
Computing the Fréchet distance with shortcuts is NP-hard

Maike Buchin∗ Anne Driemel† Bettina Speckmann‡

Abstract

We study the shortcut Fréchet distance, a natural variant of the Fréchet distance, that
allows us to take shortcuts from and to any point along one of the curves. The classic Fréchet
distance is a bottle-neck distance measure and hence quite sensitive to outliers. The shortcut
Fréchet distance allows us to cut across outliers and hence produces more meaningful results
when dealing with real world data. Driemel and Har-Peled recently described approximation
algorithms for the restricted case where shortcuts have to start and end at input vertices.
We show that, in the general case, the problem of computing the shortcut Fréchet distance is
NP-hard. This is the first hardness result for a variant of the Fréchet distance between two
polygonal curves in the plane. We also present two algorithms for the decision problem: a 3-
approximation algorithm for the general case and an exact algorithm for the vertex-restricted
case. Both algorithms run in O(n3 log n) time.

∗Faculty of Mathematics, Ruhr-University Bochum, Germany, Maike.Buchin@rub.de.
†Department of Computer Science, TU Dortmund, Germany, anne.driemel@udo.edu. Work on this paper was

partially supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 612.065.823.
‡Department of Mathematics and Computer Science, TU Eindhoven, the Netherlands, speckman@win.tue.nl.

Supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 639.022.707.

1

ar
X

iv
:1

30
7.

20
97

v2
 [

cs
.C

G
]

 4
 D

ec
 2

01
3

1 Introduction

Measuring the similarity of two curves is an important problem which occurs in many appli-
cations. A popular distance measure, that takes into account the continuity of the curves, is
the Fréchet distance. Imagine walking forwards along both of the two curves whose similarity
is to be measured. At any point in time, the positions on the two curves have to stay within
distance ε. The minimal ε for which such a traversal is possible is the Fréchet distance. It has
been used for simplification [1, 4], clustering [7], and map-matching [2, 13]. The Fréchet distance
also has applications in matching biological sequences [16], analysing tracking data [5, 6], and
matching coastline data [15].

Despite its versatility, the Fréchet distance has one seri-
ous drawback: it is a bottleneck distance. Hence it is quite
sensitive to outliers, which are frequent in real world data
sets. To remedy this Driemel and Har-Peled [12] introduced
a variant of the Fréchet distance, namely the shortcut Fréchet
distance, that allows shortcuts from and to any point along
one of the curves. The shortcut Fréchet distance is then de-
fined as the minimal Fréchet distance over all possible such
shortcut curves.

The shortcut Fréchet distance automatically cuts across outliers and allows us to ignore data
specific “detours” in one of the curves. Hence it produces more meaningful results when dealing
with real world data than the classic Fréchet distance. Consider the following two examples.
Birds are known to use coastlines for navigation, e.g., the Atlantic flyway for migration. However,
when the coastline takes a “detour”, like a harbor or the mouth of a river, the bird ignores this
detour, and instead follows a “shortcut” across. See the example of a seagull in the figure,
navigating along the coastline of Zeeland. Using the shortcut Fréchet distance, we can detect
this similarity. Now imagine a hiker following a pilgrims route. The hiker will occasionally
detour from the route, for breaks along the way. In the former example, shortcuts are allowed
on the coastline, in the latter on the hiker’s path.

Related work The standard Fréchet distance can be computed in time roughly quadratic in the
complexity of the input curves [3, 8]. Driemel and Har-Peled introduce the notion of the shortcut
Fréchet distance and describe approximation algorithms in the restricted case where shortcuts
have to start and end at input vertices [12]. In particular, they give a (3 + ε)-approximation
algorithm for the vertex-restricted shortcut Fréchet distance that runs in O(n log3 n) time un-
der certain input assumptions. Specifically, they assume c-packedness, that is, the length of
the input curves in any ball is at most c times the radius of the ball, where c is a constant.
Their algorithm also yields a polynomial-time exact algorithm to compute the vertex-restricted
shortcut Fréchet distance that runs in O(n5 log n) time and uses O(n4) space without using any
input assumptions [11].

The shortcut Fréchet distance can be interpreted as a partial distance measure, that is, it
maps parts of one curve to another curve. In contrast to other partial distance measures, it
is parameter-free. A different notion of a partial Fréchet distance was developed by Buchin et
al. [9]. They propose the total length of the longest subcurves which lie within a given Fréchet
distance to each other as similarity measure. The parts omitted are completely ignored, while
in our definition these parts are substituted by shortcuts, which have to be matched under the
Fréchet distance.

Results and Organization We study the complexity of computing the shortcut Fréchet dis-
tance. Specifically, we show that in the general case, where shortcuts can be taken at any point
along a curve, the problem of computing the shortcut Fréchet distance exactly is NP-hard. This

2

is the first hardness result for a variant of the Fréchet distance between two polygonal curves in
the plane.

Below we give an exact definition of the problem we study. In Section 2 we describe a reduction
from SUBSET-SUM to the decision version of the shortcut Fréchet distance and in Section 3 we
prove its correctness. The NP-hardness stems from an exponential number of combinatorially
different shortcut curves which cause an exponential number of reachable components in the
free space diagram. We use this in our reduction together with a mechanism that controls the
sequence of free space components that may be visited.

In Section 4 we discuss polynomial-time solutions for approximation. We give two algorithms
for the decision version of the problem, which both run in O(n3 log n) time. The decision
algorithms traverse the free space (as usual for Fréchet distance algorithms), and make use
of a line stabbing algorithm of Guibas et al. [14] to test whether shortcuts are admissible.
The first algorithm uses a crucial lemma of Driemel and Har-Peled [12] to approximate the
reachable free space and so prevents it from being fragmented. This yields a 3-approximation
algorithm for the decision version of the general shortcut Fréchet distance. The second algorithm
concerns the vertex-restricted case. Here, the free space naturally does not fragment, however,
the line-stabbing algorithm helps us to improve upon the running time of the exact decision
algorithm described by Driemel [11]. We conclude with an extensive discussion of open problems
in Section 5. In particular we discuss some challenges in extending the decision algorithm to the
computation problem.

Definitions A curve T is a continuous mapping from [0, 1] to IR2, where T (t) denotes the point
on the curve parameterized by t ∈ [0, 1]. Given two curves T and B in IR2, the Fréchet distance
between them is

dF(T,B) = inf
f :[0,1]→[0,1]

max
α∈[0,1]

‖T (f(α))−B(α)‖ ,

where f is an orientation-preserving homeomorphism. We call the line segment between two
arbitrary points B(y) and B(y′) on B a shortcut on B. Replacing a number of subcurves of B
by the shortcuts connecting their endpoints results in a shortcut curve of B. Thus, a shortcut
curve is an order-preserving concatenation of non-overlapping subcurves of B that has straight
line segments connecting the endpoints of the subcurves.

Our input are two polygonal curves: the target curve T and base curve B. The shortcut
Fréchet distance dS(T,B) is now defined as the minimal Fréchet distance between the target
curve T and any shortcut curve of the base curve B.

2 NP-hardness reduction

We prove that deciding if the shortcut Fréchet distance between two given curves is smaller or
equal a given value is weakly NP-hard by a reduction from SUBSET-SUM. We first discuss the
main ideas and challenges in Section 2.1, then we formally describe the reduction in Section 2.2.
The correctness is proven in Section 3.

2.1 General idea

The SUBSET-SUM instance is given as a set of input values and a designated sum value. A
solution to the instance is a subset of these values that has the specified sum. We describe how
to construct a target curve T and a base curve B, such that there exists a shortcut curve of
B which is in Fréchet distance 1 to T if and only if there exists a solution to the SUBSET-
SUM instance. We call such a shortcut curve feasible if it lies within Fréchet distance 1. The
construction of the curves is split into gadgets, each of them encoding one of the input values.

The idea of the reduction is as follows. We construct the target curve to lie on a horizontal
line going mostly rightwards. The base curve has several horizontal edges which lie at distance

3

base curve

ei−1
∗ ei∗

target curve

ei

ei

twist

mirror edges

si
xxx

∅
2

1

1

1

Figure 1: Simplistic version of the gadget encoding one of the input values si. A shortcut curve
entering from a position on the edge ei−1∗ has the choice to visit either ei or ei. Its distance on
ei∗ to the shortcut curve encoding the empty set (x in the figure) is altered by si. The target
curve is distorted to show its topology.

exactly 1 to the target curve and which go leftwards. We call these edges “mirrors” for reasons
that will become clear later. All other edges of the base curve lie at distance greater than 1 to
the target curve. If a shortcut curve is feasible, then any of its shortcuts must start where the
previous shortcut ended. This way, the shortcut curve “jumps” rightwards along the mirrors
of the base curve and visits each edge in exactly one point. We restrict the solution space of
feasible shortcut curves further by letting the target curve go leftwards for a distance 2 and then
rightwards again (see Figure 1). We call this a “twist”. We place the mirrors far enough from
any twist, such that any shortcut curve which is feasible has to go through the center of each
such twist, since it has to traverse the twist region using a shortcut and this shortcut has to
have Fréchet distance at most 1 to the twisting portion.

The reader may picture the shortcut curve as a lightbeam, which is reflected in all directions
when it hits a mirror. In this analogy, the target curve is a wall which has a hole at the center
of each twist, thus, these are the only points where light can go through. Only if we can send
light from the first vertex of the base curve to the last vertex of the base curve, there exists a
feasible shortcut curve. This curve describes the path of one photon from the first to the last
vertex of the base curve.

Using the basic mechanism of twists and mirrors, we can transport information rightwards
along the shortcut curve as follows. Assume we have a shortcut curve that encodes the empty
set. It describes the path of a photon emitted from the first vertex of the base curve. Assume
that another photon, which took a different path, is reflected at distance x along the same
mirror. If both photons also travel through the next twist center, they will hit the next mirror
at the same distance x from each other.

We can offer a choice to the photon by placing two mirror edges ei and ei in its line of direction
(see Figure 1). The choice of the edge changes the position at which the photon will hit the
next mirror edge. In particular, by placing the mirror edges carefully, we can encode one of the
input values si in this horizontal shift. By visiting a number of such gadgets, which have been
threaded together, a shortcut curve accumulates the sum of the selected subset in its distance
to the curve that encodes the empty set. We construct the terminal gadget such that only those
photons that selected a subset which sums to the designated value can see the last vertex of the
base curve through the last hole in the wall.

There are two aspects of this construction we need to be careful with. First, if we want to
offer a choice of mirrors to the same photon, we cannot place both of them at distance exactly 1
to the target curve. We will place one of them at distance α = 1/2. In this case, it may happen
that a shortcut curve visits the edge in more than one point by moving leftward on the edge
before leaving again in rightward direction. Therefore, the visiting position which encodes the
current partial sum will be only approximated. We will scale the problem instance to prevent

4

influence of this approximation error on the solution. Secondly, if two mirror edges overlap
horizontally, such as ei and ei in Figure 1, a photon could visit both of them. We will use more
than two twists per gadget to realize the correct spacing (see Figure 2).

2.2 Reduction

We describe how to construct the curves T and B from an instance of SUBSET-SUM and how
to extract a solution.

Input We are given n positive integers {s1, s2, . . . , sn} and a positive integer σ. The problem
is to decide whether there exists an index set I, such that

∑
i∈I si = σ. For any index set I, we

call σi =
∑

1≤j≤i,j∈I sj the ith partial sum of the corresponding subset.

Global layout We describe global properties of the construction and introduce basic terminol-
ogy. Our construction consists of n + 2 gadgets: an initialization gadget g0, a terminal gadget
gn+1, and split gadgets gi for each value si, for i = 1, . . . , n. A gadget gi consists of curves Ti and
Bi. We concatenate these in the order of i to form T and B. The construction of the gadgets
g1, . . . , gn is incremental. Given the endpoints of the last mirror edge of gadget gi−1 and the
value si, we construct gadget gi. We denote with Hy the horizontal line at y. The target curve
will be contained in H0. We call the locus of points that are within distance 1 to the target
curve the hippodrome.

The base curve Bi will have leftward horizontal edges on H−1, H1 and Hα, where α = 1
2 is

a global parameter of the construction. We call these edges mirror edges. The remaining edges
of Bi, which are used to connect the mirror edges to each other, are called connector edges.
The mirror edges which will be located on H1 and H−1 can be connected using curves that lie
outside the hippodrome. Since those connector edges cannot be visited by any feasible shortcut
curve, their exact placement is irrelevant. The edges connecting to mirror edges located on Hα

and which intersect the hippodrome are placed carefully such that no feasible shortcut curve
can visit them.

The edges of the target curve Ti lie on H0 running in positive x-direction, except for occasional
twists, which we define as follows. A twist centered at a point p = (p, 0) is a subcurve defined
by the vertices (p−1, 0),(p+ 1, 0),(p−1, 0),(p+ 1, 0) which we connect by straight line segments
in this order. We call p the projection center of the twist. Let ζ = 5 be a global parameter of
the construction, we call the open rectangle of width ζ and height 3 and centered at p a buffer
zone of the twist. In our construction, the base curve stays outside the buffer zones.

Since all relevant points of the construction lie on a small set of horizontal lines, we can
slightly abuse notation by denoting the x-coordinate of a point and the point itself with the
same variable, albeit using a different font. 1

Global variables The construction uses four global variables. The parameter α = 1
2 is the y-

coordinate of a horizontal mirror edge which does not lie on H1 or H−1 . The parameter β = 5
controls the minimal horizontal distance between mirror edges that lie between two consecutive
buffer zones. The parameter γ > 0 acts as a scaling parameter to ensure (i) that the projections
stay inside the designated mirror edges and (ii) that the projections of two different partial sums
are kept disjoint despite the approximation error. How to choose the exact value of γ will follow
from Lemma 11. The fourth parameter ζ = 5 defines the width of a buffer zone. It controls the
minimum horizontal distance that a point on a mirror edge has to a projection center.

Initialization gadget (g0) We let both curves start on the vertical line at a00 = 0 by placing
the first vertex of T 0 at (a00, 0) and the first vertex of the B0 at (a00, 1). The base curve B0

1For example, we denote with aij the point that has x-coordinate ai
j .

5

α
0

1

−1

bi−1
∗ ai−1

∗ p1

ei−1
∗ e1 e1 e2

≥ β

α
0

1

−1

e0∗

b0∗ a0∗p01a00

B(0)

T (0)

δ

≥ β≥ ζ

p2b1 a1d1 c1 b2 a2

≥ ζ

vi−1
∗

vi1

v0∗

= v00

Figure 2: Top: initialization gadget g0; bottom: the left part of split gadget gi. The target curve
is shown in green, the base curve in blue. An example shortcut curve is shown in red. Buffer
zones and the hippodrome are shown as shaded regions. For the sake of presentation, the target
curve is distorted to show its topology, and the lengths of the mirror edges have been assumed
smaller. The top index i has been omitted from the variables.

6

e3 e3 e∗

≥ β

α
0

1

−1

bn∗ an∗

en∗

pn+1
1 aσ

e2

B(1)

≥ β

p3 p4b3 a3 b∗ a∗d2 c2 d3 c3

≥ ζ ≥ ζ

vi3

vi∗

= vn+1

vn∗

σ

vi2

T (1)

Figure 2: Top: terminal gadget gn+1; bottom: the right part of gadget gi with example shortcut
curve.

7

Step 1: p1 = ai−1
∗ (φi,−α) ∩H0 with φi = ai−1

∗ + β + λi

λi = ai−1
∗ − bi−1

∗

a1 = bi−1
∗ p1 ∩H1 b1 = ai−1

∗ p1 ∩H1

c1 = bi−1
∗ p1 ∩Hα d1 = ai−1

∗ p1 ∩Hα

Step 2: p2 =(a1 + ζ/2, 0)

a2 = b1p2 ∩H−1 b2 = a1p2 ∩H−1

c2 = d1p2 ∩H−1 d2 = c1p2 ∩H−1

Step 3: p3 =(c2 + ζ/2, 0)

a3 = b2p3 ∩Hα b3 = a2p3 ∩Hα

c3 = d2p3 ∩H1 d3 = c2p3 ∩H1

Step 4: p4 = (c3 − γsi, 1)a3 ∩H0

a4 = b3p4 ∩H−1 b4 = a3p4 ∩H−1

c4 = d3p4 ∩H−1 d4 = c3p4 ∩H−1

a∗ = (max(a4, b4, c4, d4) ,−1) b∗ = (min(a4, b4, c4, d4) ,−1)

Table 1: Construction of split gadgets gi for 1 ≤ i ≤ n. We omitted the top index i of the
variables. Thus, b∗ stands for bi∗, etc. H1, H−1 and Hα denote the horizontal lines at 1,−1 and
α respectively. We used ab to denote the line through the points a and b.

then continues to the left on H1 while the target curve T0 continues to the right on H0. See
Figure 2 (top left) for an illustration. The curve T 0 has one twist centered at p01 = a00 + γ+ ζ/2.
The curve B0 has one mirror edge e0∗ = a0∗b

0
∗, which we define by setting b0∗ = p01 + ζ/2 and

a0∗ = p01 + 2γ + ζ/2.

Split gadgets (g1, . . . , gn) The overall structure is depicted in Figure 2. The curve Bi for
1 ≤ i ≤ n has seven mirror edges. These are eij = aijb

i
j , and eij = cijd

i
j , for 1 ≤ j ≤ 3, and the

edge ei∗ = ai∗b
i
∗. We connect the mirror edges using additional edges to define the following order

along the base curve: ei−1∗ , ei1, e
i
1, e

i
2, e

i
2, e

i
3, e

i
3, e

i
∗. The mirror edges lie on the horizontal lines H1,

H−1 and Hα. We use vertical connector edges which run in positive y-direction and additional
connector edges which lie completely outside the hippodrome to connect the mirror edges on
Hα. The curve Ti for 1 ≤ i ≤ n consists of four twists centered at the projection centers pij
for 1 ≤ j ≤ 4 which are connected in the order of j by rightward edges on H0. To choose the
exact coordinates of these points, we go through several rounds of fixing the position of the next
projection center and then projecting the endpoints of mirror edges to obtain the endpoints of
the next set of mirror edges. The construction is defined in four steps in Table 1 and illustrated
in Figure 2 (bottom). The intuition behind this choice of projection centers is the following. In
every step we make sure that the base curve stays out of the buffer zones. Furthermore, in Step
1 we choose the projection center far enough to the right such that two mirror edges located
between two consecutive buffer zones have horizontal distance at least β to each other. In Step
4 we align the projections of the two edges ei3 and ei3. In this alignment, the visiting position
that represents “0” on ei3 (i.e., in its distance to ai3) and the visiting position that represents “si”
on ei3 (i.e., in its distance to ci3) both project to the same point on ei∗ (i.e., the visiting position
that represents “si” in its distance to bi∗). In this way, the projections from ei3 are horizontally
shifted by si (scaled by γ) with respect to the projections from ei3.

8

Terminal gadget (gn+1) The curve Tn+1 has one twist centered at pn+1
1 = an∗ + ζ/2. Let

pσ = (bn∗ + γ(σ + 1)) and project the point (pσ,−1) through pn+1
1 onto H1 to obtain a point

(aσ, 1). We finish the construction by letting both the target curve Tn+1 and the base curve Bn+1

end on a vertical line at aσ. The curve Tn+1 ends on H0 approaching from the left, while the
curve Bn+1 ends on H1 approaching from the right. Figure 2 (top right) shows an illustration.

Encoding of a subset Any shortcut curve of the base curve encodes a subset of the SUBSET-
SUM instance. We say the value si is included in the encoded subset if and only if the shortcut
curve visits the edge ei1. The ith partial sum of the encoded subset will be represented by the
point where the shortcut curve visits the edge e∗i . In particular, the distance of the visiting point
to the endpoint of the edge represents this value, scaled by γ and up to a small additive error.

3 Correctness of the reduction

Now we prove that the construction has the desired behavior. That is, we prove that any
feasible shortcut curve encodes a subset that constitutes a solution to the SUBSET-SUM instance
(Lemma 11) and for any solution of the SUBSET-SUM instance, we can construct a feasible
shortcut curve (Lemma 8).

We call a shortcut curve one-touch if it visits any edge of the base curve in at most one
point. Intuitively, for any feasible shortcut curve of B, there exists a one-touch shortcut curve
that “approximates” it. We first prove the correctness of the reduction for this restricted type of
shortcut curve (Lemma 8), before we turn to general shortcut curves. In Definition 1 we define a
one-touch encoding, which is a one-touch shortcut curve that is feasible if and only if the encoded
subset constitutes a valid solution. For such curves, Lemma 2 describes the correspondence of
the current partial sum with the visiting position on the last edge of each gadget. It readily
follows that we can construct a feasible shortcut curve from a valid solution (Lemma 8). For
the other direction of the correctness proof we need some lemmas to testify that any feasible
shortcut curve is approximately monotone (Lemma 4), has its vertices outside the buffer zones
(Lemma 3), and therefore has to go through all projection centers (Lemma 5). We generalize
Lemma 2 to bound the approximation error in the representation of the current partial sum
(Lemma 10). As a result, Lemma 11 implies that any feasible shortcut curve encodes a valid
solution.

p

b1 a1

a2b2

−1

0

α

1

∆1

∆2

Distance projection In the correctness proof we often reason
by using projections of distances betweenH1,H−1 andHα. The
common argument is captured in the following observation.

Observation 1 (Distance Projection) If ∆1 is a triangle
defined by two points a1 and b1 that lie on H−1 and a point
p that lies on H0, and if ∆2 is a triangle defined by the points
p, and the two points b2 = a1p ∩ Hα and a2 = b1p ∩ Hα,
which are the projections onto Hα, then it holds that α(a1 − b1) = a2 − b2, where a1, b1, a2 and
b2 are the respective x-coordinates of the points.

3.1 Correctness for one-touch shortcut curves

We first analyze our construction under the simplifying assumption that only shortcut curves
are allowed that are one-touch, i.e., shortcut curves can visit the base curve in at most one point
per edge. In the next section we will build upon this analysis for the general case.

Definition 1 (One-touch encoding) Let I be an index set of a subset S′ ⊆ S. We construct
a one-touch shortcut curve BI of the base curve incrementally. The first two vertices on the

9

p1 p2 p3

bi−1
∗ vi−1

∗ d4

a1

a3

v1

v3

−1

0

α
1

v∗

c3
δsi

ai−1
∗

p4

b1

d1
c1

d3

b3

a4b4 c4b2 v2 c2d2 a2

b∗ a∗

Figure 3: The path of a shortcut curve through the gadget gi in the case where si is included in
the selected set (Lemma 2). For presentation purposes, we allowed the mirror edges to overlap
horizontally and we omitted the top index i of the variables.

initial gadget are defined as follows. We choose the first vertex of the base curve B(0) for v00,
then we project it through the first projection center p01 onto e0∗ to obtain v0∗. Now for i > 0, if
i ∈ I, then we project vi−1∗ through pi1 onto ei1, otherwise onto ei1 to obtain vi1. We continue by
projecting vij through pij+1 onto Bi to obtain vij+1, for 1 ≤ j ≤ 4. Let vi∗ = vi4. We continue this
construction throughout all gadgets in the order of i. Finally, we choose B(1) = (aσ, 1) as the
last vertex of our shortcut curve. Figure 2 shows an example.

Lemma 1 For any 1 ≤ i ≤ n, it holds that bi4 = bi∗ + γsi and that di4 = bi∗.

Proof. By construction, the projection center pi4 lies on a common line with ai3 and bi4. Recall
that we chose pi4 such that this line intersects H1 at the x-coordinate ci3 − γsi (see Table 1 and
Figure 3). Thus, by Observation 1, it holds that bi4−di4 = γsi. Furthermore, di4 is the point with
minimum x-coordinate out of the projections of ai3, b

i
3, c

i
3, and di3 through pi4 onto H−1, since

γsi ≥ 0. Since we chose bi∗ as such point with minimum x-coordinate, the claim is implied. �

Lemma 2 Given a shortcut curve BI which is a one-touch encoding (Definition 1), let vi∗ be
the vertex of BI on ei∗, for any 0 ≤ i ≤ n. It holds for the distance of vi∗ to the endpoint of this
edge that

∥∥vi∗ − bi∗
∥∥ = γ(σi + 1), where σi is the ith partial sum of the subset encoded by BI .

Proof. We prove the claim by induction on i. For i = 0, the claim is true by the construction
of the initialization gadget, since the partial sum σ0 = 0 and

∥∥v0∗ − b0∗
∥∥ = γ. For i > 0, there are

two possibilities, either i ∈ I or i /∈ I. Consider the case that si is included in the set encoded
by BI . In that case, the curve has to visit the edge ei1.

By a repeated application of Observation 1 we can derive that∥∥vi−1∗ − bi−1∗
∥∥ =

∥∥vi1 − ai1
∥∥ =

∥∥vi2 − bi2
∥∥ =

∥∥vi3 − ai3
∥∥

α
=
∥∥vi∗ − bi4

∥∥ .
Refer to Figure 3 for an illustration of the geometry of the path through the gadget. The
shaded region shows the triangles that transport the distances. Therefore, by induction and by
Lemma 1, ∥∥vi∗ − bi∗

∥∥ =
∥∥vi∗ − bi4

∥∥+
∥∥bi4 − di4

∥∥ = γ(σi−1 + 1) + γsi = γ(σi + 1).

Thus, the claim follows for the case that si is selected. For the second case, the curve has to
visit the edge ei1. Again, by Observation 1 it holds that∥∥vi−1∗ − bi−1∗

∥∥ =

∥∥vi1 − ci1
∥∥

α
=
∥∥vi2 − di2

∥∥ =
∥∥vi3 − ci3

∥∥ =
∥∥vi∗ − di4

∥∥ .
Thus

∥∥vi∗ − di4
∥∥ = γ(σi−1 + 1) = γ(σi + 1). By Lemma 1, di4 = bi∗, thus the claim is implied also

in this case. �

10

Using the arguments from the proof of Lemma 2 one can derive the following corollary.

Corollary 1 For any 0 ≤ i ≤ n the length of the edge ei∗ is equal to γ
(∑

1≤j≤i sj + 2
)

.

Lemma 3 If α ∈ [1/2, 1) and β ≥ ζ/2, then the base curve does not enter any of the buffer
zones.

Proof. For the buffer zones centered at pi2 and pi3 for 1 ≤ i ≤ n the claim is implied by
construction. The same holds for the projection centers of the initialization gadget and the
terminal gadget. Thus, we only need to argue about the first and the last projection center of
the intermediate gadgets gi for 1 ≤ i ≤ n. Consider pi1, by construction and since α ≥ 1/2, it
holds that

di1 − pi1 = pi1 − φi ≥ φi − ai−1∗ = β + λi > β ≥ ζ/2,
where λi and φi are defined as in the construction of the gadgets. Since di1 is the closest x-
coordinate of the base curve to pi1, the claim follows for the first projection center of a gadget.

For the last projection center, pi4, we use the fact that it lies to the right of the point where
the line through ai3 and ci3 passes through H0. Let the x-coordinate of this point be denoted ci.
Now, let ∆1 be the triangle defined by pi2, d

i
1 and ci1 and let ∆2 be the triangle defined by pi3,

ai3 and bi3. By the symmetry of the construction, the two triangles are the same up to reflection
at the bisector between pi2 and pi3. Therefore,

pi4 − ai3 ≥ ci − ai3 = di1 − pi1 > ζ/2,

and this implies the claim. �

Lemma 4 Any feasible shortcut curve is rightwards 4-monotone. That is, if x1 and x2 are the
x-coordinates of two points that appear on the shortcut curve in that order, then x2 + 4 ≥ x1.
Furthermore, it lies inside or on the boundary of the hippodrome.

Proof. Any point on the feasible shortcut curve has to lie within distance 1 to some point of
the target curve, thus the curve cannot leave the hippodrome. As for the montonicity, assume
for the sake of contradiction, that there exist two points such that x2 + 4 < x1. Let x̂1 be the
x-coordinate of the point on target curve matched to x1 and let x̂2 be the one for x2. By the
Fréchet matching it follows that x̂2 − 1 + 4 < x̂1 + 1. This would imply that the target curve is
not 2-monotone, which contradicts the way we constructed it. �

Lemma 5 If α ∈ [1/2, 1), ζ > 4, and β ≥ ζ/2, then a feasible shortcut curve passes through
every buffer zone of the target curve via its projection center and furthermore it does so from
left to right.

Proof. Any feasible shortcut curve has to start at B(0) and end at B(1), and all of its vertices
must lie in the hippodrome or on its boundary. By Lemma 3 the base curve does not enter any
of the buffer zones and therefore the feasible shortcut curve has to pass through the buffer zone
by using a shortcut. If we choose the width of a buffer zone ζ > 4, then the only manner possible
to do this while matching to the two associated vertices of the target curve in their respective
order, is to go through the intersection of their unit disks that lies at the center of the buffer
zone. This is the projection center associated with the buffer zone. By the order in which the
mirror edges are connected to form the base curve, it must do so in positive x-direction and it
must do so exactly once. �

Lemma 6 For any 1 ≤ i ≤ n it holds that bi1 − ci1 ≥ β, di2 − ai2 ≥ β, and bi3 − ci3 ≥ β.

11

Proof. Recall that we chose pi1 by constructing the point (φi,−α), where φi = ai−1∗ + λi + β
and λi = ai−1∗ − bi−1∗ . The construction is such that (φi,−α), pi1 and ai−1∗ lie on the same line.
Consider the point (ri,−α) that lies on the line through bi−1∗ and pi1. We have that the triangle
∆1 defined by (ri,−1), pi1 and ai−1∗ is the same up to rotation as the triangle ∆2 defined by
(ci1, 1), pi1 and bi1. Refer to Figure 4 for an illustration. By Observation 1,

bi1 − ci1 = ri − ai−1∗ = β + λi − (φi − ri) ≥ β,

since (φi − ri) = αλi. This proves the first part of the claim. Now it readily follows that
also di2 − ai2 ≥ β. Indeed, it follows by Observation 1 that qi − ai2 = bi1 − ci1, where qi is the
x-coordinate of the projection of (ci1, 1) through pi2 onto H−1, and this projection lies between
di2 and ai2. Again, refer to Figure 4 and in particular to triangles ∆′1 and ∆′2.

The claim bi3−ci3 ≥ β follows from the symmetry of the middle part of the gadget. Consider the
triangle ∆3 defined by (ci1, 1), pi2 and (bi1, 1) and the triangle ∆4 defined by (ci3, 1), pi3 and (bi3, 1).
By construction ∆3 is a reflected version of ∆4, where the axis of reflection is the bisector of the
two projection centers. Thus, by the above argument we have that bi3 − ci3 = bi1 − ci1 ≥ β. �

Lemma 7 If α ∈ [1/2, 1), ζ > 4 and if β > 4, then a feasible shortcut curve that is one-touch
visits either eij or eij for any 1 ≤ i ≤ n and 1 ≤ j ≤ 3. Furthermore, it visits all edges ei∗ for
0 ≤ i ≤ n.

Proof. By Lemma 4, any feasible shortcut curve is 4-monotone. Furthermore, it starts at B(0)
and ends at B(1) and by Lemma 5, it goes through all projection centers of the target curve from
left to right. We first want to argue that it visits at least one mirror edge between two projection
centers, i.e., that it cannot “skip” such a mirror edge by matching to two twists in one shortcut.
Such a shortcut would have to lie on H0, since it has to go through the two corresponding
projection centers lying on H0. By construction, the only possible endpoints of such a shortcut
lie on the connector edges that connect to mirror edges on Hα. Assume such a shortcut could
be taken by a shortcut curve starting from B(0). Then, there must be a connector edge which
intersects a line from a point on a mirror edge through a projection center. In particular, since
the curve has to go through all projection centers, one or more of the following must be true
for some 1 ≤ i ≤ n: (i) there exists a line through pi1 intersecting a mirror edge ei−1∗ and a
connector edge of ei1, or (ii) there exists a line through pi3 intersecting a mirror edge ei2 or ei2 and
a connector edge of ei3. However, this was prevented by the careful placement of these connector
edges.

It remains to prove that the shortcut curve cannot visit both eij and eij for any i and j, and
therefore visits at most one mirror edge between two projection centers. First of all, the shortcut

bi−1∗ ai−1∗

p1 p2

a2 d2

b1 a1

d1

c1

φiri
−1

−α

0

α

1

∆1

∆2
∆′2

∆′1

qi

c1

Figure 4: The geometry used in the proof of Lemma 6. We omitted the top index i of the
variables.

12

curve has to lie inside or on the boundary of the hippodrome and is 4-monotone (Lemma 4). At
the same time, we constructed the gadget such that the mirror edges between two consecutive
projection centers have distance at least β by Lemma 6 and that the left mirror edge comes after
the right mirror edge along their order of B. Since we chose β > 4, the shortcut curve cannot
visit both mirror edges. �

Putting the above lemmas together implies the correctness of the reduction for shortcut curves
that are one-touch, i.e., which visit every edge in at most one point.

Lemma 8 If α ∈ [1/2, 1), ζ > 4 and if β > 4, then for any feasible one-touch shortcut curve
B♦, it holds that the subset encoded by B♦ sums to σ. Furthermore, for any subset of s that
sums to σ, there exists a feasible one-touch shortcut curve that encodes it.

Proof. Lemma 7 and Lemma 5 imply that B♦ must be a one-touch encoding as defined in
Definition 1 if it is feasible. By Lemma 2, the second last vertex of B♦ is the point on the edge
en∗ , which is in distance γ(σ♦ + 1) to bn∗ , where σ♦ is the sum encoded by the subset selected
by B♦. The last vertex of B♦ is equal to B(1), which we placed in distance γ(σ + 1) to the
projection of bn∗ through pn+1

1 . Thus, if and ony if σ♦ = σ, then the last shortcut of B♦ passes
through the last projection center of the target curve. It follows that if σ♦ 6= σ, then B♦ cannot
be feasible. For the second part of the claim, we construct a one-touch encoding as defined in
Definition 1. By the above analysis, it will be feasible if the subset sums to σ, since the curve
visits every edge of B in at most one point and in between uses shortcuts which pass through
every buffer zone from left to right and via the buffer zone’s projection center. �

3.2 Size of the construction

We prove that the construction has polynomial size.

Lemma 9 The curves can be constructed in O(n) time. Furthermore, if we choose α = 1/2, β =
5, ζ = 5, and γ = 25n, then the size of the coordinates used is in O(log n+ log(

∑n
i=0 si)).

Proof. Each of the constructed gadgets uses a constant number of vertices. Since we construct
n + 2 gadgets, the overall number of vertices used is in O(n). The curves can be constructed
using a single iteration from left to right, therefore they can be constructed in O(n) time.

Secondly, we can bound the size of the coordinates as follows. We claim that

aσ ∈ O
(
n2

n∑
i=0

si

)
(1)

Using basic geometry, we can bound the horizontal length of an individual split gadget as
follows. Let Ai = pi1 − ai−1∗ . Let λi = ai−1∗ − bi−1∗ as defined as in Table 1 (see also Figure 2).

13

ai∗ − ai−1∗ = (ai∗ − bi1) + (bi1 − pi1) + (pi1 − ai−1∗)

= (ai∗ − bi1) + 2Ai

= (ai∗ − pi2) + (pi2 − bi1) + 2Ai

= (ai∗ − pi2) + λi + ζ/2 + 2Ai

= (ai∗ − ci2) + (ci2 − pi2) + λi + ζ/2 + 2Ai

≤ (ai∗ − ci2) +

(
pi2 − di1
α

)
+ λi + ζ/2 + 2Ai

= (ai∗ − ci2) +

(
Ai + λi + ζ/2

α

)
+ λi + ζ/2 + 2Ai

≤ (ai∗ − ci2) + 4Ai + 3λi + 2ζ

= (ai∗ − di3) + (di3 − ci2) + 4Ai + 3λi + 2ζ

= (ai∗ − di3) + 4Ai + 3λi + 3ζ

= (ai∗ − pi4) + (pi4 − di3) + 4Ai + 3λi + 3ζ

≤ 2

(
ai3 − di3 + γsi

1− α

)
+ 4Ai + 3λi + 3ζ

≤ 2

(
Ai + λi + γsi

1− α

)
+ 4Ai + 3λi + 3ζ

= 8Ai + 7λi + 4γsi + 3ζ

By the construction of the first projection center in Table 1, it holds that

Ai ≤
β + λi
1− α = 2(β + λi)

Putting everything together, we get

aσ = (aσ − an∗) +
n∑
i=1

(ai∗ − ai−1∗) + a0∗

≤ (2λn+1 + ζ) +
n∑
i=1

(ai∗ − ai−1∗) + (ζ + 3γ)

≤ 2λn+1 + ζ +
n∑
i=1

(16(β + λi) + 7λi + 4γsi + 3ζ) + ζ + 3γ

≤ 23

n+1∑
i=1

λi + 4γ

n∑
i=1

si + 16nβ + 3(n+ 1)ζ + 3γ

By construction of the initialization gadget, it holds that λ1 = 2γ. Together with Corollary 1
this implies that

λi ≤ γ
(

n∑
i=1

sj + 2

)
for 1 ≤ i ≤ n + 1. Since we chose γ = 25n and the remaining global variables constant, the
claim is implied. �

3.3 Correctness for general shortcut curves

Next, we generalize Lemma 2 to bound the incremental approximation error of the visiting
positions on the last edge of each gadget for general shortcut curves, that is, assuming shortcut
curves are not necessarily one-touch.

14

Lemma 10 Choose α ∈ [1/2, 1), ζ > 4 and β > 4. Given a feasible shortcut curve B♦, let vi∗
be any point of B♦ on ei∗ and let vi∗ denote its x-coordinate. For any 0 ≤ i ≤ n let σi denote the
ith partial sum of the subset encoded by B♦. If we choose γ > εi, then it holds that

bi∗ + γi − εi ≤ vi∗ ≤ bi∗ + γi + εi

where γi = γ(σi + 1) and εi = 8i+4
α .

Proof. We prove the claim by induction on i. For i = 0 the claim follows by the construction of
the initialization gadget. Indeed, the curve B♦ has to start at B(0) = a00 and by Lemma 5 it has
to pass through both p01 and p11. Since the three points a00, p

0
1, and p11 do not lie on a common

line, there must be an edge of the base curve in between the two projection centers visited by
B♦. By Lemma 4, the shortcut curve cannot leave the hippodrome. However, the only edge
available in the hippodrome is e0∗. By construction, the only possible shortcut to this edge ends
at the center of the edge in distance γ to b0∗. Since the mirror edge runs leftwards, the only
other points that can be visited by B♦ lie therefore in this direction. However, by Lemma 4, B♦

is rightwards 4-monotone. It follows that

b0∗ + γ − 4 ≤ v0∗ ≤ bi∗ + γ.

Since ε0 = 4/α > 4 and σ0 = 0, this implies the claim for i = 0.
For i > 0, the curve B♦ entering gadget gi from the edge ei−1∗ has to pass through the first

buffer zone via the projection center pi1. By induction,

bi−1∗ + γmin ≤ vi−1∗ ≤ bi−1∗ + γmax,

where γmin = γi−1 − εi−1 and γmax = γi−1 + εi−1 denote the minimal and maximal distances
of the visiting position to the left endpoint on the edge ei−1∗ . Since γ > εi = εi−1 + 8/α, and
σi−1 ≥ 0, it follows that

γmin = γ(σi−1 + 1)− εi−1 ≥ γ − εi−1 > 8/α. (2)

Furthermore, by Corollary 1,

γmax ≤ γ

 ∑
1≤j≤i−1

sj + 1

+ εi−1 ≤(λi − γ) + εi−1 ≤ λi − 8/α, (3)

where λi = ai−1∗ − bi−1∗ is the length of edge ei−1∗ . Thus, vi−1∗ lies at distance at least 8/α from
each endpoint of ei−1∗ . Therefore, the only two edges of the base curve which intersect the line

vi−1∗ pi1 within the hippodrome are ei1 and ei1. Note that also the vertical connector edges at ei1
do not intersect any such line within the hippodrome.

Now, there are two cases, either the shortcut ends on ei1 or on ei1. Assume the latter case. By
Observation 1 the x-coordinate of the endpoint of the shortcut lies in the interval[

ci1 − αγmax , c
i
1 − αγmin

]
.

By the same observation, the length of the edge ei1 is equal to αλi. Thus, the endpoint of the
shortcut lies inside the edge.

We now argue that the shortcut curve has to leave the edge by using a shortcut, i.e., the
shortcut curve cannot “walk” out of the edge by using a subcurve of B. The mirror edges are
oriented leftwards. Since the shortcut curve has to be rightwards 4-monotone (Lemma 4), it can
only walk by a distance 4 on each such edge. Let Iij denote the range of x-coordinates of B♦ on

eij . By the above,

Ii1 ⊆
[
ci1 − αγmax − 4 , ci1 − αγmin

]
15

Thus, by Eq. (3) and Eq. (2) and since ci1−di1 = αλi, it holds that Ii1 ⊆ [di1, c
i
1], i.e., the shortcut

curve must leave the edge ei1 by using a shortcut. A shortcut to ei1 would violate the order along
the base curve B. Since the shortcut curve is rightwards 4-monotone (Lemma 4) and must pass
a through a buffer zone via its projection center (Lemma 5), the only way to leave the edge is
to take a shortcut through pi2. The only edge intersecting a line through pi2 and a point on ei1 is
ei2. Thus, ei2 must be the next edge visited. Now we can again use Observation 1 to project the
set of visiting points onto the next edge and use the fact that the shortcut curve can only walk
rightwards and only by a distance at most 4 on a mirror edge to derive that

Ii2 ⊆
[
di2 + γmin − 4 , di2 + (γmax + 4/α)

]
⊆ [di2, c

i
2].

By repeated application of the above arguments, we obtain that ei3 is visited within

Ii3 ⊆
[
ci3 − (γmax + 4/α)− 4 , ci3 − (γmin − 4)

]
⊆ [di3, c

i
3],

and that ei∗ is visited within

Ii∗ ⊆
[
di4 + (γmin − 4)− 4 , di4 + (γmax + 4/α+ 4)

]
⊆ [di4, c

i
4] ⊆ [bi∗, a

i
∗]

For each visited edge, it follows by Eq. (3) and Eq. (2) that the shortcut curve visits the edge
in the interior.

Now, since the shortcut curve did not visit ei1, the input value si is not included in the
selected subset, therefore γi = γi−1. Using the interval Ii∗ derived above, and the fact that
di4 = bi∗ (Lemma 1) it follows that

vi∗ ≥ di4 + γmin − 8 ≥ di4 + (γi−1 − εi−1)− 8 ≥ bi∗ + γi − εi,

and similarly,

vi∗ ≤ di4 + γmax + 8/α ≤ di4 + (γi−1 + εi−1) + 8/α ≤ bi∗ + γi + εi

Thus, the claim follows in the case that B♦ visits ei1.
The case that B♦ visits ei1 can be proven along the same lines. However, now si is included

in the selected subset, and therefore γi = γi−1 + γsi. Using the arguments above we can derive

Ii∗ ⊆
[
bi4 + γmin − 8/α , bi4 + γmax + 8/α

]
By Lemma 1, bi4 = bi∗ + γsi. (Note that the same argument was used in Lemma 2). Thus,
analogous to the above

vi∗ ≥ bi4 + γi−1 − εi ≥ bi∗ + γsi + γi−1 − εi ≥ bi∗ + γi − εi

and similarly,

vi∗ ≤ bi4 + γi−1 + εi ≤ bi∗ + γsi + γi−1 + εi ≤ bi∗ + γi + εi

Therefore the claim is implied also in this case. �

Lemma 11 If we choose α ∈ [1/2, 1), β > 4, ζ > 4, and γ ≥ 25n, then any feasible shortcut
curve B♦ encodes a subset of {s1, . . . , sn} that sums to σ.

Proof. Since B♦ is feasible, it must be that it visits en∗ at distance γ(σ + 1) to bn∗ , since this is
the only point to connect via a shortcut through the last projection center to the endpoint of
B and by Lemma 5 all projection centers have to be visited. So let vn∗ = bn∗ + γ(σ + 1) be the

16

x-coordinate of this visiting point (the starting point of the last shortcut), and let σn be the
sum of the subset encoded by B♦. Lemma 10 implies that

bn∗ + γ(σn + 1)− εn ≤ bn∗ + γ(σ + 1) ≤ bn∗ + γ(σn + 1) + εn,

since εn = 8n+4
α < 25n = γ. Therefore,

σn − εn/γ ≤ σ ≤ σn + εn/γ

For our choice of parameters εn/γ < 1. Thus, it must be that σ = σn, since both values are
integers.

�

3.4 Main result

Now, together with Lemma 8 and the fact that the reduction is polynomial (Lemma 9), Lemma 11
implies the NP-hardness of the problem.

Theorem 2 The problem of deciding whether the shortcut Fréchet distance between two given
curves is less or equal a given distance is NP-hard.

4 Algorithms

We give two O(n3 log n) time algorithms for deciding the shortcut Fréchet distance. One is
a 3-approximation algorithm for the general case, and one an exact algorithm for the vertex-
restricted case. Both algorithms traverse the free space as usual, using a line stabbing algorithm
by Guibas et al. [14] to test the admissability of shortcuts.

The approximation algorithm for the general case uses a crucial lemma of Driemel and Har-
Peled [12] to approximate the reachable free space and prevent it from fragmenting. The exact
algorithm for the vertex-restricted case uses a similar lemma for efficiently testing all possible
shortcuts. In this case, the free space naturally does not fragment.

First we discuss relevant preliminaries, in particular tunnels in the free space diagram and
ordered line-stabbing.

4.1 Preliminaries

Free space Diagram Let T,B be two polygonal curves parameterized over [0, 1]. The standard
way to compute the Fréchet distance uses the δ-free space of T and B, which is a subset of the
joint parametric space of T and B, defined as

D≤δ(T,B) =
{

(x, y) ∈ [0, 1]2
∣∣∣ ‖T (x)−B(y)‖ ≤ δ

}
.

From now on, we will simply write D≤δ. The square [0, 1]2, which represents the joint parametric
space, can be broken into a (not necessarily uniform) grid called the free space diagram, where
a vertical line corresponds to a vertex of T and a horizontal line corresponds to a vertex of B.

Every pair of segments of T and B define a cell in this grid. Let Ci,j denote the cell that
corresponds to the ith edge of T and the jth edge of B. The cell Ci,j is located in the ith column
and jth row of this grid. It is known that the free space, for a fixed δ, inside such a cell Ci,j

(i.e., D≤δ ∩ Ci,j) is convex [3]. We will denote it with D
(i,j)
≤δ .

Furthermore, the Fréchet distance between two given curves is less or equal to δ if and only if
there exists a monotone path in the free space that starts in the lower left corner (0, 0) and ends
in the upper right corner (1, 1) of the free space diagram [3]. For the shortcut Fréchet distance,
we need to also allow shortcuts. This is captured in the concept of tunnels in free space. A

17

shortcut segment B
[
yp, yq

]
and the subcurve T

[
xp, xq

]
it is being matched to, correspond in

the parametric space to a segment pq ⊆ [0, 1]2, called a tunnel and denoted by τ(p, q), where
p = (xp, yp) and q = (xq, yq). We require xp ≤ xq and yp ≤ yq for monotonicity. We call the
Fréchet distance of the shortcut segment to the subcurve the price of this tunnel and denote it
with prcτ (p, q) = dF

(
T
[
xp, xq

]
, B
[
yp, yq

])
. A tunnel τ(p, q) is feasible for δ if p, q ∈ D≤δ(T,B).

Now, we define the reachable free space, as follows

R≤δ(T,B) =
{

(xp, yp) ∈ [0, 1]2
∣∣∣ dS(T [0, xp] , B [0, yp]) ≤ δ} .

From now on, we will simply write R≤δ. This is the set of points that have an (x, y)-monotone
path from (0, 0) that stays inside the free space and otherwise uses tunnels. We will denote the

reachable space inside a cell (i.e., R≤δ ∩ Ci,j) with R
(i,j)
≤δ .

Finally, we will use the following well-known fact, that the Fréchet distance between two line
segments is the maximum of the distance of the endpoints.

Observation 2 Given segments ab and cd, it holds dF(ab, cd) = max(‖c− a‖, ‖d− b‖).

Monotonicity of tunnel prices In order to prevent the reachable space from being fragmented,
as it is the case with the exact problem we showed to be NP-hard, we will approximate it. For
this, we will use the following lemma from [12].

Lemma 12 ([12]) Given a value δ > 0 and two curves T1 and T2, such that T2 is a subcurve
of T1, and given two line segments B1 and B2, such that dF

(
T1, B1

)
≤ δ and the start (resp.

end) point of T2 is in distance δ to the start (resp. end) point of B2, then dF
(
T2, B2

)
≤ 3δ.

Horizontal, vertical and diagonal tunnels We can distinguish three types of tunnels. We call
a tunnel that stays within a column of the grid, a vertical tunnel. Likewise, a tunnel that stays
within a row is called a horizontal tunnel. Tunnels that span across rows and columns are
diagonal tunnels. Note that vertical tunnels that are feasible for a value of δ also have a price at
most δ by Observation 2. Furthermore, the shortcut which corresponds to a horizontal tunnel
lies within an edge of the input curve. Thus, shortcutting the curve does not have any effect in
this case and we can safely ignore such horizontal tunnels.

Ordered line stabbing Guibas et al. [14] study the problem of stabbing an ordered set of unit
radius disks with a line. In particular, one of the problems studied is the following. Given a
series of unit radius disks D1, . . . , Dn, does there exist a directed line `, with n points pi, which
lie along ` in the order of i, such that pi ∈ Di? As was already noted by Guibas et al., their
techniques can be applied to decide whether there exists a line segment that lies within Fréchet
distance one to a given polygonal curve X. Simply center the disks at the vertices of X in
their order along the curve and the relationship follows from the fact that the Fréchet distance
between two line segments is the maximum of the distances of their endpoints.

The algorithm described by Guibas et al. maintains a so called line-stabbing wedge that
contains all points p, such that there is a line through p that visits the first i disks before
visiting p. The algorithm runs in O(n log n) time. We will use this algorithm, to compute all
tunnels of price at most δ starting from a particular point in the parametric space and ending
in a particular cell.

4.2 Approximate decision algorithm

We describe an approximate decision algorithm for the directed continuous shortcut Fréchet
distance. Given a value of δ and two polygonal curves T and B in IR2 of total complexity
n = n1 + n2, the algorithm outputs either (i) ”dS(T,B) ≤ 3δ“, or (ii) ”dS(T,B) > δ“. The

18

D1

D2

D3

D4

B(yp)
B(yq)

T (xp) T (xq)

(a) (b)

xq

qyq

Figure 5: (a) Example of a tunnel τ(p, q) computed by the diagonalTunnel procedure. The
shaded area shows the line-stabbing wedge. (b) The free space cell which contains the endpoint
of the tunnel.

algorithm runs in O(n3 log n) time and O(n) space. We first discuss the challenges and then
give a sketch of the algorithm.

4.2.1 Challenge and ideas

The standard way to solve the decision problem for the Fréchet distance and its variants is to
search for monotone paths in the free space diagram. In the case of the shortcut Fréchet distance,
this path can now use tunnels in the free space diagram, which correspond to shortcuts on B
which are matched to subcurves of T . In the general version of the shortcut Fréchet distance, the
tunnels can now start and end anywhere inside the free space cells, while in the vertex-restricted
case they are constrained to the grid of the parametric space. In order to extend the algorithm
by Driemel and Har-Peled [12] to this case, we need a new method to compute the space which
is reachable within a free space cell.

We use the concept of line-stabbing to compute all tunnels τ(p, q) of price at most δ starting
from a particular point p in the parametric space and ending in a particular cell. By intersecting
the line-stabbing wedge with the edge of B that corresponds to the cell, we obtain a horizontal
strip which represents the set of such tunnel endpoints q. See Figure 5 for an illustration.

The second challenge is that the reachable free space can fragment into exponentially many
of such horizontal strips. However, we can exploit the monotonicity of the tunnel prices to
approximate the reachable free space as done in the algorithm by Driemel and Har-Peled. In
this approximation scheme, the combinatorial complexity of the reachable space is constant per
cell. Thus, the overall complexity is bounded by O(n2). Our algorithm takes O(n log n) time
per cell, resulting in O(n3 log n) time overall.

Driemel and Har-Peled make certain assumptions on the input curves and achieve a near-
linear running time. Instead of traversing O(n2) cells, they considered only those cells that
intersect the free space on their boundary. To compute these cells, a data structure of de Berg
and Streppel [10] was used. Unfortunately, this method does not immediately extend to our
case, since we also need to consider cells that intersect the free space in their interior only.
Therefore, our algorithm traverses the entire free space diagram yielding a much simpler, yet
slower algorithm, without making assumptions on the input curves.

4.2.2 Sketch

We traverse the free space as usual to compute the reachable free space. In each cell, in addition
to the reachable free space from neighboring cells, we also compute the free space reachable by
a shortest tunnel at price 3δ. For this, we store (or find) the right-most point in the free space
below and to the right of the current cell, i.e., the point that will give the shortest tunnel. We

19

modify the line-stabbing algorithm of Guibas et al. to compute the free space reachable by a
tunnel from this point (see diagonalTunnel below). Now, by the lemma of Driemel and Har-
Peled, we know that any point not reachable by a shortest tunnel at price 3δ is also not reachable
by a longer tunnel at price δ. Because we compute reachability by only one tunnel, the free
space fragments only in a constant number of pieces. In this way, we obtain a 3-approximation
to the decision version of the problem.

4.2.3 The tunnel procedures

The diagonalTunnel procedure receives as input a cell Ci,i and a point p ∈ D≤δ, such that p
lies in the lower left quadrant of the lower left corner of the cell Ci,i and a parameter δ > 0.
The output will be a set of points P ⊆ Ci,i, such that prcτ (p, q) ≤ δ if and only if q ∈ P.
We use the line-stabbing algorithm mentioned above with minor modifications. Let xp = x−
be the x-coordinate of p and let x+ be the x-coordinate of some point in the interior of Ci,i.
Let D1, . . . , Dk be the disks of radius δ centered at the vertices of T that are spanned by the
subcurve T

[
x−, x+

]
. There are two cases, either B(yp) is contained in Di for all 1 ≤ i ≤ k, or

there exists some i, such that B(yp) lies outside of Di. In the first case, we return P = Ci,i∩D≤δ.
In the second case we initialize the line-stabbing wedge of [14] with the tangents of B(yp) to
the disk Di, where i is the smallest index such that B(yp) /∈ Di. We then proceed with the
algorithm as written by handling the disks Di+1, . . . , Dk. Finally, we intersect the line-stabbing
wedge with the edge of B that corresponds to Ci,i. Refer to Figure 5 for an illustration. This
yields a horizontal slab of points that lie in Ci,i which we then intersect with the δ-free space
and return as our set P.

The verticalTunnel procedure receives as input a cell Ci,i and a point p which lies below
this cell in the same column and a parameter δ ≥ 0. Let Hp be the closed halfplane which lies
to the right of the vertical line through p. The procedure returns the intersection of Hp with
the δ-free space in Ci,i.

4.2.4 The decision algorithm

The algorithm is layed out in Figure 6. We traverse the free space diagram in a row-by-row
order from bottom to top and from left to right. For every cell, we compute a set of reachable
points Pi,j ⊆ Ci,j , such that

R
(i,j)
≤δ (T,B) ⊆ Pi,j ⊆ R

(i,j)
≤3δ (T,B) .

Thus, the set of computed points approximates the reachable free space. From Pi,j we compute
reachability intervals Rvi,j and Rhi,j , which we define as the intersections of Pi,j with the top
and right cell boundary. Furthermore we compute the gates of Pi,j , which we define as the
two points of the set with minimum and maximum x-coordinates. (In [12], where tunnels were
confined to the horizontal edges of the grid, gates were defined as the extremal points of the
reachability intervals.) We keep this information for the cells in the current and previous row in
one-dimensional arrays by the index i. We use three arrays A, g` and gr to write the information
of the current row and three arrays A, g` and gr to store the information from the previous row.
Here, A and A are used to store the reachability intervals, and g`, g`, gr gr are used to store
extremal points (i.e., gates) of the computed reachable space. In particular, g`[i] and g`[i] store
the leftmost reachable point (i.e., gate) discovered so far that lies inside column i and in gr[i]
and gr[i] we maintain the rightmost reachable point (i.e., gate) discovered so far that lies to the
left of column i+ 1. During the traversal, we can update this information in constant time per
cell using the gates of Pi,j , and the gates stored in gr[i− 1], gr[i] and g`[i].

We handle a cell Ci,j in three steps. We first compute the set of points P1
i,j in this cell that

are reachable by a monotone path via Rvi,j−1 or Rhi−1,j . Since these reachability intervals have

been computed in previous steps, they can be retrieved from A[i−1] and A[i]. More specifically,

20

Decider(T,B, δ)

1: Assert that d(0, 0) = ‖T (0)−B(0)‖ ≤ δ and d(1, 1) ≤ δ
2: Let A, A, g`, g`, gr, and gr be arrays of size n1
3: for j = 1, . . . , n2 do
4: Update A← A, g` ← g`, and gr ← gr

5: for i = 1, . . . , n1 do
6: if i = 1 and j = 1 then

7: Let Pi,j = D
(i,j)
≤δ

8: else
9: Retrieve Rvi−1,j and Rhi,j−1 from A[i− 1] and A[i]

10: Step 1: Compute P1
i,j from Rvi−1,j and Rhi,j−1

11: Step 2: Let P2
i,j = verticalTunnel

(
g`[i], Ci,j , δ

)
.

12: Step 3: Let P3
i,j = diagonalTunnel(gr[i− 1], Ci,j , 3δ).

13: Let Pi,j = Q
(
P1
i,j ∪ P2

i,j ∪ P3
i,j

)
∩D

(i,j)
≤δ

14: end if
15: if Pi,j 6= ∅ then
16: Update g`[i] and gr[i] using the gates of Pi,j
17: Compute Rvi,j and Rhi,j from Pi,j and store them in A[i]
18: else
19: Update gr[i] using gr[i− 1]
20: end if
21: end for
22: end for
23: if (1, 1) ∈ A[n1] then
24: Return “dS(T,B) ≤ 3δ”
25: else
26: Return “dS(T,B) > δ”
27: end if

Figure 6: The decision procedure Decider for the shortcut Fréchet distance.

to compute P1
i,j , we take the closed halfplane above the horizontal line at the lower endpoint

of Rvi,j−1 and intersect it with the δ-free space inside the cell, which we can compute ad-hoc
from the two corresponding edges. Similarly, we take the closed halfplane to the right of the left
endpoint of Rhi−1,j and intersect it with the δ-free space. The union of those two sets is P1

i,j . In a

second step, we compute the set of points P2
i,j in Ci,j that are reachable by a vertical tunnel from

below. For this, we retrieve the leftmost reachable point in the current column by probing g`[i].
Assume there exists such a point and denote it by p2. We invoke verticalTunnel (p2, Ci,j , δ)
and let P2

i,j be the output of this procedure. In the third step, we compute the set of points P3
i,j

in Ci,j that are reachable by a diagonal tunnel. For this, we retrieve the rightmost reachable
point in the cells that are spanned by the lower left quadrant of the lower left corner of Ci,j .
This point is stored in gr[i − 1]. Let this point be p3, if it exists. We invoke diagonalTunnel
(p3, Ci,j , 3δ) and let P3

i,j be the output of this procedure. Figure 7 shows examples of the three
computed sets.

Now, we compute

Pi,j = Q
(
P1
i,j ∪ P2

i,j ∪ P3
i,j

)
∩D

(i,j)
≤δ ,

where Q(P) is defined as the union of the upper right quadrants of the points of P. We store
the intersection of Pi,j with the top and right side of the cell in A[i] and update the gates stored
in gr[i] and g`[i]. After handling the last cell, we can check if the upper right corner of the

21

P1
i,j P2

i,j P3
i,j

Figure 7: Examples of the approximate reachable free space in one cell: reachable by lower or
left boundary (left), by a vertical tunnel (center), or a diagonal tunnel (right). (This figure is
not referenced)

B(yp)

T (xp)

B(ys)

T (xs)

T (xr)

B(yr)
(a) (b)

δ

sr

xsxr

yr
ysu

Figure 8: Computation of the gates r = (xr, yr) and s = (xs, ys) of P3
i,j .

parametric space is reachable by probing A[n1] and output the corresponding answer.

4.2.5 Computation of the gates

The gates of Pi,j can be computed in constant time. A gate of this set either lies on the grid
of the parametric space, or it may be internal to the free space cell. The endpoints of a free
space interval can be computed using the intersection of the corresponding edge and a disk of
radius δ centered at the corresponding vertex. Internal gates of the free space can be computed
in a similar way. One can use the Minkowski sum of the edge of B with a disk of radius δ.
The intersection points of the resulting hippodrome with the edge of T correspond to the x-
coordinates of the gates, while we can obtain the y-coordinates by projecting the intersection
point back onto the edge of B. A gate might also be the intersection point of a horizontal line
with the free space as computed in Step 1 and Step 3 of the decision algorithm. Consider the
diagonalTunnel procedure which we use to compute P3

i,j . The procedure computes a portion u
of the edge ej of B by intersection with the line-stabbing wedge. In order to obtain the extremal
points of the returned set in parametric space, we can take the Minkowski sum of u with a disk
of radius δ and intersect the resulting hippodrome with the edge ei of T . See Figure 8 for an
illustration. We can a similar method for P1

i,j . The actual gates of Pi,j can then be computed
using a simple case distinction.

4.3 Analysis

We now analyze the correctness and running time of the algorithm described above.

Lemma 13 Given a cell Ci,i, a point p ∈ D≤δ and a parameter δ ≥ 0, the diagonalTunnel
procedure described in Section 4.2.3 returns a set of points P ⊆ Ci,i, such that for any q ∈ Ci,i,
it holds that prcτ (p, q) ≤ δ if and only if q ∈ P.

Proof. The correctness of the procedure follows from the correctness of the line-stabbing al-
gorithm as analyzed in [14]. Recall that we intersect the line-stabbing wedge of B(yp) and the

22

disks D1, . . . , Dk with the edge of B that corresponds to Ci,i to retrieve the horizontal slab in
Ci,i that defines P. Refer to Figure 5 for an illustration. It follows that any directed line segment

B(yp)B(yq), where yq is the y-coordinate of a point q ∈ P, contains points pi for 1 ≤ i ≤ k in
the order of i along the segment, such that pi ∈ Di. (For the case that B(yp) is contained in
each of the disks D1, . . . , Dk, any line through B(yp) stabs the disks in any order, by choosing
pi = B(yp) for all 1 ≤ i ≤ k.) Thus, we can match the shortcut B

[
yp, yq

]
to the subcurve

T
[
xp, xq

]
within Fréchet distance δ as follows. For any two inner vertices vi, vi+1 of T

[
xp, xq

]
,

we can match the edge connecting them to the line segment pipi+1 by Observation 2. For the
first segment, note that we required p ∈ D≤δ. For the last segment, we ensured that P ⊆ D≤δ
by construction. Thus, also here we can apply Observation 2. As for the other direction, let
q ∈ Ci,i, such that prcτ (p, q) ≤ δ. It must be, that the line segment from B(yp) to B(yq) stabs
the disks D1, . . . , Dk in the correct order. Thus, B(yq) would be included in the computed
line-stabbing wedge and subsequently, q would be included in P. �

Lemma 14 For two polygonal curves T and B in IR2 of total complexity n, the diagonalTun-
nel procedure described in Section 4.2.3 takes O(n log n) time and O(n) space.

Proof. Our modification of the line-stabbing algorithm does not increase the running time
and space requirements of the algorithm, which is O(k log k) with k being the number of disks
handled. Intersecting the line-stabbing wedge with a line segment can be done in time O(log k),
since the complexity of the wedge is O(k). Thus, the claim follows directly from the analysis
of the line-stabbing algorithm in [14] and by the fact that the algorithm handles at most n
disks. �

Lemma 15 For any 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, let P3
i,j be the set computed in Step 3 of the

decision algorithm layed out in Figure 6 and let R =
⋃i−1
k=1

⋃i−1
`=1 Pk,`, i.e., the reachable points

computed in the lower left quadrant of the cell. It holds that:
(i) There exists a point p ∈ R, such that for any q ∈ Ci,j , the diagonal tunnel τ(p, q) has price

prcτ (p, q) ≤ 3δ if and only if q ∈ P3
i,j .

(ii) There exists no other point b ∈ Ci,j \P3
i,j that is the endpoint of a diagonal tunnel from R

with price at most δ.

Proof. The lemma follows from the monotonicity of the tunnel prices, which is testified by
Lemma 12 and from the correctness of the diagonalTunnel procedure (Lemma 13). Note that
the algorithm computes the gates of R within every cell. Furthermore, the gates are maintained
in the arrays gr and gr, such that, when handling the cell Ci,j , we can retrieve the rightmost
gate in the lower left quadrant of the lower left corner of Ci,j from gr[i− 1]. (This can be easily
shown by induction on the cells in the order in which they are handled.) Let p be the point
stored in gr[i−1]. Part (i) of the claim follows from Lemma 13, since diagonalTunnel is called
with the parameter p to obtain P3

i,j . Part (ii) of the claim follows from Lemma 12, since p is the
rightmost point in R that could serve as a starting point for a diagonal tunnel ending in Ci,j .
Indeed, assume that there would exist such points b ∈ Ci,j \ P3

i,j and c ∈ R with tunnel price
prcτ (c, b) ≤ δ. It must be that b lies to the left of p, since p was the rightmost possible gate.
By (i), prcτ (p, b) > 3δ and therefore Lemma 12 implies that prcτ (c, b) > δ, a contradiction. �

Lemma 16 For any 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, let P2
i,j be the set computed in Step 2 of

the decision algorithm layed out in Figure 6. and let R =
⋃j−1
`=1 Pi,`, i.e., the reachable points

computed in column i below the cell. For any q ∈ Ci,j , the vertical tunnel τ(p, q) has price
prcτ (p, q) ≤ δ for some p ∈ R if and only if q ∈ P2

i,j .

Proof. Note that vertical tunnels are always affordable if they are feasible by Observation 2.
As in the proof of Lemma 15, we note that the algorithm computes the gates of R within every

23

cell. Furthermore, gates are maintained in the arrays g` and g`, such that, when handling the
cell Ci,j , we can retrieve the leftmost gate below Ci,j in the same column from g`[i]. (Again,
this can be easily shown by induction on the cells in the order in which they are handled.) Let
p be the point stored in g`[i] when handling the cell Ci,j . Since P2

i,j is computed by calling
verticalTunnel on p, the claim follows. �

Lemma 17 The output of the decision algorithm layed out in Figure 6 and described in Sec-
tion 4.2.4 is correct.

Proof. The proof goes by induction on the order of the handled cells. We claim that for any
point q ∈ Ci,j it holds that (a) if q ∈ Pi,j , then q ∈ R≤3δ, and (b) if q ∈ R≤δ then q ∈ Pi,j . For
the first cell C1,1, this is clearly true. Indeed, a shortcut from B(0) to any point on the first edge
of B, results in a shortcut curve that has Fréchet distance zero to B. By the convexity of the

free space in a single cell, it follows that R
(1,1)
≤δ = D

(1,1)
≤δ = P1,1 ⊆ R

(1,1)
≤3δ given that (0, 0) ∈ D≤δ.

Now, consider a cell Ci,j that is handled by the algorithm. We argue that part (a) of the
induction hypothesis holds. It must be that either (i) q ∈ P1

i,j , (ii) q ∈ P2
i,j , (iii) q ∈ P3

i,j , or

(iv) q is in the upper right quadrant of some point q′ in one of P1
i,j ,P

2
i,j or P3

i,j . In cases (i),
the claim follows by induction since Pi−1,j and Pi,j−1 are computed before Pi,j . In case (ii) the
claim follows by induction, since the rows are handled from bottom to top and by Lemma 16. In
case (iii) the claim follows by Lemma 15 and by induction, since the algorithm traverses the free
space diagram in a row-by-row manner from bottom to top and in every row from left to right.
Now, in case (iv), the claim follows from (i),(ii), or (iii). Indeed, we can always connect q′ with
q by a straight line segment, and since D≤δ is convex inside any cell, these straight monotone
paths are preserved in the intersection with the free space.

It remains to prove part (b). Let q ∈ Ci,j be the endpoint of a monotone path from (0, 0)
that stays inside the δ-free space and otherwise uses tunnels of price at most δ. There are
three possibilities for π to enter Ci,j : (i) via the boundary with its direct neighbors, (ii) via a
vertical tunnel, or (iii) via a diagonal tunnel. (As for horizontal tunnels, we can always replace
such a horizontal tunnel by the corresponding monotone path through the free space.) We
can show in each of these cases that q should be included Pi,j . In case (i) we can apply the
induction hypothesis for Pi−1,j and Pi,j−1, in case (ii) we can apply Lemma 16 and the induction
hypothesis for cells below Pi,j in the same column and in case (iii) we can apply Lemma 15 and
the induction hypothesis for cells in the lower left quadrant of the cell. �

Lemma 18 Given two polygonal curves T and B in IR2 of complexity n = n1 +n2, the decision
algorithm takes time in O(n3 log n) and space in O(n).

Proof. The algorithm keeps six arrays of length n1, which store objects of constant complexity.
The tunnel procedure takes space in O(n), by Lemma 14. Thus, overall, the algorithm requires
O(n) space. As for the running time, the algorithm handles O(n2) cells. Each cell is handled in
three steps of which the first and second step take constant time each and the third step takes
time in O(n log n) by Lemma 14. The computation of the gates can be done in constant time
per cell. Furthermore, the algorithm takes O(n) time per row to update the arrays. Overall,
the running time can be bounded by O(n3 log n) time. �

Theorem 3 Given two curves T and B of complexity n = n1 +n2 and a value of δ, the decision
algorithm outputs one of the following, either

(i) dS(T,B) ≤ 3δ, or
(ii) dS(T,B) > δ.

In any case, the output is correct. The algorithm runs in O(n3 log n) time and O(n) space.

24

4.4 Exact decision algorithm for vertex-restricted case

A similar strategy as the approximation algorithm for the general case gives an exact algorithm
for deciding the vertex-restricted case. That is, given two polygonal curves T,B, and δ > 0, we
want to decide whether dS(T,B) ≤ δ. For this, we again traverse the free space, and in each cell
compute, additionally to the reachable free space from neighboring cells, the free space reachable
using shortcuts between vertices. We observe that in the vertex-restricted case, tunnels can start
and end only on grid lines, and hence the free space does not fragment. In the following, we
assume that shortcuts may be taken on the curve corresponding to the vertical axis of the free
space diagram, i.e., between horizontal grid lines.

Now, in each cell, instead of testing the shortest tunnel (as in the approximation algorithm), we
need to test all tunnels between the upper horizontal cell boundary and (at most n2) horizontal
cell boundaries left and below the current cell. In fact, by the following lemma, (which is similar
to the monotonicity of the prices of tunnels) we only need to test each shortcut with the shortest
possible subcurve of the other curve. Thus, we only need to test n tunnels.

Lemma 19 Let B = qq′ be a segment, and let T2 be a subcurve of T1, s.t. the start and end
points of T2 have distance at most δ to q and q′, respectively. Then it holds dF

(
T1, B

)
≤ δ ⇒

dF
(
T2, B

)
≤ δ.

Proof. Let σ be a homeomorphism realizing a distance δ ≥ δ between B to T1. We can easily
modify σ to a homeomorphism σ′ realizing at most the same distance δ between B to T2, as
illustrated in the Figure. �

ε

σ σ

T2⊆T1
B

q q′

ε

Now, assume we are handling free space cell Cij .
First, we compute reachability from neighboring cells,
as usual. Next we consider reachability by tunnels.
The lemma above implies, that for each of the j − 1
possible shortcuts (starting at qh < qj and ending at
qj), we only need to test the tunnel corresponding to the shortest possible subcurve on T , i.e.,
starting at the rightmost point on T . If this tunnel has a price larger than δ, then by the lemma
so do all other tunnels starting at p′l < pl. If this tunnel has price at most δ, then the complete
upper cell boundary is reachable and we do not need to test further tunnels. Thus, for all h < j
we test whether the tunnel from the rightmost point pl to the leftmost point pk on the current
upper cell boundary has price ≤ δ. For this, we maintain for each vertex qh on B the rightmost
point pl on T such that (pl, qh) is in reachable free space. This can be updated in constant time
per cell, and linear space in total. To test all l − 1 possible tunnels per cell, we use a similar
strategy as for the approximation algorithm in the previous section. We build the line stabbing
wedge, from “left to right”, i.e., starting at qj , and adding disks pi, pi−1, . . . For each h < j we
test if qh is in the wedge for the corresponding pl.

The modified tunnel procedure for cell Cij takes O(i log i) time for computing the line-stabbing
wedge and O(j) time for testing tunnels, giving O(i log i+ j) = O(n log n) time in total. Thus,
we can handle the complete free space diagram in O(n3 log n) time.

The correctness and runtime analysis of the algorithm follow in the lines of the approximation
algorithm. We conclude with the following theorem.

Theorem 4 Given two curves T and B and a value of δ. One can decide whether the vertex-
restricted shortcut Fréchet distance between T and B is ≤ δ in O(n3 log n) time and O(n)
space.

5 Conclusions

In this paper we studied the computational complexity of the shortcut Fréchet distance, that
is the minimal Fréchet distance achieved by allowing shortcuts on one of two polygonal curves.

25

δ

Figure 9: Example of a geometric configuration that determines the shortcut Fréchet distance.

We proved that this problem is NP-hard and doing so, provided the first NP-hardness result
for a variant of the Fréchet distance between two polygonal curves in the plane. Furthermore,
we gave polynomial time algorithms for the decision problem: an approximation algorithm for
the general case and an exact algorithm for the vertex-restricted case, which improves upon a
previous result.

Computation problem An important open question is how to compute (or even approximate)
the shortcut Fréchet distance. The standard way to compute the Fréchet distance is to use a
decision procedure in a binary search over candidate values, also called critical values. These
are determined by local geometric configurations such as the distance between a vertex and an
edge [3]. Also for the vertex-restricted shortcut Fréchet distance, there are at most a polynomial
number of critical values that need to be considered in the search [12]. The situation becomes
more intricate in the general case where shortcuts are not confined to input vertices. In the
example depicted in Figure 9, the shortcut Fréchet distance coincides with the minimum value
of δ such that three tunnels can be connected monotonically along the base curve. The realizing
shortcut curve is also shown. For any input size one can construct an example of this type where
the critical value depends on the geometric configuration of a linear-size subset of edges. Thus,
in order to compute all critical values of this type one would have to consider an exponential
number of geometric configurations. A full characterization of the events and algorithms to
compute or approximate the critical values is subject for further research.

In the light of these considerations it is interesting how the continuous and the vertex-restricted
variant of the computation problem relate to each other. We can approximate the continuous
variant (with additive error) by increasing the sampling of the input curve and using the vertex-
restricted exact algorithm on the resulting curves. Thus, we can get arbitrarily close to the
correct distance value for the continuous case by using a pseudo-polynomial algorithm. However,
it is unclear if this helps in finding an exact solution for the continuous case.

Note that there may be many combinatorially different shortcut
curves which are close to the target curve under the Fréchet distance,
as demonstrated by the example depicted in the figure to the right.

Complexity under restrictions The base curve in our NP-hardness
reduction self-intersects and is not c-packed. In fact, it cannot be
c-packed for any placement of the connector edges for any constant c.

Whether the problem is NP-hard or polynomial time computable for c-packed, non-intersecting,
or even monotone curves is currently unclear. Our reduction from SUBSET-SUM proves that
the problem is weakly NP-hard. It would be interesting to determine whether it is also strongly
NP-hard.

26

Shortcuts on both curves We studied the shortcut Fréchet distance where shortcuts are only
allowed on one curve. In [11] this is called the directed variant of the shortcut Fréchet distance.
As we discussed in the introduction, this variant is important in applications. However, it may
also be interesting to consider undirected (or symmetric) variants of the shortcut Fréchet prob-
lem, where shortcuts are allowed on either or both curves. The first question is how to define an
undirected variant: One needs to restrict the set of eligible shortcuts, otherwise the minimization
would be achieved by simply shortcutting both curves from start to end, and this does not yield
a meaningful distance measure. A reasonable restriction could be to disallow shortcuts to be
matched to each other under the Fréchet distance. Note that for this definition of the undirected
shortcut Fréchet distance the presented NP-hardness proof also applies. Intuitively, shortcuts
can only affect the target curve by either shortening or eliminating one or more twists. However,
any feasible shortcut curve of the base curve has to pass through the buffer zones corresponding
to these twists by using a shortcut. As a result, any shortcut on the target curve has to be
matched at least partially to a shortcut of the base curve in order to affect the feasible solutions
and this is prevented by definition.

Other variants Another interesting direction of research would be to study the computational
complexity of a discrete shortcut Fréchet distance. The discrete Fréchet distance only considers
matchings between the vertices of the curves and can be computed using dynamic programming.
In practice, such a discrete shortcut Fréchet distance might approximate the continuous version
and it might be easier to compute. Thus it deserves further attention. Finally, it would also be
interesting to study a weak shortcut Fréchet distance, where the reparameterizations not need
be monotone. Again, one would first have to find a reasonable definition for this variant, and
then study its computational complexity.

Acknowledgements We thank Maarten Löffler for insightful discussions on the NP-hardness
construction, and Sariel Har-Peled and anonymous referees for many helpful comments.

References

[1] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and Y. Wang. Near-linear time approximation
algorithms for curve simplification. Algorithmica, 42:203–219, 2005.

[2] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of Algorithms,
49:262–283, 2003.

[3] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry & Applications, 5:75–91, 1995.

[4] S. Bereg, M. Jiang, W. Wang, B. Yang, and B. Zhu. Simplifying 3d polygonal chains
under the discrete Fréchet distance. In Proc. 8th Latin American Conference on Theoretical
Informatics, pages 630–641, 2008.

[5] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle tracking data.
In Proc. 31st International Conference on Very Large Data Bases, pages 853–864, 2005.

[6] K. Buchin, M. Buchin, and J. Gudmundsson. Detecting single file movement. In Proc. 16th
ACM International Conference on Advances in Geographic Information Systems, pages
288–297, 2008.

[7] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting commuting
patterns by clustering subtrajectories. International Journal of Computational Geometry
& Applications, 21(03):253–282, 2011.

27

[8] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four Soviets walk the dog—with
an application to Alt’s conjecture. arXiv/1209.4403, 2012.

[9] K. Buchin, M. Buchin, and Y. Wang. Exact algorithm for partial curve matching via the
Fréchet distance. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms, pages
645–654, 2009.

[10] M. de Berg and M. Streppel. Approximate range searching using binary space partitions.
Computational Geometry: Theory and Applications, 33(3):139 – 151, 2006.

[11] A. Driemel. Realistic Analysis for Algorithmic Problems on Geographical Data. PhD thesis,
Utrecht University, 2013.

[12] A. Driemel and S. Har-Peled. Jaywalking your dog – computing the Fréchet distance with
shortcuts. SIAM Journal of Computing, 2013. To appear.

[13] A. Driemel, S. Har-Peled, and C. Wenk. Approximating the fréchet distance for realistic
curves in near linear time. Discrete & Computational Geometry, 48(1):94–127, 2012.

[14] L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and J. Snoeyink. Approximating polygons
and subdivisions with minimum link paths. In Proc. 2nd International Symposium on
Algorithms, pages 151–162, 1991.

[15] A. Mascret, T. Devogele, I. L. Berre, and A. Hénaff. Coastline matching process based
on the discrete Fréchet distance. In Proc. 12th International Symposium on Spatial Data
Handling, pages 383–400, 2006.

[16] T. Wylie and B. Zhu. A polynomial time solution for protein chain pair simplification under
the discrete Fréchet distance. In Proc. 8th International Symposium on Bioinformatics
Research and Applications, volume 7292 of Lecture Notes in Computer Science, pages 287–
298, 2012.

28

