is easy to see that the bases of all
elementary curves of Q do not intersect except at their endpoints [8, 9, 11]. Hence, if we
connect the bases of its elementary curves, we obtain a simple polygon that is contained in
Q; we call this simple polygon the core of Q, denoted by Qcore. Clearly, the union of Qcore
and all the ears of Q is Q. Denote by Qcore the set of cores of all components of Q. Note
that the vertex set of Qcore is V(Q) and the edges of Qcore are the bases of all ears of Q.
Thus, Qcore has O(h) vertices and edges. By the results in [8, 9, 11], for any two points
in M, in particular, any two vertices u and v in V(Q), there is a shortest u-v path in the
plane that avoids all cores of Qcore and possibly contains corridor paths. More specifically,
there exists a shortest path π(u, v) from u to v that contains a sequence of vertices of V(Q),
p1, p2, . . . , pk, in this order, with u = p1 and v = pk, such that for any two consecutive
vertices pi and pi+1, 1 ≤ i ≤ k − 1, if pi and pi+1 are terminals of the same corridor path,
then the entire corridor path is contained in π(u, v), or else π(u, v) contains the line segment
pipi+1 which does not intersect the interior of any core in Qcore.
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We build a graph G = Gold(Qcore) on V(Q) with respect to the cores of Q, in the
same way as Gold on P in [7, 16, 17], with the only difference that if two nodes of G are
terminals of the same corridor path, then there is an extra edge in G connecting these two
nodes whose weight is the length of the corridor path. Note that u and v define two nodes
in G. Based on the above discussion, we claim that the shortest path π(u, v) defined above
must correspond to a shortest path from u to v in G. Indeed, for any i, 1 ≤ i ≤ k − 1, if pi
and pi+1 are terminals of the same corridor path, then recall that π(u, v) contains the entire
corridor path and there is an edge in G connecting pi and pi+1 whose weight is the length
of that corridor path; otherwise, π(u, v) contains the segment pipi+1, and by the proof in
[16, 17], there must be a path in G whose length is equal to that of pipi+1 since pi is visible
to pi+1 with respect to the cores of Q. This proves that there is a shortest u-v path in G
whose length is equal to that of π(u, v).

Next, we prove that a shortest u-v path in G must correspond to a shortest u-v path
in Gold(M). To make the paper more self-contained, we give some details below; refer to
[27, 8, 9] for more details.

Both Gold(M) and G are built on V(Q) in the same way, with the only difference
that Gold(M) is built with respect to Q while G is built with respect to Qcore. A useful fact
is that for any two points a and b on any elementary curve β, the length of the portion of β
between a and b is equal to that of the segment ab because β is xy-monotone. Note that the
space outside Qcore is the union of the space outside Q and all ears of Q. Since both graphs
have extra edges to connect corridor path terminals, to prove that a shortest u-v path in G
corresponds to a shortest u-v path in Gold(M), based on the analysis in [16, 17], we only
need to show the following: For any two vertices a and b of V(Q) visible to each other with
respect to Qcore such that no other vertices of V(Q) than a and b are in the axis-parallel
rectangle R(a, b) that has ab as a diagonal, there must be an xy-monotone path between a
and b in Gold(M). Note that a may not be visible to b with respect to Q.

By the construction of the graph G [16, 17], there must be an xy-monotone path
from a to b in G, for which there are two possible cases. Below, we prove in each case there
is also an xy-monotone path from a to b in Gold(M). Without loss of generality, we assume
b is to the northeast of a.

Case 1 If any core of Qcore intersects the interior of the rectangle R(a, b), then as shown in
[16, 17], either the rightward projection of a on ∂Qcore and the downward projection
of b on ∂Qcore are both on the same edge of ∂Qcore that intersects R(a, b) (e.g., see
Fig. 7), or the upward projection of a on ∂Qcore and the leftward projection of b on
∂Qcore are both on the same edge of ∂Qcore that intersects R(a, b). Here, we assume
that the former case occurs. Let a1 be the rightward projection of a on ∂Qcore and b1
be the downward projection of b on ∂Qcore, and a2b2 be the edge of Qcore that contains
both a1 and b1. By the construction of G, there is an xy-monotone path from a to b
consisting of aa1 ∪ a1b1 ∪ b1b. Below, we show that there is also an xy-monotone path
from a to b in Gold(M).

Let ear(a2b2) be the ear of Q whose base is a2b2. Let β be the elementary curve of
ear(a2b2). Since no vertex of V(Q) − {a, b} is in R(a, b) and all extreme points of Q
are in V(Q), the rightward projection of a on ∂Q and the downward projection of b on
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a

b

a1

b1

a2

b2

Figure 7: Illustrating the proof of Lemma 4: a1 is
the rightward projection of a on ∂Qcore and b1 is the
downward projection of b on ∂Qcore.

a

b

a2

b2

a3

b3

Figure 8: Illustrating the proof of Lemma 4: a3 is
the rightward projection of a on ∂Q and b3 is the
downward projection of b on ∂Q. Both a3 and b3
must be on the same elementary curve β.

∂Q must be both on β (e.g., see Fig. 8); we denote these two projection points by a3
and b3, respectively. By the construction of Gold(M), there must be an xy-monotone
path from a to b in Gold(M) that is a concatenation of aa3, the portion of β between
a3 and b3, and b3b (note that a3 is a type-1 Steiner point defined by a and b3 is a
type-1 Steiner point defined by b in Gold(M)).

Case 2 If no core of Qcore intersects the interior of the rectangle R(a, b), then by the con-
struction of G, there must be a cut-line l between a and b such that on l, a defines a
Steiner point ah(l) and b defines a Steiner point bh(l) (e.g., see Fig. 9). Thus, there is
an xy-monotone path from a to b in G consisting of aah(l)∪ah(l)bh(l)∪ bh(l)b. Below,
we show that there is also an xy-monotone path from a to b in Gold(M).

a

b
l

ah(l)

bh(l)

Figure 9: Illustrating the proof of Lemma 4: ah(l)
is the rightward projection of a on l and bh(l) is the
leftward projection of b on l.

a

b

a1
b1

l

Figure 10: Illustrating the proof of Lemma 4: a1
is the rightward projection of a on ∂Q and b1 is the
downward projection of b on ∂Q. Both a1 and b1
must be on the same elementary curve β.

Since both G and Gold(M) are built on V(Q), they have the same cut-line tree. Hence,
the cut-line l still exists in Gold(M). If both a and b are horizontally visible to l, then
they still define Steiner points on l and consequently there is also an xy-monotone path
from a to b in Gold(M). Otherwise, we assume that a is not horizontally visible to l.
Let a1 be the rightward projection of a on ∂Q (see Fig. 10). Hence, a1 must be between
l and a. Let β be the elementary curve that contains a1. Thus, β intersects the lower
edge of R(a, b) at a1. Since R(a, b) does not contain any point of V(Q) − {a, b}, the
two endpoints of β are not in R(a, b) and thus the downward projection of b on ∂Q,
denoted by b1, must be on β as well. By the construction of Gold(M), there must be
an xy-monotone path from a to b in Gold(M) that is the concatenation of aa1, the
portion of β between a1 and b1, and b1b.
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The above arguments prove that a shortest path from u to v in Gold(M) corresponds
to a shortest path from u to v in the plane.

It remains to show that a shortest u-v path in Gold(M) corresponds to a shortest
u-v path in GE(M). This can be seen easily since for any edge e in Gold(M), if e is not in
GE(M), then e is a path in GE(M). The lemma thus follows.

The next lemma gives an algorithm for computing the graph GE(M).

Lemma 5. The graph GE(M) can be computed in O(n+ h log3/2 h2
√
log h) time.

Proof. The algorithm for constructing GE(M) is similar to that for GE in Lemma 1. We
first triangulate the free space F in O(n + h log1+ε h) time for any constant ε > 0 [2],
after which computing the extended corridor structure takes O(n+ h log h) time [8, 9, 11].
Subsequently, we obtain Q and the vertex set V(Q). All corridor paths are also available.

We compute the four projections of each point of V(Q) on ∂Q as type-1 Steiner
points, which can be done after we compute the vertical and horizontal visibility decomposi-
tions of Q in O(n+ h log1+ε h) time [2]. The graph edges for connecting each point of V(Q)
to its four projection points on ∂Q can be obtained as well.

Next, we compute the type-2 and type-3 Steiner points. Since |V(Q)| = O(h), the
cut-line tree T (M) can be computed in O(h log h) time. Then, we determine the Steiner
points on the cut-lines by traversing the tree T (M) from top to bottom in a similar way
as in Lemma 1. Since we have obtained the four projection points for each point of V(Q),
computing all Steiner points on the cut-lines takesO(h

√
log h2

√
log h) time. In the meanwhile,

as in Lemma 1, for each point p ∈ V(Q), we compute the edges of GE(M) connecting the
Steiner points defined by p on consecutive cut-lines in each super-level of T (M) (i.e., the
edges illustrated by the dotted segments in Fig 2). As in Lemma 1, all these graph edges
can be computed in time linear in the total number of type-2 and type-3 Steiner points,
which is O(h

√
log h2

√
log h).

It remains to compute the graph edges of GE(M) connecting consecutive graph
nodes on each elementary curve of Q and the graph edges connecting every two consecutive
Steiner points (if they are visible to each other) on each cut-line.

On each connected component Q of Q, we could compute a sorted list of all Steiner
points and the points of V(Q) by sorting all these points and all obstacle vertices of Q along
∂Q. But that would take O(n log n) time in total because there are O(n) obstacle vertices
on all components of Q. To do better, we take the following approach. For each elementary
curve β, we sort all Steiner points on β by either their x-coordinates or y-coordinates. Since
β is xy-monotone, such an order is also an order along β. Then, we merge the Steiner points
thus ordered with the obstacle vertices on β, in linear time. Since there are O(h) Steiner
points on ∂Q, it takes a total of O(n+ h log h) time to sort the Steiner points and obstacle
vertices on all elementary curves of Q. After that, the edges of GE(M) on all elementary
curves can be computed immediately.

We now compute the graph edges on the cut-lines connecting consecutive Steiner
points. We first sort all Steiner points on each cut-line. This sorting step can be done in
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O(h log3/2 h2
√
logn) time for all cut-lines. For each pair of consecutive Steiner points p and

q on every cut-line, we determine whether p is visible to q by checking whether the upward
projections of p and q on ∂Q are equal, and these upward projections can be performed in
O(log n) time using the vertical visibility decomposition of Q. Hence, the graph edges on
all cut-lines are computed in O(h

√
log h2

√
log h · log n) time.

In summary, we can compute the graph GE(M) in O(n+h
√

log h2
√
log h · log n) time.

Note that h
√

log h2
√
log h · log n = O(n+ h log3/2 h2

√
log h). To see this, if h = O(

√
n), then

n+ h
√

log h2
√
log h · log n = O(n); otherwise log n = Θ(log h). The lemma thus follows.

Consider any two query points s and t in the ocean M. We define the gate-
way sets Vg(s,GE(M)) for s and Vg(t, GE(M)) for t on GE(M), as follows. We only
discuss Vg(s,GE(M)); Vg(t, GE(M)) is similar. The definition of Vg(s,GE(M)) is anal-
ogous to that of Vg(s,GE). Specifically, Vg(s,GE(M)) has two subsets V 1

g (s,GE(M))
and V 2

g (s,GE(M)). V 2
g (s,GE(M)) is defined in the same way as V 2

g (s,GE), and thus
|V 2
g (s,GE(M))| = O(

√
log h). V 1

g (s,GE(M)) is defined with respect to the elementary
curves of Q, as follows. Let q be the rightward projection point of s on ∂Q. Suppose q is
on the elementary curve β and p1 and p2 are the two nodes of GE(M) on β adjacent to q.
Then p1 and p2 are in V 1

g (s,GE(M)), and for each p ∈ {p1, p2}, we define a gateway edge
from s to p consisting of sq and the portion of β between q and p. Similarly, for each of the
leftward, upward, and downward projections of s on ∂Q, there are at most two gateways in
V 1
g (s,GE(M)).

The next lemma shows that the gateways of Vg(s,GE(M)) “control” the shortest
paths from s to all points of V(Q).

Lemma 6. For any point p of V(Q), there exists a shortest path from s to p using GE(M)
that contains a gateway of s in Vg(s,GE(M)).

Proof. We define a gateway set Vg(s,Gold(M)) for s on the graph Gold(M), as follows. The
set Vg(s,Gold(M)) has two subsets V 1

g (s,Gold(M)) and V 2
g (s,Gold(M)). The first subset

V 1
g (s,Gold(M)) is exactly the same as V 1

g (s,GE(M)), and the second subset V 2
g (s,Gold(M))

contains gateways on the cut-lines of T (M), which are defined similarly as V 2
g (s,Gold) on

Gold and T (P), discussed in Section 2. Note that the gateways in Vg(s,Gold(M)) are exactly
those nodes of Gold(M) that are adjacent to s if we “insert” s into the graph Gold(M) (similar
arguments were used for Vg(s,Gold) in [7]). Hence, there exists a shortest path from s to p
using Gold(M) that contains a gateway of s in Vg(s,Gold(M)).

Since the graph GE(M) is defined analogously as GE and Gold(M) is defined anal-
ogously as Gold, by using a similar analysis as in the proof of Lemma 2, we can show that
there exists a shortest path from s to p using GE(M) that contains a gateway of s in
Vg(s,GE(M)). We omit the details. The lemma thus follows.

Similar results also hold for the gateway set Vg(t, GE(M)) of t. We have the following
corollary.
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Corollary 2. If there exists a shortest s-t path through a point of V(Q), then there ex-
ists a shortest s-t path through a gateway of s in Vg(s,GE(M)) and a gateway of t in
Vg(t, GE(M)).

The following lemma gives an algorithm for computing the gateways.

Lemma 7. With a preprocessing of O(n+h·log3/2 h·2
√
log h) time and O(n+h·√log h·2

√
log h)

space, the gateway sets Vg(s,GE(M)) and Vg(t, GE(M)) can be computed in O(log n) time
for any two query points s and t inM.

Proof. The algorithm is similar to that for Lemma 3; we only point out the differences.
We discuss our algorithm only for computing Vg(s,GE(M)); the case for Vg(t, GE(M)) is
similar.

To compute V 1
g (s,GE(M)), we build the horizontal and vertical visibility decompo-

sitions of Q. Then, the four projections of s on ∂Q can be determined in O(log n) time.
Consider any such projection p of s. Suppose p is on an elementary curve β. We need to de-
termine the two nodes of GE(M) on β adjacent to p, which are gateways of V 1

g (s,GE(M)).
We maintain a sorted list of all nodes of GE(M) on β, and do binary search to find these two
gateways of s on β in this sorted list by using only the y-coordinates (or the x-coordinates)
of the nodes since β is xy-monotone. Also, since β is xy-monotone, for any two points q
and q′ on β, the length of the portion of β between q and q′ is equal to the length of qq′.
Hence, after these two gateways of s on β are found, the lengths of the two gateway edges
from s to them can be computed in constant time. Since V 1

g (s,GE(M)) has O(1) gateways,
V 1
g (s,GE(M)) can be computed in O(log n) time.

To compute V 2
g (s,GE(M)), we take the same approach as for Lemma 3. In the

preprocessing, for every cut-line l, we maintain a sorted list of all Steiner points on l,
and associate with each such Steiner point its upward and downward projections on ∂Q.
Computing these projections for each Steiner point takes O(log n) time. Then we build a
fractional cascading data structure [5] for the sorted lists of Steiner points on all cut-lines
along the cut-line tree T (M). Using this fractional cascading data structure, the gateway
set V 2

g (s,GE(M)) can be computed in O(log h) time. Note that the time is O(log h) (instead
of O(log n)) since the size of GE(M) is O(h

√
log h2

√
log h).

The preprocessing takes O(n+h
√

log h2
√
log h log n) time and O(n+h

√
log h2

√
log h)

space. Note that n + h
√

log h2
√
log h log n = O(n + h log3/2 h2

√
log h). The lemma thus

follows.

We summarize our algorithm in Lemma 8 for the case when both query points are
inM.

Lemma 8. With a preprocessing of O(n+ h2 log2 h4
√
log h) time and O(n+ h2 log h4

√
log h)

space, each two-point query can be answered in O(log n) time for any two query points in
the oceanM.

Proof. In the preprocessing, we build the graph GE(M), and for each node v of GE(M),
compute a shortest path tree in GE(M) from v. We maintain a shortest path length
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table such that for any two nodes u and v in GE(M), the shortest path length between
u and v can be found in O(1) time. Since GE(M) has O(h

√
log h2

√
log h) nodes and edges,

computing and maintaining all shortest path trees in GE(M) take O(h2 log h4
√
log h) space

and O(n+ h2 log2 h4
√
log h) time.

To report an actual shortest path in the plane in time linear in the number of edges
of the output path, we need to maintain additional information. Consider an elementary
curve β of Q. Let u and v be two consecutive nodes of GE(M) on β. By our definition
of GE(M), there is an edge (u, v) in GE(M). If the edge (u, v) is contained in our output
path, we need to report all obstacle vertices and edges of β between u and v. For this,
on each elementary curve β, we explicitly maintain a list of obstacle edge between each
pair of consecutive nodes of GE(M) along β. Since the total number of nodes of GE(M)
on all elementary curves is O(h) and the total number of obstacle vertices of Q is O(n),
maintaining such edge lists for all elementary curves takes O(n) space.

In addition, we also perform the preprocessing for Lemma 7.

The overall preprocessing takes O(n+h2 log2 h4
√
log h) time and O(n+h2 log h4

√
log h)

space.

Now consider any two query points s and t inM. As for Theorem 1, we first check
whether there exists a trivial shortest s-t path. But trivial shortest paths here are defined
with respect to the elementary curves of Q instead of the obstacle edges of P. For example,
consider sr (i.e., the rightward projection of s on ∂Q) and td. If ssr intersects ttd, then there
is a trivial shortest s-t path sq ∪ qt, where q = ssr ∩ ttd; otherwise, if sr and td are both
on the same elementary curve β of Q, then there is a trivial shortest s-t path which is the
concatenation of ssr, the portion of β between sr and td, and tdt. Similarly, trivial shortest
s-t paths are also defined by other projections of s and t on ∂Q.

We can determine whether there exists a trivial shortest s-t path in O(log n) time
by using the vertical and horizontal decompositions of Q to compute the four projection
points of s and t on ∂Q. If yes, we find such a shortest path in additional time linear in the
number of edges of the output path. Note that for the case, e.g., when sr and td are both
on the same elementary curve β, the output path may not be of O(1) size since there may
be multiple obstacle vertices on the portion of β between sr and td; but we can still output
such a path in linear time by using the edge lists we maintain on each elementary curve.
Below, we assume there is no trivial shortest s-t path.

By using the cores of Q in the proof of Lemma 4 and a similar analysis as in [7],
we can show that there must be a shortest s-t path that contains at least one point of
V(Q). By Corollary 2, there exists a shortest s-t path through a gateway of s and a gate-
way of t in GE(M). Using Lemma 7, we compute the two gateway sets Vg(s,GE(M)) and
Vg(t, GE(M)). By building a gateway graph for s and t as in Theorem 1, we can com-
pute the length of a shortest s-t path in O(log h) time since |Vg(s,GE(M))| = O(

√
log h),

|Vg(t, GE(M))| = O(
√

log h), and thus the gateway graph has O(
√

log h) nodes and O(log h)
edges. An actual path can then be reported in additional time linear in the number of edges
of the output path, by using the shortest path trees of GE(M) and the edge lists maintained
on the elementary curves, as discussed above. The lemma thus follows.
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4.3 The General Queries

In this section, we show how to handle the general queries in which at least one query point
is not inM. We first consider the case where neither s nor t is in a canal. The canal case
where at least one of the query points is in a canal will be discussed in Section 4.3.4, where
the case is handled by similar techniques although it is a little more complicated since each
canal has two gates.

Without loss of generality, we assume that s is in a bay, denoted by B. The point
t can be in B, M, or another bay, and we discuss these three cases in the following three
subsections.

Let g denote the gate of B. We will discuss several possible cases that a shortest
s-t path may cross the gate g. For each case, we will compute some “candidate” paths and
select the one with the smallest length as our solution.

4.3.1 The Query Point t is in B

When the query point t is in B, we have the following lemma.

Lemma 9. If B is a bay and t ∈ B, then there exists a shortest s-t path in B.

Proof. Let π be any shortest s-t path in the plane. If π is in B, then we are done. Otherwise,
π must intersect the only gate g of B; further, since both s and t are in B, if π exits from
B (through g), then it must enter B again (through g as well). Let p be the first point on
g encountered as going from s to t along π and let q be the last such point on g. Let π′ be
the s-t path obtained by replacing the portion of π between p and q by pq ⊆ g. Note that
π′ is in B. Since pq is a shortest path from p to q, π′ is also a shortest s-t path. The lemma
thus follows.

To handle the case of t ∈ B, in the preprocessing, we build a data structure for
two-point Euclidean shortest path queries in B, denoted by D(B), in O(|B|) time and space
[20]. Since a Euclidean shortest path in any simple polygon is also an L1 shortest path [24]
and B is a simple polygon, for t ∈ B, we can use D(B) to answer the shortest s-t path query
in B in O(log n) time.

4.3.2 The Query Point t is in M

If the query point t is in M, then a shortest s-t path must cross the gate g of B. A main
difficulty for answering the general queries is to deal with this case. More specifically, we
already have a graph GE(M) onM, and our goal is to design a mechanism to connect the
bay B with GE(M) through the gate g, so that it can capture the shortest path information
in the union of B andM′ (recall thatM′ is the union ofM and all corridor paths).

We begin with some observations on how a shortest s-t path may cross g. Without
loss of generality, we assume that g has a positive slope and the interior of B on g is above
g. Let a1 and a2 be the two endpoints of g such that a1 is higher than a2 (see Fig. 11). Let
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Figure 11: Illustrating the definitions of z′, z′1, z′2, z, z1, and z2. In (a), z1z′1 is tangent to π(z′, a1) (at z′1);
in (b), z1z′1 is tangent to π(z′, a2).

π(s, a1) (resp., π(s, a2)) be the Euclidean shortest path in B from s to a1 (resp., a2). Let
z′ be the farthest point from s on π(s, a1) ∩ π(s, a2) (possibly z′ = s). Let π(z′, a1) (resp.,
π(z′, a2)) be the subpath of π(s, a1) (resp., π(s, a2)) between z′ and a1 (resp., a2). It is well
known that both π(z′, a1) and π(z′, a2) are convex chains [21, 34], and the region enclosed
by π(z′, a1), π(z′, a2), and g in B is a “funnel” with z′ as the apex and g as the base [21, 34]
(see Fig. 11). Let F denote this funnel and ∂F denote its boundary.

We define four special points z′1, z′2, z1, and z2 (see Fig. 11). Suppose we move along
π(z′, a1) from z′; let z′1 be the first point on π(z′, a1) we encounter that is horizontally visible
to g = a1a2. Similarly, as moving along π(z′, a2) from z′, let z′2 be the first point on π(z′, a2)
encountered that is vertically visible to g. Note that in some cases z′1 (resp., z′2) can be z′,
a1, or a2. Let z1 be the horizontal projection of z′1 on g and z2 be the vertical projection of
z′2 on g (see Fig. 11).

The points z1 and z2 are particularly useful. We first have the following observation.

Observation 1. The point z1 is above z2, i.e., the y-coordinate of z1 is no smaller than
that of z2.

Proof. If z′ is either a1 or a2, then by their definitions, we have z1 = z2 = z′1 = z′2 = z′

and the observation trivially holds. Suppose z′ is neither a1 nor a2. If z1 = a1, then the
observation also holds since a1 is the highest point on g. We assume z1 6= a1, which implies
z′1 6= a1.

Let π(z′1, a1) be the portion of π(z′, a1) between z′1 and a1. Note that the “pseudo-
triangular” region enclosed by a1z1, z1z′1, and π(z′1, a1) does not contain any point of ∂B
in its interior. For any point p in the interior of a1z1, since π(z′1, a1) is convex and z1z′1 is
horizontal, p must be vertically visible to π(z′1, a1), say, at a point q ∈ π(z′1, a1). Clearly, q
is not z′1. Hence, the line containing pq cannot be tangent to π(z′, a1) at q, implying that q
is not z′2. Therefore, the point p must be strictly above z2. Since p is an arbitrary point in
the interior of a1z1, z1 must be above z2. The observation thus follows.

Lemma 10. For any point p ∈ a1z1, there is a shortest path from s to p that contains z1;
likewise, for any point p ∈ a2z2, there is a shortest path from s to p that contains z2.
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Proof. We only prove the case of p ∈ a1z1 since the other case of p ∈ a2z2 is symmetric. It
suffices to show that there exists a shortest path from z′ to p ∈ a1z1 that contains z1.

Recall that z1 is the horizontal projection of z′1 on g. Let π(z′1, a1) be the portion
of π(z′, a1) between z′1 and a1. Consider the “pseudo-triangular” region R enclosed by a1z1,
z1z′1, and π(z′1, a1). Since π(z′1, a1) is convex, every point on π(z′1, a1) is horizontally visible
to g.

We claim that there exists a shortest path π from z′ to p that intersects z′1z1. Indeed,
if z′ = z′1, then the claim is trivially true. Otherwise, since z′1 is the first point on π(z′, a1)
that is horizontally visible to g if we go from z′ to a1 along π(z′, a1), z′ cannot be horizontally
visible to g, and thus, z′ is not in R. Note that z1z′1 partitions the funnel F into two parts,
one of which is R. Also, the funnel F contains a shortest path π from z′ to p. Since p ∈ R
and z′ 6∈ R, the path π must intersect z′1z1. The claim is proved.

Suppose π intersects z′1z1 at a point q. Since qz1 ∪ z1p is xy-monotone (and thus
is a shortest path), we can obtain another shortest path from z′ to p that contains z1 by
replacing the portion of π between q and p by qz1 ∪ z1p. The lemma thus follows.

For the case of t ∈M, Lemma 10 implies the following. Let i ∈ {1, 2}. If a shortest
s-t path crosses g at a point on aizi, then there must be a shortest s-t path that is a
concatenation of a shortest path π(s, zi) from s to zi in B and a shortest path π(zi, t) from
zi to t in M′. The path π(s, zi) can be found using the data structure D(B) and π(zi, t)
can be found by Lemma 8 since both zi and t are in M. Hence, such a shortest s-t path
query can be answered in O(log n) time, provided that we can find zi in O(log n) time (as
to be shown in Lemma 17).

It remains to consider the case where every shortest s-t path crosses the interior of
z1z2; in other words, no shortest s-t paths cross a1z1 ∪ a2z2.

Let z denote the intersection of the horizontal line containing z1z′1 and the vertical
line containing z2z′2 (see Fig. 11). The point z is useful as shown by the next lemma.

Lemma 11. The point z is in the funnel F , and for any point p ∈ z1z2, there is a shortest
path from s to p that contains z.

Proof. We first prove z ∈ F . For this, it suffices to prove that the interior of the triangle
4zz1z2 does not contain any point on the boundary of F . Let R denote the interior of
4zz1z2.

Assume to the contrary that R intersects ∂F . Let q be any point in R ∩ ∂F that is
horizontally visible to z1z2. Such a point q always exists if R ∩ ∂F 6= ∅. Note that q is on
either π(z′, a1) or π(z′, a2). Without loss of generality, assume q is on π(z′, a1). Observe that
π(z′1, a1) is xy-monotone since z′1 is horizontally visible to g. Because q is also horizontally
visible to g, by the definition of z′1, q must be on π(z′1, a1). Since q is in R, q must be strictly
below z′1. Since a1 is no lower than z1, a1 is also no lower than z′1. Thus, when following
the path π(z′1, a1) from z′1 to a1, we have to strictly go down (through q) and then go up
(to a1), which contradicts with that the fact the path π(z′1, a1) is xy-monotone. Hence, R
cannot contain any point on ∂F and z must be in F .
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Consider any point p ∈ z1z2. Below we prove that there is a shortest path from s to
p containing z. It suffices to show that there exists a shortest path from z′ to p containing z.
If z1 = z2, then z = z1 = z2 = p and we are done. Below we assume z1 6= z2, which implies
z1 6= a2 since otherwise z1 = z2 by Observation 1; similarly, z2 6= a1. Note that z1 6= z2 also
implies z′ 6∈ {a1, a2}.

Let π(z′, p) be a shortest path in F from z′ to p. Let l1 be the horizontal line
containing z1z′1 and l2 be the vertical line containing z2z′2.

In the following, we first prove that l1 ∩ F is a line segment and it must intersect
the path π(z′, p). Consider the line segment z1z′1. Depending on whether l1 is tangent to
π(z′, a1) at z′1, there are two possible cases (e.g., see Fig. 11).

1. If l1 is tangent to π(z′, a1) at z′1 (see Fig. 11(a)), then we extend z1z′1 horizontally
leftwards until it hits ∂F , say, at a point z′′1 . Since π(z′, a1) is convex, z′ is above the
line l1 and z′′1 is on π(z′, a2). Since π(z′, a2) is also convex and z′ is above l1, we obtain
l1 ∩ F = z1z′′1 .

Observe that z′1z′′1 partitions F into two sub-polygons such that z′ and p are in different
sub-polygons. Hence, the path π(z′, p) must intersect z′1z′′1 ⊆ l1 ∩ F , which is a line
segment.

2. If l1 is not tangent to π(z′, a1) at z′1, then depending on whether z′1 = z′, there are
two subcases.

(a) If z′1 = z′, then due to the convexity of π(z′, a1) and π(z′, a2), we have l1 ∩ F =
z1z′1. Since z

′ = z′1, it is trivially true that π(z′, p) intersects l1 ∩ F = z1z′1.
(b) If z′1 6= z′ (see Fig. 11(b)), then we claim that z1z′1 must be tangent to π(z′, a2)

at a point, say, z′′1 . Suppose to the contrary that this is not the case. Then,
since z′1 6= z′, z1 6= a2, and l1 is not tangent to π(z′, a1) at z′1, we can move l1
downwards by an infinitesimal value such that the new l1 intersects g at a point
z3 and intersects π(z′, a1) at a point z′3 such that z′3 is horizontally visible to
z3. Clearly, z′3 is on π(z′, a1) between z′ and z′1. But this contradicts with the
definition of z′1, i.e., z′1 is the first point on π(z′, a1) horizontally visible to g if we
go from z′ to a1 along π(z′, a1). The claim is thus proved.
By the above claim and the convexity of π(z′, a2), z′ is below l1. Also by the
convexity of π(z′, a1), we have l1∩F = z1z′1. Further, observe that z′1z′′1 partitions
F into two sub-polygons such that z′ and p are in different sub-polygons. Hence,
the path π(z′, p) must intersect z′1z′′1 ⊆ l1 ∩ F .
Therefore, l1 ∩ F is a line segment that intersects π(z′, p).

The above arguments prove that l1 ∩ F is a line segment that intersects the path
π(z′, p), say, at a point q1. By using a similar analysis, we can also show that l2∩F is a line
segment that intersects π(z′, p), say, at a point q2. Note that this implies that z is on the
intersection of the segment l1 ∩ F and the segment l2 ∩ F . Since q1z ∪ zq2 is xy-monotone
(and thus is a shortest path), if we replace the subpath of π(z′, p) between q1 and q2 by
q1z ∪ zq2 to obtain another path π′(z′, p) from z′ to p, then π′(z′, p) is still a shortest path.
Since π′(z′, p) contains z, the lemma follows.
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If there is a shortest s-t path crossing g at a point on z1z2, then by Lemma 11, there
is a shortest s-t path that is a concatenation of a shortest path from s to z in B and a
shortest path from z to t (which crosses g). A shortest s-z path in B can be found by using
the data structure D(B) in O(log n) time, provided that we can compute z in O(log n) time.
It remains to compute a shortest z-t path that crosses g at a point on z1z2. Note that such
a shortest z-t path may or may not contain a point in V(g) ∩ z1z2, where V(g) is the set of
points of V(Q) lying on g (V(g) = ∅ is possible). We first discuss the former case and the
latter case will be handled later in Lemma 16.

For the former case, we will build a graph GE(g) inside B and merge it with the
graph GE(M) onM so that the merged graph allows to find a shortest z-t path crossing a
point in V(g) ∩ z1z2. In the sequel, we introduce the graph GE(g). Let hg = |V(g)|.

The graph GE(g) is defined on the points of V(g) in a similar manner as GE in
Section 3. One difference is that GE(g) is built inside B and uses vertical cut-segments in
B instead of cut-lines. Also, no type-1 Steiner point is needed for GE(g). Specifically, we
define a cut-segment tree T (g) as follows. The root u of T (g) is associated with a point
set V (u) = V(g). Each node u of T (g) is also associated with a vertical cut-segment l(u),
defined as follows. Let p be the point of V (u) with the median x-coordinate. Note that p
is on g. We extend a vertical line segment from p upwards into the interior of B until it
hits ∂B; this segment is the cut-segment l(u). The left (resp., right) child of u is defined
recursively on the points of V (u) to the left (resp., right) of l(u).

Clearly, T (g) has O(log hg) levels and O(
√

log hg) super-levels. We define the type-2
and type-3 Steiner points on the cut-segments of T (g) in the same way as in Section 3. The
graph GE(g) is then defined similarly as GE in Section 3. We omit the details. GE(g) has
O(hg

√
log hg2

√
log hg) nodes and O(hg

√
log hg2

√
log hg) edges.

Let nB denote the number of obstacle vertices of the bay B.

Lemma 12. The graph GE(g) can be constructed in O(nB + hg · log3/2 hg · 2
√

log hg) time.

Proof. To compute the cut-segments of T (g), for each point p ∈ V(g), we need to compute
the first point on the boundary of B hit by extending a vertical line segment from p upwards.
For this, we first compute the vertically visible region of B from the segment g using the
linear time algorithms in [29, 33], and then find all such cut-segments from the points of
V(g), in O(nB +hg) time. The cut-segment tree T (g) can then be computed in O(hg log hg)
time.

To compute the Steiner points on the cut-segments, for each point p ∈ V(g), we find
the first point ph(B) on the boundary of B horizontally visible from p. The points ph(B) for
all p ∈ V(g) can be computed in totally O(nB +hg) time by using the algorithms in [29, 33].

Next, we compute the Steiner points on the cut-segments of T (g). Determining
whether a point p ∈ V(g) is horizontally visible to a cut-segment l (and if yes, put a
corresponding Steiner point on l) takes O(1) time using ph(B), as follows. We first check
whether the y-coordinate of p is between the y-coordinate of the lower endpoint of l and
that of the upper endpoint of l; if yes, we check whether l is between p and ph(B) (if yes,
then p is horizontally visible to l); otherwise, p is not horizontally visible to l. Thus, all
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Steiner points can be obtained in O(hg
√

log hg2
√

log hg) time.

For each cut-segment l, to compute the edges between consecutive graph nodes on
l, it suffices to sort all Steiner points on l. The sorting on all cut-segments takes O(hg ·
log3/2 hg · 2

√
log hg) time. Hence, the total time for building the graph GE(g) is O(nB + hg ·

log3/2 hg · 2
√

log hg).

We define a gateway set Vg(z,GE(g)) for z on GE(g) such that for any point p ∈
V(g) ∩ z1z2, there is a shortest path from z to p using GE(g) containing a gateway of z.
Vg(z,GE(g)) is defined similarly as V 2

g (s,GE) in Section 3, but only on the Steiner points
in the triangle 4zz1z2 (because 4zz1z2 contains a shortest path from z to any point in
V(g)∩ z1z2). Specifically, for each relevant projection cut-segment l (defined similarly as the
relevant projection cut-lines in Section 3) of z to the right of z, if z is horizontally visible to
l, then the node of GE(g) on l immediately below the horizontal projection point of z on l
is in Vg(z,GE(g)). Thus, |Vg(z,GE(g))| = O(

√
log hg).

Lemma 13. For any point p ∈ V(g) ∩ z1z2, there is a shortest path from z to p in B using
GE(g) that contains a gateway of z in Vg(z,GE(g)).

Proof. Consider a point p ∈ V(g) ∩ z1z2. Note that p defines a node in GE(g). Let lp be
the cut-segment through p. Since the triangle 4zz1z2 ⊆ B and p ∈ z1z2, z is horizontally
visible to lp.

If there is no other cut-segment of T (g) strictly between z and lp, then lp must be
a relevant projection cut-segment of z. Let p′ be the gateway of z on lp, i.e., the graph
node on lp immediately below the horizontal projection zh(lp) of z on lp. Note that the path
zzh(lp) ∪ zh(lp)p is a shortest path from z to p since it is xy-monotone. Clearly, this path
contains the gateway p′.

If there is at least one cut-segment strictly between z and lp, then if lp is a relevant
cut-segment of z, we can prove the lemma by a similar analysis as above; otherwise, there is
at least one node u in T (g) such that l(u) is a relevant projection cut-segment of z between
z and p and p defines a Steiner point on l(u) (this can be seen from the definition of the
graph GE(g); we omit the details). Let zh(l(u)) be the horizontal projection of z on l(u) and
ph(l(u)) be the horizontal projection of p on l(u). The path zzh(l(u)) ∪ zh(l(u))ph(l(u)) ∪
ph(l(u))p is a shortest path from z to p since it is xy-monotone. Because ph(l(u)) is a
Steiner point on l(u), this path must contain a gateway of z on l(u) (this gateway must be
on zh(l(u))ph(l(u))). The lemma thus follows.

Since V(g) ⊆ V(Q), each point of V(g) is also a node of GE(M). We merge the two
graphs GE(M) and GE(g) into one graph, denoted by GE(M, g), by treating the two nodes
in these two graphs defined by the same point in V(g) as a single node. By Lemmas 6 and
13, we have the following result.

Lemma 14. If a shortest s-t path contains a point in V(g) ∩ z1z2, then there is a shortest
s-t path along GE(M, g) containing a gateway of z in Vg(z,GE(g)) and a gateway of t in
Vg(t, GE(M)).

http://jocg.org/


JoCG 7(1), 473–519, 2016 501

Journal of Computational Geometry jocg.org

Proof. Let p be a point of V(g) ∩ z1z2 that is contained in a shortest s-t path. By Lemma
11, there is a shortest path from s to p that contains z. By Lemma 13, there is a shortest
path from z to p that contains a gateway of z in Vg(z,GE(g)). On the other hand, since
both t and p are in the oceanM and p ∈ V(g) ⊆ V(Q), by Lemma 6, there exists a shortest
path from t to p that contains a gateway of t in Vg(t, GE(M)). This proves the lemma.

By Lemma 14, if there is a shortest path from z to t that contains a point of V(g)∩
z1z2, then we can use the gateways of both z and t to find a shortest path along the graph
GE(M, g). By using a similar algorithm as that for Lemma 3, we can compute the gateways
of z on GE(g).

Lemma 15. With a preprocessing of O(hg log3/2 hg2
√

log hg) time and O(hg
√

log hg2
√

log hg)
space, we can compute the gateway set Vg(z,GE(g)) of z in O(log h) time.

Proof. The algorithm is similar to that in Lemma 3 for computing V 2
g (s,GE). One main

difference is that here every two graph nodes on any cut-segment of T (g) are visible to each
other. As the preprocessing, we build a sorted list of the graph nodes on each cut-segment of
T (g), and construct a fractional cascading data structure [5] along T (g) for the sorted lists
of all cut-segments. Then for a point z, Vg(z,GE(g)) can be computed in O(log h) time.

So far, we have shown how to find a shortest s-t path if such a path contains a point
in {z1, z2}∪{V(g)∩ z1z2}. It remains to handle the case when no shortest s-t path contains
a point in {z1, z2} ∪ {V(g) ∩ z1z2} (including the case of V(g) = ∅), i.e., no shortest path
from z to t contains a point in {z1, z2} ∪ {V(g)∩ z1z2}. Lemma 16 below shows that in this
case, t ∈M must be horizontally visible to zz2 and thus there is a trivial shortest path from
z to t.

Lemma 16. If no shortest path π(z, t) contains a point in V(g) ∩ z1z2 (this includes the
case of V(g) = ∅), then t must be horizontally visible to zz2.

Proof. Let the points of V(g) ∩ z1z2 be v1, v2, . . . , vm ordered along z1z2 from z1 to z2, and
let v0 = z1 and vm+1 = z2. Under the condition of this lemma, since t ∈ M, there exists a
shortest path π from z to t that crosses z1z2 once, say, at a point p in the interior of vivi+1,
for some i with 0 ≤ i ≤ m (see Fig. 12). For any two points q1 and q2 on π, let π(q1, q2)
denote the subpath of π between q1 and q2. Hence, π(z, p) is in B and π(p, t) is outside B.
Then π(p, t) is inM′ (i.e.,M′ is the union ofM and all corridor paths).

We extend a horizontal line segment from vi (resp., vi+1) to the right until hitting the
first point on ∂Q, denoted by ui (resp., ui+1); if ui and ui+1 are not on the same elementary
curve of Q (in which case one or both of ui and ui+1 are extremes on different elementary
curves), then we keep moving one or both of ui and ui+1 horizontally to the right until
hitting the next point on ∂Q. By the definitions of V(Q) and V(g), in this way, we can
always put both ui and ui+1 on the same elementary curve of Q, say β (see Fig. 12); let
β(ui, ui+1) denote the portion of β between ui and ui+1. Let R denote the region enclosed
by uivi, vivi+1, vi+1ui+1, and β(ui, ui+1). Note that for any point q ∈ R, q is horizontally
visible to vivi+1 and thus is horizontally visible to zz2. In the following, we will show that
t must be in R, which proves the lemma.
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Figure 12: Illustrating a shortest path (the red dashed curve) from z to t crossing the interior of vivi+1 at
p.

Suppose to the contrary t 6∈ R. We then show that the path π(p, t) must intersect viui
or vi+1ui+1, which implies that there is a shortest z-t path containing a point in {z1, z2} ∪
{V(g)∩ z1z2}, a contradiction (recall that we have an assumption that no shortest s-t paths
cross a1z1∪a2z2). Indeed, if π(p, t) intersects viui (resp., vi+1ui+1), say, at a point q, then we
can obtain a new z-t path π′ by replacing π(z, q) with an xy-monotone path zvi∪viq (resp.,
zvi+1 ∪ vi+1q), and π′ is a shortest z-t path containing a point in {z1, z2} ∪ {V(g) ∩ z1z2}.
Below, we show that π(p, t) must intersect viui or vi+1ui+1. Note that β(ui, ui+1) may
overlap with a gate of a canal. Depending on whether β(ui, ui+1) overlaps with any canal
gate, there are two possible cases.

1. If β(ui, ui+1) does not overlap with any canal gate, then since t ∈ M, t 6∈ R, p ∈ R,
and π(p, t) ⊆ M′, if we go from t to p, we must enter R. The only place on the
boundary of R we can cross to enter R is either viui or vi+1ui+1. Hence, π(t, p) must
intersect viui or vi+1ui+1.

2. If β(ui, ui+1) overlaps with a canal gate, say g1, then one may wonder that π(t, p) could
enter the interior of R through g1 without crossing any of viui and vi+1ui+1. Since
g1 is a canal gate, one of g1’s endpoints, say, x, must be a corridor path terminal,
and x may or may not be on β(ui, ui+1). If x is on β(ui, ui+1), then since x is in
V(Q), x cannot be in the interior of β(ui, ui+1) and can only be at an endpoint of
β(ui, ui+1). Let C be the canal that has g1 as a gate, and π(C) be the corridor path
of C. If π(t, p) enters the interior of R through g1, then it must travel through the
canal C, implying that π(t, p) ⊆ M′ contains the corridor path π(C). Since x is on
π(C), π(t, p) contains x. If x is on β(ui, ui+1) (and thus is an endpoint of β(ui, ui+1)),
then x is one of ui or ui+1; hence, π(t, p) intersects viui or vi+1ui+1. Suppose now x
is not on β(ui, ui+1). Then an endpoint of β(ui, ui+1), say, ui, lies on g1 (but ui 6= x).
Further, π(t, p) goes through x, and then enters R, but without intersecting any of
viui and vi+1ui+1. Thus, π(t, p) must cross some point q of g1 to enter R. We can
then replace the portion π(x, q) of π(t, p) by the segment xq ⊆ g1 to obtain a new
shortest t-p path. Since ui divides g1 into two parts, one outside R and containing x
and the other intersecting R and containing q, the segment xq contains ui. Hence, the
new shortest t-p path intersects viui.

The lemma thus follows.
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By Lemma 16, if the condition of the lemma holds, then we can always find a trivial
shortest path from z to t by shooting vertical and horizontal rays from z and t, respectively.

We have finished all possible cases for finding a shortest s-t path when s ∈ B and
t ∈ M. The next lemma is concerned with computing the special points z1, z2, and z for
any point s in B.

Lemma 17. With a preprocessing of O(nB) time and space, the three special points z1, z2,
and z can be found in O(log n) time for any query point s in B, where nB = |B|.

Proof. Consider any query point s ∈ B. To determine z1, z2, and z, based on our previous
discussions, it suffices to compute the two points z′1 and z′2. We only show how to design
a data structure for computing z′1 since the solution for finding z′2 is similar. Note that
nB ≤ n.

In the preprocessing, for each vertex v of B, we find whether v is horizontally visible
to g, and if yes, mark v as an h-vertex. All h-vertices of B can be marked by computing the
horizontal visibility of B from g in O(nB) time [29, 33]. Also, in O(nB) time, we compute the
Euclidean shortest path tree T1 from a1 to all vertices of B and the corresponding shortest
path map M1 in B [21]; similarly, we compute the shortest path tree T2 from a2 and the
corresponding shortest path map M2.

For each vertex v ∈ T1, we associate v with two special vertices: α1(v) and α2(v),
defined as follows. The vertex α1(v) is the first h-vertex on the path in T1 from v to a1 and
α2(v) is the child vertex of α1(v) on the path in T1 from v to a1; if α1(v) = v, then α2(v)
does not exist and we set α2(v) = nil. Note that α2(v) is not an h-vertex if it exists. The
α vertices for all vertices in T1 can be computed in O(nB) time by a depth-first search on
T1 starting at a1. For each vertex v ∈ T2, we compute only one special vertex for v, β1(v),
which is the first h-vertex on the path in T2 from v to a2. The β vertices for all vertices of
T2 can also be computed in O(nB) time.

This finishes our preprocessing, which takes O(nB) time in total.

Below we find the point z′1 in O(log n) time. Let π(s, a1) and π(s, a2) be the Eu-
clidean shortest paths in B from s to a1 and a2, respectively. For any point p, let y(p)
denote its y-coordinate.

By using the shortest path mapM1, we find the vertex, denoted by v, which directly
connects to s on π(s, a1). Likewise, we find the vertex u that directly connects to s on
π(s, a2) using M2. Both v and u are found in O(log n) time. Depending on whether v = u,
there are two main cases.

1. If v = u, then clearly s 6= z′. Let v1 = α1(v) and u1 = β1(u). Note that v1 and u1 are
available once we find v and u. Depending on whether v1 = u1, we further have two
subcases.

(a) If v1 = u1, then we claim z′ = v1 = u1. Indeed, since z′ is the last common vertex
of π(s, a1) and π(s, a2) if we move on them from s, no vertex on π(s, a1)∩π(s, a2)
can be horizontally visible to g except possibly z′. Because v1 = u1, v1 = u1 must
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be on π(s, a1) ∩ π(s, a2). Since v1 = u1 is horizontally visible to g, v1 = u1 = z′

must hold.
By the definition of z′1, the above claim implies z′1 = z′ = u1 = v1.

(b) If v1 6= u1, then an easy observation is y(v1) ≥ y(u1). Let v2 = α2(v). Note that
due to u = v and v1 6= u1, α2(v) exists.
If y(v2) > y(v1), then the horizontal visibility of v2 to g is “blocked” by the path
π(v1, a1) (e.g., see Fig. 11(a)). Thus we obtain z′1 = v1.
If y(v2) ≤ y(v1), then the horizontal visibility of v2 to g is “blocked” by the path
π(u1, a2) (e.g., see Fig. 11(b)). Thus we obtain that z′1 is the horizontal projection
of u1 on the line segment v1v2, which can be computed in O(1) time.

2. If v 6= u, then s = z′. If s is horizontally visible to g (which can be determined in
O(log n) time using the horizontal visibility decomposition of B), then z′1 = s = z′.
Otherwise, let v1 = α1(v) and u1 = β1(u). Depending on whether v = v1, we further
have two subcases.

(a) If v 6= v1, then α2(v) exists and we let v2 = α2(v). Note that π(s, a1) is a convex
chain.
Similar to the above discussion, if y(v2) > y(v1), then we have z′1 = v1; otherwise,
z′1 is the horizontal projection of u1 on v1v2.

(b) If v = v1, then s connects directly to v1 on π(s, a1). Similar to the above dis-
cussion, if y(s) > y(v1), then we have z′1 = v1; otherwise, z′1 is the horizontal
projection of u1 on v1s.

Therefore, we can find the point z′1 in O(log n) time. The lemma thus follows.

We have discussed all possible cases of finding a shortest s-t path when s is in a bay
B and t is in the oceanM, and in each case, we can obtain a shortest path in O(log n) time.

4.3.3 The Point t is in Another Bay

Let Bs be the bay containing s with gate gs, and Bt be the bay containing t with gate gt.
In this case, any shortest s-t path must cross both gs and gt. The algorithm for this case is
similar to the one for the case of t ∈ M. Again, we need to consider different cases of how
a shortest s-t path may cross different portions of both the gates gs and gt.

We define the points z1, z2, and z in Bs for s in the same way as before, but denote
them by z1(s), z2(s), and z(s) instead. Similarly, we define the corresponding three points
z1(t), z2(t), and z(t) in Bt for t. Based on our previous discussions, we have the following
cases.

1. There is a shortest s-t path containing a point zs in {z1(s), z2(s)} and a point zt in
{z1(t), z2(t)}. Note that both zs and zt are on their bay gates and thus are inM.
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In this case, there must be a shortest s-t path that is a concatenation of a shortest
path π(s, zs) from s to zs in Bs, a shortest path π(zs, zt) from zs to zt in M′, and
a shortest path π(zt, t) from zt to t in Bt. The path π(s, zs) can be found by using
D(Bs), i.e., the Euclidean two-point shortest path query data structure on Bs [20],
and similarly, π(zt, t) can be found by using D(Bt). The path π(zs, zt) can be found
by using our data structure forM′ in Lemma 8.

2. There is a shortest s-t path that contains z(s) and a point zt in {z1(t), z2(t)}.
In this case, there must be a shortest s-t path that is a concatenation of a shortest
s-z(s) path π(s, z(s)) in Bs, a shortest z(s)-zt path π(z(s), zt), and a shortest zt-t path
π(zt, t) in Bt. The path π(s, z(s)) (resp., π(zt, t)) can be found by using D(Bs) (resp.,
D(Bt)), and the path π(z(s), zt) can be found by using similar algorithms as discussed
above since zt is inM.

3. There is a shortest s-t path that contains z(t) and a point zs in {z1(s), z2(s)}.
This case is solved by using the similar approach as for Case 2 above.

4. There is a shortest s-t path that contains z(s) and z(t).

In this case, there must be a shortest s-t path that is a concatenation of a shortest
path π(s, z(s)) from s to z(s) in Bs, a shortest path π(z(s), z(t)) from z(s) to z(t), and
a shortest path π(z(t), t) from z(t) to t in Bt. The path π(s, z(s)) (resp., π(z(t), t))
can be found by using D(Bs) (resp., D(Bt)). It remains to show how to compute
π(z(s), z(t)) below.

Recall that we have defined a graph GE(gs) in Bs on the points of V(gs), which
consists of all points of V(Q) lying on gs. We also find a gateway set Vg(z(s), GE(gs)) for z(s)
on GE(gs). Similarly, for Bt and its gate gt, we define V(gt), GE(gt), and Vg(z(t), GE(gt)).
Let GE(M, gs, gt) be the graph formed by merging GE(M), GE(gs), and GE(gt). A shortest
path from z(s) to z(t) can be found based on Lemmas 18 and 19 below, which are similar
to Lemmas 14 and 16, respectively.

Lemma 18. If there is a shortest path from z(s) to z(t) containing a point in V(gs) ∩
z1(s)z2(s) and a point in V(gt) ∩ z1(t)z2(t), then there is a shortest path from z(s) to z(t)
along GE(M, gs, gt) that contains a gateway of z(s) in Vg(z(s), GE(gs)) and a gateway of
z(t) in Vg(z(t), GE(gt)).

Proof. Suppose there is a shortest z(s)-z(t) path containing a point ps in V(gs)∩ z1(s)z2(s)
and a point pt in V(gt) ∩ z1(t)z2(t). Then by Lemma 13, there is a shortest z(s)-ps path
π(z(s), ps) along GE(gs) containing a gateway of z(s) in Vg(z(s), GE(gs)) and there is a
shortest pt-z(t) path π(pt, z(t)) alongGE(gt) containing a gateway of z(t) in Vg(z(t), GE(gt)).
Since both ps and pt are in V(Q), by Lemma 4, there exists a shortest ps-pt path π(ps, pt)
along GE(M).

The concatenation of π(z(s), ps), π(ps, pt), and π(pt, z(t)) is a shortest z(s)-z(t) path,
which is along the graph GE(M, gs, gt) and contains a gateway of z(s) and a gateway of
z(t).
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z2(t)
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q′

z2(s)

z1(s)

Figure 13: Illustrating a possible shortest path (the red dashed curve) from z(s) to z(t) crossing uiq. If
this happens, we can find another shortest path π(z(t), q′)∪q′vi∪viz(s), which contains vi. In this example,
q1 = ui and q2 = ui+1.

Lemma 19. If no shortest z(s)-z(t) path contains any point of {z1(s), z2(s)} ∪ {V(gs) ∩
z1(s)z2(s)}, then z(t) must be horizontally visible to z(s)z2(s); similarly, if no shortest
z(s)-z(t) path contains any point of {z1(t), z2(t)} ∪ {V(gt) ∩ z1(t)z2(t)}, then z(s) must be
horizontally visible to z(t)z2(t).

Proof. We prove only the case where no shortest z(s)-z(t) path contains any point of
{z1(s), z2(s)}∪{V(gs)∩z1(s)z2(s)}, z(t) must be horizontally visible to z(s)z2(s) (the other
case is similar).

Let π be a shortest z(s)-z(t) path that intersects gs at a point ps and intersects gt
at a point pt (see Fig. 13). Let π(p1, p2) denote the subpath of π between any two points p1
and p2 on π. We assume π(z(s), ps) ⊆ Bs, π(pt, z(t)) ⊆ Bt, and π(ps, pt) ⊆ M′, since such
a path π always exists.

Let the points of V(gs) on z1(s)z2(s) be v1, v2, . . . , vm ordered along z1(s)z2(s) from
z1(s) to z2(s), and let v0 = z1(s) and vm+1 = z2(s). Suppose ps is in the interior of vivi+1,
for some i with 0 ≤ i ≤ m. We define ui, ui+1, β(ui, ui+1), and R in the same way as in the
proof of Lemma 16.

Since pt is in M, by the proof of Lemma 16, pt must be in the region R. Further,
since pt is on gt ⊆ ∂Q, pt is on β(ui, ui+1). Thus, β(ui, ui+1) ∩ gt is not empty. Since gt
is a line segment, β(ui, ui+1) ∩ gt is also a line segment. Let q1q2 = β(ui, ui+1) ∩ gt. Thus,
pt ∈ q1q2.

Recall that z(t) is visible to z1(t) ∈ gt and z(t)z1(t) is horizontal. Hence, to prove
that z(t) is horizontally visible to z(s)z2(s), it suffices to prove that z1(t) is horizontally
visible to z(s)z2(s). For this, it suffices to prove that z1(t) must be on q1q2 since every
point on q1q2 ⊆ β(ui, ui+1) is horizontally visible to z(s)z2(s). In the following, we prove
z1(t) ∈ q1q2.

Suppose to the contrary z1(t) 6∈ q1q2 (see Fig. 13). Without loss of generality, we
assume q1 is closer to z1(t) than q2. Since pt ∈ q1q2, q1 ∈ ptz1(t) ⊆ gt. This implies that q1
is not an endpoint of gt, and thus q1 must be an endpoint of β(ui, ui+1) (i.e., one of ui or
ui+1) since q1q2 = β(ui, ui+1)∩gt; assume q1 = ui. We extend viui horizontally into the bay
Bt until hitting a point, say q, on the boundary of Bt (see Fig. 13). The horizontal segment
uiq partitions Bt into two sub-polygons such that pt and z1(t) are in different sub-polygons.
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Since z(t)z1(t) is horizontal, pt and z(t) are also in different sides of uiq, implying that the
path π(z(t), pt) must intersect uiq since π(z(t), pt) is in Bt. Let q′ be the intersection of
π(z(t), pt) and uiq (see Fig. 13). Then, the concatenation of π(z(t), q′), q′vi, and viz(s) is
also a shortest path from z(t) to z(s) since q′vi ∪ viz(s) is xy-monotone. But this means
that there is a shortest z(s)-z(t) path containing vi, contradicting with the lemma condition
that no shortest z(s)-z(t) path contains any point of {z1(s), z2(s)} ∪ {V(gs) ∩ z1(s)z2(s)}.

The above arguments prove that z1(t) is on q1q2. The lemma thus follows.

By Lemmas 18 and 19, we can find a shortest z(s)-z(t) path by either using the
gateways of z(s) and z(t) in the merged graph GE(M, gs, gt) or shooting horizontal and
vertical rays from z(s) and z(t). We have finished all possible cases for finding a shortest
s-t path when the two query points are in different bays. For each case, we compute a
“candidate” shortest s-t path, and take the one with the smallest length among all these
cases (there are only a constant number of them).

4.3.4 The Canal Case

The above discussed the case where neither query point is in a canal. It remains to solve
the canal case where at least one of the query points are in canals.

The algorithm is similar to that for the bay case; the only difference is that we have
to take care of two gates for each canal. Specifically, we consider the most general case
where s is in a canal Cs and t is in a canal Ct. If Cs 6= Ct, then there must be a shortest s-t
path π that intersects a gate of Cs at a point ps and intersects a gate of Ct at a point pt such
that the subpath π(s, ps) is in Cs, the subpath π(pt, t) is in Ct, and the subpath π(ps, pt) is
inM′. Hence, we can use a similar approach as for the bay case to find a shortest s-t path
by considering all four gate pairs of Cs and Ct. If Cs = Ct, while we can treat this case in
the same way as for the case of Cs 6= Ct, we need to consider one more possible situation
when a shortest s-t path may be contained entirely in Cs, which is easy since Cs is a simple
polygon. If one of Cs or Ct is a bay, the case can be handled in a similar fashion.

We summarize the whole algorithm in the proof of the following theorem.

Theorem 2. We can build a data structure of size O(n + h2 log h4
√
log h) in time O(n +

h2 log2 h4
√
log h) such that each two-point L1 shortest path query can be answered in O(log n)

time (i.e., for any two query points s and t, the length of a shortest s-t path can be found in
O(log n) time and an actual path can be reported in additional time linear in the number of
edges of the output path).

Proof. We first discuss the preprocessing and then discuss the query algorithm.

The preprocessing algorithm. Our preprocessing algorithm consists of the following
major steps.

1. Compute a triangulation of the free space M in O(n + h log1+ε h) time [2, 4]. Then
produce all bays, canals, corridor paths,M, and V(Q) in O(n+h log h) time [8, 9, 11].
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2. Compute the vertical and horizontal visibility decompositions of P in O(n+h log1+ε h)
time [2, 4]. Build a point location data structure [18, 32] for each of the two decomposi-
tions in O(n) time, which is used for performing any vertical or horizontal ray-shooting
in O(log n) time.

3. Construct the graph GE(M) of size O(n+ h
√

log h2
√
log h) in O(n+ h log3/2 h2

√
log h)

time by Lemma 5.

4. Perform the preprocessing of Lemma 7 in O(n+ h · log3/2 h · 2
√
log h) time and O(n+

h · √log h · 2
√
log h) space.

5. Perform the preprocessing of Lemma 8 in O(n + h2 log2 h4
√
log h) time and O(n +

h2 log h4
√
log h) space.

6. Compute a two-point Euclidean shortest path query data structure D(B) in each bay
or canal B. Since the total number of vertices of all bays and canals is O(n), this step
takes O(n) time.

7. Construct the graph GE(g) for the gate g of every bay or canal by Lemma 12. The
total space for all such graphs is O(h

√
log h2

√
log h) and the total time for building all

these graphs is O(n + h log3/2 h2
√
log h), as proved below. First, each point of V(Q)

can be on at most one bay or canal gate. Thus, the sum of hg’s in Lemma 12 over all
gates g is O(|V(Q)|), which is O(h). Second, the total number of obstacle vertices of
all bays and canals is O(n), and each canal has two gates. Hence, the sum of nB’s in
Lemma 12 over all bays and canals B is O(n).

8. Perform the preprocessing of Lemma 15 for the graphs GE(g) of all gates g, which can
be done in totally O(h log3/2 h2

√
log h) time and O(h

√
log h2

√
log h) space.

9. Merge the graph GE(M) and the graphs GE(g) for all gates g into a single graph
GE(P), which takes O(h) time since there are O(h) points in V(Q). Thus, the size of
GE(P) is O(h

√
log h2

√
log h).

10. For each node v of GE(P), compute a shortest path tree rooted at v in GE(P).
Maintain a shortest path length table such that for any two nodes u and v of GE(P),
the length of a shortest path between u and v in GE(P) can be obtained in O(1) time.
This step takes O(h2 log h4

√
log h) space and O(h2 log2 h4

√
log h) time.

11. Perform the preprocessing of Lemma 17 for each bay and canal, which takes O(n)
space and O(n) time in total.

In summary, the total preprocessing space and time are O(n + h2 log h4
√
log h) and

O(n+ h2 log2 h4
√
log h), respectively.

The query algorithm. Consider any two query points s and t. Next, we discuss our query
algorithm that computes the length of a shortest s-t path in O(log n) time and reports an
actual path in additional time linear in the number of edges of the output path. We will not
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explicitly discuss how to report an actual path (which is similar to that in Lemma 8 and is
quite straightforward).

First of all, as discussed in Section 2, we determine whether there exists a trivial
shortest s-t path by shooting horizontal and vertical rays from s and t, which can be done
in O(log n) time. In the following, we assume that there is no trivial shortest s-t path.
Depending on whether the query points are in the bays, canals, or the oceanM, there are
several possible cases.

I. Both query points are in M. In this case, we use the algorithm for Lemma 8 to find
a shortest s-t path in O(log n) time.

II. Only one query point is in M. Without loss of generality, we assume that s is in a
bay or a canal B and t is inM. Further, we assume that B is a canal since the case
that B is a bay can be considered as a special case.

Let g1 and g2 be the two gates of B. We define three points z(s, g1), z1(s, g1), and
z2(s, g

1) for s in B with respect to the gate g1 in the same way as we defined z, z1, and
z2 before. Similarly, we define z(s, g2), z1(s, g2), and z2(s, g2) for s in B with respect
to the gate g2. These points can be computed in O(log n) time by Lemma 17. Then,
we compute the lengths of the following “candidate” shortest s-t paths and return the
one with the smallest length.

1. For each point p ∈ {z1(s, g1), z2(s, g1), z1(s, g2), z2(s, g2)}, the path which is a
concatenation of a shortest path π(s, p) from s to p in B and a shortest path
π(p, t) from p to t inM′.
The path π(s, p) can be found in O(log n) time by using the data structure D(B)
on B, and the path π(p, t) can be found in O(log n) time by Lemma 8.

2. For each point p ∈ {z(s, g1), z(s, g2)}, the path which is a concatenation of a
shortest path π(s, p) from s to p in B and a particular path π(p, t) from p to t.
The path π(s, p) can be found in O(log n) time by using the data structure D(B)
on B. The path π(p, t) is determined as follows. First, based on Lemma 16
(although B is a bay in Lemma 16, the result also holds for canals because the
lemma was proved with respect to a gate regardless of whether it is a gate of
a bay or a canal), we check whether there exists a path from p to t consisting
of only two line segments, by performing horizontal and vertical ray-shootings.
If yes, then such a path is π(p, t). Otherwise, by Lemmas 14 and 16, we find a
shortest path from p to t along the merged graph GE(P) by using the gateways
of p and the gateways of t, which can be obtained in O(log n) time by Lemmas 15
and 7, respectively. Since both p and t have O(

√
log h) gateways, a shortest p-t

path can be determined in O(log n) time using the gateway graph as discussed
at the end of Section 3.

III. Neither query point is in M. Let Bs be the bay or canal that contains s and Bt be
the bay or canal that contains t.
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1. If Bs = Bt and Bs is a bay, then by Lemma 9, we can find a shortest s-t path by
using the data structure D(Bs) in O(log n) time.

2. If Bs 6= Bt, then we assume both Bs and Bt are canals since the other cases are
just special cases of this case. Let g1s and g2s be the two gates of Bs and g1t and g2t
be the two gates of Bt. Similarly as before, we define the points z(s, gis), z1(s, gis),
and z2(s, gis) for s with respect to gis, and z(t, git), z1(t, git), and z2(t, git) for t with
respect to git, for i = 1, 2. These points can all be determined in O(log n) time by
Lemma 17. Then we compute the lengths of the following “candidate” shortest
s-t paths and return the one with the smallest length.

(a) For each pair of points ps and pt such that ps ∈ {z1(s, g1s), z2(s, g1s), z1(s, g2s),
z2(s, g

2
s)} and pt ∈ {z1(t, g1t ), z2(t, g1t ), z1(t, g2t ), z2(t, g2t )}, the path which is a

concatenation of a shortest path π(s, ps) from s to ps in Bs, a shortest path
from ps to pt inM′, and a shortest path π(pt, t) from pt to t in Bt.
The paths π(s, ps) and π(pt, t) can be found in O(log n) time by using D(Bs)
and D(Bt), respectively. The path π(ps, pt) can be obtained in O(log n) time
by Lemma 8.

(b) For each pair of points ps and pt such that ps ∈ {z(s, g1s), z(s, g2s)} and
pt ∈ {z1(t, g1t ), z2(t, g1t ), z1(t, g2t ), z2(t, g2t )}, the path which is a concatenation
of a shortest path from s to ps in Bs, a particular path π(ps, pt) from ps to
pt, and a shortest path from pt to t in Bt.
The paths π(s, ps) and π(pt, t) can be found in O(log n) time by using D(Bs)
and D(Bt), respectively. Since pt is in M, the particular path π(ps, pt) is
defined similarly as the path π(p, t) in the above Case (II)2, and thus can be
obtained by the similar approach.

(c) For each point ps ∈ {z1(s, g1s), z2(s, g1s), z1(s, g2s), z2(s, g2s)} and each point
pt ∈ {z(t, g1t ), z(t, g2t )}, the path which is a concatenation of a shortest path
from s to ps in Bs, a particular path π(ps, pt) from ps to pt, and a shortest
path from pt to t in Bt.
This subcase is symmetric to the subcase immediately above and can be
handled similarly.

(d) For each point ps ∈ {z(s, g1s), z(s, g2s)} and each point pt ∈ {z(t, g1t ), z(t, g2t )},
the path which is a concatenation of a shortest path from s to ps in Bs, a
particular path π(ps, pt) from ps to pt, and a shortest path from pt to t in
Bt.
The paths π(s, ps) and π(pt, t) can be found in O(log n) time by using D(Bs)
and D(Bt), respectively. The particular path π(ps, pt) is determined similarly
as the path π(p, t) in the above Case (II)2, but based on Lemmas 18 and
19 instead. Note that although Bs and Bt are bays in these lemmas, the
results also hold for canals (actually, they are proved with respect to two
gates regardless of whether they are gates of bays or canals). Specifically, we
determine π(ps, pt) as follows. Based on Lemma 19, we first check whether
there exists a path from ps to pt consisting of only two line segments, by
horizontal and vertical ray-shootings. If yes, then such a path is π(ps, pt).
Otherwise, by Lemmas 18 and 19, we find a shortest ps-pt path along the
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merged graph GE(P) by using the gateways of ps and the gateways of pt,
which can be computed in O(log n) time by Lemma 15. Since both ps and pt
have O(

√
log h) gateways, a shortest ps-pt path can be obtained in O(log n)

time using the gateway graph as discussed in Section 3.

3. Finally, if Bs = Bt and Bs is a canal, then the algorithm is similar as for the above
Case (III)2, with the difference that we must consider an additional “candidate”
path that is a shortest s-t path inside Bs, which can be found in O(log n) time
by using the data structure D(Bs).

Hence, in any case, we find a shortest s-t path in O(log n) time.

The theorem thus follows.

If we replace all enhanced graphs, e.g., GE(M) and GE(g) for every gate g, by the
corresponding graphs similar to Gold in [7] as discussed in Section 2, then we obtain the
following results.

Corollary 3. We can build a data structure in O(n + h2 log2 h) time and space, such that
each two-point L1 shortest path query is answered in O(log n + log2 h) time; alternatively,
we can build a data structure in O(nh log h + h2 log2 h) time and O(nh log h) space, such
that each two-point L1 shortest path query is answered in O(log n log h) time.

Proof. If we replace all the enhanced graphs GE(M) and GE(g) for every gate g of the bays
and canals by the graphs similar to Gold in [7] as discussed in Section 2, then the size of the
new merged graph, denoted by Gold(P), becomes O(h log h) instead of O(h

√
log h2

√
log h).

Hence, the data structure for Theorem 2 needs O(n + h2 log2 h) space and can be built in
O(n+ h2 log2 h) time by using the approach in [7]. However, using the new graph Gold(P),
each query for any two points in M can be answered in O(log2 h) time because there are
O(log h) gateways for each query point. Therefore, any general two-point shortest path
query can be answered in O(log2 h + log n) time, by using a similar query algorithm as in
Theorem 2. We omit the details.

In the result above, we compute a shortest path tree rooted at each node in the
merged graph Gold(P). Alternatively, we can compute a shortest path map in the free space
F for each node v of Gold(P), such that given any query point t, the length of a shortest path
from v to t can be found in O(log n) time and an actual path can be reported in additional
time linear in the number of edges of the output path. Each such shortest path map is
of size O(n) and can be computed in O(n + h log h) time [8, 9, 11] (after the free space
F is triangulated). Since the size of Gold(P) is O(h log h), the overall preprocessing time
and space are O(nh log h + h2 log2 h) and O(nh log h), respectively. For answering queries,
since a query point may have O(log h) gateways and for each gateway v, we can determine
the shortest path from v to the other query point in O(log n) time, the total query time is
O(log h log n). We omit the details.
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5 The Weighted Rectilinear Case

In this section, we extend our techniques in Section 3 to the weighted rectilinear case. In the
weighted rectilinear case, every polygonal obstacle P ∈ P is rectilinear and weighted, i.e.,
each edge of P is either horizontal or vertical and P has a weight w(P ) ≥ 0 (w(P ) = +∞ is
possible). If a line segment e is in P , then the weighted length of e is x · (1 + w(P )), where
x is the L1 length of e. Any polygonal path π can be divided into a sequence of maximal
line segments such that each segment is contained in the same obstacle or in the free space
F ; the weighted length of π is the sum of the weighted lengths of all maximal line segments
of π.

Consider a vertex v of any rectilinear obstacle P such that the interior angle of P
at v is 3π/2 (e.g., see Fig. 14). We define the internal projections of v on the boundary ∂P
of P as follows. Suppose u1v and u2v are the two edges of P incident to v. We extend u1v
into the interior of P along the direction from u1 to v until we hit ∂P at the first point,
which is an internal projection of v; similarly, we define another internal projection of v by
extending u2v. Internal projections are used to control shortest paths that pass through the
interior of obstacles.

v

u1

u2

Figure 14: Illustrating the internal projections (the two red points) of v.

The “visibility” in the weighted case is defined in a slightly different way: Two points
p and q are visible to each other if pq is entirely in either F or an obstacle.

Let V be the set of all obstacle vertices of P, their internal projections, and all
type-1 Steiner points. Then |V| = O(n). We build a graph GE(V) on V similar to the one
presented in Section 3, with the following differences. (1) The visibility here is based on the
new definition above. (2) Since a path can travel through the interior of any obstacle, for
each cut-line l, an edge in GE(V) connects every two consecutive Steiner points on l, whose
weight is the weighted length of the line segment connecting the two points. (3) In addition
to the vertical cut-lines, there are also horizontal cut-lines, which are defined similarly and
have type-2 and type-3 Steiner points defined on them similarly to those on the vertical
cut-lines. Thus, GE(V) has O(n

√
log n2

√
logn) nodes and edges.

Lemma 20. The graph of GE(V) can be built in O(n log3/2 n2
√
logn) time.

Proof. We obtain all internal projections of V by computing the horizontal and vertical
visibility decompositions of every obstacle in P. We find the four projection points on ∂P
(i.e., pr, pl, pu, and pd) for all obstacle vertices p of P in O(n log n) time by computing the
horizontal and vertical visibility decompositions of F . All these can be done in O(n log n)
time.
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Then we compute the vertical and horizontal cut-line trees, which takes O(n log n)
time since |V| = O(n). Next, we compute the Steiner points and the graph edges. Below,
we only show how to compute those related to the vertical cut-lines; those related to the
horizontal cut-lines can be computed in a similar way. Let T v(V) denote the vertical cut-line
tree.

As in Lemma 1, we can compute the type-2 and type-3 Steiner points on all cut-
lines of T v(V) by traversing T v(V) in a top-down manner. Since the internal projections
and {pr, pl, pu, pd} for each obstacle vertex p have been obtained, we can compute all
O(n
√

log n2
√
logn) such Steiner points in O(n

√
log n2

√
logn) time; the corresponding horizon-

tal graph edges connecting these Steiner points and the points of V can also be computed.

It remains to compute the graph edges connecting every pair of consecutive Steiner
points on each cut-line of T v(V), which takes O(n log3/2 n2

√
logn) time by a plane sweeping

algorithm, as follows. We first sort all Steiner points on each cut-line. We then sweep
a vertical line L from left to right and use a balanced binary search tree T to maintain
the intervals between the obstacle edges of P intersecting L. By standard techniques, we
augment T to also maintain the weighted length information along L such that for any
two points p and q on L, the weighted length of pq can be obtained in O(log n) time using
T . During the sweeping, when L encounters a cut-line l, for every two consecutive Steiner
points p and q on l, we use T to determine in O(log n) time the weighted length of the edge
connecting p and q. Since there are O(n

√
log n2

√
logn) pairs of consecutive Steiner points

on all cut-lines, it takes O(n log3/2 n2
√
logn) time to compute all these graph edges.

Hence, we can build the graph GE(V) in O(n log3/2 n2
√
logn) time.

Consider any two query points s and t. For simplicity of discussion, we assume that
both s and t are in F (the general case can also be handled similarly). With a preprocessing
of O(n2) time and space, a shortest s-t path that does not contain any vertex of V can be
found in O(log n) time [7]. Thus in the following, we focus on finding a shortest s-t path
containing at lease one vertex of V.

Let Y (s) be the set consisting of s and the four projections of s on ∂P, i.e., Y (s) =
{s, sl, sr, su, sd}; similarly, let Y (t) = {t, tl, tr, tu, td}. It was shown in [7] that it suffices
to find a shortest path from p to q containing a vertex of V for every p ∈ Y (s) and every
q ∈ Y (t). With a little abuse of notation, we let s be any point in Y (s) and t be any point
in Y (t). Our goal is to find a shortest s-t path that contains at lease one vertex of V. Unless
otherwise indicated, any shortest s-t path mentioned below refers to a shortest s-t path that
contains a vertex of V.

In [7], similar to the discussions in Section 2, O(log n) gateways for s and O(log n)
gateways for t were defined, such that any shortest s-t path must contain a gateway of s
and a gateway of t. Hence by using the gateway graph, a shortest s-t path can be found in
O(log2 n) time.

Based on our enhanced graph GE(V), as in Section 3, we define a new gateway set
Vg(s,GE(V)) of size O(

√
log n) for s and a new gateway set Vg(t, GE(V)) of size O(

√
log n)

for t. The gateway set Vg(s,GE(V)) contains O(
√

log n) Steiner points on the vertical cut-
lines defined in the same way as those in V 2

g (s,GE) in Section 3; similarly, Vg(s,GE(V)) also
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contains O(
√

log n) Steiner points on the horizontal cut-lines. The gateway set Vg(t, GE(V))
is defined similarly. Using a similar proof as for Lemma 2, we can show that there ex-
ists a shortest s-t path containing a gateway of s in Vg(s,GE(V)) and a gateway of t in
Vg(t, GE(V)). Next, we show how to compute the two gateway sets and (the weights of)
their gateway edges. Below, we discuss only the case for s.

The fractional cascading approach [5] used in Section 3 can still compute the gateway
set Vg(s,GE(V)) in O(log n) time, but it cannot compute the weights of the gateway edges
in O(log n) time for the following reasons. Consider a gateway v ∈ Vg(s,GE(V)), say on a
vertical cut-line l. Then there is a gateway edge (s, v) that consists of two line segments
ssh(l) and sh(l)v (recall that sh(l) is the horizontal projection of s on l). Hence, the weighted
length of the edge (s, v) is the sum of the weighted lengths of these two line segments. It
was shown in [7] that ssh(l) must be in the free space (since s is in F); thus, the weighted
length of ssh(l) is easy to compute. However, the vertical segment sh(l)v may intersect
multiple obstacles [7]. We give an algorithm to compute in O(log n) time the gateways and
the weights of the gateway edges for s in the next lemma.

Lemma 21. With a preprocessing of O(n2 log n) time and O(n2) space, the gateways of
Vg(s,GE(V)) for s and their weighted edges can be computed in O(log n) time.

Proof. We discuss only how to compute the gateways of Vg(s,GE(V)) that are on the vertical
cut-lines since those on the horizontal cut-lines can be computed similarly. Further, we only
compute the gateways of Vg(s,GE(V)) above s (i.e., above the horizontal line through s)
since those below s can be computed analogously. Below, with a little abuse of notation, we
let Vg(s,GE(V)) refer to the set of its gateways on the vertical cut-lines and above s.

We follow the terminology in Section 3. Recall that s has O(log n) projection cut-
lines in the vertical cut-line tree T v(V). Let L be the set of all projection cut-lines of s in
T v(V). For each projection cut-line l ∈ L, let v(l) be the Steiner point on l immediately
above the horizontal projection sh(l) of s on l. Let S = {v(l) | l ∈ L}. By their definitions,
Vg(s,GE(V)) is a subset of S (since each gateway of Vg(s,GE(V)) is on a relevant projection
cut-line of s in T v(V)). Hence, to compute Vg(s,GE(V)) and their gateway edges, it suffices
to compute the set S and the weighted lengths of ssh(l)∪sh(l)v(l) for all projection cut-lines
l ∈ L. Since ssh(l) is in F for any projection cut-line l of s [7] (because s ∈ F), it suffices to
compute the weighted length of sh(l)v(l). Below, for any line segment ab, let dw(ab) denote
the weighted length of ab. Let A = {sh(l)v(l) | l ∈ L}.

We use fractional cascading [5] to obtain S in O(log n) time, with a similar approach
as for Lemma 3. To compute the weighted lengths of the segments in A, we need to build
another fractional cascading data structure in the preprocessing.

For every cut-line l of T v(V), we compute the intersections of l with all obstacle
edges of P; let I(l) be the set of such intersections. Clearly, |I(l)| = O(n). We sort these
intersections and the Steiner points on l to obtain a sorted list I ′(l). For all n cut-lines
of T v(V), this takes totally O(n2 log n) time, because the total number of Steiner points
is O(n

√
log n2

√
logn) (which is O(n2)) and the total number of intersections between the

cut-lines and the obstacle edges is O(n2).

Consider the sorted set I ′(l) for any cut-line l of T v(V). For any two consecutive
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points p1 and p2 in I ′(l), the entire segment p1p2 is either in F or in the same obstacle. From
top to bottom in I ′(l), for each point p ∈ I ′(l), we compute the weighted length dw(pp∗) and
associate it with p, where p∗ is the highest point in I ′(l). Further, for each point p ∈ I ′(l), we
maintain a weight wp, defined as follows: Suppose p′ is the point in I ′(l) immediately below
p; if the interior of pp′ is contained in an obstacle, then wp is the weight of that obstacle, and
wp = 0 otherwise. Since I ′(l) is sorted, computing such information in I ′(l) takes O(|I ′(l)|)
time. With such information, for any query point q on l, suppose p is the point in I ′(l) that
is immediately above q; then we have dw(qp∗) = dw(pp∗) + (1 + wp) · |pq|, where |pq| is the
length of pq. Hence, once we know the point p for q, dw(qp∗) can be computed in O(1) time;
further, for any point q′ in I ′(l) above q, we have dw(qq′) = dw(qp∗) − dw(q′p∗), which is
computed in O(1) time since the value dw(q′p∗) is already stored at q′.

In the preprocessing, we build another fractional cascading data structure on T v(V)
and the sorted lists I ′(l) for all cut-lines l of T v(V), which takes O(n2) space and O(n2 log n)
time.

For any query point s, we first use a similar approach as for Lemma 3 to compute
the set S in O(log n) time. For each projection cut-line l ∈ L, let v′(l) be the point in
I ′(l) immediately above sh(l). Note that v′(l) is between v(l) and sh(l). We can use
the above fractional cascading data structure to compute the points v′(l) for all l ∈ L
in O(log n) time (since the cut-lines of L are at the nodes of a path from the root to
a leaf in T v(V)). Then for each l ∈ L, to compute dw(sh(l)v(l)), as discussed above,
we have dw(sh(l)v(l)) = dw(sh(l)p∗) − dw(v(l)p∗), where p∗ is the highest point in I ′(l)
and dw(sh(l)p∗) = dw(v′(l)p∗) + (1 + wv′(l)) · |sh(l)v′(l)|. Since both v(l) and v′(l) have
been computed, dw(sh(l)v(l)) is obtained in O(1) time. Hence, the weighted lengths of all
segments in A are computed in O(log n) time. The lemma thus follows.

The following theorem summarizes our algorithm for the weighted rectilinear case.

Theorem 3. For the weighted rectilinear case, we can build a data structure of O(n2 log n
4
√
logn) size in O(n2 log2 n4

√
logn) time that can answer each query in O(log n) time (i.e.,

for any two query points s and t, the weighted length of a shortest s-t path can be found in
O(log n) time and an actual path can be reported in additional time linear in the number of
edges of the output path).

Proof. In the preprocessing, we compute the graph GE(V) by Lemma 20. For each node v
of GE(V), we compute a shortest path tree rooted at v in GE(V). We maintain a shortest
path length table such that for any two nodes u and v in GE(V), the (weighted) length of
the shortest path from u to v in GE(V) is obtained in O(1) time. Computing all shortest
path trees in GE(V) takes O(n2 log n4

√
logn) space and O(n2 log2 n4

√
logn) time. We also

perform the preprocessing for Lemma 21. Hence, the preprocessing takes O(n2 log n4
√
logn)

space and O(n2 log2 n4
√
logn) time in total.

Consider any two query points s and t. First, we use the approach in [7] to find a
shortest s-t path that does not contain any obstacle vertex of P (if any), after a preprocessing
of O(n2) time and space. Below, we focus on finding a shortest s-t path containing an
obstacle vertex of P, which must contain a gateway of s in Vg(s,GE(V)) and a gateway
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of t in Vg(t, GE(V)). By Lemma 21, we can compute both Vg(s,GE(V)) and Vg(t, GE(V))
in O(log n) time. Then, a shortest s-t path can be found by building a gateway graph (as
discussed in Section 3) in O(log n) time since the sizes of both Vg(s,GE(V)) and Vg(t, GE(V))
are O(

√
log n). As in [7], after the shortest s-t path length is computed, an actual shortest

s-t path can be reported by using the shortest path trees of the nodes in GE(V), in time
linear in the number of edges of the output path. The theorem thus follows.
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