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Abstract

Let S be a finite set of n points in the plane in general position. We prove that every
inclusion-maximal family of subsets of S separable by convex pseudo-circles has the same
cardinal
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+
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)
. This number does not depend on the configuration of S

and is the same as the number of subsets of S separable by true circles. Buzaglo, Holzman,
and Pinchasi showed that it is an upper bound for the number of subsets separable by (non
necessarily convex) pseudo-circles.

Actually, we first count the number of elements in a maximal family of k-subsets of S
separable by convex pseudo-circles, for a given k. We show that Lee’s result on the number
of k-subsets separable by true circles still holds for convex pseudo-circles. In particular,
this means that the number of k-subsets of S separable by a maximal family of convex
pseudo-circles is an invariant of S: It does not depend on the choice of the maximal family.

To prove this result, we introduce a graph that generalizes the dual graph of the order-k
Voronoi diagram, and whose vertices are the k-subsets of S separable by a maximal family
of convex pseudo-circles. In order to count the number of vertices of this graph, we first
show that it admits a planar realization which is a triangulation. It turns out (but is not
detailed in the present paper) that these triangulations are the centroid triangulations Liu
and Snoeyink conjectured to construct.

1 Introduction

Given a set S of n points in the plane in general position, a classical problem in combinatorial and
computational geometry consists in searching and counting subsets of S that can be separated
from the remaining points by different types of lines.

The case of straight lines has been extensively studied. For a fixed k ∈ {0, . . . , n}, the exact
number ak(S) of k-sets, i.e. subsets of k points separable by straight lines, is not completely
understood. Nowadays, the best upper bound for the maximum of ak(S) over all configurations
of the n points is O(nk1/3), due to Dey [6]. In [18], Tóth constructs examples with n2Ω(

√
log k )

k-sets (k ≥ 1). It is noticeable that the sum over all k of the numbers of k-sets of S, i.e. the
total number of subsets of S separable by straight lines, does not depend on the position of the
points but only on n: We have

∑n
k=0 ak(S) = n(n− 1) + 2.

It seems to be known by specialists, although nowhere explicitly stated up to our knowledge,
that the total number of subsets separable by circles does not depend on the position of the
points, too. This number turns out to be the cake number c(3, n) =

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+

(
n
3

)
,

i.e. the maximal number of cells in an arrangement of n planes in 3-dimensional space [17], see
Section 6.

A natural generalization is to count the number of subsets of S separable by pseudo-circles.
A family F of subsets of S is said to be separable by pseudo-circles if there exists a family C of
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Jordan curves, pairwise intersecting at most twice, such that each element of F is separable by
an element of C. Intuitively, one could believe that families of pseudo-circles provide a greater
number of separable subsets than circles. In fact, using the theory of VC-dimension of Vapnik
and Chervonenkis [19, 14, 16], Buzaglo, Holzman, and Pinchasi prove in [4] that c(3, n) is an
upper bound for pseudo-circles, see Section 6.1 at the end of the present article.

Surprisingly, it is far from evident whether c(3, n) is also a lower bound for any inclusion-
maximal family of subsets of S separable by pseudo-circles. Up to our knowledge, the question
remains open. In this article, we prove this for convex pseudo-circles. We refer to Section 6.4
for a discussion when the word “convex” is dropped.

Theorem 1.1. Let S be a set of n points in the plane in general position. Every inclusion-
maximal family F of subsets of S separable by convex pseudo-circles has c(3, n) =

(
n
0

)
+

(
n
1

)
+(

n
2

)
+

(
n
3

)
elements.

In fact, we first consider families of k-subsets separable by convex pseudo-circles. For each
fixed k ∈ {1, . . . , n−1}, Lee proved in [9] that any n-point set S of the plane in general position
admits 2kn− n− k2 + 1−

∑k−1
i=1 ai(S) k-subsets separable by true circles (with the convention∑0

1 = 0). We prove that this number also holds for all maximal families of k-subsets separable
by convex pseudo-circles.

Theorem 1.2. Let S be a set of n points in the plane in general position and k ∈ {1, . . . , n}.
Every inclusion-maximal family of k-subsets of S separable by convex pseudo-circles admits
2kn− n− k2 + 1−

∑k−1
i=1 ai(S) elements.

To prove these results, we first characterize convex pseudo-circle separability in terms of
convex hulls (Section 2). We show that a family F of subsets of S is separable by convex
pseudo-circles if conv(T ) ∩ S = T for all T ∈ F , and conv(T \ T ′) ∩ conv(T ′ \ T ) = ∅ for
all T, T ′ ∈ F . We also characterize in a similar way families of pairs (P,Q) of subsets of
S determined by convex pseudo-circles passing through the points of Q, containing P , and
excluding S \ (P ∪Q). Such pairs are called convex pairs.

We then introduce a graph that generalizes the dual of the order-k Voronoi diagram (Sections
3 and 4). The vertices of this graph are the elements of size k in a family of subsets of S separable
by a maximal family C of convex pseudo-circles. The edges of the graph are the convex pairs
of the form (P, {s, t}), with |P | = k − 1, determined by convex pseudo-circles compatible with
C. The edge (P, {s, t}) connects the two vertices P ∪ {s} and P ∪ {t}. The key result of the
article, Theorem 3.9, is that this graph admits a planar geometric realization which induces a
triangulation. Proposition 3.4 already shows that the edges of this realization are disjoint. The
main difficulty is to show that every edge is incident to a triangle, see Theorem 3.7. The long
and tricky proof of this result can be found in Section 5.

Two important contributions of our work are, firstly, the notion of convex pair and, secondly,
the characterization of the separability by convex pseudo-circles in terms of convex hulls. The
systematic use of convex hulls has the advantage to be generalizable straightforwardly in higher
dimension, without using the interesting but subtle notion of pseudo-sphere.

Definition 1.3. Given a finite subset S of Rd, a family F of subsets of S is said to be separable
by convex pseudo-spheres if conv(T )∩ S = T for all T ∈ F and conv(T \ T ′)∩ conv(T ′ \ T ) = ∅
for all T, T ′ ∈ F .

A natural example is the family of all subsets of S separable by usual (d − 1)-dimensional
spheres, see Section 6. Our main result about separation by pseudo-spheres and spheres is the
following, proven in Section 6.

Theorem 1.4. Let d ≥ 2 and let S be a set of n points in Rd in general position, i.e. no
d+1 of them in the same hyperplane. Then every family F of subsets of S separable by convex
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pseudo-spheres has at most c(d+1, n) =
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

d+1

)
elements. If moreover no d+2

points of S lie on a same sphere, then the bound is attained for the family of all subsets of S
separable by (d− 1)-dimensional spheres.

Let us mention some related works in the literature. In [4], Buzaglo, Holzman, and Pinchasi
consider a family of subsets of S in the plane separable by Jordan curves pairwisely intersecting
properly, at most s times, and such that pairwise intersections of the Jordan disks are empty or
connected. They prove that such a family has VC-dimension at most s+1, and hence contains
at most

∑s+1
i=0

(
n
i

)
elements. Our result is that this upper bound is attained for any maximal

family, in the case of convex curves and for s = 2. It would be interesting to know to what
extent this remains valid in general. The authors of [4] also consider k-subsets separable by
pseudo-circles that all pairwise intersect and they show that their number is O(kn).

In [12], Pinchasi and Rote consider a slightly different and more restrictive notion of convex
pseudo-circles: A family F of subsets of S is separable by convex pseudo-circles in their sense,
if every set T in F is the intersection of S with a convex set, and if both conv(T )\ conv(T ′) and
conv(T ′) \ conv(T ) are empty or connected for all T, T ′ ∈ F . They prove that, if no member of
F is contained in another, then F consists of at most 4

(
n
2

)
+ 1 elements. They also present an

example with
(
n+1
2

)
elements.

In [9], Lee provides an algorithm to construct the order-k Voronoi diagram. This algorithm
can be dualized for order-k centroid Delaunay triangulations [15]. Liu and Snoeyink propose
in [10] to generalize this dual algorithm, giving rise to other order-k centroid triangulations
when their algorithm does not fail. They conjecture that their algorithm actually never fails
and they prove this for k ≤ 3. A proof for all k, but for particular centroid triangulations, is
given in [8]. It turns out that the triangulations defined in the present article are precisely the
ones constructed by the algorithm of Liu and Snoeyink. As a consequence, this article serves
as the basis for the proof that their algorithm never fails. This will be done in an article in
preparation.

An extended abstract of the present article has been presented in [5].

2 Characterization of convex pseudo-circle separability

For a subset E of the plane R2, conv(E) denotes its convex hull, ∂E its boundary, relint(E) its
relative interior, and E its closure.

If a and b are two distinct points in the plane, (ab) is the straight line passing through a, b
oriented from a to b, and [a, b] (resp. ]a, b[) is the closed (resp. open) segment connecting a and
b.

Given an oriented straight line ∆ in the plane, ∆+ (resp. ∆−) denotes the open half plane
on the left (resp. right) of ∆.

For a Jordan curve γ of R2, disk(γ) denotes the bounded open component of R2 \ γ.
In the whole article, S denotes a finite set of n points of the plane, no three of them being

collinear.

2.1 Convex subsets

The aim of this subsection is to show that subsets of S separable by convex pseudo-circles can
be characterized using convex hulls only. This will avoid manipulating curves in the remainder
of the article.

Definition 2.1. We say that a subset T of S is separable by a convex pseudo-circle if there
exists a convex Jordan curve γ that avoids S such that S ∩ disk(γ) = T .

Such a subset T is also called convex in S and γ is called a separating curve of T .

Proposition 2.2. A subset T is convex in S if and only if conv(T ) ∩ S = T .
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Proof. By definition, if T is a convex subset of S with a separating curve γ, then we have

T = T ∩ S ⊆ conv(T ) ∩ S ⊆ conv
(
disk(γ)

)
∩ S = disk(γ) ∩ S = T.

Conversely, suppose conv(T ) ∩ S = T . If |T | ≤ 2, one can include T in a sufficiently small
rectangle so that it contains no other point of S. The boundary of the rectangle is a separating
curve of T . If |T | ≥ 3, one can apply to T a homothety ϕ of center a point of relint(conv(T )) and
of ratio a > 1. For a sufficiently close to 1, one has conv(ϕ(T ))∩S = T and ∂conv(ϕ(T ))∩S = ∅.
The polygonal curve ∂conv(ϕ(T )) is a separating curve of T .

Definition 2.3. Two convex Jordan curves are said to be compatible if they either intersect
properly at exactly two points, meet at exactly one point, or do not meet at all.

Two convex subsets of S that admit two compatible separating curves are said to be com-
patible.

We say that a family F of subsets of S is separable by convex pseudo-circles if there exists
a set C of pairwise compatible convex Jordan curves such that each element of F admits a
separating curve in C.

It is worth noting here that the concept of family of subsets separable by convex pseudo-
circles is a “global” concept. Indeed, in order to determine whether a family F is separable by
convex pseudo-circles, one needs to find a separating curve for each element in F , and all these
curves must be compatible with each others. The next proposition is interesting because it
shows that it suffices in fact to consider all pairs of elements in F independently and to find two
compatible separating curves for each such pair. The proposition also shows that compatibility
can be expressed in terms of intersection of convex hulls; Figure 1 shows some arguments of its
proof.

T n T ' T ' n TT\ T '

γ '
γ

∈ T n T '

∈ T ' n T

γ '

γ

T ' n T ∈

(a) (b)

Figure 1: (a) If T and T ′ are separable by two properly intersecting convex pseudo-circles γ
and γ′, then T \ T ′ and T ′ \ T are on both sides of the straight line containing γ ∩ γ′, and
their convex hulls do not meet. (b) Conversely, if two separating convex pseudo-circles γ and
γ′ of T and T ′ minimize intersections and properly intersect in more than two points, then
disk(γ) \ disk(γ′) (resp. disk(γ′) \ disk(γ)) admits at least two connected components meeting
S, and conv(T \ T ′) ∩ conv(T ′ \ T ) 6= ∅.

Proposition 2.4. (i) Two convex subsets T and T ′ of S are compatible if and only if

conv(T \ T ′) ∩ conv(T ′ \ T ) = ∅.

(ii) A family F of subsets of S is separable by convex pseudo-circles if and only if the
elements of F are pairwise compatible convex subsets of S.

Proof. The proof uses arguments independent of the rest of the article and can be skipped at
first reading. We divide it in three steps. It is first shown, in (a), that every family of subsets
of S separable by convex Jordan curves admits a set of separating curves such that, if γ and
γ′ are two intersecting curves in the set, then every connected component of disk(γ) \ disk(γ′)
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Figure 2: Proof (a) of Proposition 2.4.

meets S. Such a component is called an ear in [4]. The results (i) and (ii) are then deduced
from (a) in (b) and (c).

(a) Consider a family F of convex subsets of S, compatible or not. From the proof of
Proposition 2.2, the elements of F admit polygonal convex separating curves. One can always
perturb the vertices of these curves in such a way that their vertices are distinct and are not in
S, no three of them are collinear, and no three curves intersect at a same point. Thus, any two
of these curves either are disjoint or intersect properly in a finite set of points. Let C be such
a set of separating curves, that minimizes the total number of intersections between its curves.
Let A be the set of connected components a of disk(γ) \ disk(γ′) such that a ∩ S = ∅, for all
ordered pairs (γ, γ′) of intersecting curves of C. We show by contradiction that A is empty.

If A is nonempty, A contains a component a with minimal area. Let γ and γ′ be the two
curves in C such that a is a connected component of disk(γ) \ disk(γ′) and let T = disk(γ) ∩ S.
Let u and v be the two points of a ∩ γ ∩ γ′ such that a ⊂ (uv)−, see Figure 2. There exists on
γ∩disk(γ′) a point x close to u and a point y close to v such that a ⊂ (xy)−, and that γ∩ (xu)−

and γ ∩ (vy)− are not cut by any curve of C \ {γ}. For all curves of C \ {γ, γ′}, let Z be the
subset of their vertices included in disk(γ) ∩ disk(γ′) ∩ (xy)−. There exists a convex polygonal
curve l from x to y in (disk(γ) ∩ disk(γ′) ∩ (xy)−) \ conv(Z ∪ T ∪ {x, y}) that intersects the
curves of C properly. Setting l′ = γ ∩ (xy)−, γl = (γ \ l′) ∪ l is a convex polygonal curve that
intersects the curves of C \ {γ} properly and is such that disk(γl) ∩ S = T .

Let γ′′ be a curve of C \{γ, γ′} that intersects l at a point p. Since b = (disk(γ)\disk(γl))\a
does not contain any vertex of γ′′, the edge of γ′′ that contains p and cuts b intersects again
∂b at a point q 6= p. Since γ′′ does not intersect ∂b ∩ γ, q ∈ γ′ ∩ ∂a. Then, the curve γ′′

intersects again ∂a at a point r 6= q such that the arc of γ′′ that connects q and r and does
not contain p is contained in a. The point r cannot belong to γ′, since otherwise one of the
connected components of disk(γ′′) \ disk(γ′) would be strictly contained in a, in contradiction
with the minimality of the area of a. Thus, r is on l′ and, since all intersections are proper, the
number of intersections of γ′′ with γl is at most equal to the number of intersections of γ′′ with
γ. Furthermore, since u and v are points of γ ∩ γ′ and not of γl ∩ γ′, substituting γ by γl in C
decreases by at least two the number of intersections between the curves. This contradicts the
minimality of the number of intersections in C and therefore the assumption A 6= ∅ is absurd.

(b) Now we prove (i). Let T and T ′ be two convex subsets of S and let γ and γ′ be two
separating curves of T and T ′ that either are disjoint or intersect properly in a minimum set of
points. Two such curves exist from (a).

If γ and γ′ are disjoint, either disk(γ) ∩ disk(γ′) = ∅, or disk(γ) ⊆ disk(γ′), or disk(γ′) ⊆
disk(γ). Since T = disk(γ)∩ S and T ′ = disk(γ′)∩ S, we have in the three cases conv(T \ T ′)∩
conv(T ′ \ T ) = ∅.

If γ and γ′ intersect in two points, let ∆ be the oriented straight line that contains γ ∩ γ′

such that disk(γ) \ disk(γ′) ⊂ ∆+. Hence, we have T \ T ′ = (disk(γ) \ disk(γ′)) ∩ S ⊂ ∆+ and
T ′ \ T = (disk(γ′) \ disk(γ)) ∩ S ⊂ ∆−. Thus, conv(T \ T ′) ∩ conv(T ′ \ T ) = ∅.

If γ and γ′ intersect in more than two points, then (disk(γ) \ disk(γ′)) ∪ (disk(γ′) \ disk(γ))
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admits at least four connected components. Let a1, . . . , a4 be four of these components, consec-
utive around γ, and such that a1, a3 ⊂ disk(γ) \ disk(γ′) and a2, a4 ⊂ disk(γ′) \ disk(γ). From
(a), for all i ∈ {1, . . . , 4}, ai contains a point xi of S. Now, [x1, x3] ∩ [x2, x4] 6= ∅ and, since
x1, x3 ∈ T \ T ′ and x2, x4 ∈ T ′ \ T , it follows that conv(T \ T ′) ∩ conv(T ′ \ T ) 6= ∅.

Finally, conv(T \ T ′) ∩ conv(T ′ \ T ) = ∅ if and only if T and T ′ are compatible.
(c) At last, we prove (ii). Let F be a family of subsets of S separable by a set C of convex

pseudo-circles. Since the curves in C are convex and pairwise compatible, the subsets in F are
also convex and pairwise compatible.

The converse is by contrapositive. Let F be a set of convex subsets of S and let C be a set
of separating curves of F such that the intersections of the curves in C are proper and their
number is minimal. If two curves γ and γ′ of C intersect more than twice then, as in proof of
(b), the subsets T and T ′ in F separable by γ and γ′ are incompatible. It follows that, if the
subsets in F are pairwise compatible, F is separable by convex pseudo-circles.

In the remainder of the paper, F denotes a maximal (with respect to inclusion) family of
subsets of S separable by convex pseudo-circles, i.e., from the previous proposition, a maximal
family of compatible convex subsets of S. Note that ∅ and S are always in F .

2.2 Convex pairs

It is often more convenient to handle separating lines that pass through points of S rather than
strictly separating lines. For example, it is very easy to enumerate the total number of subsets
of S separable by straight lines that pass through two points of S. In the same way, to compute
the number of subsets strictly separable by circles, Lee [9] established relations between this
number and the numbers of subsets separable by circles passing through two or three points.

Even if convex pseudo-circles have a greater degree of freedom (a single convex pseudo-circle
is an arbitrary convex curve), we will see in this section that only those passing through at most
three points of S are compatible with a maximal family of strictly separating convex pseudo-
circles. In Section 3, convex pseudo-circles passing through points of S will be necessary to
characterize the edges of a graph whose vertices are subsets of S strictly separable by convex
pseudo-circles. Therefore, we now study pairs (P,Q) of subsets of S for which there exist convex
Jordan curves γ such that γ ∩ S = Q and disk(γ) ∩ S = P . Again, we prefer to characterize
these pairs with convex hulls instead of curves.

Definition 2.5. An ordered pair (P,Q) of disjoint subsets of S is called a convex pair if
conv(P ∪Q) ∩ S = P ∪Q and if Q is a subset of the extreme points of P ∪Q.

The proof that both definitions are equivalent is a straightforward extention of proof of
Proposition 2.2. Actually, we will not explicitly use the characterization of convex pairs with
curves to prove the results in this paper, but it helps intuition about them.

In the same way, a proof similar to that of Proposition 2.4 shows that the following definition
characterizes convex pairs that are determined by two compatible convex Jordan curves; See
also Figure 3 (a).

Definition 2.6. Two convex pairs (P,Q) and (P ′, Q′) are said to be compatible if

relint(conv((P ∪Q) \ P ′)) ∩ relint(conv((P ′ ∪Q′) \ P )) = ∅.

The use of relative interiors is necessary to prove that Definition 2.6 is equivalent to saying
that the two convex pairs (P,Q) and (P ′, Q′) are determined by compatible convex Jordan
curves. Indeed, if Q ∩Q′ 6= ∅, then conv((P ∪Q) \ P ′) ∩ conv((P ′ ∪Q′) \ P ) 6= ∅ although the
pairs (P,Q) and (P ′, Q′) may be separable by compatible curves; See Figure 3 (b).

Conversely, the following lemma shows that one can drop the relative interiors when Q∩Q′ =
∅. Coupled with Lemma 2.10, this simplifies most proofs of the forthcoming results.
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(P '[Q')n P
P\ P '

γ '
γ

∆

a

b

c

(a) (b)

Figure 3: (a) If the convex pairs (P,Q) and (P ′, Q′) are determined by two properly intersecting
convex pseudo-circles γ and γ′, then (P ∪Q) \P ′ and (P ′ ∪Q′) \P are on both sides of (or on)
the straight line ∆ containing γ ∩ γ′. The points of these subsets that are on ∆ are the points
of Q ∩ Q′. The set P ∩ P ′ is in the open area disk(γ) ∩ disk(γ′). (b) The pairs (∅, {a, b, c})
and (∅, {a, b}) are compatible, although the closed triangle [a, b, c] and the closed segment [a, b]
intersect.

Lemma 2.7. If two distinct convex pairs (P,Q) and (P ′, Q′) are compatible and if Q∩Q′ = ∅,
then conv((P ∪Q) \ P ′) ∩ conv((P ′ ∪Q′) \ P ) = ∅.

Proof. If the convexes conv((P ∪Q) \ P ′) and conv((P ′ ∪Q′) \ P ) intersect while their relative
interiors are disjoint, these two convexes have a common vertex or a common edge, since S
contains no three collinear points. Now, the only possible common points of (P ∪Q) \ P ′ and
(P ′ ∪Q′) \ P are the points of Q ∩Q′.

This lemma also shows that Definition 2.6 is consistent with Proposition 2.4 (i). Indeed,
from Proposition 2.2, (T, ∅) is a convex pair of S if and only if T is a convex subset of S. From
Lemma 2.7, two convex pairs (T, ∅) and (T ′, ∅) are compatible if and only if the convex subsets
T and T ′ are compatible.

Notice also that a convex pair (P,Q) is compatible with itself if and only if Q = ∅.
We now state inclusion relations between convex pairs.

Lemma 2.8. (i) If (P,Q) is a convex pair of S then every intermediate pair (P ′, Q′) of disjoint
subsets of S, i.e. such that P ⊆ P ′ ⊆ P ′ ∪Q′ ⊆ P ∪Q, is also a convex pair of S.

(ii) Furthermore, if |Q| ≤ 3 and (P ′, Q′) 6= (P,Q), then (P ′, Q′) is compatible with (P,Q).

Proof. (i) Since conv(P ∪ Q) ∩ S = P ∪ Q, one has conv(P ′ ∪ Q′) ∩ S ⊆ P ∪ Q. Now, every
point of P ∪Q not in P ′ ∪Q′ is a point of Q, that is, an extreme point of P ∪Q. Hence, this
point does not belong to conv(P ′ ∪ Q′), and conv(P ′ ∪ Q′) ∩ S = P ′ ∪ Q′. Since the points of
Q′ are points of Q, they are extreme points of P ∪Q, hence of P ′ ∪Q′. Therefore, (P ′, Q′) is a
convex pair of S.

(ii) The sets (P ∪ Q) \ P ′ and (P ′ ∪ Q′) \ P are contained in Q and, if |Q| ≤ 3, they are
vertices of a same triangle. Therefore, relint(conv((P ∪Q) \P ′)) and relint(conv((P ′ ∪Q′) \P ))
can only intersect if (P ∪Q) \ P ′ = (P ′ ∪Q′) \ P , i.e., if P ′ = P and Q′ = Q, in contradiction
with the hypothesis.

Definition 2.9. We call subset of a convex pair (P,Q) any set T such that P ⊆ T ⊆ P ∪Q.

It follows from the previous lemma that a subset of a convex pair is a convex subset. The
next lemma shows that compatibility between convex pairs reduces to compatibility between
convex subsets.

Lemma 2.10. Two distinct convex pairs (P,Q) and (P ′, Q′) are compatible if and only if the
subsets of (P,Q) are compatible with the subsets of (P ′, Q′).
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Proof. (a) If (P,Q) and (P ′, Q′) are compatible,

relint(conv((P ∪Q) \ P ′)) ∩ relint(conv((P ′ ∪Q′) \ P )) = ∅.

If a subset T of (P,Q) is incompatible with a subset T ′ of (P ′, Q′), the pairs (T, ∅) and (T ′, ∅) are
also incompatible from Lemma 2.7 and, therefore, relint(conv(T \T ′))∩relint(conv(T ′ \T )) 6= ∅.
Now, T \T ′ ⊆ (P ∪Q)\P ′ and T ′ \T ⊆ (P ′∪Q′)\P . Thus, the relative interiors of conv(T \T ′)
and of conv(T ′ \ T ) can only intersect if they are contained in the common boundary of the
two convexes conv((P ∪ Q) \ P ′) and conv((P ′ ∪ Q′) \ P ). Since S has no three collinear
points, conv(T \ T ′) and conv(T ′ \ T ) are then a common vertex or a common edge of these
two convexes. Hence, T \ T ′ = T ′ \ T , i.e., T = T ′, in contradiction with the hypothesis
relint(conv(T \ T ′)) ∩ relint(conv(T ′ \ T )) 6= ∅.

(b) The proof of the converse is by contrapositive.
(b.1) We show first that, for every finite subset A with at least two elements, if x ∈

relint(conv(A)) then there exists a family (λa)a∈A of numbers in ]0, 1[ with sum 1 such that
x =

∑
a∈A λaa.

Let g = 1
|A|

∑
a∈A a be the centroid of A. For t > 1 close enough to 1, the point x + (t −

1)(x − g) belongs to conv(A) because x is in the relative interior of conv(A). Consequently,
there exists a family (µa)a∈A of numbers ∈ [0, 1] with sum 1 such that g+ t(x− g) =

∑
a∈A µaa.

It follows that x = 1
t (
∑

a∈A µaa+ (t− 1)g). This gives the family λa = 1
t (µa +

t−1
|A| ).

(b.2) If (P,Q) and (P ′, Q′) are incompatible, then the relative interiors of the convexes
conv((P ∪Q) \P ′) and conv((P ′ ∪Q′) \P ) intersect. Thus, from (ii.1) and taking into account
that both (P ∪ Q) \ P ′ and (P ′ ∪ Q′) \ P can be reduced to a point, there exist two families
(λu)u∈(P∪Q)\P ′ and (µv)v∈(P ′∪Q′)\P of numbers ∈]0, 1] with sum 1 such that

∑

u∈(P∪Q)\P ′

λuu =
∑

v∈(P ′∪Q′)\P
µvv.

Setting W = ((P ∪Q) \ P ′) ∩ ((P ′ ∪Q′) \ P ) = Q ∩Q′, this relation becomes

∑

u∈(P∪Q)\(P ′∪W )

λuu +
∑

w∈W
λww =

∑

v∈(P ′∪Q′)\(P∪W )

µvv +
∑

w∈W
µww.

In order to use compatibility of subsets of (P,Q) and (P ′, Q′), we transform the preceding
relation in a relation between two centroids associated with disjoint sets of points. To this aim,
we split W in three subsets:

WQ = {w ∈ W : λw > µw}
WQ′ = {w ∈ W : λw < µw}
W0 = {w ∈ W : λw = µw}.

The terms of the relation associated with elements of W0 are eliminated and we get

∑

u∈(P∪Q)\(P ′∪W )

λuu +
∑

w∈WQ

(λw − µw)w =
∑

v∈(P ′∪Q′)\(P∪W )

µvv +
∑

w∈WQ′

(µw − λw)w.

Clearly, from the first equality to the third one, the sum of the coefficients in the left
member remains equal to the sum of the coefficients in the right member. By construction,
these coefficients are all positive. Furthermore, (P,Q) 6= (P ′, Q′) implies that we cannot have
(P ∪ Q) \ (P ′ ∪W ) = (P ′ ∪ Q′) \ (P ∪W ) = ∅. Indeed, since W = Q ∩ Q′ and P ∩ Q = ∅, if
(P ∪ Q) \ (P ′ ∪ W ) = ∅ we have P ⊆ P ′. In the same way, (P ′ ∪ Q′) \ (P ∪ W ) = ∅ implies
P ′ ⊆ P and, therefore, P ′ = P . We then also have Q ⊆ Q ∩Q′ and Q′ ⊆ Q ∩Q′, i.e., Q = Q′.
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Hence, the last equality can be divided by the sum of the coefficients of one of its members,
and we get a point of the intersection

conv(((P ∪Q) \ (P ′ ∪W )) ∪WQ) ∩ conv(((P ′ ∪Q′) \ (P ∪W )) ∪WQ′).

Set
A = P ∪ ((P ∪Q) \ (P ′ ∪W )) ∪WQ,

B = P ′ ∪ ((P ′ ∪Q′) \ (P ∪W )) ∪WQ′ .

Since P ⊆ A ⊆ P ∪Q and P ′ ⊆ B ⊆ P ′ ∪Q′, A and B are respective subsets of (P,Q) and
of (P ′, Q′). Now,

((P ∪Q) \ (P ′ ∪W )) ∪WQ ⊆ A \B,

((P ′ ∪Q′) \ (P ∪W )) ∪WQ′ ⊆ B \A.

Consequently, the two subsets A and B are incompatible.

In the remainder, we will be particularly interested in convex pairs that are compatible with
the maximal family F of compatible convex subsets. We will say that a convex pair (P,Q) is
compatible with F if (P,Q) is compatible with all pairs (T, ∅) such that T ∈ F . Since F is
maximal, (P, ∅) compatible with F is equivalent to P ∈ F . More generally, we have:

Proposition 2.11. (i) A convex pair of S is compatible with F if and only if its subsets are in
F .

(ii) Two distinct convex pairs of S that are compatible with F are compatible with one
another.

(iii) If (P,Q) is compatible with F then |Q| ≤ 3.

Proof. (i) From Lemma 2.10, a convex pair (P,Q) is compatible with every subset T in F if
and only if the subsets of (P,Q) are also compatible with every T in F , i.e. if and only if these
subsets are in F , since F is maximal.

(ii) From (i), the subsets of two convex pairs that are compatible with F are in F and
thus, they are compatible with each others. Hence, from Lemma 2.10, the two convex pairs are
compatible with each other, if they are distinct.

(iii) Let (P,Q) be a convex pair with |Q| ≥ 4. Since Q is in convex position, Q admits
four extreme points q1, . . . , q4 consecutive in this order on the boundary of conv(Q), and then
[q1, q3]∩ [q2, q4] 6= ∅. Now, {q1, q3} = (P ∪{q1, q3})\ (P ∪{q2, q4}) and {q2, q4} = (P ∪{q2, q4})\
(P ∪ {q1, q3}). Thus, the subsets P ∪ {q1, q3} and P ∪ {q2, q4} of (P,Q) are incompatible with
each other and cannot be simultaneously in F . From (i), (P,Q) is then incompatible with
F .

3 Order-k centroid triangulations

Given an integer k ∈ {1, . . . , n− 1}, the k-subsets of S separable by circles can be enumerated
by studying the adjacency relations between regions, edges, and vertices of the order-k Voronoi
diagram of S [9]. Recall that this diagram is a partition of the plane, each region of which is
associated with a k-subset T of S separable by a circle. More precisely, the order-k Voronoi
region of T is the set of centers of all circles that separate T from S (see Figure 4). The edges
of the order-k Voronoi diagram are the sets of centers of the circles passing through two points
of S and that separate k − 1 points. When S has no four cocircular points, the vertices of the
diagram are the centers of the circles passing through three points of S and that separate either
k − 1 or k − 2 points of S.

The order-k Voronoi diagram of S admits a dual graph whose vertices are the centroids of
the k-subsets of S separable by circles [3, 15]. When S has no four cocircular points, this dual
graph is a triangulation called the order-k (centroid) Delaunay triangulation of S.
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Figure 4: The order-4 Voronoi diagram (full lines) and the order-4 centroid Delaunay triangu-
lation (dashed lines) of 12 points in the plane. White triangles are type-1 and gray triangles
are type-2 (see Observation 3.2).

In this section, we construct analogous centroid triangulations from families of k-subsets of
S separable by convex pseudo-circles.

For every integer k in {1, . . . , n}, let Fk be the set of elements of size k in a maximal family
F of subsets of S separable by convex pseudo-circles. We will prove later that Fk is maximal
among all the k-subsets of S separable by convex pseudo-circles.

We want to build a triangulation of the centroids of the elements of Fk. In order to char-
acterize the edges and triangles of this triangulation, we focus on the convex pairs compatible
with F that admit subsets in Fk. For every such pair (P,Q), one has |P | ≤ k ≤ |P ∪ Q| and,
from Proposition 2.11, |Q| ≤ 3. Furthermore, if |P | = k, (P,Q) has P as unique k-subset, and
if |P ∪Q| = k, (P,Q) has P ∪Q as unique k-subset. Among the pairs (P,Q) such that |P | = k
or |P ∪ Q| = k, we restrict ourselves to those for which Q = ∅. This explains the following
definition of convex k-pairs.

Definition 3.1. (i) A convex pair (P,Q) of S is called a convex k-pair if

• either |P | = k and Q = ∅,

• or |P | < k < |P ∪Q| and 2 ≤ |Q| ≤ 3.

(ii) For a convex k-pair (P,Q), the convex hull of the set of centroids of all k-subsets of
(P,Q), is called the k-set polygon of (P,Q), denoted by Qk(P,Q).

Notice that, in the case P = ∅, the k-set polygon of (P,Q) is nothing but the k-set polygon
of Q, defined for point sets by Edelsbrunner, Valtr, and Welzl [7] (see also later in this section).

Observation 3.2. Let us describe all types of convex k-pairs (P,Q) and their k-set polygons.

• When Q = ∅, Qk(P,Q) is the centroid g(P ) of the convex k-subset P .

• When Q = {s, t}, one has |P | = k−1, and Qk(P,Q) is the segment [g(P ∪{s}), g(P ∪{t})].
From Lemma 2.8, P ∪ {s} and P ∪ {t} are convex k-subsets compatible with (P,Q).

• When Q = {r, s, t} and |P | = k− 1, Qk(P,Q) is the triangle with vertices the centroids of
the convex k-subsets P∪{r}, P∪{s}, P∪{t}; Such a triangle is said of type 1. From Lemma
2.8, the edges [g(P ∪ {r}), g(P ∪ {s})], [g(P ∪ {s}), g(P ∪ {t})], [g(P ∪ {t}), g(P ∪ {r})] of
this triangle are the k-set polygons of the convex k-pairs (P, {r, s}), (P, {s, t}), (P, {t, r}),
and these pairs are compatible with (P,Q); See Figure 5(a).
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• When Q = {r, s, t} and |P | = k − 2, Qk(P,Q) is the triangle with vertices the centroids
of the convex k-subsets P ∪ {r, s}, P ∪ {s, t}, P ∪ {t, r}; Such a triangle is said of type 2.
Its edges are the k-set polygons of the convex k-pairs (P ∪ {s}, {r, t}), (P ∪ {t}, {s, r}),
and (P ∪ {r}, {s, t}), which are compatible with (P,Q); See Figure 5(b).

s t

r

p2

p1

Q3({p1,p2},{s,t})

Q3({p1,p2},{r,s,t})

g({p1,p2,r})

s t

r

p

Q3({p,r},{s,t})

Q3({p},{r,s,t}) g({p,s,t})

(a) (b)

Figure 5: The 3-set polygons of the convex 3-pairs (P, {r, s, t}) with P = {p1, p2} (a) and with
P = {p} (b) are respectively type-1 and type-2 triangles.

Together with Proposition 2.11 (i), this observations lead to the following proposition.

Proposition 3.3. If (P,Q) is a convex k-pair compatible with F such that Q 6= ∅, then the
vertices of Qk(P,Q), as well as its edges if it is a triangle, are k-set polygons of convex k-pairs
compatible with F .

Proof. It follows from Observation 3.2 that every vertex and, where appropriate, every edge of
the k-set polygon of a convex k-pair (P,Q) with Q 6= ∅ is the k-set polygon of a convex k-pair
(P ′, Q′) 6= (P,Q) such that P ⊆ P ′ and P ′ ∪Q′ ⊆ P ∪Q. Thus, the subsets of (P ′, Q′) are also
subsets of (P,Q). From Proposition 2.11 (i), if (P,Q) is compatible with F , its subsets are in
F . It is the same with the subsets of (P ′, Q′) and, still from Proposition 2.11 (i), (P ′, Q′) is
compatible with F .

Using basic properties of centroids, we show that the k-set polygons of convex k-pairs com-
patible with F (hence compatible with each others from Proposition 2.11 (ii)) have disjoint
relative interiors.

Proposition 3.4. If (P,Q) and (P ′, Q′) are two distinct compatible convex k-pairs, then

relint(Qk(P,Q)) ∩ relint(Qk(P
′, Q′)) = ∅.

Proof. Since relint(conv((P ∪Q)\P ′))∩ relint(conv((P ′∪Q′)\P )) = ∅, there exists an oriented
straight line ∆ such that (P ∪Q) \ P ′ ⊂ ∆+, (P ′ ∪Q′) \ P ⊂ ∆− and, within a permutation of
(P,Q) and (P ′, Q′), (P ′ ∪Q′) \ P 6⊂ ∆.

Let T be a k-subset of (P,Q) such that g(T ) is a vertex of Qk(P,Q) that belongs to a straight
line ∆′ parallel to ∆, oriented in the same direction as ∆, and such that Qk(P,Q) ⊂ ∆′+. For
every k-subset T ′ 6= T of (P ′, Q′), the sets A = T \ T ′ and B = T ′ \ T are nonempty and are
respectively contained in (P ∪ Q) \ P ′ and in (P ′ ∪ Q′) \ P . Since the vectors g(A)g(B) and
g(T )g(T ′) = g((T ∩ T ′) ∪A)g((T ∩ T ′) ∪B) have same direction, we have g(T ′) ∈ ∆′−. Hence,
Qk(P

′, Q′) ⊂ ∆′−. Furthermore, if T ′ contains a point of ((P ′ ∪Q′) \ P ) ∩∆−, g(A) ∈ ∆− and
g(T ′) ∈ ∆′−. Since (P ′∪Q′)\P 6⊂ ∆, such a subset T ′ exists and, therefore, relint(Qk(P

′, Q′)) ⊂
∆′−. Hence, relint(Qk(P,Q)) ∩ relint(Qk(P

′, Q′)) = ∅.

The two propositions above show that every set of k-set polygons of convex k-pairs com-
patible with F forms a simplicial complex. We show now that, if this set is maximal, it forms
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a triangulation. For this, we first show that the convex hull of the centroids of the elements in
Fk is the k-set polygon of S.

Recall that the k-set polygon of S, denoted by Qk(S), is the convex hull of the centroids of
all k-point subsets of S [7]. Note that Q1(S) is simply the convex hull of S.

The characterizations of the vertices and of the edges of Qk(S) stated in Proposition 3.5 are
due to Andrzejak and Fukuda [1], and to Andrzejak and Welzl [2]. Recall for this that a k-set
of S is a subset of k points of S strictly separable from the others by a straight line.

Proposition 3.5. (i) The centroid g(T ) of a subset T of S is a vertex of Qk(S) if and only if
T is a k-set of S.

(ii) The centroid g(T ) is the predecessor of the centroid g(T ′) in counterclockwise order on
∂Qk(S) if and only if there exist s, t ∈ S such that, setting P = (st)− ∩ S, one has |P | = k− 1,
T = P ∪ {s}, and T ′ = P ∪ {t}.

The next proposition shows that the vertices and edges of Qk(S) are k-set polygons of
convex k-subsets and k-pairs of S, that are compatible with every maximal family F separable
by convex pseudo-circles.

Proposition 3.6. (i) The k-sets of S are in F .
(ii) For every pair (s, t) of points of S such that |(st)−∩S| = k−1, the pair ((st)−∩S, {s, t})

is a convex k-pair of S compatible with F .

Proof. We first prove (ii). Setting P = (st)− ∩ S, we have conv(P ∪ {s, t}) ∩ S = P ∪ {s, t},
s and t are extreme points of P ∪ {s, t}, and |P | < k < |P ∪ {s, t}|. Therefore, (P, {s, t}) is a
convex k-pair of S.

For every convex subset T of F , we have (P ∪ {s, t}) \ T ⊂ (st)− and T \ P ⊂ (st)+. Since
(st)∩S = {s, t} and since neither s nor t can be simultaneously in (P ∪{s, t}) \T and in T \P ,
conv((P ∪ {s, t}) \ T ) and conv(T \P ) cannot intersect. It follows that (P, {s, t}) is compatible
with T .

Now we prove (i). From Proposition 3.5, for every k-set T of S, g(T ) is an endpoint of an
edge of Qk(S) and, therefore, there exist s, t ∈ S such that T = ((st)− ∩ S) ∪ {s}. From (ii),
((st)− ∩ S, {s, t}) is a convex pair of S compatible with F . Since T is a subset of this pair, T is
in F , from Proposition 2.11 (i).

In order to show that the k-set polygons of the convex k-pairs compatible with F cover
Qk(S), we need to show the following: For every edge [g(P ∪ {s}), g(P ∪ {t})] of the simplicial
complex determined by Propositions 3.3 and 3.4, if (g(P ∪ {s})g(P ∪ {t}))+ ∩ Qk(S) 6= ∅
then there exists a triangle of the simplicial complex in (g(P ∪ {s})g(P ∪ {t}))+ admitting
[g(P ∪ {s}), g(P ∪ {t})] as an edge. This comes down to showing the following key result.

Theorem 3.7. For every convex pair (P, {s, t}) of S compatible with F such that (st)+∩S 6= P ,
there exists a point r ∈ (P ∩ (st)−) ∪ ((S \ P ) ∩ (st)+) such that (P \ {r}, {r, s, t}) is a convex
pair of S compatible with F .

The long and tricky proof of this theorem is postponed to Section 5. An important conse-
quence of Theorem 3.7 is:

Corollary 3.8. If e is a line segment that is the k-set polygon of a convex k-pair of S compatible
with F and if Qk(S) is not reduced to e, then

• either e is an edge common to two triangles that are the k-set polygons of two convex
k-pairs of S compatible with F , and these two triangles are on both sides of e,

• or e is an edge of Qk(S) and of one triangle that is the k-set polygon of a convex k-pair
of S compatible with F .
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Proof. Let (P, {s, t}) be the convex k-pair of S compatible with F such that e = Qk(P, {s, t}).
(i) If e is an edge of Qk(S), it follows from Proposition 3.5 that, within a permutation of

s and t, (st)− ∩ S = P . One cannot have at the same time (st)+ ∩ S = P , otherwise P = ∅,
S = {s, t}, k = 1, and Qk(S) would be reduced to the segment e = [s, t]. Thus, from Theorem
3.7, there exists r ∈ (P ∩ (st)−)∪ ((S \P )∩ (st)+) such that (P \{r}, {r, s, t}) is a convex k-pair
of S compatible with F .

If r ∈ (S \ P ) ∩ (st)+, then τ = Qk(P \ {r}, {r, s, t}) = Qk(P, {r, s, t}) is the type-1 triangle
g(P ∪ {r})g(P ∪ {s})g(P ∪ {t}).

If r ∈ P ∩ (st)−, then τ = Qk(P \ {r}, {r, s, t}) is the type-2 triangle g(P ∪ {s})g(P ∪
{t})g((P \ {r}) ∪ {s, t}).

In both cases, e = [g(P ∪ {s}), g(P ∪ {t})] is an edge of τ .
(ii) If e is not an edge of Qk(S), (st)

+ ∩S 6= P and (st)− ∩S 6= P . As in (i), from Theorem
3.7, there exists a point r ∈ (P ∩ (st)−) ∪ ((S \ P ) ∩ (st)+) such that (P \ {r}, {r, s, t}) is a
convex k-pair of S compatible with F and e is an edge of the triangle τ = Qk(P \ {r}, {r, s, t}).
Exchanging s and t, from Theorem 3.7, there also exists a point r′ ∈ (P∩(st)+)∪((S\P )∩(st)−)
such that (P \ {r′}, {r′, s, t}) is a convex k-pair of S compatible with F and e is an edge of the
triangle τ ′ = Qk(P \ {r′}, {r′, s, t}). Since r 6= r′, one has τ 6= τ ′. Since (P \ {r}, {r, s, t}) and
(P \{r′}, {r′, s, t}) are compatible with F , they are compatible with each other, from Proposition
2.11 (ii). Thus, from Proposition 3.4, τ and τ ′ are on both sides of e.

All the results of this section lead to the next theorem.

Theorem 3.9. For every maximal family F of subsets of S separable by convex pseudo-circles,
the k-set polygons of the convex k-pairs of S compatible with F form the set of vertices, edges,
and triangles of a triangulation of Qk(S).

Proof. Let ϕ be the set of k-set polygons of the convex k-pairs of S compatible with F . The
set ϕ contains vertices, edges, and triangles. From Proposition 3.3, the endpoints of the edges
of ϕ and the vertices and edges of the triangles of ϕ are in ϕ. From Propositions 2.11 (ii) and
3.4, two elements of ϕ can only intersect at their vertices, or along their edges in the case of
triangles.

Suppose the elements of ϕ does not cover Qk(S) and let x ∈ Qk(S) \ϕ and y ∈ R2 \Qk(S).
Since ϕ has finitely many elements, y can always be chosen in such a way that the segment
[x, y] meets no vertex in ϕ. From Propositions 3.5 and 3.6, every edge of Qk(S) is in ϕ and,
therefore, [x, y] cuts at least one edge of ϕ. Since the edges of the triangles of ϕ are edges of
ϕ, the element of ϕ closest to x cut by [x, y] is an edge c of ϕ. The segments [x, y] and c cut
properly since the endpoints of c are vertices of ϕ, and thus cannot belong to [x, y]. It follows
that c is either an edge of the boundary of Qk(S) adjacent to no triangle of ϕ, or an edge in the
interior of Qk(S) adjacent to at most one triangle of ϕ. This contradicts Corollary 3.8, hence
ϕ covers Qk(S).

This triangulation is called the order-k centroid triangulation of S associated with F ; See
Figure 6.

4 Enumeration

The aim of this section is to count the number of elements of a maximal family F of subsets
of S separable by convex pseudo-circles. For all k ∈ {1, . . . , n}, let Tk be the order-k centroid
triangulation of S associated with F . From Theorem 3.9, the number |Fk| of elements in F of
size k equals the number of vertices of Tk.

Remark 4.1. (i) Note that T1 is just a triangulation of S. Indeed, it is easy to check that
every singleton of S belongs to F .

(ii) Since Fn = {S}, Tn is reduced to a vertex.
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Figure 6: An order-4 centroid triangulation of 7 points, with type-1 triangles in white and
type-2 triangles in grey.

From Remark 4.1, |F1| = n and |Fn| = 1. Let now k ∈ {2, . . . , n− 1}. To find the number
of vertices of Tk, we have at our disposal the two usual enumeration formulas that give the
number of vertices in terms of the numbers of edges and of triangles in a triangulation. In order
to find a third formula for these numbers, we study relationships between the triangulations Tk
and Tk−1.

Lemma 4.2. (i) For every convex pair (P,Q) of S compatible with F such that |Q| = 3 and
|P | = k − 2, Qk(P,Q) is a triangle of type 2 of Tk and Qk−1(P,Q) is a triangle of type 1 of
Tk−1.

(ii) The number of triangles of type 2 of Tk is equal to the number of triangles of type 1 of
Tk−1.

Proof. (i) From the definition of convex k-pairs, every convex pair (P,Q) of S such that |Q| = 3
and |P | = k − 2 is both a convex k-pair and a convex (k − 1)-pair of S. From Theorem 3.9, if
(P,Q) is compatible with F , Qk(P,Q) is a triangle of Tk and Qk−1(P,Q) is a triangle of Tk−1.
These two triangles are respectively of type 2 and of type 1.

(ii) Since every type-2 triangle of Tk is the k-set polygon of a convex pair (P,Q) compatible
with F such that |Q| = 3 and |P | = k − 2, and since every type-1 triangle of Tk−1 is the
(k− 1)-set polygon of such a convex pair, it follows from (i) that the number of type-2 triangles
of Tk equals the number of type-1 triangles of Tk−1.

For a k-subset T of S, if the union of the edges and triangles of Tk−1 of the form Qk−1(P,Q)
with P ∪Q = T is nonempty, then this union is called the domain of T in Tk−1.

Remark 4.3. (i) From Observation 3.2, every edge and every type-2 triangle belongs to one
and only one domain. The edges of a type-2 triangle belong to the same domain as the triangle.
The type-1 triangles belong to no domain.

(ii) All triangles of T1 are of type 1 and all edges of T1 belong to distinct domains. Hence,
the domains of T1 are the edges of T1.

Lemma 4.4. (i) For every k-subset T of S, T admits a domain in Tk−1 if and only if g(T ) is
a vertex of Tk.

(ii) The number of domains in Tk−1 is equal to the number of vertices of Tk.

Proof. (i) If the k-subset T of S admits a domain in Tk−1 then, from Remark 4.3, this domain
contains at least one edge and this edge is of the form Qk−1(P, {s, t}), with P ∪ {s, t} = T .
Thus, T is a subset of (P, {s, t}) and, from Proposition 2.11 (i), it is in F . Therefore, g(T ) is a
vertex of Tk.

Conversely, suppose the centroid g(T ) of the k-subset T of S is a vertex of Tk. Let
g(T0), . . . , g(Tm) be the neighbors of g(T ) in Tk in counterclockwise order around g(T ), and
such that:
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– if g(T ) is not a vertex of Qk(S), then g(T0) = g(Tm),

– if g(T ) is a vertex of Qk(S), then g(T0) and g(Tm) are respectively the successor and the
predecessor of g(T ) on ∂Qk(S).

The points g(T0), . . . , g(Tm) are the vertices of a star-shaped polygonal chain with respect to
g(T ). The chain is closed if g(T ) is not a vertex of Qk(S) and is open otherwise. Since, for
every i ∈ {0, . . . ,m}, [g(T ), g(Ti)] is an edge of Tk, there exist, from Observation 3.2, ti ∈ T
and si ∈ S \ T such that Ti = (T \ {ti}) ∪ {si}.

We first show that the ti cannot all be equal. If all ti are equal to a same point t, we
have Ti = (T \ {t}) ∪ {si}, for every i ∈ {0, . . . ,m}. Since k ≥ 2, T \ {t} contains at least on
point and, by a homothety with center g(T \ {t}), s0, . . . , sm are the vertices of a star-shaped
polygonal chain with respect to t. Furthermore, from Proposition 3.5, if g(T ) is a vertex of
Qk(S), T \ {t} ⊂ (smt)− ∩ (s0t)

+ and si ∈ (smt)+ ∩ (s0t)
−, for every i ∈ {1, . . . ,m− 1}. Hence,

for every point p of T \ {t}, there exists in all cases an index i of {0, . . . ,m − 1} such that
p ∈ (sit)

+ ∩ (si+1t)
−. Therefore, t ∈ conv({p, si, si+1}). Now, g(T ), g(Ti), and g(Ti+1) are the

three vertices of a triangle Qk(T \ {t}, {t, si, si+1}) of Tk. Thus, by the definition of a convex
pair, t is an extreme point of T ∪ {si, si+1}, in contradiction with t ∈ conv({p, si, si+1}). It
follows that the ti, i ∈ {0, . . . ,m}, are not all equal.

Hence, there exists i ∈ {0, . . . ,m − 1} such that ti 6= ti+1. The triangle of Tk with vertices
g(T ), g(Ti), and g(Ti+1) is then the k-set polygon of a convex k-pair (T \{ti, ti+1}, {ti, ti+1, si})
and is a type-2 triangle (from Observation 3.2 we necessarily have si+1 = si). From Lemma
4.2 (i), Qk−1(T \ {ti, ti+1}, {ti, ti+1, si}) is a type-1 triangle of the triangulation Tk−1, and
Qk−1(T \ {ti, ti+1}, {ti, ti+1}) is one of its edges. This edge belongs to the domain of T .

Thus, if g(T ) is a vertex of Tk, T admits a domain in Tk−1.
(ii) For two convex k-subsets T and T ′ of F , g(T ) and g(T ′) are two distinct vertices of Tk,

from Proposition 3.4, and the domains of T and of T ′ in Tk−1 are disjoint, from Remark 4.3.
Thus, from (i), the number of vertices of Tk is equal to the number of domains in Tk−1.

The next property on the shape of the domains will allow, together with Remark 4.3 (i) and
Lemmas 4.4 (ii) and 4.2 (ii), to establish an enumeration formula for the vertices, edges, and
triangles of centroid triangulations of consecutive orders.

Proposition 4.5. (i) The vertices of Tk−1 that belong to a same domain are the extreme points
of this domain.

(ii) The domains are convex.

Proof. (i) Let T be a convex k-subset of F . From Remark 4.3, the vertices of the domain of T
in Tk−1 are the endpoints of the edges of Tk−1 of the form Qk−1(T \ {s, t}, {s, t}), where s and
t are two extreme points of T . Thus, every vertex of the domain of T is of the form g(T \ {s}),
where s is an extreme point of T . By a homothety with center g(T ), g(T \ {s}) is an extreme
point of the set of vertices of the domain of T .

(ii) If the domain of T contains only two vertices, it is reduced to a line segment and is
convex.

Now we show that, if the domain of T in Tk−1 contains at least three vertices, then every
point in the convex hull of these vertices belongs to the domain of T .

(ii.1) Every point x in this convex hull belongs to a triangle whose three vertices are vertices
of the domain of T . From the proof of (i), these three vertices are of the form g(T \ {r}),
g(T \ {s}), and g(T \ {t}), where r, s, and t are extreme points of T . Since conv(T ) ∩ S = T ,
(T \{r, s, t}, {r, s, t}) is a convex (k−1)-pair and its (k−1)-set polygon is the triangle g(T \{r})
g(T \ {s})g(T \ {t}), which contains the point x.

If (T \ {r, s, t}, {r, s, t}) is compatible with F , its (k − 1)-set polygon is a triangle of Tk−1

that belongs to the domain of T , and x also belongs to this domain.
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Otherwise, x belongs to a triangle of Tk−1, which is the (k − 1)-set polygon of a convex
(k − 1)-pair (P,Q) of S compatible with F . From Proposition 3.4, (P,Q) is then incompatible
with (T \{r, s, t}, {r, s, t}). Therefore, from Lemma 2.10, some subsets of (P,Q) are incompatible
with some subsets of (T \{r, s, t}, {r, s, t}), and are also incompatible with (T \{r, s, t}, {r, s, t}),
from the same lemma. Let T ′ be any one of the subsets of (P,Q) incompatible with (T \
{r, s, t}, {r, s, t}). From Proposition 2.11 (i), T ′ is in F . Since T \ {r}, T \ {s}, T \ {t}, and T
are also in F , these four convex subsets are compatible with T ′, and one has the five following
relations:

conv(T ′ \ (T \ {r, s, t})) ∩ conv(T \ T ′) 6= ∅ (1)

conv(T ′ \ (T \ {r})) ∩ conv((T \ {r}) \ T ′) = ∅ (2)

conv(T ′ \ (T \ {s})) ∩ conv((T \ {s}) \ T ′) = ∅ (3)

conv(T ′ \ (T \ {t})) ∩ conv((T \ {t}) \ T ′) = ∅ (4)

conv(T ′ \ T ) ∩ conv(T \ T ′) = ∅ (5)

Setting W = {r, s, t} ∩ T ′, relation (1) can also be written

conv(T ′ \ (T \W )) ∩ conv((T \W ) \ T ′) 6= ∅.

It then follows from the relations (2), (3), (4), and (5) that |W | ≥ 2, and therefore one of the
four following assertions holds:

W = {r, s} and conv(T ′ \ (T \ {r, s, t})) = conv((T ′ \ T ) ∪ {r, s}) (6)

W = {r, t} and conv(T ′ \ (T \ {r, s, t})) = conv((T ′ \ T ) ∪ {r, t}) (7)

W = {s, t} and conv(T ′ \ (T \ {r, s, t})) = conv((T ′ \ T ) ∪ {s, t}) (8)

W = {r, s, t} and conv(T ′ \ (T \ {r, s, t})) = conv((T ′ \ T ) ∪ {r, s, t}) (9)

(ii.2) Suppose T ′ \ T 6= ∅. In this case, conv((T ′ \ T )∪ {r, s, t}) is the union conv((T ′ \ T )∪
{r, s}) ∪ conv((T ′ \ T ) ∪ {r, t}) ∪ conv((T ′ \ T ) ∪ {s, t}). Indeed, conv((T ′ \ T ) ∪ {r, s, t}) can
be covered by triangles that all have a same point of T ′ \ T as vertex, and which are therefore
distinct from triangle rst.

It then follows from (1) and from (6), (7), (8), (9) that, within a permutation of r, s, t,

conv((T ′ \ T ) ∪ {r, s}) ∩ conv(T \ T ′) 6= ∅ and {r, s} ⊆ T ′ ∩ T.

The convex hull conv((T ′ \ T ) ∪ {r, s}) has at least three vertices and does not contain any
point of T \ T ′ since conv(T ′) ∩ S = T ′. In the same way, no point of T ′ \ T belongs to
conv(T \ T ′) since conv(T ) ∩ S = T . Since no three points in S are collinear, it follows that
T \ T ′ contains two points p and p′ such that the line segment [p, p′] cuts properly two edges of
conv((T ′ \T )∪{r, s}). Now, all edges of conv((T ′ \T )∪{r, s}) are edges of conv((T ′ \T )∪{r}),
except the two edges out of s, when s is a vertex of conv((T ′ \ T ) ∪ {r, s}). In the same way,
all edges of conv((T ′ \ T ) ∪ {r, s}) are edges of conv((T ′ \ T ) ∪ {s}), except possibly the two
edges out of r. It follows that the edges of conv((T ′ \ T ) ∪ {r, s}) belong to the set formed
by the edges of conv((T ′ \ T ) ∪ {r}), the edges of conv((T ′ \ T ) ∪ {s}), and the segment rs.
But conv(T \ T ′) cannot cut two edges of this set since, with {r, s} ⊆ T ′, (2) and (3) become
conv((T ′ \ T ) ∪ {r}) ∩ conv(T \ T ′) = ∅ and conv((T ′ \ T ) ∪ {s}) ∩ conv(T \ T ′) = ∅.

Thus, the hypothesis T ′ \ T 6= ∅ is absurd and therefore T ′ ⊆ T . Furthermore, since
conv(T ′) ∩ S = T ′, we have conv(T ′ \ (T \ {r, s, t})) ∩ (T \ T ′) = ∅, and it follows from (1) that
|T \ T ′| ≥ 2.

Finally, for every subset T ′ of (P,Q) incompatible with the convex pair (T \{r, s, t}, {r, s, t}),
we have T ′ ( T and |T ′| < k − 1.

16



(ii.3) For every subset T ′ of (P,Q) incompatible with (T \{r, s, t}, {r, s, t}), the set T ′∪(Q\T )
is also a subset of (P,Q), and is convex from Lemma 2.8. Furthermore, relation (1) implies

conv((T ′ ∪ (Q \ T )) \ (T \ {r, s, t})) ∩ conv(T \ (T ′ ∪ (Q \ T ))) 6= ∅

and thus T ′ ∪ (Q \T ) is also incompatible with (T \ {r, s, t}, {r, s, t}). From (ii.2), we then have
T ′ ∪ (Q \ T ) ( T , i.e., Q ⊆ T . Since T ′ is a subset of (P,Q), one also has P ⊆ T ′ ( T . Hence
P ∪ Q ⊆ T . Furthermore, from (ii.2), |T ′| < k − 1, which implies |P | < k − 1 and, from the
definition of a convex (k − 1)-pair, |P ∪ Q| > k − 1. Since |T | = k, it follows that P ∪ Q = T
and thus that Qk−1(P,Q) belongs to the domain of T .

Hence, every point x in the convex hull of the vertices of the domain of T belongs to the
domain of T . This proves that this domain is convex.

This proposition, which shows that the domains of an order-k centroid triangulation are
triangulations of convex polygons, can be compared to a result of Lee [9], according to which
the order-k Voronoi diagram is composed of subgraphs that are binary trees. Up to the duality,
we thus obtain the same enumeration formula as Lee, implying that the number of vertices of Tk
equals the number of regions of the order-k Voronoi diagram. Denoting, for all i ∈ {0, . . . , n},
by ai(S) the number of i-sets of S, we then get the following results.

Proposition 4.6. Let k ∈ {1, . . . , n}.
(i) The number of vertices of Tk is

|Fk| = 2kn− n− k2 + 1−
k−1∑

i=1

ai(S).

(ii) We have
|Fk|+ |Fn−k+1| = 2kn− 2k2 + 2k − n+ 1.

In particular, if n is odd and m = (n+ 1)/2 then |Fm| = m2 −m+ 1.
(iii) Fk is a maximal family of compatible convex k-subsets of S.

Proof. (i) When k = n, the formula is verified since |Fn| = 1 and since
∑n−1

i=1 ai(S) = n(n− 1).
This well known result can be obtained for example from Proposition 3.5, which states that the
number ai(S) of i-sets of S equals the number of oriented straight lines passing through any
two points of S and having precisely i− 1 points on their right side. Therefore,

∑n−1
i=1 ai(S) is

equal to the total number of ordered pairs of points of S.
For all k ∈ {1, . . . , n−1}, let vk, ek, t1,k, and t2,k be the respective numbers of vertices, edges,

type-1 triangles, and type-2 triangles of Tk. The usual enumeration formulas for triangulations
give

ek = 3vk − ak(S)− 3 and t1,k + t2,k = 2vk − ak(S)− 2, (10)

where ak(S) is the number of vertices of Qk(S), i.e., the number of k-sets of S, from Proposition
3.5. For every k-subset T of S, k ∈ {2, . . . , n − 1}, that admits a domain in Tk−1, we denote
respectively eT,k−1 and tT,k−1 the numbers of edges and of triangles of the domain of T . From
Proposition 4.5, these edges and triangles form a triangulation of a convex polygon and they
therefore satisfy eT,k−1 = 2tT,k−1 + 1. From Remark 4.3, every edge and every type-2 triangle
of Tk−1 belongs to one and only one domain. From Lemma 4.4, the number of domains of Tk−1

is equal to the number of vertices of Tk. Summing the preceding relation over all domains of
Tk−1, one then gets ek−1 = 2t2,k−1 + vk. Lemma 4.2 (ii) then implies, for all k ∈ {3, . . . , n− 1},
ek−1 + ek−2 = 2(t1,k−2 + t2,k−2) + vk + vk−1. Using (10), one obtains

vk − 2vk−1 + vk−2 = ak−2(S)− ak−1(S)− 2.
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To solve this induction equation, write it in the form

(k − i+ 1)(vi − 2vi−1 + vi−2) = (k − i+ 1)(ai−2(S)− ai−1(S)− 2),

for all i ∈ {3, . . . , k}, and sum member by member over all these i. One then gets

vk − (k − 1)v2 + (k − 2)v1 = (k − 2)a1(S)− (k − 2)(k − 1)−
k−1∑

i=2

ai(S).

From Remark 4.1, v1 = |F1| = n. From Remark 4.3, the domains of T1 are the edges of T1
and thus, from Lemma 4.4 (ii) and from the relations (10), v2 = 3v1 − a1(S)− 3. Substituting
in the preceding equality, we obtain

vk = 2kn− n− k2 + 1−
k−1∑

i=1

ai(S),

for all k ∈ {3, . . . , n − 1}. The equality holds true for k = 2, and also for k = 1 by setting∑0
1 = 0.
(ii) Since the number of i-sets of S equals the number of (n − i)-sets of S, it follows from

(i), for all k ∈ {1, . . . , n},

|Fn−k+1| = n2 − k2 − n+ 2k −
n−1∑

i=k

ai(S).

Therefore,

|Fk|+ |Fn−k+1| = n2 + 2kn− 2n− 2k2 + 2k + 1−
n−1∑

i=1

ai(S) = 2kn− 2k2 + 2k − n+ 1.

If n is odd, setting m = (n+ 1)/2, we then get 2|Fm| = 2m2 − 2m+ 2.
(iii) The result is obviously true for Fn = {S}. For k < n, let F ′

k be a maximal family
of compatible convex k-subsets of S containing Fk. Complete F ′

k to a maximal family F ′ of
compatible convex subsets of S. From (i), one has |F ′

k| = 2kn−n−k2+1−
∑k−1

i=1 ai(S) = |Fk|.
Therefore, Fk = F ′

k, and Fk is a maximal family of compatible convex k-subsets of S.

Recall the results stated in the introduction.

Theorem 1.1 Let S be a set of n points in the plane in general position. Every inclusion-
maximal family F of subsets of S separable by convex pseudo-circles has c(3, n) =

(
n
0

)
+

(
n
1

)
+(

n
2

)
+

(
n
3

)
elements.

Theorem 1.2 Let S be a set of n points in the plane in general position and k ∈ {1, . . . , n}.
Every inclusion-maximal family of k-subsets of S separable by convex pseudo-circles admits
2kn− n− k2 + 1−

∑k−1
i=1 ai(S) elements.

Theorem 1.2 is an immediate consequence of Proposition 4.6 (i) and (iii). It shows especially
that the number of elements in a maximal family of k-subsets of S separable by convex pseudo-
circles is an invariant of S and k. Since this number is also equal to the number of k-subsets of
S separable by circles when no four points are cocircular [9], a maximal family of k-subsets of
S separable by circles is also maximal for convex pseudo-circles when S is in general position.

In the same way, Proposition 4.6 (ii) and (iii) shows that the sum of the numbers of elements
in two maximal families of k-subsets and of (n − k + 1)-subsets of S, each one separable by
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convex pseudo-circles, is an invariant of n and k; It depends neither on the choice of the two
maximal families, nor on the distribution of the points of S (as long as no three of them are
collinear). As a consequence, if n is odd, the number of ((n+1)/2)-subsets separable by convex
pseudo-circles is an invariant of n.

Proof of Theorem 1.1. Since F =
(⋃n

k=1Fk

)
∪ {∅} and since these subsets are disjoint, one has

|F| =
n∑

k=1

|Fk|+ 1 =
1

2

n∑

k=1

(|Fk|+ |Fn−k+1|) + 1.

Hence, from Proposition 4.6 (ii),

|F| =
n3 + 5n+ 6

6
=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n

3

)
.

5 Proof of Theorem 3.7

5.1 Comments on the proof

In case one only deals with separating curves that are (true) circles, the proof of Theorem 3.7
is very easy. Indeed, in this case (P, {s, t}) admits a separating circle γ which passes through
s, t and encloses exactly P . The circle γ can be continuously deformed (remaining in the family
of circles passing through s, t) until it meets a third point r of S. If (st)+ ∩ S 6= P and if we
perform the deformation only towards (st)+, we find exactly one point r (assuming no four
cocircular points in S): r is either a point of S \ P in (st)+ or a point of P in (st)−. Then, the
new circle γ′ encloses exactly P \ {r} and the pair (P \ {r}, {r, s, t}) is convex. Furthermore,
(P \ {r}, {r, s, t}) is compatible with all convex pairs that admit circles as separating curves,
since circles are always compatible.

In the general case, finding a convex pair (P \ {r}, {r, s, t}) is even easier; Usually there are
several such pairs. The difficulty is to prove that there exists at least one that is compatible
with all elements of F . In particular, an analogous method by deformation is unclear for
pseudo-circles. Actually, if one tries to deform a pseudo-circle belonging to a given family of
pseudo-circles, it is far from evident to keep the compatibility with the family. It can happen
that, while deforming one curve, some others have to be modified at the same time, as shows
the following example: For every point qi, i ∈ {1, 2, 3} of Figure 7, γ can be deformed into a
convex curve γi passing through {qi, s, t} and enclosing exactly {p1, p2}. Now, the curve γ1
will be incompatible with Γ1 and the curve γ3 will be incompatible with Γ3. However these
incompatibilities are not of the same nature: It is possible to reduce Γ3 in order to ensure its
compatibility with γ3, while this is impossible for Γ1 and γ1. Indeed, since the segments [t, q2]
and [p1, q1] cross, any curve enclosing t and q2 will be incompatible with any curve through q1
and enclosing p1. In the same way, γ can be deformed into a convex curve passing through
{p1, s, t} and enclosing p2, or to a convex curve passing through {p2, s, t} and enclosing p1, but
the curve passing through p2 will be incompatible with Γ2.

Furthemore, it can be deduced from Propositions 2.11 and 3.4 that there is at most one
such pair (P \ {r}, {r, s, t}) compatible with F , when F is maximal. This means that, among
all the possible convex pairs (P \ {r}, {r, s, t}), at most one could be reached by a continuous
deformation keeping the compatibility, and for all others there are obstructions. A significant
part of our proof consists in describing these obstructions: This is the role of the “lockers”
described in Proposition 5.3.

Another strategy of proof could be to adapt the classical proof of the existence of the
Delaunay triangulation using a lifting on a paraboloid in R3. Example 2 of Subsection 6.2
shows that this strategy fails.
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Figure 7: Obstructions for the deformation of a convex pseudo-circle.

We refer to the beginning of Section 2 above for the notation. We will use several times the
following elementary property.

Remark 5.1. If a, b, c, d are four distinct points in the plane such that a ∈ (bc)− and d ∈
(ab)+ ∩ (ac)−, then a ∈ conv({b, c, d}).

Proof. Since d ∈ (ab)+, we have a ∈ (db)−; Similarly d ∈ (ac)− implies a ∈ (cd)−. Therefore we
have a ∈ (bc)− ∩ (cd)− ∩ (db)− = conv({b, c, d}).

5.2 Strategy of proof of Theorem 3.7

The proof proceeds by contradiction. We assume that counterexamples exist and, among them,
we choose one, denoted by (S,F), with |S| minimal. This means two things.

Firstly, the fact that (S,F) is a counterexample means that there exists a convex pair
(P0, {s, t}) compatible with F such that (st)+ ∩S 6= P0 and every r ∈

(
P0 ∩ (st)−

)
∪
(
(S \P0)∩

(st)+
)
is locked in the following sense: The pair (P0 \{r}, {r, s, t}) is either nonconvex in S or it

is convex but incompatible with some P ∈ F . In the latter case, we say that P locks r. We will
use the notations P̃0 = P0 ∪ {s, t}, L = P0 ∩ (st)−, and U = (S \P0)∩ (st)+ = (S \ P̃0)∩ (st)+.
We assume that [s, t] is a horizontal segment, s on the left and t on the right, hence L belongs
to the lower half plane delimited by (st) and U belongs to the upper half plane. Whenever
possible, elements of L will be denoted by lowercase letters and elements of U by uppercase
letters. The lockings are described in Subsection 5.3.

Secondly, the minimality of |S| implies that, for all y ∈ S \{s, t}, if L∪U 6= {y}, there exists
x ∈ (L ∪U) \ {y} which is unlocked by y in the following sense: The pair (P0 \ {x, y}, {x, s, t})
is convex in S \ {y} and compatible with the family Fy =

{
P \ {y} ; P ∈ F

}
. The relation “y

unlocks x” will be denoted by y → x.
Proposition 5.8 in the sequel shows that, if L ∪ U had only one element y, then (P0 \

{y}, {y, s, t}) would automatically be a convex pair compatible with F . In other words, because
we consider a hypothetical minimal counterexample, the set L ∪ U must contain at least two
elements.

Let D(y) = {x ∈ L ∪U ; y → x}. We thus have

D(y) 6= ∅ for all y ∈ S \ {s, t}. (11)

A point y can unlock a point x in two different ways. The first way is by convexity, if the
pair (P0 \ {x}, {x, s, t}) is nonconvex in S, and (P0 \ {x, y}, {x, s, t}) is convex in S \ {y} and
compatible with Fy. Unlockings by convexity are described in Subsection 5.5.

The second way is by compatibility, when (P0\{x}, {x, s, t}) is convex in S but incompatible
with some P ∈ F , and (P0 \ {x, y}, {x, s, t}) is (still convex in S \ {y} and) compatible with Fy.
In this case we will write y →

P
x. Unlockings by compatibility are described in Subsection 5.4.
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We say that a point x ∈ L∪U is visible if (P0 \{x}, {x, s, t}) is convex. The visible points of

L are simply the extreme points of conv(P̃0) that are in (st)−. The visible points of U, however,
are not a priori in convex position.

The main idea of proof of Theorem 3.7 is to find a nonempty subset T of S, on which the
relation → is bijective. We describe this set T in Subsection 5.6. The lengthy proof that → is
a bijection on T is in Subsection 5.7. Then we study the orbits of this bijection and obtain the
expected contradiction in Subsection 5.9.

5.3 Description of lockings

Firstly, the definition of locking yields immediately the following remark.

Remark 5.2. (i) Let x be a visible point of L and let P ∈ F such that x ∈ P . If there exist

y, z ∈ P̃0 \ P , and X ∈ P \P0 such that ]x,X[∩ ]y, z[ 6= ∅, i.e the quadrilateral xyXz is convex,
then P locks x.

(ii) Similarly, let X be a visible point of U and P ∈ F with X /∈ P . If there exist Y, Z ∈ P \P0

and x ∈ P̃0 \P such that ]x,X[∩ ]Y, Z[ 6= ∅, i.e the quadrilateral xY XZ is convex, then P locks
X.

Conversely, we have the useful result (see Figure 8).

x
P

t     = y∈ lP (x)lP (x)    s∈

X∈cP (x)
z∈rP (x)

PX

t     = x∈cP (X)s     = Y

Z    ∈rP (X)

Figure 8: Examples of locking subsets of Proposition 5.3. For convenience, we draw separating
curves instead of convex subsets and pairs. In all figures, we use a true circle for the pair
(P0, {s, t}).

Proposition 5.3. (i) If a visible point x ∈ L is locked by a subset P ∈ F then x ∈ P ,

cP (x) = P \P0 is nonempty, and P̃0 \P is the union of two nonempty disjoint subsets lP (x) and
rP (x) such that each triple (y,X, z) in lP (x) × cP (x) × rP (x) satisfies y ∈ (xX)+, z ∈ (xX)−,
and ]x,X[∩ ]y, z[ 6= ∅. As a consequence, one has

(P̃0 \ P ) ∩ (xy)+ ⊆ lP (x) for all y ∈ lP (x) (12)

and similarly (P̃0 \ P ) ∩ (xz)− ⊆ rP (x) for all z ∈ rP (x).

(ii) Similarly, if a visible point X ∈ U is locked by P ∈ F then X /∈ P , cP (X) = P̃0 \ P is
nonempty, and P \ P0 is the union of two nonempty disjoint subsets lP (X) and rP (X) such
that each triple (Y, x, Z) in lP (X) × cP (X) × rP (X) satisfies Y ∈ (xX)+, Z ∈ (xX)−, and
]x,X[∩ ]Y, Z[ 6= ∅. As a consequence, one has (P \P0)∩ (Y X)+ ⊆ lP (X) for all Y ∈ lP (X) and
(P \ P0) ∩ (ZX)− ⊆ rP (X) for all Z ∈ rP (X).

We will frequently use this result, without systematically refer to it. Points in lP (x), rP (x),
and cP (x) are respectively called left-, right-, and central-lockers. Notice that the points s and
t are always in at least one of the sets lP (x), cP (x), or rP (x) for any visible point x ∈ L∪U and
any P ∈ F locking x. Assertion (12) and its analogs show that this nomenclature is consistent
with the usual notion of left and right. For instance, if x ∈ L is locked by P ∈ F , then for all
y ∈ lP (x) and all z ∈ rP (x), one has z ∈ (xy)−.
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We will also use this result in the following form: If a visible point x ∈ L is locked by P ∈ F ,
then one has

∀X ∈ cP (x), lP (x) = (xX)+ ∩ (P̃0 \ P ) and rP (x) = (xX)− ∩ (P̃0 \ P ).

Symmetrically, if a visible point X ∈ U is locked by P ∈ F then

∀x ∈ cP (X), lP (X) = (xX)+ ∩ (P \ P0) and rP (X) = (xX)− ∩ (P \ P0).

x
w

r

a

q

u

v
p'

q'

p

D

conv(P \P0)

Figure 9: Proof of Proposition 5.3 (i).

Proof. (i) Since P and (P0, {s, t}) are compatible, there exists an oriented line D containing no

point in S such that conv(P \ P0) ⊂ D− and conv(P̃0 \ P ) ⊂ D+. Since x is locked by P , the

intersection conv(P \ (P0 \{x}))∩ conv(P̃0 \P ) is nonempty. It follows that x is in P but not in

D− and that P \ (P0 \ {x}) = (P \P0)∪{x}. Therefore, the set ∆ = D
+
∩ conv((P \P0)∪{x})

is a nonempty triangle or a line segment that contains at least one point a of conv(P̃0 \ P ),
see Figure 9. The vertices of ∆ are the point x and one or two other points u and v lying on
D. We can suppose that u ∈ (xv)+. Observe that ∆ cannot contain a point in P̃0 \ P because
such a point would be in S ∩ conv((P \ P0) ∪ {x}) which is included in S ∩ conv(P ) = P .
Therefore, the point a is in a triangle (possibly reduced to a segment) with vertices p, q, r in

P̃0 \ P , none of which being in ∆. It follows that one side of this triangle, say ]p, q[ , must
cut the (possibly identical) open sides ]x, u[ and ]x, v[ of ∆, at some points denoted p′ and q′.
Moreover, by Remark 5.1, for any w in the cone (xu)+ ∩ (xv)−, x is in the triangle p′q′w, hence
in the triangle pqw. As a consequence, since x is an extreme point of conv(P̃0), no point of

conv(P̃0 \ P ) can be in (xu)+ ∩ (xv)−. It follows that the two subsets lP (x) = (P̃0 \ P )∩ (xu)+

and rP (x) = (P̃0 \P )∩ (xv)− form a partition of P̃0 \P . Each of these two subsets is nonempty
because one of them contains p and the other one contains q. Finally, consider a line segment
[y, z] with y ∈ lP (x) and z ∈ rP (x). Since it does not meet the cone (xu)+ ∩ (xv)−, the open
segment ]y, z[ meets ]x, u[ and ]x, v[. It follows that, for all X ∈ cP (x) = P \ P0, ]y, z[∩ ]x,X[
is nonempty.

For a proof of (12), choose X ∈ cP (x); Since y ∈ (xX)+, we have X ∈ (xy)−. As a

consequence, for any w ∈ (P̃0 \ P ) ∩ (xy)+ we have ]x,X[∩ ]y, w[ = ∅, showing that w /∈ rP (x),
hence w ∈ lP (x).

(ii) This case is very similar but we write its proof for completeness. Since P and (P0, {s, t}) are
compatible, there exists an oriented line D, containing no point in S, such that conv(P \P0) ⊂

D− and conv(P̃0 \ P ) ⊂ D+. Since X is locked by P , conv(P \ P0) ∩ conv((P̃0 ∪ {X}) \ P ) is

nonempty. Therefore X is neither in P nor in D+, hence (P̃0 ∪ {X}) \ P = (P̃0 \ P ) ∪ {X}

and X ∈ D−. It follows that the intersection conv((P̃0 \ P ) ∪ {X}) ∩D
−
is a triangle or a line

segment ∆ = conv({X,u, v}} with u and v lying in D. We can suppose that u ∈ (Xv)+. Since

conv(P \ P0) is included in D− and meets conv((P̃0 \ P ) ∪ {X}), ∆ contains at least a point
a which belongs to conv(P \ P0). If ∆ contained a point p of P \ P0, this point p would be in
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conv((P̃0\P )∪{X}) which is included in conv(P̃0∪{X}). Since the pair (P0, {X, s, t}) is convex,

we would have p ∈ P̃0 ∪ {X} and thus p = X, s or t. The case p = X cannot occur because

X /∈ P . The case p = s or t, say s, implies s ∈ conv((P̃0 \ P ) ∪ {X}) ∩D−. Since s ∈ P , this
implies that s would not be extreme in (P0 ∪ {X}) \P , i.e. (P0, {X, s, t}) would not be convex,
contradicting the visibility of X. Therefore the point a is in a triangle (possibly reduced to a
segment) with vertices p, q and r in P \ P0, none of which being in ∆. It follows that one side
of this triangle, say [p, q], must cut the (possibly identical) open sides ]X,u[ et ]X, v[ of ∆. The
fact that X is not in P then implies that the cone (Xu)+ ∩ (Xv)− does not meet conv(P \P0).
It follows that the two subsets lP (X) = (P \ P0) ∩ (Xu)+ and rP (X) = (P \ P0) ∩ (Xv)− form
a partition of P \ P0. The points p and q are neither both in lP (X) nor both in rP (X) because
the segment [p, q] meets the two open segments ]X,u[ and ]X, v[. Therefore lP (X) and rP (X)
are nonempty. Finally, let Y ∈ lP (X) and Z ∈ rP (X). Since the cone (Xu)+ ∩ (Xv)− does not
intersect conv(P \P0), the segment ]Y, Z[ must cut the open sides ]X,u[ of ]X, v[ of the triangle
∆. It follows that ]Y, Z[ crosses every segment ]X,x[ with x ∈ cP (X).

5.4 Unlockings by compatibility

From Remark 5.2 and Proposition 5.3, if a point y ∈ S \ {s, t} unlocks a point x ∈ L ∪U by
compatibility, then there exists P ∈ F such that {y} is one of the sets lP (x), cP (x), or rP (x).
For any x ∈ L ∪U, we consider the three unions

l(x) =
⋃

P∈F
lP (x), c(x) =

⋃

P∈F
cP (x), r(x) =

⋃

P∈F
rP (x)

with the convention lP (x) = cP (x) = rP (x) = ∅ if P does not lock x. Observe that, if x ∈ L,

then l(x)∪ r(x) ⊆ P̃0 and c(x) ⊆ S \P0. Symmetrically, if x ∈ U, then l(x)∪ r(x) ⊆ S \P0 and

c(x) ⊆ P̃0. For a fixed P the sets lP (x), cP (x), and rP (x) are disjoint, but this is no longer true
a priori for the unions l(x), c(x), and r(x).

In this section, we prove that, if y unlocks x, then firstly y can be in only one of the three
sets l(x), c(x), and r(x), and secondly y is alone in this set.

Proposition 5.4. If a point y ∈ S \ {s, t} unlocks a visible point x ∈ L ∪U by compatibility,
then y is in only one of the three sets l(x), c(x), or r(x).

Proof. We consider four different cases, whether x is in L or in U and whether y is or is not in
P0.

The cases x ∈ L, y /∈ P0 and x ∈ U, y ∈ P0 are evident: In these cases y cannot be in
l(x) ∪ r(x); It has to be only in c(x).

If x ∈ L and y ∈ P0, assume by contradiction that there exist P1, P2 ∈ F such that
y ∈ lP1

(x) ∩ rP2
(x). By Proposition 5.3 (i), there exist X1 ∈ cP1

(x), X2 ∈ cP2
(x), z1 ∈ rP1

(x),
and z2 ∈ lP2

(x) such that both intersections ]x,X1[∩ ]y, z1[ and ]x,X2[∩ ]y, z2[ are nonempty,
see Figure 10 left. The idea is to prove that z2 ∈ lP1

(x). Since y ∈ (xX1)
+, we have X1 ∈ (xy)−.

Since ]x,X1[ and ]y, z1[ cross, we then have z1 ∈ (xy)−. Similarly, we have z2 ∈ (xy)+.
If z2 ∈ (xz1)

− then z2 ∈ (xy)+ ∩ (xz1)
−. Remark 5.1 then yields x ∈ conv({y, z1, z2}), in

contradiction with the fact that x is an extreme point of P̃0. Therefore z2 ∈ (xz1)
+. It follows

that the points X1, y, X2, and z2 are all in the half plane (xz1)
+ (for X2, this follows from

X2 ∈ (xy)+ ∩ (xz2)
−). Now y ∈ (xX1)

+, X2 ∈ (xy)+, and z2 ∈ (xX2)
+, hence the segment

]z1, z2[ meets the half line (xX1) ∩ (xz1)
+ in a point X ′

1. Since X1 is not in conv({z1, z2, x}),
we have X ′

1 ∈ ]x,X1[. This proves that z2 ∈ lP1
(x). Therefore removing y would not unlock the

point x.

If x ∈ U and y /∈ P0, assume by contradiction that there exist P1, P2 ∈ F such that
y ∈ lP1

(x) ∩ rP2
(x). By Proposition 5.3 (ii), there exist x1 ∈ cP1

(x), Z1 ∈ rP1
(x), Z2 ∈ lP2

(x)
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Figure 10: Proof of Proposition 5.4.

and x2 ∈ cP2
(x) such that both intersections ]x, x1[∩ ]y, Z1[ and ]x, x2[∩ ]y, Z2[ are nonempty.

Observe that, since x1, Z1 ∈ (yx)+ and x2, Z2 ∈ (yx)−, one has x1 6= x2 and Z1 6= Z2.

Consider the triangle T0 = conv({x, x1, x2}) ⊆ conv
(
P̃0 ∪ {x}

)
. Since y /∈ P̃0 and since the

pair (P0, {x, s, t}) is convex, the point y cannot be in T0. We claim that Z1 /∈ T0. Indeed, if
Z1 ∈ T0, since Z1 /∈ P0 the only possibility is Z1 = x2 (= s or t). Since Z1 ∈ (x1x)

−, this
implies x1 ∈ (x2x)

+. Therefore the segment [x2, y] = [Z1, y], which meets a point of [x, x1], is
included in (x2x)

+. It follows that y ∈ (x2x)
+ contradicting y ∈ rP2

(x). In the same way we
have Z2 /∈ T0. Now the proof splits in two subcases.

If x2 ∈ (x1x)
−, then the points y and x1 are on each side of the line (x2x). The segment ]y, Z2[,

which cuts the segment ]x, x2[, must cross another side of the triangle T0. Since ]x1, x[⊂ (yx)−

and ]y, Z2[⊂ (yx)+, it has to cross the side ]x1, x2[ of T0. Besides, if x1 were in P2, we would
have x ∈ conv(y, x1, Z2) ⊆ conv(P2), a contradiction, hence x1 /∈ P2. To sum up, we have

x1, x2 ∈ P̃0 \ P2, y, Z2 ∈ P2 \ P0, and ]y, Z2[∩ ]x1, x2[ 6= ∅, contradicting the compatibility of
(P0, {s, t}) and P2.

The second subcase is x2 ∈ (x1x)
+, see Figure 10 right. We split the proof in four steps.

Step 1. We have again ]y, Z2[∩ ]x1, x2[ 6= ∅. The assumption x2 ∈ (x1x)
+ implies that the

triangle T0 is included in the cone (x1x)
+ ∩ (x2x)

−. The point y is also in this cone while Z2

is not. Therefore one of the two sides of T0 that are crossed by the segment ]y, Z2[, must be
]x1, x2[.

Step 2. We have x1 ∈ P2. Otherwise [x1, x2] is included in conv(P̃0 \ P2) and, together with
the first step, this implies that (P0, {s, t}) and P2 are incompatible. The same argument shows
that x2 ∈ P1 as well.
Step 3. We have Z1 ∈ P2 or Z2 ∈ P1. Observe first that Z2 is in (x1x)

+. Otherwise the point
x would be in the triangle conv({y, Z2, x1}) which is included in P2, a contradiction. The same
argument shows that Z1 ∈ (x2x)

−. Since y is not in T0, Z1 and Z2 are in (x1x2)
−. Therefore

Z1 ∈ (x2x1)
+ ∩ (x2x)

− and Z2 ∈ (x1x2)
− ∩ (x1x)

+. It follows that the segments [x1, Z2] and
[x2, Z1] intersect. Since x1 ∈ P2 \ P1, x2 ∈ P1 \ P2, Z1 ∈ P1 and Z2 ∈ P2, it is not possible that
both Z1 /∈ P2 and Z2 /∈ P1 because this would imply that P1 and P2 are incompatible.
Step 4. To fix ideas, we suppose that Z1 ∈ P2. We have proven that Z1 ∈ (x2x)

− and since
Z1 /∈ P0 this means that Z1 ∈ rP2

(x). Therefore y and Z1 are both in rP2
(x) which implies that

y cannot unlock x.

Corollary 5.5. If a point y ∈ S \ {s, t} unlocks a visible point x ∈ L ∪ U by compatibility,
then y is the only point of one of the three categories l(x), c(x), or r(x).

Proof. Suppose y unlocks x and let P1 ∈ F be such that y →
P1

x. One of the sets lP1
(x), cP1

(x),

or rP1
(x) is reduced to y. To fix ideas, assume that lP1

(x) = {y}. Then by Proposition 5.4, for
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all P locking x, we have y ∈ lP (x), and cP (x) and rP (x) nonempty. Because y unlocks x, we
then have lP (x) = {y} for all P locking x, hence l(x) = {y}.

5.5 Unlockings by convexity

Given X ∈ S \ P̃0, we call cone of X the set C(X) = relint
(
conv(P̃0∪{X})\conv(P̃0)

)
. In other

words, C(X) is the truncated open cone between X and conv(P̃0). Notice that, if Y ∈ C(X)∩S,
then C(Y ) ⊂ C(X).

Given X ∈ S \ P̃0 and x ∈ P0, let Cx(X) = relint
(
conv((P̃0 ∪{X}) \ {x}) \ (conv(P̃0) \ {x})

)

denote the cone of X relatively to P0 \ {x}.
If X ∈ U is invisible, i.e. (P0, {X, s, t}) is nonconvex, then at least one of the two cases

below occurs. Either conv(P̃0 ∪ {X}) ∩ S strictly contains P̃0 ∪ {X}, hence C(X) ∩ S contains

some Y , see Figure 11 left. Or s and t are not both extreme points of P̃0 ∪ {X}, hence there
is y ∈ L such that X ∈ (ys)+ ∪ (yt)−, see Figure 11 right. In both cases we say that Y or y
hides X. Moreover, if the second case does not occur, i.e. if s and t are both extreme points of
P̃0 ∪ {X}, then the point Y which hides X is necessarily in U.

Y

X

X

s

x

t

s = x0

y = x1

x2

t = xm+1

xm-1

xm

Figure 11: Left, in light gray C(X), in dark gray C(Y ). Right, in gray V (x2) \ V (x1) and
V (xm−1) \ V (xm).

For any z ∈ L, let V (z) = (zs)− ∩ (zt)+ ∩ (st)+. Hence V (z) ∩ S is the set of points of U
that are not hidden by z. Observe that, for all u, v, w ∈ L,

if z ∈ conv({u, v, w}) then V (z) ⊆ V (u) ∪ V (v) ∪ V (w). (13)

If a point X ∈ U is unlocked by convexity, then this can be done in three different ways, see
Figure 11:

1. Either X is unlocked by a point Y ∈ S \ P̃0, if C(X) ∩ S = {Y },

2. or by a point x ∈ P0, if C(X) ∩ S is nonempty, but Cx(X) ∩ S is empty,

3. or by a point y ∈ L, if X is not in V (y) but is in V (x) for all x ∈ L \ {y}.

Cases 1 and 2 can occur simultaneously, as well as cases 2 and 3. In the first two cases, we
necessarily have C(X) ⊂ (st)+, otherwiseX would be locked by convexity by a point of L. In the
third case, we can be more precise: Let s = x0 < x1 < · · · < xm < xm+1 = t denote the points
of ∂conv(P̃0) ∩ (st)− in their natural order. Then, from (13) and since V (xi) ⊆ V (x1) ∪ V (xm)
for all i ∈ {1, . . . ,m}, we have the following remark, see Figure 11 right.

Remark 5.6. For m ≥ 2, if X ∈ U is unlocked by convexity by y ∈ L, then either y = x1 and
X ∈ V (x2) \ V (x1), or y = xm and X ∈ V (xm−1) \ V (xm).
For m = 1, if X ∈ U is unlocked by convexity by y ∈ L, then y = x1 and X /∈ V (x1).
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The next proposition eliminates most of the possibilities to unlock a point by convexity.

Proposition 5.7. (i) All points of L are visible, i.e. L ⊂ ∂conv(P̃0).

(ii) An invisible point of U can be unlocked (by convexity) only by a point of P0.

Proof. (i) By contradiction let y ∈ L be invisible, i.e. not an extreme point of P̃0. Let u, v, w ∈

P̃0 be extreme and such that y ∈ conv({u, v, w}). By (11), there exists x ∈ L ∪U such that y
unlocks x.

Assume first that x ∈ U. If y hid x, then by (13) x would be hidden by one of the points
u, v or w, preventing y to unlock x. Hence y unlocks x by compatibility: There exists P ∈ F
such that {y} = cP (x) = P̃0 \ P . This implies u, v, w ∈ P , hence y ∈ P by convexity of P , a
contradiction.

Now suppose x ∈ L. As before, y cannot hide x: Indeed, since y is not extreme in P̃0 and
x is extreme in P̃0 \ {y}, x is extreme in P̃0. By Corollary 5.5 we thus have l(x) or r(x) = {y}.
Assume l(x) = {y} to fix ideas. Let P ∈ F be such that y →

P
x, X ∈ cP (x), and z ∈ rP (x)

(hence ]x,X[∩ ]y, z[ 6= ∅). The set relint
(
conv({u, v, w, z})

)
contains neither x (which is an

extreme point of P̃0) nor X (since X /∈ P̃0). As a consequence, ]x,X[ cuts conv({u, v, w, z})
in two connected components, one containing z, the other containing y and at least one of the
points u, v or w.

If the component containing y contains one point, say u, then we have x,X ∈ P , y ∈
conv(u, x,X) \ P , hence u /∈ P by convexity of P . If it contains two points u, v, then by the
same reason, since y ∈ conv(u, v, x,X), one of the points, say u, is not in P . see Figure 12 left.
This yields ]x,X[∩ ]u, z[ 6= ∅, hence u ∈ lP (x), a contradiction with l(x) = {y}.

X

w

x

y

v

u

z

x
s

P

t

Z

X

Y

W

Figure 12: Proof of Proposition 5.7.

(ii) Again by contradiction, letX ∈ U be unlocked by convexity by Y ∈ S\P̃0, hence C(X)∩S =
{Y }. If Y were not in U, then X would also be locked by convexity by a point of L, hence not
unlocked by Y . Therefore Y ∈ U. Since Y ∈ C(X), we have C(Y ) ⊂ C(X), hence C(Y )∩S = ∅,

i.e. Y cannot be hidden by a point of S \ P̃0. However Y has to be locked.
If Y were locked by convexity then, since C(Y ) = ∅, Y would be hidden by some point of

L. This means that s or t would not be extremal in conv(P̃0 ∪ {Y }). Since conv(P̃0 ∪ {Y }) ⊂

conv(P̃0 ∪{X}), s or t would not be extremal in conv(P̃0 ∪{X}), too, hence X would be locked
by convexity, contradicting Y → X.

As a consequence, Y is locked by compatibility, by some subset P ∈ F . Let Z ∈ lP (Y ),

x ∈ cP (Y ), and W ∈ rP (Y ), see Figure 12 right. Let u, v ∈ P̃0 be such that Y ∈ conv(u, v,X).
The segment ]Z,W [ crosses ]x, Y [, which is included in the interior of conv(u, v, x,X), while
neither Z nor W is in the interior of conv(u, v, x,X) because C(X) ∩ S = {Y }. It follows
that ]Z,W [ crosses the boundary of conv(u, v, x,X) in two points Z ′,W ′ ∈ ]Z,W [, and cuts
conv(u, v, x,X) in two connected components: Ω+ = conv(u, v, x,X) ∩ (ZW )+ and Ω− =
conv(u, v, x,X) ∩ (ZW )−. Since Z ∈ lP (Y ), x ∈ cP (Y ), and W ∈ rP (Y ), we have Y ∈ Ω+ and
x ∈ Ω−. Since Z,W ∈ P , we have ]Z ′,W ′[⊂ conv(P ).
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If X were in Ω−, we would have Y ∈ conv
(
Ω+∩{u, v}, Z ′,W ′), which is included in conv(P ),

a contradiction with Y /∈ P . Therefore X ∈ Ω+. If X were in P , we would have Y ∈
conv(Ω+ ∩ {u, v}, Z ′,W ′, X) ⊂ conv(P ), again a contradiction with Y /∈ P . Therefore X /∈ P .

Now x ∈ Ω− and X ∈ Ω+ imply that ]x,X[ crosses ]Z,W [, which implies that P locks X, a
contradiction with Y → X.

Proposition 5.8. If L ∪U = {r}, then
(
P0 \ {r}, {r, s, t}

)
is compatible with F .

Proof. By contradiction, assume L∪U = {r} and r locked. If r ∈ L then r is an extreme point
of P0, hence locked by compatibility, by some P ∈ F containing it. From Proposition 5.3 (i),

there exist X ∈ P \ P0 and y, z ∈ P̃0 \ P such that ]r,X[∩ ]y, z[ 6= ∅. Since L = {r} ⊆ P , one

has y, z ∈ P̃0 \ L, hence ]y, z[⊂ (st)+. In the same manner since (S \ P̃0) ∩ (st)+ = U = ∅, one
has X /∈ (st)+, hence ]r,X[⊂ (st)−. This contradicts ]r,X[∩ ]y, z[ 6= ∅.

The case r ∈ U is analogous: L ∪ U = {r} implies that the pair (P0, {r, s, t}) is convex,
hence r is locked by compatibility, by some P ∈ F . Proposition 5.3 (ii) yields Y, Z ∈ P \P0 and

x ∈ P̃0 \ P such that ]r, x[∩ ]Y, Z[ 6= ∅. However L ∪U = {r} implies firstly x ∈ P̃0 \ L, hence
]r, x[⊂ (st)+, and secondly Y, Z /∈ U ∪ P0, hence ]Y, Z[⊂ (st)−, contradicting ]r, x[∩ ]Y, Z[ 6=
∅.

5.6 Ordering of unlockable points

By Proposition 5.7 (i), we have L = ∂conv(P̃0) ∩ (st)− = {x1, . . . , xm}.
Let K = {X ∈ U ∩ V (x2) ∩ V (xm−1) ; C(X) ∩ S = ∅} if m ≥ 2, and K = {X ∈

U ; C(X) ∩ S = ∅} otherwise. As a consequence, if a point of U is not hidden by a point of

S \ P̃0 and if it is hidden by at most one point of L, then this point must be in K. Observe
that there might be points of K hidden by two points of L (namely x1 and xm) in the case
where

(
V (x2) \V (x1)

)
∩
(
V (xm−1) \V (xm)

)
is non-empty. Now we set T = L∪K. By Remark

5.6 and Proposition 5.7 (ii), if a point of x ∈ L ∪ U is unlocked by a point y ∈ L ∪ U, then
necessarily x ∈ T. In other words, one has

∀y ∈ L ∪U, ∅ 6= D(y) ⊆ T. (14)

The order on L is the natural order x1 < · · · < xm. On K, we define the following order: For
X 6= Y ∈ K, we say that X is on the left of Y , and we denote X < Y or Y > X, if Y ∈ (sX)−.
Because K ⊆ (st)+, the relation X ≤ Y if X = Y or X < Y is a total order on K. Notice that,
if we replace s by t, then this defines the same order on K. Actually, if Y ∈ (sX)+ ∩ (tX)−

then X ∈ C(Y ), which is excluded for points of K. Notice also that X < Y is equivalent to
[s,X] ∩ [t, Y ] = ∅ and also equivalent to ]s, Y [∩ ]t,X[ 6= ∅. We will also use the following fact:

If x, y ∈ P̃0, X ∈ S \ P̃0, and Y ∈ K \ {X}, then X /∈ conv(x, y, Y ). (15)

This comes from the fact that, otherwise, X would hide Y .

A priori there is no connection between the notions of right and left for lockers and for the
order on L: Given two points x, y ∈ L, it is possible to have at the same time x < y and
y ∈ l(x). Nevertheless, the following lemma shows that this connection exists if y unlocks x.
The same is true for points X,Y ∈ K.

Lemma 5.9. (i) Let x 6= y be in L and let P ∈ F locking x. If lP (x) = {y} then y < x.
In particular and by contraposition, if y unlocks x and x < y, then r(x) = {y}. Similarly,
rP (x) = {y} implies x < y and (y → x and y < x) implies l(x) = {y}.

(ii) Let X 6= Y be in K and let P ∈ F locking X. If lP (X) = {Y } then Y < X. In particular,
if Y unlocks X and X < Y , then r(X) = {Y }. As in (i), the same holds with left and right
switched.
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Proof. (i) The assumption lP (x) = {y} implies s ∈ cP (x) ∪ rP (x). It follows that y ∈ (xs)+

which means y < x. By contraposition, if y unlocks x and r(x) 6= {y} then, because y ∈ L, we
would have {y} = l(x), hence lP (x) = {y} for any P ∈ F locking x, yielding y < x. The proof
of (ii) is similar.

5.7 The bijection

The reason to introduce T lies in the following crucial result.

Theorem 5.10. If y and z are distinct points of T, then D(y) and D(z) are nonempty disjoint
subsets of T.

Proof. We proceed by contradiction. Let x, y, z ∈ T be such that x ∈ D(y) ∩ D(z). If the
point x were hidden by one of the points, say y (or by both), then z would not unlock x.
Therefore both y and z unlock x by compatibility, each alone in one of the sets l(x), c(x), or
r(x) by Corollary 5.5. Switching y and z if necessary, as well as “left” and “right”, we thus
have l(x) = {y} (hence y < x by Lemma 5.9 (i)) and, either c(x) = {z} or r(x) = {z}. (As we
will see below, the first case is impossible.) Now the proof splits in two cases.

Case 1: x ∈ L. If l(x) = {y} and c(x) = {z}, then both s and t belong to r(x). This implies
that y and z are in (xs)+, hence x 6= x1 and z /∈ V (x2), hence z /∈ T, a contradiction, see
Figure 13 left.

As a consequence, one has, for all P ∈ F locking x, lP (x) = {y}, s, t ∈ cP (x) and rP (x) =
{z}. We fix some P ∈ F locking x.

xy

z s t

x

z

P
P

y

X

s t

zy

w

x

s t

P'
P'

Figure 13: Proof of Theorem 5.10.

The key-idea is now to consider D(x), which has to be nonempty by (11). Because from
Lemma 5.9 (i) y < x < z we have x 6= x1 and x 6= xm, hence x cannot unlock by convexity. In
other words, all points of D(x) are visible.

Assume D(x) ∩K 6= ∅ and let X ∈ D(x) ∩K. If X ∈ K \ P , then one easily checks that X is
already locked by P , with s ∈ lP (X), y, z ∈ cP (X) and t ∈ rP (X), contradicting x → X.

If X ∈ P and P ′ ∈ F is such that x →
P ′

X, then cP ′(X) = {x}, hence y, z ∈ P ′ \ P . Because

x,X ∈ P \ P ′ and ]x,X[∩ ]y, z[ 6= ∅, P and P ′ would be incompatible, a contradiction, see
Figure 13 middle.

Assume now that there exists w ∈ D(x) ∩ L. If y < w < z then, because lP (x) = {y} and
rP (x) = {z}, we have w ∈ P . Actually, if w /∈ P then, in the case y < w < x we have
]w, z[∩ ]x,X[ 6= ∅ hence w would be in lP (x), and in the case x < w < z we would similarly
have w ∈ rP (x). Moreover, since s < y < w < z, we have ]w, s[∩ ]y, z[ 6= ∅, showing that w is
locked by P , with y ∈ lP (w), s ∈ cP (w), and z ∈ rP (w), hence contradicting x → w.

If w ≤ y and P ′ ∈ F is such that x →
P ′

w then, by Lemma 5.9, rP ′(w) = {x}. Since y ∈ (wx)−

and y /∈ rP ′(w), y must be in P ′. We prove below by contradiction that z itself is in P ′, see
Figure 13 right.

Indeed, suppose that z /∈ P ′. Since z /∈ rP ′(w), we must have z ∈ lP ′(w). This implies
s, t /∈ cP ′(w) ⊂ (wx)+ ∩ (wz)−, hence s, t ∈ lP ′(w) hence s, t /∈ P ′. A point X in cP ′(w) satisfies
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]x, z[∩ ]w,X[ 6= ∅ hence X ∈ (xz)−, thus X cannot belong to cP (x). Therefore X /∈ P . Now
two cases occur.

If w = y then w ∈ P ′ \ P . This gives w,X ∈ P ′ \ P , s, x ∈ P \ P ′, and ]w,X[∩ ]s, x[ 6= ∅,
thus P, P ′ incompatible, a contradiction.

If w < y, the points s and x are not in the triangle conv({w, y,X}) because its vertices are in
P ′. As a consequence, the segment ]s, x[, which cuts the side wX of the triangle conv({w, y,X})
must cut another side. Since y < x, this segment cannot cross [w, y], therefore it has to cut
]y,X[. To sum up, we have s, x ∈ P \P ′, y,X ∈ P ′ \P , and ]y,X[∩ ]s, x[ 6= ∅, contradicting the
compatibility of P and P ′. This proves that z ∈ P ′.

Again the compatibility of P and P ′ together with ]s, x[∩ ]y, z[ 6= ∅ imply s ∈ P ′. It follows
that s ∈ cP ′(w) and that a point v ∈ lP ′(w) is such that s < v < w. The inequalities
v < w ≤ y < x < z now imply ]v, x[∩ ]y, z[ 6= ∅ and lP (x) = {y} implies v ∈ P , in contradiction
with the compatibility of P and P ′.

Case 2: x ∈ K. This case is more tricky because, contrarily to L, the points of K are not
necessarily in convex position. Before the proof, we present several intermediate lemmas. In
the sequel, given three non-collinear points a, b, c of the plane, C(a, b, c) denotes the open cone
with vertex b and with a and c on its boundary, i.e.

C(a, b, c) = {b+ α(a− b) + β(c− b) ; α, β > 0}.

If c ∈ (ba)+, then C(a, b, c) = (ba)+ ∩ (bc)−, otherwise C(a, b, c) = (bc)+ ∩ (ba)−.

Lemma 5.11. Let X be a visible point in K. Suppose that X is locked by a set P ∈ F
containing neither s nor t. Then X cannot unlock a point of L.

Proof. Since X is visible, L is included in the cone C(s,X, t). By contradiction, suppose that
X →

P ′

w ∈ L. Let Y be in lP (X) and Z be in rP (X). Since P contains neither s nor t, s

and t are in cP (X), hence ]Y, Z[ cuts ]X, s[ and ]X, t[ in two points Y ′ and Z ′. Since X →
P ′

w,

cP ′(w) = {X}, hence Y, Z /∈ P ′. The segment ]X,w[ cuts the segment ]Y ′, Z ′[ (hence the
segment ]Y, Z[) in a point p which is in (st)+. Since P and P ′ are compatible, the point w must
be in P . Now the segment ]w, p[ is in conv(Y, Z,w) ⊆ conv(P \(P0 \{w})) and cuts the segment

]s, t[⊆ conv(P̃0\P )(at the same point as ]w,X[), i.e. we have conv(P \(P0\{w}))∩conv(P̃0\P ) 6=
∅. This is exactly the definition of P locks w. Since X /∈ P , removing X would not unlock w,
in contradiction with X → w.

Lemma 5.12. Let P, P ′ be in F and U,W be in K. Suppose that s /∈ P , P locks W , and
W →

P ′

U . Then s /∈ P ′.

In particular, if V →
P

W →
P ′

U and s /∈ P , then s /∈ P ′.

The same is true with t instead of s.

Proof. We focuse on s. Observe first that s ∈ cP (W ). Observe also that, because W ∈ K

unlocks U , U is visible. We act by contradiction and suppose that s ∈ P ′. We assume that
U < W ; The case W < U is similar. By Lemma 5.9, rP ′(U) = {W}, hence s ∈ lP ′(U). Choose
the point V in lP (W ) such that the open cone C(V, s,W ) contains no point of lP (W ); It is
possible to have V = U . We also choose an arbitrary point X in rP (W ) and an arbitrary point
u in cP ′(U). We have V ∈ lP (W ), s ∈ cP (W ), and X ∈ rP (W ), hence ]V,X[∩ ]s,W [ 6= ∅. Since
s,W ∈ P ′ \ P , by compatibility of P and P ′, one at least of the two points V or X must be in
P ′. The proof now splits in four cases.

Case 1. V /∈ P ′ (hence X ∈ P ′) and u ∈ C(W, s,X).
The point u is not in P ′, hence u is not in the triangle conv({W, s,X}). Therefore, each segment
]s, u[ and ]V,X[ starts from a different vertex of the triangle sWX and cuts the corresponding
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opposite edge, hence these segments cross. The compatibility of P and (P0, {s, t}) implies that
u ∈ P . Now we have

W /∈ P ⇒ W /∈ conv({V,X, u}) ⇒]V, u[∩ ]s,W [ 6= ∅,

which contradicts P and P ′ compatible.

Case 2. V /∈ P ′ (hence X ∈ lP ′(U)) and u /∈ C(W, s,X).
The segment ]U, u[ starting from U must enter C(W, s,X) by a point of the segment ]s,W [ then
goes through the triangle conv({W, s,X}), leaves this triangle crossing the segment ]W,X[ and
then leaves C(W, s,X) crossing the line (sX) at a point a which is not in [s,X] and then arrives
at u. Therefore X ∈ [s, a] and a ∈ [U, u], yielding X ∈ C(U) and contradicting U visible.

Case 3. V ∈ P ′ and U ∈ C(W, s, V ).
We have s, V,W ∈ P ′ and U /∈ P ′, hence U /∈ conv({W, s, V }).

Since rP ′(U) = {W} we have V ∈ lP ′(U), hence U /∈ C(s,W, V ). By the choice of V , U is
not in P . Moreover U /∈ P ′, hence U /∈ conv({W, s, V }). As in step 1, each of the segments
]s, U [ and ]V,X[ starts from a different vertex of the triangle sV W and cuts the opposite edge,
hence they cross. Since s, U /∈ P and V,X ∈ P , Remark 5.2 implies that P locks U , which
contradicts W → U .

Case 4. V ∈ P ′ and U /∈ C(W, s, V ).
The segment ]u, U [ enters the cone C(W, s, V ) by a point of the segment ]s,W [, then goes
through the triangle conv({W, s, V }), leaves this triangle crossing the segment ]W,V [, then
leaves C(W, s, V ) crossing the line (sV ) at a point b which is not in [s, V ], and then arrives at
U . Therefore V ∈ [s, b] and b ∈ [U, u], which contradicts U visible.

Lemma 5.13. Let U, V,W ∈ K be such that V < W and assume P ∈ F locks W . We assume
s /∈ P , lP (W ) = {V }, and W → U . Then either U < V or U > W .

In particular, if V < W , V →
P

W→U , and s /∈ P , then either U < V or U > W .

The same holds with t in place of s.

Proof. Suppose on the contrary that V ≤ U < W . Let P ′ ∈ F locking U . By Lemma 5.9,
rP ′(U) = {W}. Moreover, by Lemma 5.12, s /∈ P ′, thus s ∈ cP ′(U). Therefore lP ′(U) ⊂
(sW )+ ∩ (sU)+. Choose a point X in rP (W ) and a point Y in lP ′(U).

If U = V , then U is the only point in lP (W ). The point Y which is on the left side of (sW ),
cannot be in P , otherwise it would be in lP (W ). Likewise, X cannot belong to P ′ for W is the
only point in rP ′(U). Starting at Y , the segment ]Y,W [ cuts the segment ]s, U [ and must leave
the triangle conv({V, s,X}), thus ]V,X[∩ ]W,Y [ 6= ∅, but this contradicts the compatibility of
P and P ′. So it remains to show that V < U < W is impossible. Observe that U is not in P
for s ∈ cP (W ) and lP (W ) = {V }. Two cases occur.

If U ∈ (V X)+, then Remark 5.2 implies that P locks U , hence W cannot unlock U .
If U ∈ (V X)−, then, since s ∈ cP ′(U), any Y ∈ lP ′(U) is in C(U,W, s) but not in the

triangle conv({U,W, s}). Since U is in (V X)−, the segment ]s, U [ is included in the triangle
conv({s, V,X}). Therefore the segment ]W,Y [, which cuts the segment]s, U [, must also cut
]V,X[. Now lP (W ) = {V } and rP ′(U) = {W} hence Y /∈ P and X /∈ P ′. Moreover, since
]s, U [ cuts the segment ]Y,W [, U is in the triangle conv({Y,W, V }); Therefore if V were in P ′

then U would be in P ′. This proves that V is not in P ′. To sum up, we have V,X ∈ P \ P ′,
W,Y ∈ P ′ \ P , and ]V,X[∩ ]W,Y [ 6= ∅, hence P and P ′ incompatible, a contradiction.

Lemma 5.14. Let k ≥ 2 and let X1 < X2 < ... < Xk and Xk+1 be in K. Suppose that

X1 →
P1

X2 →
P2

...Xk−1 →
Pk−1

Xk →
Pk

Xk+1

and that s /∈ P1. Then either Xk+1 < X1 or Xk+1 > Xk.
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Proof. By Lemma 5.12, we have s /∈ Pi for all i = 1, . . . , k. Suppose on the contrary that
X1 ≤ Xk+1 < Xk. Without loss of generality we can suppose that X1 ≤ Xk+1 < X2. By
Lemma 5.13, the integer k must be at least 3.

For each i < k, choose X ′
i ∈ rPi

(Xi+1) and let Yi denote the intersection point of the
segments ]s,Xi+1[ and ]Xi, X

′
i[, see Figure 14. Let L denote the polygonal line

L = [X1, Y1] ∪ [Y1, X2] ∪ [X2, Y2]... ∪ [Xk−1, Yk−1].

L

s

Y1
X1

X'1
X'2

X2
X3

Xk-1

Xk+1

X'k-1

X'k

Xk

Y2

J

Yk-1

Figure 14: Proof of Lemma 5.14.

By definition of the order on K, the line L is simple. Finally choose X ′
k ∈ lPk

(Xk+1).
If rP1

(X2) = {Xk} (= {X ′
1}) then by Lemma 5.13, X2 cannot unlock a point X such that

X2 < X ≤ Xk but this contradicts X2 →
P2

X3 with X2 < X3 ≤ Xk. So we can suppose that

X ′
1 6= Xk.
If Xk+1 were in the half plane (X1X

′
1)

+, it would be locked by P1 and not unlocked by Xk.
Therefore Xk+1 is either in the interior of the triangle conv({s,X1, Y1)} or is equal to X1.

In the first case, Xk+1 is in the bounded region delimited by the Jordan curve J = [s,X1]∪
L ∪ [Yk−1, s] while Xk is in the unbounded region. It follows that, starting at Xk, the segment
[Xk, X

′
k] must cross a segment [Xi, Yi] of the line L. If Xk+1 = X1, the segment [Xk, X

′
k] crosses

]s,X1[ and hence enters the bounded region of J . So the same result holds. In either case,
choose i maximal (i ≤ k − 1) with [Xk, X

′
k] ∩ [Xi, Yi] 6= ∅.

The point X ′
k is in the half plane (sXi+1)

+, therefore, if X ′
k were in Pi, it would be in

lPi
(Xi+1) which is reduced to Xi. Moreover X ′

k is in (sX2)
+, hence this implies X ′

k = X1 = Xi.
However this is impossible because the segment [Xk, X

′
k] would not have met the bounded region

delimited by the Jordan curve J . Therefore X ′
k /∈ Pi.

We now prove that Xk /∈ Pi. Indeed, the triangle conv({Xk, Xi, Yi}) contains the point Xi+1

because, viewed from s, the segment ]Xk, Xi[ is behind the segment ]X ′
k, Xk[, which in turn is

behind Xi+1, while the segment ]Yi, Xk[ is between s and Xi+1. Therefore Xk ∈ Pi would imply
Xi+1 ∈ Pi, which contradicts Pi locks Xi+1.

So we have proved that neitherXk norX
′
k are in Pi. If i ≥ 2, thenXi andX ′

i are in (sXk+1)
+,

hence they are not in Pk. If i = 1, the segment ]X1, Xk[ does not cross the segment ]s,Xk+1[
hence X1 /∈ lPk

(Xk+1) and therefore X1 /∈ Pk. Furthermore, the point X ′
1 is in (sXk+1)

+ and is
6= Xk hence it cannot be in Pk. It follows that Pk and Pi are incompatible.

Continuation of proof of Theorem 5.10. Suppose that y and z in T unlock x in K. As before
we prove first that s and t belong to c(x). Otherwise we would have, say l(x) = {y}, c(x) = {z},
and s, t ∈ r(x), hence x would be hidden, a contradiction with y → x. It follows that y and z
are in K. Set X1 = x. The point X1 must unlock a point X2 which, by Lemma 5.11 is in K,
and by Lemma 5.12, s, t ∈ c(X2). By the same arguments, X2 unlocks a point X3 in K with

31



s, t ∈ c(X3), and so on. We obtain an infinite sequence X1 = x →
P1

X2 →
P2

...Xn−1 →
Pn−1

Xn → ...

of points in K such that s, t ∈ c(Xn) for all n.
Now, we use the fact that K is a a subset of the finite set S. Consider j ∈ N such that Xj =

min(Xn)n∈N (for the order in K). By Lemma 5.14 the sequence (Xj , Xj+1, . . . ) is increasing,
hence injective, a contradiction with K finite. This ends the proof of Theorem 5.10.

Corollary 5.15. In restriction to T, the unlocking relation yields a bijection from T to T.

Proof. By Theorem 5.10, all the sets D(y), y ∈ T are disjoint, yet they are non-empty subsets
of T by (14), hence

|T| ≤
∑

y∈T
|D(y)| =

∣∣∣
⋃

y∈T
D(y)

∣∣∣ ≤ |T|,

hence inequalities are equalities. The first equality gives |D(y)| = 1 for all y ∈ T, i.e. a point
of T unlocks a unique point of T, and the last one yields T =

⋃
y∈TD(y), i.e. each point of T

is unlockable by a point of T.

5.8 Convexity of K

In this subsection, we will give an analog of Proposition 5.7 (i), but whose proof needs Corollary
5.15. We begin by a statement which will be used several times, not only in this subsection but
also in Subsection 5.9.

Lemma 5.16. (i) Let A 6= B ∈ K, W ∈ S \ (P̃0 ∪ {A,B}), and y ∈ P̃0. If W ∈ conv(y,A,B)

and if W is hidden by a point of S \ P̃0, then C(W ) contains a point V ∈ conv(y,A,B) ∩
(
S \

(P̃0 ∪ {A,B})
)
with C(V ) ∩ S = ∅.

(ii) If A < B are consecutive for the order on K then, for any y ∈ P̃0, conv(y,A,B) contains no

point of S \ (P̃0 ∪ {A,B}).

(iii) If X < Y < Z are consecutive in K then, for every y ∈ P̃0 and every W ∈ conv(y,X,Z) ∩(
S \ (P̃0 ∪ {X,Y, Z})

)
, we have Y ∈ C(W ). Moreover, such a point W , if exists, has to be in

conv(X,Y, Z).

Proof. (i) Recall that, if U, V ∈ S \ P̃0 are such that U ∈ C(V ), then C(U) ⊂ C(V ). As a
consequence, since S is finite, there exists V ∈ C(W ) ∩ S such that C(V ) ∩ S = ∅. There

exists u ∈ relint(conv(P̃0)) such that V ∈ ]u,W [. If A = V , then we would have A and W
in conv(u, y,B), hence B hidden, a contradiction. Similarly, we have V 6= B. Since W ∈
conv(y,A,B), we obtain V ∈ conv(u, y, A,B). Since, by (15), V is neither in conv(u, y, A), nor
in conv(u, y,B), we must have V ∈ conv(y,A,B).

(ii) If conv(y,A,B) contained a point W ∈ S \ P̃0 then, by (i), C(W ) would contain a point

V ∈ conv(y,A,B) ∩
(
S \ (P̃0 ∪ {A,B})

)
with C(V ) ∩ S = ∅. This point V is in conv(s, y, A,B)

but neither in conv(s, y, A), nor in conv(s, y, B), hence V ∈ conv(s,A,B), hence V ∈ K and
A < V < B. This contradicts A and B consecutive.

(iii) If C(W ) = ∅, set V = W , otherwise, let V be given by (i). The point V is in conv(s, y,X, Z)
but neither in conv(s, y,X), nor in conv(s, y, Z), hence V ∈ conv(s,X,Z), hence V ∈ K and
X < V < Z, hence necessarily V = Y .

Moreover W ∈ conv(s, y,X, Y, Z) =
⋃

u,v∈{s,y,X,Z} conv(u, v, Y ). By (ii), W cannot be in
conv(s,X, Y ) ∪ conv(s, Y, Z) ∪ conv(y,X, Y ) ∪ conv(y, Y, Z) and, since C(Y ) ∩ S = ∅, W /∈
conv(s, y, Y ). Therefore W ∈ conv(X,Y, Z).

We now give the main statement of this subsection.
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Proposition 5.17. The points of K are in convex position. More precisely, for all X < Y <
Z ∈ K, we have Y ∈ (XZ)+.

Proof. It suffices to prove the statement for consecutive points.
First assume that P̃0 ∩ (XZ)+ 6= ∅ and consider x ∈ P̃0 ∩ (XZ)+. Since s ∈ (XZ)−, by (15)

x is neither in (sX)+ (otherwise X would be in the triangle conv(Z, s, x) hence would hide Z)
nor in (sZ)− (Z would hide X), hence x is in the cone C(X, s, Z). From (15), we deduce that
Y /∈ conv(X, s, x) ∪ conv(s, x, Z), hence Y ∈ C(X, s, Z) \ conv(s,X,Z) ⊂ (XZ)+.

We now assume, until the end of this subsection, that P̃0 ∩ (XZ)+ = ∅. We proceed by

contradiction, i.e. we assume that Y ∈ (XZ)−. Therefore in the sequel we assume P̃0 ∪ {Y } ⊂

(XZ)−. Since s ∈ (XY )− ∩ (Y Z)−, by (15) we have P̃0 ⊂ (XY )− ∩ (Y Z)−. In particular, we

have Y ∈ conv(X,x, Z) for all x ∈ P̃0. Observe also that, for all x ∈ P̃0, we have X ∈ (xY )+

and Z ∈ (xY )−. As a consequence, if P ∈ F locks Y and X ∈ P , then necessarily X ∈ lP (Y ).
Before going further, we would like to make the following remark. If some W ∈ K is hidden

by x1 (the first point of L) then only x1 can unlock W . From Corollary 5.15, it follows that x1
can hide at most one point of K, which must be the first point of K. It is the same for xm if
m ≥ 2. As a consequence, X may or may not be hidden by x1, and Z by xm, but Y cannot be
hidden.

Lemma 5.18. For every P ∈ F locking Y , P locks either X or Z, or both.

Proof. Consider such a P and let y ∈ cP (Y ). Observe that, since at least one point a of ]y, Y [ is
in conv(P ) and since Y ∈ conv(a,X,Z)\P , the points X and Z cannot both be in P : We must
have either X /∈ P or Z /∈ P (or both). We divide the proof in several cases which possibly
overlap, but exhaust all possible cases. We will see that each case ends either by a contradiction,
or by “P locks X”, or by “P locks Z”.

Case 1. The sets lP (Y ) \ {s, t} and rP (Y ) \ {s, t} are both nonempty. Choose U ∈ lP (Y ) \
{s, t} and V ∈ rP (Y ) \ {s, t}, hence ]U, V [ cuts ]y, Y [.

If U = X, then X ∈ P , hence Z /∈ P . Moreover V ∈ C(y,X, Y ) ∩ (yY )−, hence V /∈
conv(X,Y, Z), hence, by Lemma 5.16 (iii), V /∈ conv(X, y, Z), hence ]X,V [ cuts ]y, Z[, hence P
locks Z. The case V = Z is similar and yields that P locks X.

We now assume that U 6= X and V 6= Z. By Lemma 5.16 (iii), if U ∈ conv(y,X,Z) then
U ∈ conv(X,Y, Z), idem for V , and if U and V are both in conv(X,Y, Z) then ]U, V [ cannot
cross ]y, Y [, hence U and V cannot both be in conv(y,X,Z). As a consequence, the open
segment ]U, V [ crosses one or both of the sides ]y,X[ and ]y, Z[ of the triangle conv(y,X,Z).
We now split the proof into two subcases.

Subcase 1.1. The segment ]U, V [ crosses both sides ]y,X[ and ]y, Z[ of conv(y,X,Z). As
already said, one of the points X or Z, say X, does not belong to P , and we obtain that P
locks X.

Subcase 1.2. The segment ]U, V [ crosses one side, say ]y,X[, and not ]y, Z[. Then, by Lemma
5.16 (iii), V /∈ conv(y, Y, Z), hence V ∈ C(Y, U, Z) ∩ (Y Z)+, hence Y ∈ conv(U, V,X), hence
X /∈ P , hence P locks X.

Case 2. lP (Y ) = {s} and rP (Y ) 6= {t}. Choose V ∈ rP (Y ) \ {t}.

Subcase 2.1. ]s, V [ crosses both ]y,X[ and ]y, Z[. As in Subcase 1.1, the point among X and
Z which is not in P is locked by P .

Subcase 2.2. ]s, V [ crosses ]y,X[ and not ]y, Z[. As in Subcase 1.2, V ∈ C(Y, s, Z)∩ (Y Z)+,
hence Y ∈ conv(s, V,X), hence X /∈ P , hence P locks X.

Subcase 2.3. ]s, V [ does not cross ]y,X[. Then s ∈ conv(y,X,Z), hence X is hidden by y,
hence y = x1 and is the unlocker of X in T.

33



By Corollary 5.15, y cannot be the unlocker of Y . Since s ∈ l(Y ) and y ∈ c(Y ), the unlocker
of Y must be V , with {V } = r(Y ), hence V ∈ K and V ≥ Z.

If V 6= Z, then Z /∈ P (otherwise Z ∈ rP (Y ) = {V }), and ]s, V [ and ]y, Z[ cross, hence P
locks Z.

If V = Z, i.e. Z → Y , then any Q ∈ F locking Y contains Z (as right locker), hence does
not contain X. Since y is not the unlocker of Y , there exists at least one element Q ∈ F locking
Y such that cQ(Y ) 6= {y}. Once again, we split the proof in two cases.

If s ∈ Q, i.e. s ∈ lQ(Y ), let x ∈ cQ(Y ) \ {y}. Then x ∈ (sX)− (otherwise x would hide X,
contradicting y → X), hence, since x ∈ P0 ⊂ (XZ)−, we have x ∈ C(s,X,Z). Since x ∈ (sZ)−,
]x,X[ and ]s, Z[ cross, with s, Z ∈ Q \ P0, x ∈ P̃0 \Q, and X /∈ Q. Therefore, if we remove y,
Q would still lock X, a contradiction with y → X.

If s /∈ Q, i.e. s ∈ cQ(Y ), let U ∈ lQ(Y ). Since ]U,Z[ and ]s, Y [ cross, we have U ∈
C(s, Z, Y ) ∩ (sY )+ hence U 6= t (because t ∈ (sY )−) and U /∈ conv(X,Y, Z), hence, by
Lemma 5.16 (iii), U /∈ conv(y,X,Z), hence U /∈ conv(s,X,Z), hence ]s,X[ and ]U,Z[ cross,
once again showing that Q locks X and contradicting y → X.

The case lP (Y ) 6= {s} and rP (Y ) = {t} is symmetrical.

Case 3. lP (Y ) = {s} and rP (Y ) = {t}. Then the unlocker of Y must be central, i.e. y → Y .
Among X and Z, one at least is not in P , say X /∈ P . If ]s, t[ and ]y,X[ intersect, then P locks
X, hence the unlocker of X must be y, a contradiction with y → Y . If ]s, t[ and ]y,X[ do not
intersect, then y ∈ (sX)+, i.e. y hides X, hence y → X, contradicting y → Y .

Case 4. s ∈ rP (Y ), hence t ∈ rP (Y ). Moreover, we have y ∈ (st)+ (otherwise y would hide
Y ), hence s ∈ (yZ)−. Let U ∈ lP (Y ), then ]U, s[ and ]y, Y [ cross, hence U ∈ C(y, s, Y )∩ (yY )+,
hence ]U, s[ and ]y, Z[ cross. If Z /∈ P then P locks Z. Otherwise, we firstly have X /∈ P and
secondly, since U and s are in P , Y cannot be in the triangle conv(U, s, Z), hence U ∈ (Y Z)−.
It follows that U /∈ conv(X,Y, Z), hence, by Lemma 5.16 (iii), U /∈ conv(y,X,Z), hence ]U, s[
and ]y,X[ cross, hence P locks X.

The last case t ∈ lP (Y ) is symmetrical. This ends the proof of Lemma 5.18.

Continuation of proof of Proposition 5.17. Let A ∈ T be the unlocker of Y . If A ∈ L then
consider any P ∈ F locking Y . By Lemma 5.18, P locks either X or Z (or both), say P locks
X. We have cP (Y ) = {A}, s ∈ lP (Y ), and t ∈ rP (Y ).

If ]A,X[ and ]s, t[ cross, then A is the only possible unlocker of X, contradicting A → Y .
If ]A,X[ and ]s, t[ do not cross, then A ∈ (sX)+, i.e. A hides X and, once again only A can

unlock X, contradicting A → Y .
It follows that A is in K. Without loss of generality, assume that A < Y , i.e. {A} = l(Y ).

The proof splits in two cases.

Case 1. A = X. Consider any P ∈ F locking Y . We have lP (Y ) = {X}, hence X ∈ P ,
hence P does not lock X. By Lemma 5.18, P must lock Z.

Step 1: The point Z is visible.
By contradiction, if Z is hidden, then it is hidden by xm, the last point of L, hence xm → Z.

Besides, since Y is visible, we have t ∈ C(Y, xm, Z). Since P̃0 ⊂ (Y Z)−, this implies t ∈
conv(xm, Y, Z). Since X,Z ∈ K ⊂ (st)+, we also have s ∈ (tZ)+ ∩ (Xt)−, hence s ∈ (xmZ)+.
If s were in (xmX)−, then X would be hidden by xm, hence xm would be the only possible
unlocker of X, contradicting xm → Z, therefore s ∈ (xmX)+ ∩ (xmZ)+.

Since P locks Z, there exist U, V ∈ P \ P0 and x ∈ P̃0 \ P such that ]x, Z[ and ]U, V [ cross.
Without loss, we assume U ∈ (xmZ)+ and V ∈ (xmZ)− (we cannot talk about lP (Z) and rP (Z)
because these categories are defined for visible points only).

We necessarily have x = xm, otherwise removing xm would not unlock Z, hence xm /∈ P .
We have xm ∈ cP (Y ) and s ∈ (xmY )+, hence s /∈ P (otherwise s would be in lP (Y ) = {X}).
Now the proof splits in two cases: U = X or U 6= X.
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If U = X, then V ∈ rP (Y ) ⊂ C(xm, X, Y ), hence V ∈ C(xm, X, Y ) ∩ (xmZ)−. Since ]s, Y [
and ]X,V [ cross, this implies that ]s, Z[ and ]X,V [ cross. To sum up, we have X,V ∈ P \ P0,

s ∈ P̃0 \ P , Z /∈ P̃0 ∪ P , and ]s, Z[∩ ]X,V [ 6= ∅, therefore, if we remove xm, Z is still locked by
P , a contradiction with xm → Z.

If U 6= X, then U ∈ rP (Y ) ⊂ (xmY )− ∩ C(xm, X, Y ). Since U ∈ (xmZ)+, this implies
U ∈ conv(xm, Y, Z), hence, by Lemma 5.16 (iii), U = s or t, hence U = t since s ∈ (xmY )+.

Now we have X < Z, hence ]s, Z[∩ ]t,X[ 6= ∅ with t,X ∈ P \ P0, s ∈ P̃0 \ P , and Z /∈ P̃0 ∪ P ,
hence removing xm would not unlock Z.

If U ∈ (xmY )+, then U ∈ lP (Y ) hence U = X.

Step 2: We have lP (Y ) = lP (Z), cP (Y ) = cP (Z), and lP (Y ) = lP (Z).

We have cP (Y ) = P̃0 \ P = cP (Z). Since Y < Z and P̃0 ⊂ (Y Z)−, we also have lP (Y ) ⊆
lP (Z) and rP (Z) ⊆ rP (Y ). Actually, if x is any point in cP (Y ), then we have lP (Y ) ∩ rP (Z) =
(xY )+ ∩ (xZ)− ∩ (P \P0). If this set is nonempty, consider U ∈ lP (Y )∩ rP (Z) and V ∈ rP (Y ),
then ]U, V [ crosses ]x, Y [ hence V ∈ C(Y, x, Z), hence V ∈ (xZ)+, hence V ∈ lP (Z), but ]U, V [
cannot cross ]x, Z[, a contradiction.

Let us show by contradiction that lP (Z) = lP (Y ). Choose y ∈ cP (Y ). A point W ∈
lP (Z) \ lP (Y ) is in lP (Z)∩ rP (Y ), hence W ∈ C(Y, y, Z). Moreover ]X,W [ crosses ]y, Y [, hence

W ∈ conv(y, Y, Z) ∩ S \ (P̃0 ∪ {X,Y, Z}). By Lemma 5.16 (iii), it follows that W ∈ P̃0, hence
W = s or t.

If W = s then t ∈ (Xs)+ ∩ (sZ)−, hence y ∈ (st)−, hence y ∈ L, hence y hides Y , hence
y → Y , contradicting X → Y .

If W = t, then y hides Z, contradicting Z visible. This proves that lP (Z) = lP (Y ).

Because lP (Y ) and rP (Y ) form a partition of P \ P̃0, we deduce that rP (Z) = rP (Y ) as well.

Step 3: To sum up, we have lP (Z) = lP (Y ), cP (Z) = cP (Y ), and rP (Z) = rP (Y ) for all P ∈ F
that locks Y . As a consequence, we obtain l(Y ) ⊆ l(Z), r(Y ) ⊆ r(Z), and c(Y ) ⊆ c(Z). This
implies that any point unlocking Z unlocks Y , a contradiction with Corollary 5.15.

Case 2. A 6= X. Then we have A < X and, for all P ∈ F locking Y we have X /∈ P
(otherwise X would be in lP (Y ) = {A}, a contradiction). Once again, we split the proof in two
subcases.

Subcase 2.1. There exists P ∈ F locking Y such that neither s nor t is in P . In that case,
by Lemma 5.11, Y can unlock only a point Y1 in K, with a subset P1 containing neither s nor
t by Lemma 5.12. In the same way we have, for any arbitrarily large n ∈ N, n points Yi ∈ K

and n subsets Pi ∈ F such that Y1 →
P2

Y2 →
P2

. . . →
Pn

Yn, with s, t /∈ Pi for all i ∈ {1, . . . , n}. Now

Lemma 5.14 shows that all these points are different, a contradiction with T finite.

Subcase 2.2. For all P ∈ F locking Y we have either s ∈ P or t ∈ P (or both). Observe
that, for any P ∈ F , if s ∈ P then s ∈ rP (Y ) (since lP (Y ) = {A}). Because ]A, s[∩ ]t, Y [ = ∅,
it follows that t cannot belong to cP (Y ), hence t ∈ P . As a consequence, in this case 2.2 we
have in fact t ∈ rP (Y ) for all P ∈ F locking Y .

Now, cP (Y ) ⊂ C(A, Y, t) ∩ (At)− \ (AX)+ (otherwise A would be in C(X)), hence any P

locking Y locks X, with cP (Y ) = cP (X) (= P̃0 \ P ), lP (X) ⊆ lP (Y ), and rP (Y ) ⊆ rP (X)

(because X < Y and P̃0 ⊂ (XY )−). Nevertheless, we have A → Y , hence lP (Y ) = {A}, and
lP (X) 6= ∅, therefore we obtain lP (X) = lP (Y ), hence also rP (X) = rP (Y ).

Since this is true for any P ∈ F locking Y , we obtain as before l(Y ) ⊆ l(X), r(Y ) ⊆ r(X),
and c(Y ) ⊆ c(X), hence any point unlocking X unlocks Y , a contradiction with Corollary 5.15.
�
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5.9 A first analysis of the orbits

A priori we have little knowledge on the unlocking relation → on S \T, but we know that, in
restriction to T, it is bijective. In the sequel, we analyze the possible orbits of the map → in T.

Lemma 5.19. (i) If x, y ∈ L are such that y → x, then x and y are consecutive for the order
on L.

(ii) Similarly, if X,Y ∈ K are such that Y → X, then X and Y are consecutive for the order
on K.

Proof. (i) Assume without loss that x < y. Consider P ∈ F that locks x. By Corollary 5.5,
we have either {y} = rP (x) or {y} = lP (x) and by Lemma 5.9 (i), {y} = rP (x). Let z denote
the successor of x for the order on L. We have to show that y = z. By contradiction, assume
that y 6= z; Then we have z < y, hence z ∈ (xy)−. Since {y} = rP (x), the line below (12)

implies (P̃0 \ P ) ∩ (xy)− = ∅, hence z ∈ P . A segment ]v, y[ with v ∈ lP (x) splits conv(P ) into
two connected components. The point v is in (xy)+ but not in (zy)−, otherwise y would not

be an extreme point of P̃0, contradicting Proposition 5.7 (i). It follows that the points x and
z are both in (vy)−, and therefore the connected component that contains x also contains z.
First, it follows that P also locks z and that cP (z) = cP (x). Next, one has v, y ∈ (xz)+ and
]x, U [∩ ]v, y[ 6= ∅ for all U ∈ cP (x), hence cP (x) ⊂ (xz)+. Since for any U ∈ cP (x) there is no

point of P̃0 \ P in (xU)− ∩ (zU)+, we have lP (z) = lP (x) and rP (z) = rP (x).
To sum up, we have lP (z) = lP (x), cP (z) = cP (x), and rP (z) = rP (x) for all P ∈ F that

locks x. As a consequence, we obtain l(x) ⊆ l(z), r(x) ⊆ r(z), and c(x) ⊆ c(z). This implies
that any point unlocking z unlocks x, a contradiction with Corollary 5.15.

(ii) Without loss, assume thatX < Y and let P be any element of F lockingX. By Corollary 5.5
and Lemma 5.9 (ii), we have {Y } = rP (X). Let Z denote the successor of X for the order on
K. We have to prove that Y = Z. By contradiction, we assume Y 6= Z.

By Proposition 5.17, we have Z ∈ (XY )+, hence, by the very end of Proposition 5.3, Z /∈ P
otherwise we would have Z ∈ rP (X) = {Y }. We prove below that P locks Z.

Case 1. s /∈ P . Therefore s ∈ cP (X). Choose V ∈ lP (X). Since V ∈ C(X,Y, s) ∩ (sX)+ and
Z ∈ C(X, s, Y ), the segment ]V, Y [ cuts the segment ]s, Z[, hence P locks Z.

Case 2. s ∈ P . Since rP (X) = {Y }, we then have s ∈ lP (X). Choose u ∈ cP (X). Since]u,X[
crosses ]s, Y [, we have u ∈ (sY )−. Since Z ∈ C(X, s, Y )∩ (XY )+, and since Y /∈ C(s, Z, u), the
segment ]s, Y [ cuts the segment ]u, Z[, hence P locks Z.

Now we conclude as in case (i): For all P ∈ F locking X, P locks Z, with lP (Z) =
lP (X), cP (Z) = cP (X), and rP (Z) = rP (X). Indeed, for any u ∈ cP (X) we have lP (X) ⊂
C(u, Y,X) ∩ (uX)+ ⊂ (uZ)+, hence lP (X) ∩ rP (Z) = ∅, hence ∅ 6= rP (Z) ⊆ rP (X) = {Y },
hence rP (Z) = rP (X), hence lP (Z) = lP (X), too. It follows that l(x) ⊆ l(z), r(x) ⊆ r(z), and
c(x) ⊆ c(z), therefore any point unlocking Z unlocks X, a contradiction with Corollary 5.15.

Lemma 5.20. If x, y ∈ T are such that y → x, then x 6→ y.

Proof. Assume by contradiction that x → y → x. Exchanging the roles of x and y if necessary,
the proof splits in four cases, depending whether x and y are both in L or both in K, or x ∈ L

unlocks y ∈ K by compatibility or x ∈ L unlocks y ∈ K by convexity. For the first three cases,
let P, P ′ ∈ F be such that x →

P
y →

P ′

x.

Case 1. x, y ∈ L. To fix ideas, we suppose x < y. By Lemma 5.9, we have lP (y) = {x} and
rP ′(x) = {y}.

Subcase 1.1. There exists z ∈ (P ∩ P ′) \ P0 = cP (y) ∩ cP ′(x). Let u ∈ rP (y) and v ∈ lP ′(x).
Since ]y, z[⊂ (xz)− and ]x, u[ crosses ]y, z[, u is in (xz)−. It follows that u ∈ P ′, otherwise u
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would be in rP ′(x) = {y}. In the same way, we have v ∈ P . Now ]x, u[ cuts ]y, v[, a contradiction
with P and P ′ compatible.

Subcase 1.2. There exists z ∈ P \(P0∪P ′) = cP (y)\cP ′(x). Let u ∈ rP (y). By compatibility
of P and P ′, u cannot be in P ′, hence u ∈ lP ′(x). Let w ∈ cP ′(x). We have w ∈ (yu)− and
u ∈ rP (y), hence w cannot be in cP (y), hence w /∈ P . Now ]x,w[ cuts ]y, z[, a contradiction
with P and P ′ compatible.

Case 2. x < y ∈ K. By Lemma 5.13, s and t are in P ∩ P ′. This means that s, t ∈
lP ′(x) ∩ rP (y). Let u ∈ cP (y) and v ∈ cP ′(x). Since x ∈ (uy)+ and s ∈ (uy)−, the segment
]u, x[ does not cross the segment ]s, y[. It follows that u /∈ cP ′(x), hence u ∈ P ′. The same way
of reasonning gives v ∈ P . Since ]v, x[ and ]u, y[ cross opposite sides of the quadrilateral styx,
these two segments cross, a contradiction with P and P ′ compatible.

Case 3. x ∈ L unlocks y ∈ K by compatibility. We have cP (y) = {x}, hence s, t ∈ P , and
cP ′(x) = {y}, hence s, t /∈ P ′. Since y is not locked by convexity, we also have ]s, t[∩ ]x, y[ 6= ∅,
a contradiction with P and P ′ compatible.

Case 4. x ∈ L unlocks y ∈ K by convexity. In this last case, Remark 5.6 holds (with x in
the role of y and y in the role of X). Without loss of generality, we suppose that x = x1 and
y ∈ V (x2) \ V (x1) (or simply y /∈ V (x1) in the case m = 1). Let P ′ ∈ F be such that y →

P ′

x.

We obtain
∅ 6= lP ′(x) ⊆ (xy)+ ∩ P̃0 ⊆ (xs)+ ∩ P̃0 = ∅,

a contradiction.

As a consequence of the two preceding lemmas, an orbit of → cannot stay always in L or
always in K, but has to pass alternatively from L to K and from K to L. These transitions are
consistent with the order relations on L and K, as the following result shows.

Lemma 5.21. Let x < y ∈ L and X,Y ∈ K.

(i) If x → X and y → Y , then X < Y .

(ii) Similarly, if X → x and Y → y, then X < Y .

Proof. (i) Firstly, assume that x unlocks X by convexity, hence x = x1 and X ∈ V (x2) \V (x1).
If Y were in V (x2) \ V (x1), then Y would be hidden by x, hence not unlocked by y. Therefore
Y is on the right of X, see Figure 15 left. The case y unlocks Y by convexity is the same one.

s

X
Y

t ts

Y
X Y

X

x yy
x

x

P '
P '

P

P

s t

Figure 15: Proof of Lemma 5.21.

Assume now that x and y unlock X and Y by compatibility, and let P, P ′ ∈ F be such that
x →

P
X and y →

P ′

Y . We have cP (X) = {x} and cP ′(Y ) = {y}, hence s, t ∈ P ∩ P ′. We also

have Y ∈ P , otherwise Y would be locked by P (with s ∈ lP (Y ), x ∈ cP (Y ), and t ∈ rP (Y )),
contradicting y → Y . Similarly, we have X ∈ P ′. To sum up, we have [x,X] ⊂ conv(P ′ \ P ),
[y, Y ] ⊂ conv(P \ P ′) and x < y. The compatibility of P and P ′ then implies X < Y , see
Figure 15 middle.

(ii) In the same way, if X →
P

x and Y →
P ′

y, then x,X ∈ P \ P ′, y, Y ∈ P ′ \ P , hence
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]x,X[∩ ]y, Y [ = ∅ by compatibility of P and P ′, therefore x < y implies X < Y , see Figure 15
right.

Lemma 5.22. Let y ∈ L, Y1 < Y2 ∈ K, and P ∈ F be such that y → Y1 →
P

Y2. Then s /∈ P (if

Y1 > Y2, then t /∈ P ).

Proof. By contradiction, we assume that s ∈ P . Since lP (Y2) = {Y1}, we have s ∈ rP (Y2).

Case 1. Y1 is locked by convexity. Since Y1 < Y2, we have y = x1, Y1 ∈ (x1s)
+, and

Y2 ∈ (x1s)
−. Then we have

∅ 6= cP (Y2) ⊆ C(s, Y2, Y1) ∩ (sY1)
+ ∩ P̃0 ⊆ (x1s)

+ ∩ P̃0 = ∅,

a contradiction.

Case 2. y unlocks Y1 by compatibility. Let Q ∈ F locking Y1. We have y ∈ (sY1)
−, hence

y /∈ cP (Y2), hence y ∈ P .
Choose u ∈ cP (Y2), hence u 6= y. Since cQ(Y1) = {y}, we have s, u ∈ Q. Since Y2 /∈

C(s, Y1, y) and ]s, Y1[∩ ]u, Y2[ 6= ∅, ]y, Y1[ crosses ]u, Y2[. By compatibility of P and Q, it follows
that Y2 /∈ Q.

Now choose V ∈ rQ(Y1). We prove below that ]s, V [ and ]y, Y2[ cross. Since s ∈ lQ(Y1),
we have V ∈ C(Y1, s, y). Since Y1 < Y2 and y∈ L, we also have Y2 ∈ C(Y1, s, y). By
Lemma 5.19 (ii), Y1 and Y2 are consecutive for the order on K. By Lemma 5.16 (ii), it follows
that V /∈ conv(s, Y1, Y2).

If V were in C(Y1, s, Y2) ∩ (uY1)
+, then Y1 would be in conv(s, u, V ) ⊆ conv(Q), a contra-

diction with Y1 /∈ Q.
If V were in C(Y1, s, Y2)∩ (uY1)

−, then ]u, V [ would cross ]y, Y1[, hence, by compatibility of
P and Q, V would be in P , hence in lP (Y2), contradicting Y1 → Y2.

To sum up, we have V ∈ C(Y1, s, y) \ C(Y1, s, Y2), hence V ∈ C(Y2, s, y). Moreover V /∈
conv(s, y, Y2), otherwise Y2 would be hidden, therefore ]s, V [ and ]y, Y2[ cross.

Since y ∈ P̃0 \Q and s, V ∈ Q \ P0, we obtain that Y2 is locked by Q, in contradiction with
Y1 → Y2.

Lemma 5.23. The orbits of the map → are of the form

y1 → y2 → · · · → yn → Y1 → Y2 → · · · → YN → y1

with n,N ≥ 1, the yi consecutive in L, and the Yi consecutive in K.

Proof. Consider an orbit of →. Recall that, by Lemmas 5.19 and 5.20, this orbit cannot stay
entirely in L or in K. We have to show that it makes exactly one round trip between K and L.
Let → y1 → y2 → · · · → yn → be a maximal portion in L. From Lemma 5.19 (i), it is formed
of consecutive points. Suppose y1 < y2 < · · · < yn to fix ideas. Let Y1 ∈ K be unlocked by yn
and Y1 → · · · → YN → be the maximal portion of orbit in K beginning with Y1. They are also
consecutive by Lemma 5.19 (ii). Finally, let y ∈ L be unlocked by YN . We have to show that
y = y1. Notice that y /∈ {y2, . . . , yn} by injectivity of →.

By contradiction, if y 6= y1, two cases are possible. If y < y1, then the portion of the orbit in
L beginning with y is made of consecutive points, none of them being y1, hence entirely on the
left of y1. When this orbit returns inK, it is at a point on the left of Y1 by Lemma 5.21 (i). In the
same manner, the portion of orbit in K is on the left of Y1, . . . , YN , hence, by Lemma 5.21 (ii),
when it returns in L it is on the left of y, hence of y1. In this manner, all the sequel of the orbit
in L remains on the left of y1, preventing the orbit to close, see Figure 16. The case y1 < y is
similar, replacing ‘left’ by ‘right’.
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Figure 16: Proof of Lemma 5.23.

5.10 End of proof of Theorem 3.7

Notation: K̃ = K ∪ {s, t} and L̃ = L ∪ {s, t}.
It remains to prove that orbits of →, as described in Lemma 5.23, are impossible. Up to now
it is possible that several orbits coexist. Consider an orbit (with yi ∈ L and Yi ∈ K)

y1 →
P1

y2 →
P2

· · · →
Pn−1

yn →
Q

Y1 →
P ′

1

Y2 →
P ′

2

· · · →
P ′

N−1

YN →
Q′

y1.

All unlockings are by compatibility, except possibly yn → Y1. In that case, by convention, the
notation yn →

Q
Y1 stands for yn → Y1. By symmetry, we assume without loss that y1 < y2 <

· · · < yn. The orbit is called crossed, if n,N ≥ 2 and Y1 < Y2 < · · · < YN ; Otherwise it is called
uncrossed. Observe that, if the orbit is uncrossed, then yn can unlock Y1 by compatibility or
by convexity, but if the orbit is crossed then yn must unlock Y1 by compatibility.

Because x → y → x is impossible, one cannot have at the same time n = N = 1. We will
prove that the assumption n ≥ 2 implies N ≥ 2 and, symmetrically, that N ≥ 2 implies n ≥ 2.

We first assume that n ≥ 2. The proof is divided in several steps.

Step 1. We have s ∈ P1.

Proof. Otherwise, we have s ∈ rP1
(y2). Consider some Y ∈ cP1

(y2). We have YN ∈ (y2s)
− hence

YN /∈ cP1
(y2), therefore YN /∈ P1. As a consequence, we have YN , y1 ∈ Q′ \ P1, Y ∈ P1 \ Q′,

and y2 ∈ P1. Since YN is unlocked by a point which is not y1, we have YN ∈ (y1s)
−, hence

]YN , y1[∩ ]Y, y2[ 6= ∅. Together with the compatibility of Q′ and P1, this implies y2 ∈ Q′. Since
YN ∈ (y1s)

− and s /∈ Q′, we have s ∈ lQ′(y1). Let z ∈ rQ′(y1). We have ]YN , y1[∩ ]s, z[ 6= ∅.
Since z /∈ Q′, we also have z /∈ conv(y1, y2, YN ). Since y1 and y2 are consecutive, this implies
]YN , y2[∩ ]s, z[ 6= ∅. By Remark 5.2, Q′ locks y2, in contradiction with y1 → y2.

Step 2. We have P1 ∩ K̃ ⊆ P2 ∩ K̃ ⊆ · · · ⊆ Pn−1 ∩ K̃.

Proof. If n = 2, there is nothing to prove. Otherwise, consider i ∈ {1, ..., n− 2}. We first prove
by contradiction that yi+2 /∈ Pi. Otherwise we have yi+2 /∈ rPi

(yi+1). Consider X ∈ cPi
(yi+1)

and x ∈ rPi
(yi+1); Then we have

conv(X, yi+1, yi+2) ⊆ conv(Pi) and ]yi+1, X[∩ ]yi, x[ 6= ∅.

Since yi, yi+1, yi+2 are consecutive, the quadrilateral yiyi+1yi+2x is convex in this order, hence
we have ]yi+2, X[∩ ]yi, x[ 6= ∅, therefore Pi would lock yi+2, contradicting yi+1 → yi+2.

We now prove that yi ∈ Pi+1, again by contradiction. Otherwise, since lPi+1
(yi+2) = {yi+1},

we have yi ∈ rPi+1
(yi+2). Let X ′ ∈ cPi+1

(yi+2). We have ]yi+2, X
′[∩ ]yi, yi+1[ 6= ∅, hence

yi /∈ (yi+1X
′)+. Since lPi

(yi+1) = {yi}, by Proposition 5.3 (i) we have yi ∈ (yi+1Y )+ for all Y ∈
cPi

(yi+1), hence X ′ /∈ cPi
(yi+1), hence X ′ /∈ Pi. Now let X ′′ ∈ cPi

(yi+1). In the same manner,
we have X ′′ ∈ (yiyi+1)

+, hence X ′′ ∈ (yiyi+2)
+, hence X ′′ /∈ cPi+1

(yi+2), hence X ′′ /∈ Pi+1.
To sum up, we have X ′, yi+2 ∈ Pi+1 \ Pi, X

′′, yi+1 ∈ Pi \ Pi+1 and ]X ′′, yi+1[∩ ]X ′, yi+2[ 6= ∅,
contradicting Pi and Pi+1 compatible. This proves that yi ∈ Pi+1.

Altogether, one has yi, yi+2 ∈ Pi+1 \ Pi, yi+1 ∈ Pi \ Pi+1, and ]Y, yi+1[∩ ]yi, yi+2[ 6= ∅ for all
Y ∈ K̃. Since Pi and Pi+1 are compatible, this implies Pi ∩ K̃ ⊆ Pi+1 ∩ K̃.

A consequence of Steps 1 and 2 is that s ∈ Pn−1.

Step 3. We have YN ∈ P1.
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Proof. As in Step 1, we have YN ∈ (y1s)
−, and we see that y2 ∈ Q′ would imply Q′ locks y2,

contradicting y1 → y2. It follows that s, y2 ∈ P1\Q
′, y1 ∈ Q′\P1, YN ∈ Q′, and ]s, y2[∩ ]y1, YN [ 6=

∅. The compatibility of P1 and Q′ now implies YN ∈ P1.

Step 4. We have Y1 /∈ Pn−1.

Proof. Two cases occur: yn unlocks Y1 by convexity or by compatibility.
If yn unlocks Y1 by convexity, then yn = xm, the last point of L. Let z ∈ rPn−1

(yn).

We have s ∈ Pn−1 ∩ K̃ ⊆ cPn−1
(yn) ⊂ (ynz)

+. Because yn = xm and t are two consecutive

extreme points of conv(P̃0), we have z = t or z ∈ (ynt)
+. Since s ∈ (ynt)

+ ∩ (ynz)
+, we have

(ynt)
− ∩ (st)+ ⊆ (ynz)

−. Therefore the point Y1, which is in (ynt)
− ∩ (st)+, is also in (ynz)

−.
This implies Y1 /∈ Pn−1, see Figure 17 left.

If yn unlocks Y1 by compatibility, with a subset Q ∈ F , then one has {yn} = cQ(Y1) = P̃0\Q.
Let z ∈ rPn−1

(yn) (z = t is possible). One has yn−1, z ∈ Q \ Pn−1, yn ∈ Pn−1 \Q, Y1 /∈ Q, and
]yn−1, z[∩ ]yn, Y1[ 6= ∅. By compatibility of Pn−1 and Q, we deduce Y1 /∈ Pn−1, see Figure 17
right.

s

xm-1

yn-1

yn

t s t

z

Pn-1

Pn-1

Q

yn=xm

Y1

Y1

Figure 17: Proof of Step 4.

These first four steps can be summarized in the following formula

s, YN ∈ P1 ∩ K̃ ⊆ P2 ∩ K̃ ⊆ · · · ⊆ Pn−1 ∩ K̃ 6∋ Y1. (16)

As a consequence, one has Y1 6= YN , hence N ≥ 2, as announced at the beginning of the
subsection. From now on, we no longer assume n ≥ 2.

Step 5. Symmetrically, we have

yn /∈ P ′
1 ∩ L̃ ⊇ P ′

2 ∩ L̃ ⊇ · · · ⊇ P ′
N−1 ∩ L̃ ∋ y1. (17)

Moreover, in the case of a crossed orbit, we have s /∈ P ′
1 and, in the case of an uncrossed orbit,

we have t /∈ P ′
1. As a consequence, we have y1 6= yn, hence n ≥ 2.

The proof of Step 5 follows the same lines as those of the first four steps. However, since
there are some differences, we prefer to give a complete proof. We divide it in four substeps,
corresponding to Steps 1 to 4 above.

Substep 5.1. If the orbit is crossed, then s /∈ P ′
i for all i = 1, . . . , N . If the orbit is uncrossed,

then t /∈ P ′
i for all i = 1, . . . , N . This follows from Lemma 5.22 and Lemma 5.12.

Substep 5.2. We have P ′
1 ∩ L̃ ⊇ P ′

2 ∩ L̃ ⊇ · · · ⊇ P ′
N−1 ∩ L̃.
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Proof. We consider the case of an uncrossed orbit; The case of a crossed orbit is similar. If
N = 2, then there is nothing to prove. Otherwise, consider i ∈ {1, . . . , N − 2}.

We first prove that Yi /∈ P ′
i+1. By the definition of the order in K, we have Yi ∈ (tYi+2)

−

and, by Substep 5.1, t ∈ cP ′

i+1
(Yi+2), hence Yi cannot be in lP ′

i+1
(Yi+2). Since rP ′

i+1
(Yi+2) is

reduced to Yi+1, we deduce that Yi /∈ P ′
i+1.

We now prove by contradiction that Yi+2 ∈ P ′
i . Choose X ∈ lP ′

i
(Yi+1) and Z ∈ lP ′

i+1
(Yi+2).

By Lemma 5.16 (ii),X cannot be in conv(t, Yi+1, Yi+2). It follows that, either ]Yi+1, Z[∩ ]X,Yi[ 6=
∅, or ]t, Yi+2[∩ ]X,Yi[ 6= ∅. In the latter case, Pi would lock Yi+2, a contradiction with Yi+1 →
Yi+2, hence we have ]Yi+1, Z[∩ ]X,Yi[ 6= ∅.

Suppose that X ∈ P ′
i+1. Then, since rP ′

i+1
(Yi+2) = {Yi+1}, we would have X ∈ lP ′

i+1
(Yi+2) ⊂

(tYi+2)
+. Since Yi+2 ∈ (XYi+1)

−, this implies Yi+2 ∈ conv(X,Z, Yi+1) ⊆ conv(Pi+1), a contra-
diction with Yi+2 /∈ Pi+1. Therefore we have X /∈ P ′

i+1.
Now the compatibility of P ′

i and P ′
i+1 implies that Z ∈ P ′

i and therefore Z ∈ lP ′

i
(Yi+1). It

follows that P ′
i locks Yi+2, a contradiction. This proves that Yi+2 ∈ P ′

i .

Finally, we prove that P ′
i+1 ∩ L̃ ⊆ P ′

i ∩ L̃. Otherwise, choose u ∈ (P ′
i+1 \ P ′

i ) ∩ L̃. By
Proposition 5.17 we have ]u, Yi+1[∩ ]Yi, Yi+2[ 6= ∅, contradicting the compatibility of P ′

i and
P ′
i+1.

Substep 5.3. We have y1 ∈ P ′
N−1.

Proof. We consider the case of an uncrossed orbit; The case of a crossed orbit is similar. By
Substep 5.1, t is in none of the P ′

i . Since YN →
Q′

y1, by Lemma 5.11 we have s ∈ P ′
N−1. To sum

up, we have y1 ∈ Q′, YN ∈ Q′ \ P ′
N−1, s, YN−1 ∈ P ′

N−1 \Q
′, and ]y1, YN [∩ ]s, YN−1[ 6= ∅, hence,

by compatibility of P ′
N−1 and Q′, y1 /∈ P ′

N−1.

Substep 5.4. We have yn /∈ P ′
1.

Proof. We consider the case of an uncrossed orbit; The case of a crossed orbit is similar. By
Step 4, we have Y1 /∈ Pn−1.

If yn unlocks Y1 by convexity, then choose X ∈ lP ′

1
(Y2). By Substep 5.1, we have t /∈ P ′

1,

hence t ∈ cP ′

1
(Y2), hence X ∈ C(t, Y1, Y2) ∩ (tY2)

+. We also have yn ∈ (tY1)
− ∩ (tY2)

+, hence
t ∈ conv(X,Y1, yn). Since t /∈ P ′

1, this implies yn /∈ P ′
1.

If yn unlocks Y1 by compatibility, with a subset Q ∈ F , then {yn} = cQ(Y1) = P̃0 \ Q,
s, t ∈ Q, s ∈ lQ(Y1), and t ∈ rQ(Y1). If Y2 were not in Q, then Q would lock Y2, contradicting
Y1 → Y2, hence Y2 ∈ Q \ P ′

1. By Substep 5.1, we also have t /∈ P ′
1. To summarize, we have

Y2 ∈ Q \ P ′
1, Y1 ∈ P ′

1 \Q, yn /∈ Q, and ]yn, Y1[∩ ]t, Y2[ 6= ∅, hence yn /∈ P ′
1 by compatibility of Q

and P ′
1.

Step 6. Once again, we distinguish the cases of a crossed or an uncrossed orbit.

Substep 6.1. In the case of a crossed orbit, we prove below by induction that, for all i ∈
{1, . . . , n}, one has yi ∈ P ′

1, in contradiction with (17).
By (17), the property is satisfied for i = 1. If the property is satisfied for i < n, then we

have yi < yi+1. Since the orbit is crossed, Y1 is not locked by convexity, hence the quadrilateral
syiyi+1Y1 is convex, hence ]s, yi+1[∩ ]Y1, yi[ 6= ∅; We also have Y1, yi ∈ P ′

1 \ Pi, s ∈ Pi \ P
′
1 and

yi+1 ∈ Pi. The compatibility of P ′
1 and Pi then implies yi+1 ∈ P ′

1.

Substep 6.2. In the case of an uncrossed orbit, we look for i < n (i.e. i ∈ {1, . . . , n − 1})
and I < N such that the subsets Pi and P ′

I are incompatible. We already have, for all i < n
and all I < N , yi < yi+1 and YI+1 < YI , hence the pentagon syiyi+1YIYI+1 is convex, hence
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]yi, YI [∩ ]yi+1, YI+1[ 6= ∅. One also has yi /∈ Pi, yi+1 ∈ Pi, YI ∈ P ′
I and YI+1 /∈ P ′

I . Therefore we
look for i < n and I < N such that

yi ∈ P ′
I , yi+1 /∈ P ′

I , YI /∈ Pi, YI+1 ∈ Pi. (18)

For I < N , set f(I) = max{i < n ; ∀k ≤ i, yk ∈ P ′
I}. Since y1 ∈ P ′

I and yn /∈ P ′
I , one has

yf(I) ∈ P ′
I et yf(I)+1 /∈ P ′

I . Similarly, for i < n, let g(i) = max{I < N ; ∀k ≤ I, Yk /∈ Pi}.
Because Y1 /∈ Pi and YN ∈ Pi, we have Yg(i) /∈ Pi and Yg(i)+1 ∈ Pi. Using (16), resp. (17),
it is straightforward that f is nonincreasing from {1, . . . , N − 1} to {1, . . . , n − 1}, resp. g is
nonincreasing from {1, . . . , n− 1} to {1, . . . , N − 1}. Then the product f ◦ g is a nondecreasing
map from the finite set {1, . . . , n − 1} into itself, and thus has at least one fixed point i. The
pair (i, I) with I = g(i) satisfies (18), yielding Pi and P ′

I incompatible; This completes the proof
of Theorem 3.7.

6 Miscellaneous related results and remarks

6.1 Cake number and VC-dimension

Given integers m,n ≥ 1, the cake number c(m,n) is the maximal number of pieces obtained by
cutting an m-dimensional cake in n cuts, i.e. the maximal number of connected components
of Rm \ ∪n

i=1Hi, where Hi are affine hyperplanes of Rm. It is known that c(m,n) =
∑m

k=0

(
n
k

)

(with the convention
(
n
k

)
= 0 if n < k, hence c(m,n) = 2n if n ≤ m), see e.g. [17, 20] in the

case m = 3, and [11, 21, 22] in the general case. It is noticeable that the bound is reached for
any configuration of hyperplanes in general position, i.e. when the intersection of any m+ 1 of
them is empty.

The cake number also appears in the theory of VC-dimension introduced by Vapnik and
Chervonenkis in [19]. Given a finite set S and a family F of subsets of S, a subset A of S is
said to be shattered by F if, for every subset B of A, there exists T ∈ F with B = T ∩A. The
maximal size of a subset of S shattered by F is called the VC-dimension of F . The fundamental
result of this theory (see also [14, 16]) is the following: If F has VC-dimension at most d, then
|F| ≤ c(d, |S|). An example of family reaching the bound is the family of all subsets of S of size
at most d.

We recall the following result of Buzaglo, Holzman, and Pinchasi, Theorem 7 of [4], already
mentioned in our introduction. Let S ⊂ R2 be a finite set and let F be a family of subsets of
S separable by Jordan curves (γi)1≤i≤|F|. Let s ≥ 2 be an even integer. If any two curves γi, γj
intersect properly at most s times and if disk(γi) ∩ disk(γj) is either empty or connected, then
F has VC-dimension at most s+ 1.

Observe that, in the case of pseudo-circles, convex or not, the condition disk(γi) ∩ disk(γj)
empty or connected is automatically satisfied. A nontrivial consequence of this result and of
Example 1 of the forthcoming Section 6.2 is that a maximal family of subsets of S separable by
circles is also maximal for pseudo-circles, when S is in general position.

Let us mention a short proof that a family F separable by convex pseudo-circles has VC-
dimension at most 3, i.e. that a subset A = {p, q, r, s} of four points of S cannot be shattered
by F . Two cases occur. If the points are not in convex position, then one of the points, say
p, is in the convex hull of q, r, s and the set {q, r, s} cannot be written as A ∩ T with T ∈ F .
Otherwise the two diagonals, say [p, r] and [q, s], intersect. By Proposition 2.4, the subsets
{p, r} and {q, s} cannot be written as A ∩ T1, resp. A ∩ T2 with T1, T2 convex and compatible.
We will generalize this proof in arbitrary dimension in Section 6.3.

6.2 Separation by functions

In this section we link the cake number with the number of subsets of a finite set S that are
separable by circles or by more general kinds of lines.
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It is well-known and relatively easy to prove that the total number of subsets separable by
circles is O(n3). The exact value, however seems to be known only by specialists. We found
only one reference from which the number c(3, n), even if not explicitely written, can be quickly
deduced: the proof of Lemma 13 in [9].

Here S denotes a finite subset of n elements of an arbitrary set X. In our applications X
will be the euclidean plane or space.

Instead of dealing with affine hyperplanes of Rm, we will consider linear hyperplanes of Rd

with d = m+ 1, i.e. hyperplanes containing the origin ~0. A collection of linear hyperplanes of
Rd are said to be in general position if the intersection of any d of them is {~0}.

Let E be a d-dimensional subspace of RX , the vector space of functions from X to R. We
fix a non-zero linear form l : E → R and we consider the open half-space E+ of E defined by

E+ = {f ∈ E ; l(f) > 0}.

A subset A of S is said to be separable by E+ if there exists f ∈ E+ which is negative on A
and positive on S \A. Notice that a separating function cannot vanish on S.

The following result gives the number of subsets of S that are separable by E+. For each
x ∈ X, lx denotes the linear form lx : E → R, f 7→ f(x). The set S is said to be in general
position relatively to E+ if the linear forms lx, x ∈ S, are all non-zero and if the n+1 hyperplanes
H = {l = 0} and Hx = {lx = 0} are in general position.

Theorem 6.1. If S is in general position relatively to E+, then the number of subsets of S that
can be separated by E+ is exactly c(d− 1, n) =

∑d−1
k=0

(
n
k

)
. In the degenerate cases, this number

is at most c(d− 1, n).

Proof. We first prove that, in both cases, the number of subsets of S separable by E+ is the
number of connected components of P = E+ \ ∪x∈SHx. Precisely we prove that two functions
separate the same subset of S if and only if they belong to the same connected component of
P .

Let f, g ∈ E+ be in the same connected component of P , denoted by Q. Let γ : [0, 1] → Q
be a path in Q joining f to g. For each x ∈ S and any t ∈ [0, 1], we have γ(t) /∈ Hx, i.e.
lx(γ(t)) 6= 0. By continuity of lx, the sign of lx(γ(t)) is constant, hence the signs of lx(f) = f(x)
and of g(x) are the sames, therefore f and g separate the same subsets of S.

Conversely, if f and g separate the same subsets of S then, for all x ∈ S, f(x) and g(x) have
the same sign, hence the function

t ∈ [0, 1] 7→ lx((1− t)f + tg) = (1− t)f(x) + tg(x)

does not vanish. This yields a path γ from f to g within P , namely γ(t) = (1−t)f+tg, showing
that f and g are in the same connected component of P .

Now consider the intersection of P with the affine hyperplane H1 = {l = 1}. The connected
components of P are in bijection with the connected components of H1 \ ∪x∈SHx. Conversely
any configuration of affine hyperplanes in Rd−1 can be seen as the intersection of a configuration
of linear hyperplanes in Rd, and the properties of general position correspond. This establishes
the link with the usual (d− 1)-dimensional cake number, see e.g. [22].

Examples. 1. Let X = R2 and E be the set of polynomial functions of the form f(x, y) =
a(x2 + y2) + bx+ cy+ d. If we choose l(f) = a then, for any f ∈ E+, the subset of S separated
by f is S ∩ U , where U is the disk bounded by the circle of equation f(x, y) = 0. Since E has
dimension 4, this proves that the number of subsets of S separable by circles is at most c(3, n)
in the general case, and that this bound is attained if the points of S are in general position
relatively to E+, i.e. no three of them collinear and no four of them cocyclic. In Section 6.3,
this example will be generalized in arbitrary dimension.
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2. A natural generalization is to choose any strictly convex function h : R2 → R instead of
the function x2 + y2 and to consider the vector space of all functions of the form f(x, y) =
ah(x, y)+bx+cy+d, a, b, c, d ∈ R. This shows that the number of subsets of S separable by the
family of convex pseudo-circles obtained as projections on the plane xy of intersections of affine
planes with the convex surface z = h(x, y) is still equal to c(3, n), provided the points of S are in
general position (here no three collinear and no four on a same curve ah(x, y)+bx+cy+d = 0).

Observe that this kind of family of convex pseudo-circles is very particular. As Rote explains
in Har-Peled’s blog [13], if A,B,C are three such pseudo-circles, then the three lines passing
through A ∩ B, respectively B ∩ C and C ∩ A, must intersect (since they are projections of
intersections of two planes among three in R3) whereas these lines have no reason to intersect
for general convex pseudo-circles. This explains why a lifting in R3 cannot be used to prove
Theorem 3.9, as already said at the end of Subsection 5.1.

3. Once again with X = R2, let E be the set of all polynomial functions of degree at most two,
i.e. E = {f : (x, y) 7→ a1x

2 + a2xy + a3y
2 + a4x + a5y + a6 ; ai ∈ R}. The linear form l is

arbitrary, e.g. l can be the evaluation at one point p0 ∈ R2 \ S. Then the number of subsets
separable by “conical regions” containing p0 is at most c(5, n), and this bound is achieved if no
five points are collinear and no six of them are on the same conic. By “conical region”, we mean
a region, connected or not, defined by a polynomial inequality, with a polynomial of degree at
most two.

Since conics intersect at most four times, this result may be compared with the aforemen-
tioned result of Buzaglo, Holzman, and Pinchasi (recall that |F| = c(5, n) in the case s = 4),
although conics have no more the connected intersection property and are no more Jordan
curves (but they become Jordan curves in the projective plane).

6.3 Separation by convex pseudo-spheres

In this section, we first check that the separation by usual spheres satisfies Definition 1.3; Then
we prove Theorem 1.4. For the convenience of the reader, the statements are reproduced below.

Definition 1.3 Given a finite subset S of Rd, a family F of subsets of S is said to be separable
by convex pseudo-spheres if conv(T )∩S = T for all T ∈ F and conv(T \T ′)∩ conv(T ′ \T ) = ∅
for all T, T ′ ∈ F .

If a subset T of S is separated from the rest of S by a (d − 1)-dimensional sphere Σ, then
conv(T ) is in the open ball U of boundary Σ, hence T ⊆ conv(T ) ∩ S ⊆ U ∩ S = T , and
if T, T ′ ⊆ S are separated by two spheres Σ = ∂U , resp. Σ′ = ∂U ′, then conv(T \ T ′) and
conv(T ′ \T ) are separated by the hyperplane containing Σ∩Σ′ (or by an hyperplane separating
U and U ′ if U ∩ U ′ = ∅), hence do not intersect.

Theorem 1.4 Let d ≥ 2 and let S be a set of n points in Rd in general position, i.e. no
d+1 of them in the same hyperplane. Then every family F of subsets of S separable by convex
pseudo-spheres has at most c(d+1, n) =

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

d+1

)
elements. If moreover no d+2

points of S lie on a same sphere, then the bound is attained for the family of all subsets of S
separable by (d− 1)-dimensional spheres.

Proof of Theorem 1.4 We show that the VC-dimension of F is at most d+ 1, i.e. that a subset
A = {a1, a2, . . . , , ad+2} of d+ 2 points of S cannot be shattered by F . Two cases occur.

If the points of A are not in convex position, then at least one of them, say a1, is in the
convex hull of the d + 1 other points of A. By convexity, every subset T of F that contains
a2, . . . , ad+2 also contains a1, hence the set {a2, . . . , ad+2} cannot be written as A ∩ T with
T ∈ F .
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If the points of A are in convex position, then consider one facet of the polyhedron conv(A).
Assume without loss of generality that this hyperface is conv(a3, . . . , ad+2). The points a1 and a2
are in the same open half-space delimited by the hyperplane containing a3, . . . , ad+2. Consider
a point M in the same half-space, close to an interior point of the hyperface. In this manner,
we have M ∈ conv(a1, a3, . . . , ad+2)∩ conv(a2, a3, . . . , ad+2). Therefore there exist non-negative
real constants λ1, λ3, . . . , λd+2 with sum 1 and µ2, µ3, . . . , µd+2 also with sum 1, such that

M = λ1a1 + λ3a3 + · · ·+ λd+2ad+2 = µ2a2 + µ3a3 + · · ·+ µd+2ad+2.

Moreover, since M is in the open half-space, the numbers λ1 and µ2 are non-zero. We now
use the same trick as in the proof of Lemma 2.10. With the convention µ1 = λ2 = 0, set
I = {i ∈ {1, . . . , d + 2} ; λi < µi} and J = {i ∈ {1, . . . , d + 2} ; λi > µi}. These are disjoint
non-empty subsets of {1, . . . , d+2}. We then have

∑
i∈I(µi −λi)ai =

∑
i∈J(λi −µi)ai; We also

have
∑

i∈I(µi − λi) =
∑

i∈J(λi − µi) 6= 0. Denoting this quantity by κ, we obtain a point of
conv{ai ; i ∈ I} ∩ conv{ai ; i ∈ J}, namely 1

κ

∑
i∈I(µi − λi)ai. This shows that the subsets

A1 = {ai ; i ∈ I} and A2 = {ai ; i ∈ J} cannot be written as A ∩ T1, resp. A ∩ T2 with T1, T2

convex and compatible. We proved that, in both cases, A is not shattered by F .

To prove that the bound is achieved by the family of subsets separable by (d−1)-dimensional
spheres, we apply Theorem 6.1: We choose X = Rd and l : E → R, f 7→ a0, where

E = {f : (x1, . . . xd) 7→ a0(x
2
1 + · · ·+ x2d) + a1x1 + · · ·+ adxd + ad+1 ; ai ∈ R}.

This completes the proof of Theorem 1.4. �

6.4 Further remarks and questions

6.4.1. We now return to Theorem 1.2. Let S be an n-point set. For each k ∈ {1, . . . , n− 1} in
the plane, let b(k, S) denote the maximum of the sizes of all families of k-subsets of S separable
by convex pseudo-circles. Theorem 1.2 asserts that this maximum is achieved by any such
family which is maximal for inclusion, and is

b(k, S) = 2kn− n− k2 + 1−
k−1∑

i=1

ai(S).

As we know, we have
∑n

k=0 b(k, S) = c(3, n), the total size of any maximal family of subsets of
S separable by convex pseudo-circles.

A consequence is that, given an integer k ∈ {1, . . . , n − 1} and any maximal family F of
subsets of S separable by convex pseudo-circles, the family of k-subsets of F is already maximal
among all families of k-subsets of S separable by convex pseudo-circles.

We explain below why this is false without convexity. Let B(k, n) = max|S|=n b(k, S) and
B(n) =

∑n
k=0B(k, n). The table below shows the first values of B(k, n), B(n), and c(3, n). As

an example, if S1 consists of four points in convex position, then b(2, S1) = 5 and b(3, S1) =
4, whereas if S2 consists of four points, one of them in the convex hull of the others, then
b(2, S2) = 6 and b(3, S2) = 3. This explains why B(4) exceeds c(3, 4). It is easy to verify that
B(n) > c(3, n) for all n ≥ 4. Since b(k, S) ≤ 2kn we have B(n) = O(n3).

Consider now A(k, S), the maximum of the sizes of all families of k-subsets of S separable by
pseudo-circles, convex or non-convex. Since a diffeomorphism brings S to any other n-point set
of the plane, and since the property of pseudo-circle is preserved by a diffeomorphism, A(k, S)
depends only on k and n = |S|. As a consequence, we obtain A(k, S) ≥ B(k, n), hence

n∑

k=0

A(k, S) ≥ B(n) > c(3, n) if n ≥ 4. (19)
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❅
❅
❅k
n

0 1 2 3 4 5 6

0 1 1 1 1 1 1 1
1 1 2 3 4 5 6
2 1 3 6 9 12
3 1 4 7 ≥ 13
4 1 5 ≥ 10
5 1 6
6 1

B(n) 1 2 4 8 16 28 ≥ 49
c(3, n) 1 2 4 8 15 26 42

Now let F be any family of subsets of S separable by pseudo-circles (convex or not), which
is maximal for inclusion. Since c(3, n) is an upper bound of the size of F , this means that, at
least for one k, the family of k-subsets of F cannot be maximal among all families of k-subsets
of S separable by convex pseudo-circles.

Our questions in this direction are the following ones. Do we have A(k, n) = B(k, n) for
all k and n? Do families of k-subsets of S separable by pseudo-circles that are maximal for
inclusion have the same size A(k, n)? What is the exact value of B(n)?

6.4.2. Concerning subsets separable by curves having the s-intersection and the connected
intersection property in the sense of [4], the situation mainly depends whether we seek for convex
curves or not. For example, if S has n = 4 points, all subsets can be separated by 4-intersecting
curves, whereas for convex curves it depends whether they are in convex or non-convex position.
Our questions are as follows: Is c(5, n) achievable by connected and 4-intersecting curves? Is it
always achieved by families maximal for inclusion? Is c(5, n) achieved by convex connected and
4-intersecting curves if S in convex position? In the general case (S not in convex position) is
the number of subsets of S separable by convex connected and 4-intersecting curves equal to
number separable by ellipses? The same questions also hold for connected and s-intersecting
families for any even s.

6.4.3. A purely set-theory question: Given an n-element set S and a family F which is
maximal for inclusion among families of subsets of S of VC-dimension at most d, is it clear
that |F| = c(d, n)?

Given an n-point set S in the plane, among families of subsets of S of VC-dimension at most
3, which ones are realizable as families separables by pseudo-circles? by convex pseudo-circles?
by circles?

Not all families are realizable. In particular maximal families must at least contain all
singletons, and the empty set ∅ and S in its whole since it is always possible to add small circles
around every points of S and a big circle around all S and a small one around nothing, which
intersect no other pseudo-circle.

Even families containing all singletons of S, ∅ and S itself are not all realizable. For instance,
with S = {1, 2, 3, 4, 5}, let the subsets of S be denoted as numbers, e.g. S itself is denoted by
S = 12345. The family F containing ∅ and S, all singletons and all doubletons, namely

F = {1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 12345}

has VC-dimension 3 but is not realizable by pseudo-circles, convex or not, as shown in a picture:
This comes from the fact that the complete graph K5 is not planar.

The same questions arise for VC-dimension s+ 1 and s-intersecting families for any even s.
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