
Peeling potatoes near-optimally in near-linear time∗

Sergio Cabello† Josef Cibulka‡ Jan Kynčl§ Maria Saumell¶

Pavel Valtr‖

October 17, 2017

Abstract

We consider the following geometric optimization problem: find a convex polygon
of maximum area contained in a given simple polygon P with n vertices. We give
a randomized near-linear-time (1 − ε)-approximation algorithm for this problem: in
O(n(log2 n+ (1/ε3) log n+ 1/ε4)) time we find a convex polygon contained in P that,
with probability at least 2/3, has area at least (1 − ε) times the area of an optimal
solution. We also obtain similar results for the variant of computing a convex polygon
inside P with maximum perimeter.

To achieve these results we provide new results in geometric probability. The
first result is a bound relating the probability that two points chosen uniformly at
random inside P are mutually visible and the area of the largest convex body inside
P . The second result is a bound on the expected value of the difference between the
perimeter of any planar convex body K and the perimeter of the convex hull of a
uniform random sample inside K.

Keywords: geometric optimization; potato peeling; visibility graph; geometric
probability; approximation algorithm.

∗A preliminary version of this paper appeared in Proc. 30th Annual Symposium on Computational
Geometry (SoCG 2014), pp. 224–231.
†Department of Mathematics, IMFM, and Department of Mathematics, FMF, University of Ljubljana,

Slovenia. Supported by the Slovenian Research Agency, program P1-0297, projects J1-4106 and L7-5459,
and by the ESF EuroGIGA project (project GReGAS) of the European Science Foundation.
‡Department of Applied Mathematics and Institute for Theoretical Computer Science, Charles Uni-

versity, Faculty of Mathematics and Physics, Czech Republic. Supported by the project CE-ITI (GAČR
P202/12/G061) of the Czech Science Foundation.
§Department of Applied Mathematics and Institute for Theoretical Computer Science, Charles Uni-

versity, Faculty of Mathematics and Physics, Czech Republic; and Alfréd Rényi Institute of Mathematics,
Hungary. Supported by the project CE-ITI (GAČR P202/12/G061) of the Czech Science Foundation and
by ERC Advanced Research Grant no 267165 (DISCONV).
¶Institute of Computer Science, The Czech Academy of Sciences, Czech Republic. With institutional

support RVO:67985807. Supported by project LO1506 of the Czech Ministry of Education, Youth and
Sports, project CE-ITI (GAČR P202/12/G061) of the Czech Science Foundation, project NEXLIZ -
CZ.1.07/2.3.00/30.0038, co-financed by the European Social Fund and the state budget of the Czech
Republic, ESF EuroGIGA project ComPoSe as F.R.S.-FNRS - EUROGIGA NR 13604, and H2020-MSCA-
RISE project 73499 - CONNECT.
‖Department of Applied Mathematics and Institute for Theoretical Computer Science, Charles Uni-

versity, Faculty of Mathematics and Physics, Czech Republic. Supported by the project CE-ITI (GAČR
P202/12/G061) of the Czech Science Foundation.

1

ar
X

iv
:1

40
6.

13
68

v3
 [

cs
.C

G
]

 1
4

O
ct

 2
01

7

1 Introduction

We consider the algorithmic problem of finding a maximum-area convex set in a given
simple polygon. Thus, we are interested in computing

A∗(P) := sup{area(K) | K ⊂ P, K convex}.

The problem was introduced by Goodman [25], who named it the potato peeling prob-
lem . Goodman also showed that the supremum is actually achieved, so we can replace
it by the maximum. Henceforth we use n to denote the number of vertices in the input
polygon P .

Chang and Yap [12] showed that A∗(P) can be computed in O(n7) time. Since there
have been no improvements in the running time of exact algorithms, it is natural to turn
the attention to faster, approximation algorithms. A step in this direction is made by Hall-
Holt et al. [27], who show how to obtain a constant-factor approximation in O(n log n)
time.

In this paper we present a randomized (1 − ε)-approximation algorithm. Besides
the simple polygon P , the algorithm takes as input a parameter ε ∈ (0, 1) controlling the
approximation. In time O

(
n(log2 n+ (1/ε3) log n+ 1/ε4)

)
the algorithm returns a convex

polygon contained in P that, with probability at least 2/3, has area at least (1−ε)·A∗(P).

For any constant ε, and more generally for any ε = Ω
(

1/ log1/3 n
)

, the running time

becomes O(n log2 n). As usual, the probability of error can be reduced to δ ∈ (0, 1) using
O(log(1/δ)) independent repetitions of the algorithm. Note that for ε < 1/n3/2, the exact
algorithm of Chang and Yap [12] is faster as it runs in time O(n7) = O(n/ε4).

Overview of the approach. Let R be a set of points contained in P . The visibility
graph of R, denoted by G(P,R), has R as vertex set and, for any two points x and y in
R, the edge xy is in G(P,R) whenever the segment xy is contained in P . See Figure 1.

Let us assume that the set of points R is obtained by uniform sampling in P . We note
the following properties:

• For each convex polygon K ⊆ P , the area of the convex hull conv(K ∩R) is similar
to the area of K, provided that |K ∩ R| is large enough. For this, it is convenient
to have large |R|.

• For each convex polygon K ⊆ P , the boundary of conv(K ∩R) is made of edges in
G(P,R).

• With dynamic programming one can find a maximum-area convex polygon defined
by edges of G(P,R). For this to be efficient, it is convenient that G(P,R) has few
edges.

Thus, we have a trade-off on the number of points in R that are needed. We argue that
there is a suitable size for R such that G(P,R) has a near-linear expected number of edges
and, with reasonable probability, the edges of G(P,R) give a good inner approximation
to an optimal solution. Instead of finding the optimal solution directly in G(P,R), we
make a search in a small parallelogram of area Θ(A∗(P)) around each edge of G(P,R),
performing a second sampling. The core of the argument is a bound relating A∗(P) and
the probability that two random points in P are visible. Such relation was unknown and
we believe that it is of independent interest. See Theorems 9, 10 and the follow up work
[5] (summarized in Theorem 11 here) for the precise relations.

2

Figure 1: A portion of the visibility graph of a point set. Only the edges incident to three
vertices are displayed.

Perimeter. We are also interested in finding a convex polygon inside P with maximum
perimeter. Let per(K) denote the perimeter of a convex body K. In the case that K is
a segment, then per(K) is twice the length of K. Let

L∗(P) := sup{per(K) | K ⊂ P, K convex}.

By the same compactness argument as used by Goodman [25, Proposition 1], using the
Blaschke selection theorem, the supremum is achieved and so it can be replaced by the
maximum.

We provide a randomized algorithm to compute a convex polygon (or segment) inside
P whose perimeter is at least (1− ε) ·L∗(P). For every δ > 0, to succeed with probability
1− δ, the algorithm uses time

O
(
n
[
(1/ε4) log2 n+

(
(1/ε) log2 n+ (1/ε6) log n+ 1/ε8

)
log(1/δ)

])
.

The main obstacle in this case is that the polygons with near-optimal perimeter may
be very skinny and thus have arbitrarily small area. For that case, random sampling of
points is futile, but we can use a longest segment contained in P to approximate L∗(P).
More precisely, if the perimeter-optimal convex polygon has aspect ratio O(ε), then we
can (1− ε)-approximate it via a longest segment inside P , which in turn can be (1− ε)-
approximated in near-linear time [27]. If the perimeter-optimal polygon has aspect ratio
Ω(ε), then it has area at least Ω(ε · A∗(P)), and the approach based on random samples
of points can be adapted, with a larger number of sample points. To bound the number
of sample points we use a new theorem in geometric probability bounding the expected
difference between the perimeter of any planar convex body K and the perimeter of the
convex hull of a random sample inside K. See our Theorem 18 for the precise statement.

Other related work. There have been several results about finding maximum-area
objects of certain type inside a given simple polygon. DePano, Ke and O’Rourke [20]
consider squares and equilateral triangles, Daniels, Milenkovic and Roth [18] consider
axis-parallel rectangles, Melissaratos and Souvaine [29] consider arbitrary triangles. Sub-
quadratic algorithms to find a longest segment contained in a simple polygon were first
given by Chazelle and Sharir [16] and improved by Agarwal, Sharir and Toledo [1, 2].
Hall-Holt et al. [27] present near-linear time algorithms for a (1−ε)-approximation of the
longest segment.

Aronov et al. [3] consider a variation where the search is restricted to convex polygons
whose edges are edges of a given triangulation (with inner points) of P . They show how

3

to compute a maximum-area convex polygon for this model in O(m2) time, where m is
the number of edges in the triangulation.

Dumitrescu, Har-Peled and Tóth [21] consider the following problem: given a unit
square Q and a set X of points inside Q, find a maximum-area convex body inside Q that
does not have any point of X in its interior. This is an instance of the potato peeling
problem for polygons with holes. They provide a (1− ε)-approximation in time O(n2/ε6).
For any fixed ε, the running time is quadratic. Our algorithm exploits the absence of
holes in P , so it does not produce an improvement in this case.

The potato peeling problem can be understood as finding a largest set of points that
are mutually visible. Rote [32] showed how to compute in polynomial time the probability
that two random points inside a polygon are visible. A faster algorithm has been proposed
by Buchin et al. [11]. Cheong, Efrat and Har-Peled [17] consider the problem of finding
a point in a simple polygon whose visibility region is maximized. They provide a (1− ε)-
approximation algorithm using near-quadratic time. The approach is based on taking a
random sample of points in the polygon, constructing the visibility region of each point,
and taking a point lying in most visibility regions.

Roadmap. In Section 2 we provide tools related to convex bodies. In Section 3 we
relate the probability of two random points being visible and A∗(P). We present and
analyze the algorithm to approximate A∗(P) in Section 4. In Section 5 we discuss the
adaptation to maximize the perimeter. We conclude in Section 6.

Assumptions. We will have to generate points uniformly at random inside a triangle.
For this, we will assume that a random number in the interval [0, 1] can be generated in
constant time.

2 About convexity

Here we provide tools related to convexity.

2.1 Inner approximation using random sampling

In this subsection, we provide results about the number of points that have to be sampled
inside a convex body K so that the area of the convex hull of the sample is a good
approximation to the area of K. We may think of K as a maximum-area convex set in
P for which we aim to find a (1− ε)-approximation. In our algorithm, we sample points
in a superset of K, thus we also provide extensions to this case. In particular, Lemma 1
deals with the problem of sampling points inside a given convex body K. In Lemma 3
the sample is taken from a larger polygon Γ ⊇ K and the goal is to hit K with at least
C points. These two results are then combined together in Lemma 4.

Lemma 1. Let K be a convex body in the plane and let R be a sample of points chosen
uniformly at random inside K. There is some universal constant C1 such that, if |R| ≥
C1/ε

3/2, then with probability at least 5/6 it holds that area(conv(R)) ≥ (1− ε) · area(K).

Proof. We use as a black box known extremal properties and bounds on the so-called
missed area of a random polygon. See the lectures by Bárány [4, 2nd lecture], the survey [6]
or [7] for an overview.

Let us scale K so that it has area 1. We have to show that 1 − area(conv(R)) ≥ ε
holds with probability at most 1/6.

4

Let Km denote the convex hull of m points chosen uniformly at random in K and
define X(m) = 1− area(Km). Thus X(m) is the missed area, that is, the area of K \Km.
Groemer [26] showed that E[X(m)] is maximized when K is a disk of area 1. Rényi and
Sulanke [31] showed that for every smooth convex set K there exists some constant CK ,
depending on K, such that E[X(m)] ≤ CK ·m−2/3. This result also follows from a similar
upper bound by Rényi and Sulanke [30] on the expected number Em of edges of Km and
from Efron’s [23] identity E[X(m)] = E[Em+1]/(m+ 1). Both statements together imply
that

E[X(m)] ≤ C ′

m2/3
,

where C ′ is the constant CK when K is a unit-area disk. (From the results of [31],
or subsequent works, one can explicitly compute that C ′ ≤ 5, so the constant is very
reasonable.)

We set C1 := (6C ′)3/2. Whenever |R| ≥ C1 · ε−3/2, we can use Markov’s inequality to
obtain

Pr[1− area(conv(R)) ≥ ε] = Pr[X(|R|) ≥ ε]

≤ E[X(|R|)]
ε

≤ C ′ |R|−2/3

ε

≤ C ′
(
(6C ′)3/2 · ε−3/2

)−2/3

ε

=
1

6
.

Remark 2. For convenience we will assume that C1/ε
3/2 ≥ 3 for all ε ∈ (0, 1). This is

not problematic because we can replace C1 with max(C1, 3), if needed.

Lemma 3. Let K be a convex body contained in a polygon Γ, let R be a random sample
of points inside Γ, and let C ≥ 3 be an arbitrary value. If

|R| ≥ 4 · C · area(Γ)

area(K)
,

then with probability at least 5/6 it holds that |R ∩K| ≥ C.

Proof. Let X = |R ∩K|. The random variable X is a sum of |R| independent Bernoulli
random variables, each with expected value

p =
area(K)

area(Γ)
.

Standard calculations (or formulas) show that

E[X] = |R| · p ≥ 4 · C · area(Γ)

area(K)
· area(K)

area(Γ)
= 4 · C

and
Var[X] = |R| · p(1− p) ≤ E[X].

5

We can now use Chebyshev’s inequality in its form

∀a > 0 : Pr[|X − E[X]| ≥ a] ≤ Var[X]

a2

and the inequality C ≥ 3 to obtain the following:

Pr[X ≤ C] ≤ Pr
[
X ≤ 1

4E[X]
]

≤ Pr
[
|X − E[X]| ≥ 3

4E[X]
]

≤ 42

32
· Var[X]

(E[X])2

≤ 16

9
· 1

E[X]

≤ 16

9
· 1

4 · C
≤ 16

9
· 1

4 · 3
<

1

6
.

Lemma 4. Let K be a convex body contained in a polygon Γ, let R be a random sample
of points inside Γ, and let C1 be the constant in Lemma 1. If

|R| ≥ 4 · C1

ε3/2
· area(Γ)

area(K)
,

then with probability at least 2/3 it holds that area(conv(R ∩K)) ≥ (1− ε) area(K).

Proof. We define the following events:

E : |R ∩K| ≥ C1/ε
3/2,

F : area(conv(R ∩K)) ≥ (1− ε) · area(K).

For each event A we use A for its negation. Since C1/ε
3/2 ≥ 3 (see Remark 2), Lemma 3

implies

Pr
[
E
]
≤ 1

6
,

and Lemma 1 implies

Pr
[
F | E

]
≤ 1

6
.

Therefore

Pr
[
F
]

= Pr
[
F | E

]
· Pr [E] + Pr

[
F | E

]
· Pr

[
E
]

≤ Pr
[
F | E

]
+ Pr

[
E
]

≤ 1

6
+

1

6

=
1

3
.

6

y1

y4/5

y1/5

y0

y1

y4/5

y1/5

y0

p1

c
d

d′c′

Figure 2: Proof of Lemma 5.

2.2 Outer containment in a parallelogram

In the previous subsection we have proved that, given a superset Γ of K, for samples R of
points in Γ of a certain size, area(conv(R∩K)) is a good approximation to the area of K
with positive constant probability. If we set Γ := P , the size of R might turn out too big
to yield a subquadratic algorithm. For this reason, we want to find a smaller superset of
K to take the sample from. In this subsection we show a method to find a parallelogram
Γ containing K with area proportional to the area of K, and that this parallelogram can
be found with positive constant probability, using a relatively small random sample from
P .

Let K be a convex body in R2. We use y(p) to denote the y-coordinate of a point p.
For each α ∈ (0, 1) we define yα(K) as the unique value satisfying

area ({p ∈ K | y(p) ≤ yα(K)}) = α · area(K).

Thus, the horizontal line at height yα(K) breaks K into two parts and the lower one has
a proportion α of the area of K. We further define

y0(K) := min{y(p) | p ∈ K} and y1(K) := max{y(p) | p ∈ K}.

Lemma 5. For each convex body K in R2

y1(K)− y4/5(K) ≤ y4/5(K)− y1/5(K) and y1/5(K)− y0(K) ≤ y4/5(K)− y1/5(K).

Proof. In this proof, let us drop the dependency on K in the notation and set yα := yα(K)
for each α ∈ [0, 1]. We only show that y1 − y4/5 ≤ y4/5 − y1/5; the other inequality is
symmetric.

For α ∈ [0, 1], let `α be the horizontal line with y-coordinate yα. Let p1 be a highest
point of K, let cd be the intersection of `4/5 with K, let `c be the line through p1 and c,
let `d be the line through p1 and d, let c′ be the intersection of `c with `1/5, and let d′ be
the intersection of `d with `1/5. See Figure 2.

By the convexity of K, the triangle p1cd is contained in the portion of K between `1
and `4/5, and the portion of K between `4/5 and `1/5 is contained in the trapezoid cc′d′d.
Thus

area(cc′d′d) ≥ 3 area(p1cd)

and
area(p1c

′d′) = area(cc′d′d) + area(p1cd) ≥ 4 area(p1cd). (1)

7

b

a

Γ(a, b, A)

a′

b′

2A
y(a)−y(b)

|ab|

|ab|

2A
y(a)−y(b)

b

a

b′

> 2A
y(a)−y(b)

a′

z

Figure 3: Left: parallelogram Γ(a, b, A). Right: proof of Lemma 6.

The triangle p1c
′d′ is similar to the triangle p1cd with scale factor (y1−y1/5)/(y1−y4/5).

By (1), the scale factor is at least 2, that is

y1 − y1/5 ≥ 2(y1 − y4/5)

and so
y4/5 − y1/5 ≥ y1 − y4/5.

For any two points a and b and any value A ≥ 0, let a′ := 2a − b, b′ := 2b − a, and
let Γ(a, b, A) denote the parallelogram whose vertices are the four horizontal translates of
the points a′ and b′ by distance 2A

|y(a)−y(b)| . See Figure 3, left. Note that |a′b′| = 3|ab| and

area(Γ(a, b, A)) = 12 ·A.

Lemma 6. Let K be a convex body and assume that A ≥ area(K). Let a and b be points
in K such that

y(a) ≥ y4/5(K) and y(b) ≤ y1/5(K).

Then K is contained in Γ(a, b, A).

Proof. In this proof, let us drop the dependency on K in the notation and set yα := yα(K)
for each α ∈ [0, 1].

By Lemma 5 we have

y(a′) = 2y(a)− y(b) ≥ y(a) + y4/5 − y1/5 ≥ y(a) + y1 − y4/5 ≥ y1

and similarly

y(b′) = 2y(b)− y(a) ≤ y(b) + y1/5 − y4/5 ≤ y(b) + y0 − y1/5 ≤ y0.

Therefore K is contained between the horizontal lines y = y(a′) and y = y(b′). These are
the lines supporting the top and bottom side of Γ(a, b, A).

Assume, for the sake of a contradiction, that K has some point z outside Γ(a, b, A).
Since z lies between the lines y = y(b′) and y = y(a′), it must be that the horizontal
distance from z to a′b′ is more than 2A

y(a)−y(b) . See Figure 3, right. Since the triangle abz
is contained in K we would have

area(K) ≥ area(abz) >
1

2
· (y(a)− y(b)) · 2A

y(a)− y(b)
= A ≥ area(K),

which is a contradiction. Therefore any point of K is contained in Γ(a, b, A).

8

Lemma 7. Let K be a convex body contained in a polygon P , and assume that A ≥
area(K). If R is a random sample of points inside P with

|R| ≥ 60 · area(P)

area(K)
,

then with probability at least 2/3 it holds that R contains two points a and b such that ab
is an edge of G(P,R) and Γ(a, b, A) contains K.

Proof. Define

K≤1/5 := {p ∈ K | y(p) ≤ y1/5(K)} and K≥4/5 := {p ∈ K | y(p) ≥ y4/5(K)},

and consider the following events:

E≤1/5 : K≤1/5 ∩R 6= ∅ and E≥4/5 : K≥4/5 ∩R 6= ∅.

Since

|R| ≥ 4 · 3 · area(P)

area(K)/5
= 4 · 3 · area(P)

area(K≤1/5)
= 4 · 3 · area(P)

area(K≥4/5)
,

Lemma 3 implies

Pr
[
E≤1/5

]
≥ 5

6
and Pr

[
E≥4/5

]
≥ 5

6
.

Applying the Fréchet inequality

Pr [A ∩B] ≥ max{0,Pr [A] + Pr [B]− 1} ,

which does not require any independence assumption, we obtain that

Pr
[
E≤1/5 ∩ E≥4/5

]
≥ 2

3
.

When E≤1/5 and E≥4/5 hold, there are points a ∈ K≤1/5 ∩ R and b ∈ K≥4/5 ∩ R and
Lemma 6 implies that K is contained in Γ(a, b, A). Moreover, ab is an edge of G(P,R)
because K is a convex body contained in P .

2.3 Largest convex polygon in a visibility graph.

In this subsection we give an algorithm to find a largest convex polygon whose edges are
defined by a visibility graph inside a polygon. In our algorithm LargePotato, described
in Section 4, the vertices of the visibility graph are points of a random sample in P , and
the algorithm in the current subsection is used to find the largest convex polygon defined
by that sample.

Let H be a visibility graph in some simple polygon. We denote the set of vertices
and edges of H by V (H) and E(H), respectively. We assume that the coordinates of the
vertices of H are known. A set of vertices U from H is a convex clique if: (i) there is
an edge between any two vertices of U , and (ii) the points of U are in convex position.
The area of a convex clique U is the area of conv(U).

Let s be a point of V (H). We are interested in finding a convex clique of maximum
area in H, denoted by ϕ(H, s), that has s as highest point. Thus we want

ϕ(H, s) ∈ arg max{area(U) | U ⊆ V (H) a convex clique, s highest point in U}.

9

Lemma 8. For any point s of V (H), we can compute ϕ(H, s) in time O(|V (H)|2).

Proof. Pruning vertices, we can assume that all vertices of H are adjacent to s and below
s. We can then use the algorithm of Bautista-Santiago et al. [8], which is an improvement
over the algorithm of Fischer [24], restricted to the edges that are in H. For completeness,
we provide a quick overview of the approach.

For this proof, let us denote n = |V (H)| − 1. We sort the points of V (H) \ {s}
counterclockwise radially from s. Let x1, x2, . . . , xn be the labeling of the points of V (H)\
{s} according to that ordering. Thus, for each i < j the sequence xi, s, xj is a right turn.

Using a standard point-line duality and constructing the arrangement of lines dual to
the points V (H), we get the circular order of the edges around each point xi [28]. For
this we spend in total O(n2) time [15, 22].

For each i < j such that xixj ∈ E(H), let Opt[i, j] be the largest-area convex clique
U that has xi, xj , and s consecutively along the boundary of conv(U). We then have

area(ϕ(H, s)) = max
i<j,xixj∈E(H)

Opt[i, j].

Taking the convention that max ∅ = 0, the values Opt[i, j] satisfy the following recursion

Opt[i, j] = area(sxixj)

+ max{Opt[h, i] | h < i, xhxi ∈ E(H), xh, xi, xj makes a left turn}.

To argue the correctness of the recursion, one needs to observe that the right side of the
equation does indeed correspond to the construction of a convex polygon.

For any fixed i, the values Opt[i, ∗], ∗ > i, can be computed in O(n) time, provided
that the edges incident to xi are already radially sorted and the values Opt[h, i] are
already available for all h < i. To achieve linear time, one performs a scan of the edges
incident to xi and uses the property that

{xhxi ∈ E(H) | h < i, xh, xi, xj makes a left turn}

forms a contiguous sequence in the circular ordering of edges incident to xi.
Thus, we can fill in the whole table Opt[·, ·] in time O(n2). With this we can compute

area(ϕ(H, s)) and construct an optimal solution ϕ(H, s) by standard backtracking. See [8]
for additional details.

In Section 5 we will also need to find a convex clique U whose convex hull has maximum
perimeter. It is easy to modify the algorithm to compute, for a point s ∈ V (H), the value

max{per(U) | U ⊆ V (H) a convex clique, s highest point in U}

and a corresponding optimal solution. Here we assume a model of computation where
the length of segments can be added in constant time.

3 Probability for visibility

In this section we give a relation between A∗(P) and the probability that two random
points in P are visible. Such a relation is used later to bound the expected complexity of
the visibility graph of a suitably sized random sample of points.

A polygon P is weakly visible from a segment s in P if, for each point p ∈ P , there
exists some point x ∈ s such that xp ⊂ P .

10

sa

ay(a)

b

c

sb

y(b)

y(c)

a′

a)

ay(a)

b)

0
−y(a)

0
a′′a′

s

s

Figure 4: Situation in the proof of Theorem 9. a) Points a and b are on the same side of
s. b) Points a and b are on different sides of s.

Theorem 9. Let P be a unit-area polygon weakly visible from a diagonal s. Let a and b
be two points chosen uniformly at random in P . Then

(i) Pr [ab ⊂ P] ≤ 18 ·A∗(P) and1

(ii) Pr [ab ⊂ P and ab ∩ s 6= ∅] ≤ 6 ·A∗(P).

Proof. Without loss of generality we assume that s is a horizontal segment on the x-axis.
In this proof we use y(a) to denote the y-coordinate of a point a. Since the event that
y(a)y(b) = 0 has zero probability, we may assume that y(a) 6= 0 and y(b) 6= 0. To simplify
the notation, in this proof we use A∗ = A∗(P).

Consider first the point a fixed. We first bound the probability that a and b are visible
and |y(a)| ≥ |y(b)| to obtain the following:

Pr [ab ⊂ P and |y(a)| ≥ |y(b)|] ≤ 9 ·A∗.
This is seen showing that the set of points b satisfying ab ⊂ P and |y(a)| ≥ |y(b)| is inside
a region of area at most 9A∗.

We distinguish two cases:

1) y(a)y(b) > 0 (a and b are on the same side of s).

2) y(a)y(b) < 0 (a and b are on the opposite sides of s).

Let us first consider case 1). We assume that y(a) > 0, the other case is symmetric.
Refer to Figure 4a). We know that a sees some point sa on s. We may assume that b does
not lie on the segment asa as the event that b lies on asa has zero probability. We know
that b sees some point sb on s. We have a generalized polygon Q = absbsa (in which the
sides asa and bsb may cross or some of the vertices may coincide) whose boundary is in
P , and therefore the whole interior of Q is also in P . Here we use that P has no holes. If
b sees a, we can choose sb so that asa and bsb share a common point: indeed, if asa and
bsb are disjoint, then the polygon Q is simple and thus b sees sa, so we can set sb to sa.
Let c be the common point of asa and bsb. By our assumptions, y(c) < y(a).

Let h be a horizontal line through b and let a′ be the intersection between h and the
segment asa. The interior of Q is made of two triangles, abc and sasbc, both contained in
P and thus each of them has area at most A∗. The triangle sasbc degenerates to a point
if sa = sb.

For the triangle abc, we have area(abc) = 1
2 |a′b| · (y(a)− y(c)), which implies that

|a′b| ≤ 2A∗

y(a)− y(c)
. (2)

1Item (i) is not used elsewhere in this paper. However, we believe that it is an interesting fact that
strengthens Theorem 10 for weakly edge-visible polygons.

11

If the triangle sasbc is not degenerate, we have y(c) · |sasb| ≤ 2A∗. By the similarity of
the triangles sasbc and a′bc, we have |sasb| = |a′b| · y(c)/(y(b)− y(c)), which implies that

|a′b| ≤ 2A∗

y(c)2
· (y(b)− y(c)). (3)

Since the upper bound on |a′b| is increasing in y(c) in (2) and decreasing in y(c) in (3),
the minimum of the two upper bounds is maximal when they are equal; that is, when
y(c) = y(a)y(b)/(y(a) + y(b)). It follows that

|a′b| ≤ 2A∗

y(a)2
· (y(a) + y(b)). (4)

The condition (4) implies that b is inside a trapezoid of height y(a) with bases of length
4A∗/y(a) and 8A∗/y(a), which has area 6A∗. This finishes case 1).

We now consider case 2). Refer to Figure 4b). Let a′a′′ be the maximum subsegment
of s that is visible from a. Since the triangle aa′a′′ is contained in P we have

area(aa′a′′) = 1
2 |a′a′′| · y(a) ≤ A∗.

If b sees a, then the segment ab intersects the segment a′a′′. Thus b is contained in a
trapezoid of height y(a) with bases of length |a′a′′| and 2 · |a′a′′|. Such trapezoid has area

|a′a′′|+ 2|a′a′′|
2

· y(a) = 3
2 |a′a′′| · y(a) ≤ 3A∗.

This finishes case 2).
Considering cases 1) and 2) together, for each fixed point a ∈ P we have

Pr [ab ⊂ P and |y(a)| ≥ |y(b)|] ≤ 9 ·A∗.

Since this bound holds for each fixed a, it also holds when a is chosen at random.
Because of symmetry we have

Pr [ab ⊂ P] = 2 · Pr [ab ⊂ P and |y(a)| ≥ |y(b)|] ≤ 18 ·A∗,

which proves part (i) of the theorem.
Part (ii) follows by a similar consideration using case 2) only.

We can use a divide and conquer approach to obtain a bound for arbitrary polygons.

Theorem 10. Let P be an arbitrary unit-area polygon. Let a and b be two points chosen
uniformly at random in P . Then

Pr [ab ⊂ P] ≤ 12 ·A∗(P) ·
(
1 + log2(1/A∗(P))

)
.

Proof. For this proof, let us set A∗ = A∗(P).
For each polygon Q there exists a segment that splits Q into two polygons, each of area

at most 2
3 area(Q) [10]. We recursively split P using such a segment in each polygon, for

h = log3/2(1/A∗) levels. Thus, at the bottommost level, each polygon has area bounded
by A∗.

At each level ` of the recursion, where ` = 0, . . . , h, we have 2` polygons, which we
denote by Q`,1, . . . , Q`,2` . In particular, Q0,1 = P . Since the polygons at each level ` are
disjoint, we have

2`∑
i=1

area(Q`,i) = area(P) = 1.

12

For each polygon Q`,i, where ` < h, let e`,i be the segment used to split Q`,i. Let Q̂`,i be
the portion of Q`,i that is weakly visible from e`,i. At each level ` < h we have

2`∑
i=1

area(Q̂`,i) ≤
2`∑
i=1

area(Q`,i) = 1.

Let Ea,b,`,i be the event ab ⊂ Q̂`,i and ab ∩ e`,i 6= ∅. Using the union bound and part (ii)
of Theorem 9 we obtain

Pr

h−1⋃
`=0

2`⋃
i=1

Ea,b,`,i

 ≤ h−1∑
`=0

Pr

 2`⋃
i=1

Ea,b,`,i

=

h−1∑
`=0

2`∑
i=1

Pr[Ea,b,`,i]

=

h−1∑
`=0

2`∑
i=1

Pr[Ea,b,`,i | a ∈ Q̂`,i, b ∈ Q̂`,i] · Pr[a ∈ Q̂`,i, b ∈ Q̂`,i]

≤
h−1∑
`=0

2`∑
i=1

(
6 · A∗

area(Q̂`,i)
· (area(Q̂`,i))

2

)

= 6 ·A∗
h−1∑
`=0

2`∑
i=1

area(Q̂`,i)

≤ 6 ·A∗
h−1∑
`=0

1

= 6 ·A∗ · h.

At the bottommost level h, we can use that area(Qh,i) ≤ A∗ for each i to obtain

Pr

 2h⋃
i=1

[ab ⊂ Qh,i]

 =
2h∑
i=1

Pr [ab ⊂ Qh,i]

≤
2h∑
i=1

Pr [a ∈ Qh,i, b ∈ Qh,i]

=

2h∑
i=1

(area(Qh,i))
2

≤
2h∑
i=1

A∗ · (area(Qh,i))

= A∗.

We then note that, if a sees b, then the event Ea,b,`,i occurs for some ` < h and i ≤ 2`, or

13

a and b are in the same polygon Qh,i, where i ≤ 2h. Thus

Pr [ab ⊂ P] ≤ Pr

h−1⋃
`=0

2`⋃
i=1

[Ea,b,`,i]

+ Pr

 2h⋃
i=1

[ab ⊂ Qh,i]

≤ 6 ·A∗ · h+A∗

= A∗ + 6 ·A∗ · log3/2(1/A∗)

≤ A∗ + 12 ·A∗ · log2(1/A∗).

In the conference version of our paper we proved and used Theorem 10. We included
the proof here for completeness and archiving purposes. Also, it is a key contribution
of this paper to realize that such connection between the probability of being co-visible
and the area of the largest convex body could exist. This result has been improved by
Balko et al. [5]. Using their new result slightly improves the final running time of our
algorithms. Thus, we will use in the rest of our paper the following theorem.

Theorem 11 (Corollary 4 in [5]). Let P be an arbitrary unit-area polygon. Let a and b
be two points chosen uniformly at random in P . Then

Pr [ab ⊂ P] ≤ 180 ·A∗(P).

4 Algorithm

In this section we discuss the eventual algorithm. The input to the algorithm is a polygon
P , a parameter ε ∈ (0, 1), and a parameter δ ∈ (0, 1). Without loss of generality we
assume that P has unit area. The algorithm, called LargePotato, is summarized in
Figure 5. In the first part of the section we explain in detail each step and the notation
that is still undefined. In the second part we analyze the algorithm.

4.1 Description

Sampling points. Let A(P) be a constant-factor approximation for A∗(P). Thus,
A(P) ≤ A∗(P) ≤ C2A(P) for some constant C2 ≥ 1. Hall-Holt et al. [27] provide an
algorithm to compute such value A(P) in O(n log n) time.

Let us define r := 60
A(P) . Since the largest triangle in any triangulation of P has area

at least 1/n, we have A∗(P) ≥ 1/n and thus r = O(n).
Let R be a sample of r points chosen independently at random from the polygon P .

The sample R can be constructed in O(n + r log n) time, as follows. By the linear-time
algorithm2 of Chazelle [13], we compute a triangulation of P , giving triangles T1, . . . , Tn−2.
We then compute the prefix sums Si = area(T1) + · · ·+ area(Ti) for i = 1, . . . , n− 2. This
is done in O(n) time. To sample a point, we select a random number x in the interval
[0, 1], perform a binary search to find the smallest index j such that x ≤ Sj , and sample
a random point inside Tj . A random point inside Tj can be generated using a random
point inside a parallelogram that contains two congruent copies of Tj ; such a point can
be generated using two random numbers in the interval [0, 1]. In total, each point takes
O(log n) time plus the time needed to generate three random numbers in the interval
[0, 1]. A similar approach is described in [17].

2Computing a triangulation of P is not the bottleneck of our algorithm. Since Chazelle’s algorithm is
complicated, for practical purposes it would be easier to use a simpler triangulation algorithm running in
O(n logn) time such as the one described in [19].

14

'

&

$

%

Algorithm LargePotato
Input: Unit-area polygon P , ε ∈ (0, 1), and δ ∈ (0, 1)
1. find a value A(P) such that A(P) ≤ A∗(P) ≤ C2 ·A(P);
2. r ← 60/A(P);
3. best← ∅;
4. repeat 3 log2(1/δ) times
5. R← sample r points uniformly at random in P ;
6. if G(P,R) has at most C3 · n edges then
7. compute G(P,R);
8. for ab ∈ E(G(P,R)) do
9. Rab ← sample 96 ·C1 ·C2/(ε/2)3/2 points uniformly at ran-

dom in the parallelogram Γ(a, b, C2 ·A(P));
10. Sab ← sample 288 ·C2/ε points uniformly at random in the

parallelogram Γ(a, b, C2 ·A(P));
11. Gab ← G(P, (Rab ∪ Sab) ∩ P);
12. for s ∈ Sab do
13. U ← ϕ(Gab, s);
14. if area(U) > area(best) then best← U ;
15. return conv(best);

Figure 5: Algorithm. The constant C1 is from Lemma 1. The constant C2 is the ap-
proximation factor from Hall-Holt et al. [27]; see Section 4.1. The constant C3 is from
Lemma 12.

Size of the visibility graph. Using the expected number of edges in the visibility
graph G(P,R) and Markov’s inequality lead to the following bound.

Lemma 12. There exists a constant C3 > 0 such that, with probability at least 5/6, the
graph G(P,R) has at most C3 · n edges.

Proof. In this proof we use G := G(P,R). Using linearity of expectation, Theorem 11,
the estimates 1/n ≤ A∗(P) ≤ C2A(P) and the obvious fact that n ≥ 3, we obtain

E[|E(G)|] =

(
r

2

)
· Pr[two random points are visible in P]

≤ 1

2

(
60

A(P)

)2

· 180 ·A∗(P)

≤ 324000 · A
∗(P)

A(P)
· 1

A(P)

≤ 324000 · C2 · C2 · n.
Let us take C3 = 6 · 324000 · (C2)2. By Markov’s inequality we have

Pr[|E(G)| ≥ C3 · n] ≤ E[|E(G)|]
C3 · n

≤ 1

6
.

Constructing the visibility graph and checking its size. We will use the following
result by Ben-Moshe et al. [9].

Theorem 13 (Ben-Moshe et al. [9]). Let P be a simple polygon with n vertices and let
R be a set of r points inside P . The visibility graph G(P,R) can be constructed in time
O(n+ r log r log(rn) + k), where k is the number of edges in G(P,R).

15

In line 6 of the algorithm LargePotato, we want to check whether G(P,R) has at
most C3 ·n edges. For this we use that the algorithm of Theorem 13 is output-sensitive and
takes time T[9](n, r, k) = O(n+r log r log(rn)+k). We run the algorithm of Theorem 13 for
at most T[9](n, r, C3 ·n) steps. If the construction of G(P,R) is not finished, we know that
|E(G(P,R))| > C3 · n. Otherwise the algorithm outputs whether |E(G(P,R))| ≤ C3 · n
or not. Thus, the test in line 6 can be made in time

T[9](n, r, C3 · n) = O(n+ r log r log(rn) + C3 · n)

= O(n+ n log2 n+ n)

= O(n log2 n).

The construction in line 7 takes the same time, if it is actually made.

Remark 14. For each constant ε, the bottleneck in the running time of our algorithm is
here, in our use of Theorem 13 to compute the visibility graph. With the improvement
of Balko et al. [5], stated in Theorem 11, all other steps can be made to run in time
O(n log n log(1/δ)) (for constant ε).

Work for each edge ab. We now discuss the work done in lines 9–14 for each edge ab
of G(P,R). The parallelogram Γ(a, b, C2 · A(P)) was defined in Section 2.2. Note that
Γ(a, b, C2 ·A(P)) has area

12 · C2 ·A(P) ≤ 12 · C2 ·A∗(P) = Θ(A∗(P)).

Since Γ(a, b, C2 · A(P)) is a parallelogram, it is straightforward to construct the random
samples Rab and Sab. Note that |Rab| = Θ(ε−3/2) and |Sab| = Θ(ε−1). We select the subset
of Rab ∪ Sab contained in the polygon P and construct its visibility graph Gab. We then
compute a maximum-area convex clique in Gab among those cliques whose highest vertex
s is from Sab. We make this restriction to reduce the number of candidate highest points
from Θ(ε−3/2) to Θ(ε−1). This is equivalent to computing ϕ(Gab, s) for each s ∈ Sab,
which is discussed in Section 2.3. Finally, we compare the solutions Uab that we obtain
against the solution stored in the variable best and, if appropriate, update best.

4.2 Analysis

Lemma 15 (Time bound). For each ε ∈ (0, 1), the algorithm LargePotato can be
adapted to use O

(
n(log2 n+ (1/ε3) log n+ 1/ε4) log(1/δ)

)
time.

Proof. The value A(P) can be computed in time O(n log n), as discussed before.
We first preprocess the polygon P for segment containment using the algorithm of

Chazelle et al. [14]: after O(n) preprocessing time we can answer whether a query segment
is contained in P in O(log n) time. In particular, we can decide in O(log n) time whether
a query point is in P .

We claim that each iteration of the for-loop (lines 9–14) takes O((1/ε3) log n+ 1/ε4)
time. The samples Rab and Sab can be constructed in O(|Rab|+ |Sab|) = O((1/ε3/2) log n).
We construct (Rab ∪ Sab) ∩ P by testing each point of Rab ∪ Sab for containment in P .
The graph Gab is constructed by checking for each pair of points from (Rab ∪ Sab) ∩
P whether the corresponding segment is contained in P . Thus Gab is constructed in
O((1/ε3/2)2 log n) = O((1/ε3) log n) time. By Lemma 8, each iteration of the lines 13–14
takes time O(|Rab|2) = O(1/ε3). Thus the running time of the for loop in lines 12–14
takes time O(|Sab| · (1/ε3)) = O(1/ε4). The claim follows.

16

We next show that each iteration of the repeat-loop (lines 5–14) takes O(n log2 n +
(n/ε3) log n + n/ε4) time. Since r = O(n), the sample R can be computed in O(n log n)
time, as discussed in Section 4.1. As discussed before, we can make the test in line 6 in
O(n log2 n) time.

If G(P,R) has more than C3 · n edges, this finishes the time spent in the iteration.
Otherwise, we make O(C3 · n) = O(n) iterations of the for-loop in lines 9–14. Since each
iteration of the for-loop takes O((1/ε3) log n+ 1/ε4) time, as argued earlier in this proof,
the bound per iteration of the repeat-loop follows.

Lemma 16 (Correctness of one iteration). In one iteration of the repeat-loop (lines 5–
14) of the algorithm LargePotato the algorithm finds a convex polygon of area at least
(1− ε)A∗(P) with probability at least 1/4.

Proof. Let K∗ be a convex polygon of largest area contained in P . Therefore area(K∗) =
A∗(P). Consider one iteration of the repeat-loop. Suppose G(P,R) passes the test on line
6. Then the following two conditions are sufficient for a successful iteration: R contains
two visible points a and b such that the parallelogram Γ(a, b, C2 · A(P)) (used in lines
9–14) contains K∗, and Sab contains a point s such that area(ϕ(Gab, s)) (computed in line
13) is a (1− ε)-approximation to area(K∗). This motivates the definition of the following
events:

EK∗ : for some edge ab of G(P,R), K∗ is contained in Γ(a, b, C2 ·A(P)),

EG : |E(G(P,R))| ≤ C3 · n,
EΓ : for some edge ab of G(P,R), there is s ∈ Sab such that

area(ϕ(Gab, s)) ≥ (1− ε) ·A∗(P).

Since

|R| =
60

A(P)
≥ 60

area(K∗)

and A∗(P) ≤ C2 ·A(P), Lemma 7 implies that

Pr [EK∗] ≥ 2
3 .

By Lemma 12 we have
Pr[EG] ≥ 5

6

and therefore, since Pr [A ∩B] ≥ Pr [A] + Pr [B]− 1,

Pr [EK∗ and EG] ≥ 1
2 . (5)

For the rest of the proof, we assume that EK∗ and EG hold. Let a0b0 be the edge of
G(P,R) such that Γ0 := Γ(a0, b0, C2 · A(P)) contains K∗. The algorithm executes the
code in lines 9–14 for ab = a0b0. Let K∗ε/2 be the portion of K∗ above y = y1−ε/2(K∗)

and let K∗1−ε/2 = K∗ \K∗ε/2. It holds that

area(K∗ε/2) = (ε/2) · area(K∗) and area(K∗1−ε/2) = (1− ε/2) · area(K∗).

The bound

|Sa0b0 | =
288 · C2

ε
= 4 · 3 · 12 · C2 ·A∗(P)

(ε/2) ·A∗(P)
≥ 4 · 3 · area(Γ0)

area(K∗ε/2)

17

and Lemma 3 (with P = Γ0 and K = K∗ε/2) imply that

Pr
[
Sa0b0 ∩K∗ε/2 6= ∅ | EK∗ and EG

]
≥ 5

6
. (6)

The bound

|Ra0b0 | =
96 · C1 · C2

(ε/2)3/2
= 4 · C1

(ε/2)3/2
· 12 · C2 ·A∗(P)

A∗(P)/2
≥ 4 · C1

(ε/2)3/2
· area(Γ0)

area(K∗1−ε/2)

and Lemma 4 (with P = Γ0 and K = K∗1−ε/2) imply that

Pr
[
area(conv(Ra0b0 ∩K∗1−ε/2)) ≥ (1− ε/2) · area(K∗1−ε/2) | EK∗ and EG

]
≥ 2

3
.

Noting that

(1− ε/2) · area(K∗1−ε/2) = (1− ε/2) · (1− ε/2) ·A∗(P)

> (1− ε) ·A∗(P),

we have

Pr
[
area(conv(Ra0b0 ∩K∗1−ε/2)) ≥ (1− ε) ·A∗(P) | EK∗ and EG

]
≥ 2

3
. (7)

Joining (6) and (7) we obtain that, with probability at least 1/2, it holds

area(conv(Ra0b0 ∩K∗1−ε/2)) ≥ (1− ε) ·A∗(P) and Sa0b0 ∩K∗ε/2 6= ∅.
If these two events occur and s is a point of Sa0b0 ∩K∗ε/2, then

area(ϕ(Ga0b0 , s)) ≥ area(conv((K∗1−ε/2 ∩Ra0b0) ∪ {s}))
≥ area(conv(K∗1−ε/2 ∩Ra0b0))

≥ (1− ε) ·A∗(P).

We conclude that
Pr [EΓ | EK∗ and EG] ≥ 1

2

and using (5) obtain

Pr [EK∗ and EG and EΓ] = Pr [EΓ | EK∗ and EG] · Pr [EK∗ and EG] ≥ 1

2
· 1

2
=

1

4
.

When EK∗ , EG and EΓ occur, the test in line 6 is satisfied and in one of the iterations of
the loop in lines 13–14 we will obtain a (1− ε)-approximation to A∗(P).

Theorem 17. Let P be a polygon with n vertices, let ε and δ be parameters with 0 < ε < 1
and 0 < δ < 1. In time O

(
n(log2 n+ (1/ε3) log n+ 1/ε4) log(1/δ)

)
we can find a convex

polygon contained in P that, with probability at least 1−δ, has area at least (1−ε) ·A∗(P).

Proof. We consider the output K given by LargePotato(P, ε, δ). By Lemma 15, we can
assume that the output is computed in time O

(
n(log2 n+ (1/ε3) log n+ 1/ε4) log(1/δ)

)
.

The polygon K returned by LargePotato(P, ε, δ) is always a convex polygon con-
tained in P . We have area(K) < (1 − ε) · A∗(P) if and only if all iterations of the
repeat-loop (lines 5–14) fail to find such a (1 − ε)-approximation. Since each such it-
eration fails with probability at most 3/4 due to Lemma 16, and there are 3 log2(1/δ)
iterations, we have

Pr[area(K) < (1− ε) ·A∗(P)] ≤
(

3

4

)3 log2(1/δ)

<

(
1

2

)log2(1/δ)

= δ.

18

We observe that, if we perform only four iterations of the repeat-loop, we obtain the
result stated in the abstract. It is also interesting to note that, when ε is constant, then
the running time of the algorithm is O(n log2 n log(1/δ)).

5 Convex body of maximum perimeter

In this section we present an adaptation of the previous algorithm in order to maximize
the perimeter. Recall that for a convex body K in the plane, we denote its perimeter by
per(K), and we have defined

L∗(P) = max{per(K) | K ⊂ P, K convex}.

Before presenting the actual algorithm, we first introduce a few tools.

5.1 Perimeter of the convex hull of random samples

Let K be a convex body in the plane and let R be a random sample of n points inside K.
How well does per(conv(R)) approximate per(K)? There has been quite some research
on this problem, often on the high-dimensional generalizations called intrinsic volumes.
See [34, 35] for an overview of the known results on this problem. However, all the results
we found use constants that depend on K. Since in our application the target convex
body K is unknown, we are interested in bounds using universal constants, independent
of K.

Theorem 18. There is some universal constant C4 ≥ 1 such that the following holds.
For each convex body K in the plane, if Km denotes the convex hull of m points chosen
uniformly at random inside K, then per(K)− E[per(Km)] ≤ C4√

m
· per(K).

Proof. Let us first provide some notation used only in this proof. In the notation we drop
the dependency on K. Let U be the set of unit vectors in the plane. For each u ∈ U and
each t ∈ R≥0 we define the following values; see Figure 6.

h(u) := max{〈p, u〉 | p ∈ K},
dwidth(u) := h(u) + h(−u),

S(u, t) := {p ∈ R2 | h(u)− t ≤ 〈p, u〉 ≤ h(u)},
`(u, t) := {p ∈ R2 | h(u)− t = 〈p, u〉},
v(u, t) := area(K ∩ S(u, t)).

Note that dwidth(u) is the so-called directional width of K in direction u: the length of
the orthogonal projection of K onto any line parallel to u. The line `(u, t) is perpendicular
to u and `(u, 0) is tangent to K. Moreover, S(u, t) is an infinite slab of width t defined
by `(u, 0) and `(u, t). When t > 0 the slab S(u, t) intersects the interior of K. The value
v(u, t) tells the area of the portion of K contained in S(u, t).

In the proof we are going to use the classical Crofton’s formula that tells

per(K) =

∫
U

dwidth(u) dω(u) =

∫
U

∫ +∞

−∞
1K∩`(u,t) 6=∅ dt dω(u), (8)

where ω is the uniform Lebesgue measure on U satisfying
∫
U 1 dω(u) = 1/2.

We adapt the approach of Schneider and Wieacker [33, 36], based on an observation
of Efron [23].

19

K
u

S(u, t) t

dwidth(u)

p(u)

K(u, t)

`(u, t)

Figure 6: Notation in the proof of Theorem 18.

By scaling, we can assume that K has unit area. Consider a line `(u, t) that intersects
K. The line `(u, t) does not intersect Km if and only if all points of the random sample
lie in the interior of S(u, t) or all the points of the random sample lie in K \S(u, t). Since
K has area 1 and K ∩ S(u, t) has area v(u, t), this means that

∀u ∈ U and t ∈ [0, dwidth(u)] : Pr[`(u, t) ∩Km 6= ∅] = 1− v(u, t)m −
(
1− v(u, t)

)m
.

Using Fubini’s theorem we have

E[per(Km)] =

∫
U

∫ dwidth(u)

0
Pr[`(u, t) ∩Km 6= ∅] dt dω(u)

=

∫
U

∫ dwidth(u)

0

[
1− v(u, t)m −

(
1− v(u, t)

)m]
dt dω(u)

=

∫
U

dwidth(u) dω(u)−
∫
U

∫ dwidth(u)

0

[
v(u, t)m +

(
1− v(u, t)

)m]
dt dω(u)

= per(K)−
∫
U

∫ dwidth(u)

0

[
v(u, t)m +

(
1− v(u, t)

)m]
dt dω(u).

Note that for each u ∈ U and each t with 0 ≤ t ≤ dwidth(u) we have

1− v(u, t) = v(−u,dwidth(u)− t),

and therefore, by applying the change of variables w = −u, s = dwidth(u) − t and
renaming the new variables as u, t,∫

U

∫ dwidth(u)

0

(
1− v(u, t)

)m
dt dω(u) =

∫
U

∫ dwidth(u)

0
v(u, t)mdt dω(u).

Thus, rearranging terms we get

per(K)− E[per(Km)] = 2

∫
U

∫ dwidth(u)

0

(
1− v(u, t)

)m
dt dω(u).

Now we adapt the estimate of Schneider [33] to make it independent of K. The right
of Figure 6 may be helpful. For each u ∈ U , let p(u) ∈ K be a point maximizing 〈p, u〉.
For each u ∈ U and each t ∈ R≥0, let K(u, t) be a copy of K scaled by t

dwidth(u) with

center p(u). Note that K(u, t) is contained in S(u, t) and, if 0 ≤ t ≤ dwidth(u), it is also
contained in K. Therefore, since area(K) = 1, we have

∀u ∈ U and t ∈ [0,dwidth(u)] : v(u, t) ≥ area(K(u, t)) =

(
t

dwidth(u)

)2

.

20

Thus we have the estimate

per(K)− E[per(Km)] ≤ 2

∫
U

∫ dwidth(u)

0

(
1−

(
t

dwidth(u)

)2
)m

dt dω(u).

For each u ∈ U we can use the change of variable x = (t/dwidth(u))2 and we obtain that

per(K)− E[per(Km)] ≤
∫
U

∫ 1

0
x−1/2(1− x)m dwidth(u) dx dω(u)

=

∫
U

dwidth(u)

∫ 1

0
x−1/2(1− x)m dx dω(u).

Using the standard formula∫ 1

0
xa−1(1− x)b−1 dx =

Γ(a)Γ(b)

Γ(a+ b)

for the beta function and the gamma function, and the known value Γ(1/2) =
√
π, we

further derive

per(K)− E[per(Km)] ≤
∫
U

dwidth(u)

∫ 1

0
x−1/2(1− x)m dx dω(u)

=

∫
U

dwidth(u)

√
π Γ(m+ 1)

Γ(m+ 3/2)
dω(u)

=

√
π Γ(m+ 1)

Γ(m+ 3/2)

∫
U

dwidth(u) dω(u)

=

√
π Γ(m+ 1)

Γ(m+ 3/2)
· per(K).

Now we use that

lim
m→∞

Γ(m+ 3/2)

Γ(m+ 1)
√
m

= 1

to conclude that, for some constant C4 ≥ 1,

per(K)− E[per(Km)] ≤ C4√
m

per(K).

Note that the bound in this theorem is optimal. When K is an equilateral triangle of
unit area, to get a (1− ε)-approximation of per(K), we need to sample at least one point
at distance at most O(ε) from each vertex, and these regions have area Θ(ε2).

The following lemma is the analogue to Lemma 4 for the perimeter.

Lemma 19. Let K be a convex body contained in a polygon P , let R be a random sample
of points inside P , and let C4 be the constant in Theorem 18. If

|R| ≥ 4 · (6C4/ε)
2 · area(P)

area(K)
,

then with probability at least 2/3 it holds that per(conv(R ∩K)) ≥ (1− ε) per(K).

21

Proof. We define the following events:

E : |R ∩K| ≥ (6C4/ε)
2,

F : per(conv(R ∩K)) ≥ (1− ε) · per(K).

For each event A we use A for its negation. Since C4 ≥ 1, then (6C4/ε)
2 ≥ 3 and Lemma 3

implies

Pr [E] ≥ 5

6
.

Assuming the event E , that is, |R ∩K| ≥ (6C4/ε)
2, it follows from Markov’s inequality

and Theorem 18 that

Pr [per(K)− per(conv(R ∩K)) ≥ ε · per(K)] ≤ 1

ε · per(K)
· E [per(K)− per(conv(R ∩K))]

≤ 1

ε · per(K)
· C4√
|R ∩K|

· per(K)

≤ C4

ε · per(K) · (6C4/ε)
· per(K)

=
1

6
.

This means that

Pr
[
F | E

]
≤ 1

6

and therefore

Pr
[
F
]
≤ Pr

[
F | E

]
+ Pr

[
E
]
≤ 1

6
+

1

6
=

1

3
.

5.2 Bounds depending on the fatness

We recall a result about approximation of convex bodies in the plane by rectangles:

Lemma 20 (Schwarzkopf et al. [37]). Given a convex body K in the plane, there exist two
similar and parallel rectangles Πin(K) and Πout(K) such that Πin(K) ⊆ K ⊆ Πout(K)
and the sides of Πout(K) are at most twice as long as the sides of Πin(K).

Note that the statement does not guarantee that Πin(K) and Πout(K) have a common
center. Given a convex body K, we denote by d1(K) and d2(K) the lengths of the sides
of Πin(K), with d1(K) ≥ d2(K). Although the rectangles Πin(K) and Πout(K) are not
necessarily unique, this does not affect our arguments.

We will run two algorithms and choose the best between both outputs. One of the algo-
rithms is a (1−26ε)-approximation when the optimal solutionK∗ satisfies d2(K∗)/d1(K∗) ≤
ε, while the other covers the case d2(K∗)/d1(K∗) ≥ ε. We now develop bounds for both
cases.

Lemma 21. Let K∗ be a convex body contained in P such that per(K∗) = L∗(P). Let `
be the length of a longest line segment contained in P . If d2(K∗)/d1(K∗) ≤ ε ≤ 2/5, then
L∗(P) ≤ 2 · ` · (1 + 25 · ε).

Proof. To simplify the notation, in this proof we set d1 := d1(K∗) and d2 := d2(K∗).
Without loss of generality, we assume that the longer side of Πin(K∗) is horizontal, and
the shorter one is vertical.

22

Πout(K
∗) s

K∗

Figure 7: Situation in the proof of Lemma 21. In gray, the parallelogram Ψ.

Let s be a longest line segment contained in K∗, let `K∗ be its length, and let a and
b be its two endpoints. Clearly, `K∗ ≤ `. Since Πin(K∗) ⊂ K∗, we have `K∗ ≥ d1.

We first observe that s is not vertical. Indeed, in this case the containment K∗ ⊂
Πout(K

∗) implies `K∗ ≤ 2 · d2. Thus, we would have d1 ≤ 2 · d2, which contradicts the
assumption that d2/d1 ≤ ε ≤ 2/5.

Without loss of generality, we assume that s has non-negative slope α. Since s is a
longest line segment in K∗, K∗ is contained in the infinite region of the plane bounded
by the lines through a and b perpendicular to s. We denote by Ψ the parallelogram
resulting from the intersection of this region and the region of the plane bounded by the
lines supporting the horizontal edges of Πout(K

∗). See Figure 7. The horizontal sides of
Ψ have length `K∗/ cosα, while the other sides have length at most 2 ·d2/ cosα. It is well-
known, and an easy consequence of Crofton’s formula (see equation (8) in Theorem 18),
that if a convex body K1 is contained in a convex body K2, then per(K1) ≤ per(K2).
Since K∗ ⊆ Ψ, it is enough to prove that per(Ψ) ≤ 2 · ` · (1 + 25 · ε).

Since s is contained in Πout(K
∗), the maximum slope is attained when one of the

endpoints of s lies in the lower side of Πout(K
∗), and the other endpoint in the upper

side. Therefore,

sinα ≤ 2 · d2

`K∗
≤ 2 · ε · d1

d1
= 2 · ε .

Since ε < 1/2,

cosα ≥
√

1− 4 · ε2 > 1− 2 · ε .
Thus, we have

per(Ψ) ≤ 2 · `K∗
cosα

+
4 · d2

cosα

≤ 1

cosα
· (2 · `+ 4 · ε · d1)

<
1

1− 2 · ε · (2 · `+ 4 · ε · `)

=
2 · ` · (1 + 2 · ε)

1− 2 · ε
< 2 · ` · (1 + 25 · ε) ,

where the last inequality holds because ε ≤ 2/5.

Lemma 22. Let K∗ be a convex body contained in P such that per(K∗) = L∗(P). If
d2(K∗)/d1(K∗) ≥ ε, then area(K∗) ≥ ε

16 ·A∗(P).

Proof. To simplify the notation, in this proof we set d1 := d1(K∗) and d2 := d2(K∗).
Let K ′ be a convex shape contained in P with area(K ′) = A∗(P). We further define

23

d′1 := d1(K ′) and d′2 := d2(K ′). We have the following obvious relations:

per(K∗) ≤ per(Πout(K
∗) ≤ 4 · (d1 + d2) ,

per(K ′) ≥ per(Πin(K ′)) = 2 · (d′1 + d′2) ,

area(K∗) ≥ area(Πin(K∗)) = d1 · d2 ,

area(K ′) ≤ area(Πout(K
′)) ≤ 4 · d′1 · d′2 .

Combining the first two inequalities with per(K ′) ≤ per(K∗), we obtain

d′1 + d′2 ≤ 2 · (d1 + d2) . (9)

If 2 · d1 ≥ d′1, then

area(K∗) ≥ d1 · d2 ≥ d1 · ε · d1 ≥ (ε/4) · (d′1)2

≥ (ε/4) · d′1 · d′2 ≥ (ε/16) · area(K ′)

= (ε/16) ·A∗(P) .

Let us now consider the case 2 · d1 < d′1. Since the inequality (9) implies

2 · (d1 + d2) ≥ d′1 + d′2 > 2 · d1 + d′2

we obtain 2 · d2 > d′2. Adding the inequalities d′1 > 2 · d1 and 2 · d2 > d′2 we get that

d′1 − d′2 > 2 · (d1 − d2) . (10)

Combining (9) and (10) we have

d1 · d2 = 1/4 · ((d1 + d2)2 − (d1 − d2)2)

> 1/4 · (1/4 · (d′1 + d′2)2 − 1/4 · (d′1 − d′2)2)

= (1/4) · d′1 · d′2 .

Thus, also in this case we get

area(K∗) ≥ d1 · d2 > (1/4) · d′1 · d′2 ≥ (ε/16) · 4 · d′1 · d′2
≥ (ε/16) · area(K ′) = (ε/16) ·A∗(P) .

5.3 Algorithm

As already mentioned, we run two algorithms to find a (1 − ε)-approximation of L∗(P).
In fact, to keep the computations slightly simpler, we will provide for a (1 − 26ε)-
approximation of L∗(P).

Let K∗ be a convex body inside P with per(K∗) = L∗(P). The first algorithm finds a
(1 − 26ε)-approximation of the value L∗(P) when d2(K∗)/d1(K∗) ≤ ε, while the second
algorithm returns a (1− ε)-approximation of the value L∗(P) when d2(K∗)/d1(K∗) ≥ ε.
Since both algorithms compute a convex polygon contained in P , taking the best of the
two solutions we obtain a (1 − 26ε)-approximation in any case. We can assume that
ε ≤ 2/5, as otherwise we can just take ε = 2/5.

Consider first the case d2(K∗)/d1(K∗) ≤ ε. This means that the optimal solution K∗

is “skinny”. Let ` be the length of a longest segment contained in P . Let s̄ be a line
segment contained in P of length at least (1− ε) · `. Lemma 21 implies that

per(s̄) ≥ 2 · (1− ε) · ` ≥ L∗(P) · 1− ε
1 + 25 · ε ≥ L∗(P) · (1− 26 · ε) .

24

Hall-Holt et al. [27] show how to compute such a segment s̄ in O((n/ε4) log2 n) time. We
conclude that, whenever d2(K∗)/d1(K∗) ≤ ε, we can obtain a (1− 26 · ε)-approximation
to L∗(P) in O((n/ε4) log2 n) time.

Consider now the case d2(K∗)/d1(K∗) ≥ ε. This means that the optimal solution K∗

is “slightly fat”. By Lemma 22 we have

ε

16
·A∗(P) ≤ area(K∗) ≤ A∗(P).

Let A(P) be the approximation computed in the algorithm LargePotato, line 1 of
Figure 5. We then know that

ε

16
·A(P) ≤ area(K∗) ≤ C2 ·A(P).

We divide the interval [ε16 ·A(P), C2 ·A(P)] into the following O(log 1/ε) subintervals:

Ii := [C2 ·A(P)/2i+1, C2 ·A(P)/2i], i ∈ Z, 0 ≤ i ≤ dlog2(16C2/ε)e.

For each integer i we can apply a modification of the algorithm LargePotato, as follows.

Lemma 23. A modification of the algorithm LargePotato taking as an extra parameter
an integer i has the following properties. It always takes time

O
(
n
[
2i log2 n+ (4i/ε4) log n+ 4i/ε6

]
log(1/δ)

)
.

If area(K∗) is in Ii, then the algorithm finds a convex polygon of perimeter at least (1−
ε)L∗(P) with probability at least 1−δ. If area(K∗) is not in Ii, then the algorithm returns
a convex polygon inside P .

Proof. As stated in the algorithm LargePotato, we assume that P has unit area. To
simplify the computation, set Ai = C2 · A(P)/2i+1, that is, the lower endpoint of the
interval Ii. The value r in line 2 of the algorithm LargePotato is set to r = 60/Ai.
Since A(P) = Ω(1/n) we have r = O(2in).

Consider one of the iterations of the repeat loop (lines 5–14). A slight modification
of the proof of Lemma 12 gives that the expected size of the visibility graph G(P,R) is
bounded by

E[|E(G(P,R))|] =

(
r

2

)
· Pr[two random points are visible in P]

≤ 1

2

(
60

Ai

)2

· 180 ·A∗(P)

≤ 324000 ·
(

1

C2 ·A(P)/2i+1

)2

·A∗(P)

≤ 4i+1 · 324000 · n.

Therefore, the condition in line 6 of LargePotato becomes “if G(P,R) has at most C ′ ·n
edges then”, where C ′ = 6 · 4i+1 · 324000. This condition is satisfied in each iteration
of the repeat loop with probability at least 5/6. This condition can be checked using
Theorem 13 in

O(n+ r log r log(rn) + 4in) = O(2in log(2in) log(2in2) + 4in) = O(n[4i + 2i log2 n])

time.

25

Under the assumption that Ai ≤ area(K∗) ≤ 2Ai, we have r ≥ 60/ area(K∗) and
Lemma 7 ensures that, with probability at least 2/3, the body K∗ lies in some parallelo-
gram Γ(a0, b0, 2Ai) for some edge a0b0 of the visibility graph G(P,R).

It remains to discuss how to find a maximum-perimeter polygon contained in the
parallelogram Γ(a0, b0, 2Ai) that contains K∗ (lines 9–14). For the other parallelograms
Γ(a, b, 2Ai), ab ∈ E(G(P,R)), we just need to make sure that we find some convex polygon
contained in P .

Consider an edge ab of the visibility graph G(P,R) and note that

area(Γ(a, b, 2Ai)) = 12 · 2Ai = 24 ·Ai.

We have

4 · (6C4/ε)
2 · area(Γ(a, b, 2Ai))

area(K∗)
≤ 144 · (C4)2

ε2
· 24 ·Ai

Ai
=

C5

ε2
,

for some constant C5.
Using Lemma 19 we obtain the following: if we take a sample Ra0b0 of C5/ε

2 points
inside Γ(a0, b0, 2Ai), then with probability at least 2/3, we have per(conv(Ra0b0 ∩K∗)) ≥
(1− ε) ·L∗(P). Thus, we proceed, for each ab ∈ E(G(P,R)) as follows: take a sample Rab
of C5/ε

2 points inside Γ(a, b, 2Ai), build the visibility graph Gab of Rab, and find a convex
clique in Gab of largest perimeter. As discussed in Lemma 15, the visibility graph can be
built in O(|Rab|2 log n) = O((1/ε)4 log n) time. For computing the convex clique of largest
perimeter, we use the modification of Lemma 8 mentioned thereafter, using each point
of Rab as highest point. Unlike in the case of approximating the area, here we cannot
afford to use an asymptotically smaller sample Sab for the highest points, for the following
reason. Let T be an equilateral triangle with a horizontal base at the bottom and a vertex
v on top. To approximate the perimeter of T by a convex hull of a set of points inside T
with error at most ε, the highest point of the set must be in a region of area Ω(ε2 ·area(T))
near v. Hence we would need at least Ω(1/ε2) points in the sample Sab. Thus, we need
O(|Rab| · |Rab|2) = O(1/ε6) time to compute the convex clique of largest perimeter. We
conclude that for each edge ab of G(P,R) we spend O((1/ε4) log n+ 1/ε6) time.

Since we make |E(G(P,R))| = O(4in) iterations of the for loop (lines 9–14), and
each iteration of the for loop (lines 9–14) takes O((1/ε4) log n + 1/ε6) time, in the for
loop of lines 8–14 we spend O(n · 4i · ((1/ε4) log n + 1/ε6)) time. To make the test
in line 6 we spend O(n[4i + 2i log2 n]). It follows that in each iteration of the repeat
loop we spend O

(
n
[
2i log2 n+ (4i/ε4) log n+ 4i/ε6

])
time. Since the algorithm makes

O(log(1/δ)) iterations of the repeat loop, the claimed time bound follows.
Under the assumption that area(K∗) lies in the interval Ii, the graph G(P,R) passes

the test of line 6 with probability at least 5/6, one of the parallelograms Γ(a0, b0, 2Ai)
contains K∗ with probability at least 2/3, and the sample Ra0b0 has the property that
per(K∗∩Ra0b0) ≥ (1−ε)L∗(P) with probability at least 2/3. When all three events occur,
the algorithm finds a (1 − ε)-approximation. As shown in the proof of Lemma 16, with
probability at least 1/4, the three events occur simultaneously, and thus some iteration
of the repeat loop is successful with probability at least 1 − δ, as shown in the proof of
Theorem 17. We conclude that, when area(K∗) lies in the interval Ii, the output of the
algorithm is a (1− ε)-approximation with probability at least 1− δ.

When area(K∗) does not lie in the interval Ii, we spend the same time and we return
a convex polygon contained in P (possibly degenerated to a single point) without any
guarantee.

26

Lemma 24. When d2(K∗)/d1(K∗) ≥ ε, we can find a convex polygon of perimeter at
least (1− ε)L∗(P) with probability at least 1− δ in time

O
(
n
[
(1/ε) log2 n+ (1/ε6) log n+ 1/ε8

]
log(1/δ)

)
.

Proof. We use the algorithm of Lemma 23 for each interval Ii, where i = 0, 1, . . . ,
dlog2(16C2/ε)e, and return the polygon with largest perimeter we get over all iterations.
The running time is

dlog2(16C2/ε)e∑
i=0

O

(
n

[
2i log2 n+

4i

ε4
log n+

4i

ε6

]
log(1/δ)

)
.

Using that
∑

i 2i = O(1/ε) and
∑

i 4i = O(1/ε2), this becomes

O

(
n

[
1

ε
log2 n+

1

ε6
log n+

1

ε8

]
log(1/δ)

)
.

The algorithm is successful in getting a (1− ε)-approximation whenever the iteration
with area(K∗) in Ii is successful. Thus, the whole algorithm is a (1 − ε)-approximation
with probability at least 1− δ, for the case d2(K∗)/d1(K∗) ≥ ε.

Combining the algorithms for d2(K∗)/d1(K∗) ≤ ε and d2(K∗)/d1(K∗) ≥ ε we get a
(1 − 26ε)-approximation. Replacing ε with ε/26 in the whole discussion, we obtain the
following final result for maximizing the perimeter.

Theorem 25. Let P be a polygon with n vertices, let ε and δ be parameters with 0 < ε < 1
and 0 < δ < 1. In time O

(
n
[
(1/ε4) log2 n+

(
(1/ε) log2 n+ (1/ε6) log n+ 1/ε8

)
log(1/δ)

])
we can find a convex polygon contained in P that, with probability at least 1 − δ, has
perimeter at least (1− ε) · L∗(P).

6 Conclusions

There are several directions for future work. We explicitly mention the following:

• Finding a deterministic (1− ε)-approximation using near-linear time.

• Achieving subquadratic time for polygons with an unbounded number of holes.

In the conference version of this paper (in the proceedings of SoCG 2014), we also
mentioned the following two questions that have been answered affirmatively by Balko et
al. [5].

• Does Theorem 9(i) hold for arbitrary simple polygons? We conjecture so, possibly
with a larger constant.

• Are similar results about the probability of random points being co-visible achievable
in 3-dimensions?

Acknowledgments

We are grateful to Mark de Berg for asking for the perimeter and to Hans Raj Tiwary for
pointing out the main obstacle when dealing with the perimeter.

27

References

[1] P. K. Agarwal and M. Sharir. Efficient randomized algorithms for some geometric
optimization problems. Discrete Comput. Geom., 16(4):317–337, 1996.

[2] P. K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching in
geometric optimization. J. Algorithms, 17(3):292–318, 1994.

[3] B. Aronov, M. J. van Kreveld, M. Löffler, and R. I. Silveira. Peeling meshed potatoes.
Algorithmica, 60(2):349–367, 2011.

[4] A. Baddeley, I. Bárány, R. Schneider, and W. Weil. Stochastic geometry, volume 1892
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2007. Lectures given at
the C.I.M.E. Summer School held in Martina Franca, September 13–18, 2004, With
additional contributions by D. Hug, V. Capasso and E. Villa, Edited by W. Weil.

[5] M. Balko, V. Jeĺınek, P. Valtr, and B. Walczak. On the Beer index of convexity and
its variants. Discrete Comput. Geom., 57(1):179–214, 2017.

[6] I. Bárány. Random points and lattice points in convex bodies. Bull. Amer. Math.
Soc. (N.S.), 45(3):339–365, 2008.

[7] I. Bárány and D. G. Larman. Convex bodies, economic cap coverings, random poly-
topes. Mathematika, 35(2):274–291, 1988.

[8] C. Bautista-Santiago, J. M. Dı́az-Báñez, D. Lara, P. Pérez-Lantero, J. Urrutia, and
I. Ventura. Computing optimal islands. Oper. Res. Lett., 39(4):246–251, 2011.

[9] B. Ben-Moshe, O. A. Hall-Holt, M. J. Katz, and J. S. B. Mitchell. Computing
the visibility graph of points within a polygon. In J. Snoeyink and J.-D. Boissonnat,
editors, Proc. 20th ACM Symposium on Computational Geometry, pages 27–35, 2004.

[10] P. Bose, J. Czyzowicz, E. Kranakis, D. Krizanc, and A. Maheshwari. Polygon cutting:
revisited. In J. Akiyama, M. Kano, and M. Urabe, editors, Discrete and computa-
tional geometry (Tokyo, 1998), volume 1763 of Lecture Notes in Computer Science,
pages 81–92. Springer Berlin Heidelberg, 2000.

[11] K. Buchin, I. Kostitsyna, M. Löffler, and R. I. Silveira. Region-based approximation
of probability distributions (for visibility between imprecise points among obstacles).
arXiv:1402.5681, 2014.

[12] J.-S. Chang and C.-K. Yap. A polynomial solution for the potato-peeling problem.
Discrete Comput. Geom., 1(2):155–182, 1986.

[13] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom.,
6(5):485–524, 1991.

[14] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica,
12(1):54–68, 1994.

[15] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT,
25(1):76–90, 1985.

28

https://arxiv.org/abs/1402.5681

[16] B. Chazelle and M. Sharir. An algorithm for generalized point location and its
applications. J. Symbolic Comput., 10(3-4):281–309, 1990.

[17] O. Cheong, A. Efrat, and S. Har-Peled. Finding a guard that sees most and a shop
that sells most. Discrete Comput. Geom., 37(4):545–563, 2007.

[18] K. Daniels, V. Milenkovic, and D. Roth. Finding the largest area axis-parallel rect-
angle in a polygon. Comput. Geom., 7(1-2):125–148, 1997.

[19] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars. Computational
geometry: Algorithms and applications, 3rd Edition, chapter Polygon triangulation,
pages 45–61. Springer-Verlag Berlin Heidelberg, 2008.

[20] A. DePano, Y. Ke, and J. O’Rourke. Finding largest inscribed equilateral triangles
and squares. In Proc. 25th Allerton Conf. Commun. Control Comput., pages 869–878,
1987.

[21] A. Dumitrescu, S. Har-Peled, and Cs. D. Tóth. Minimum convex partitions and
maximum empty polytopes. J. Comput. Geom., 5(1):86–103, 2014.

[22] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines
and hyperplanes with applications. SIAM J. Comput., 15(2):341–363, 1986.

[23] B. Efron. The convex hull of a random set of points. Biometrika, 52:331–343, 1965.

[24] P. Fischer. Sequential and parallel algorithms for finding a maximum convex polygon.
Comput. Geom., 7(3):187–200, 1997.

[25] J. E. Goodman. On the largest convex polygon contained in a non-convex n-gon, or
how to peel a potato. Geom. Dedicata, 11(1):99–106, 1981.

[26] H. Groemer. On the mean value of the volume of a random polytope in a convex set.
Arch. Math. (Basel), 25:86–90, 1974.

[27] O. Hall-Holt, M. J. Katz, P. Kumar, J. S. B. Mitchell, and A. Sityon. Finding large
sticks and potatoes in polygons. In Proceedings of the Seventeenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 474–483. ACM, New York, 2006.

[28] D. T. Lee and Y. T. Ching. The power of geometric duality revisited. Inform.
Process. Lett., 21(3):117–122, 1985.

[29] E. A. Melissaratos and D. L. Souvaine. Shortest paths help solve geometric opti-
mization problems in planar regions. SIAM J. Comput., 21(4):601–638, 1992.

[30] A. Rényi and R. Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2:75–84, 1963.

[31] A. Rényi and R. Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten.
II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 3:138–147, 1964.

[32] G. Rote. The degree of convexity. In S. P. Fekete, editor, Abstracts 29th European
Workshop on Computational Geometry, pages 69–72, 2013.

[33] R. Schneider. Approximation of convex bodies by random polytopes. Aequationes
Math., 32(2-3):304–310, 1987.

29

[34] R. Schneider. Discrete aspects of stochastic geometry. In J. E. Goodman and
J. O’Rourke, editors, Handbook of discrete and computational geometry, Discrete
Mathematics and its Applications (Boca Raton), pages 255–278. Chapman &
Hall/CRC, Boca Raton, FL, second edition, 2004.

[35] R. Schneider and W. Weil. Stochastic and integral geometry, chapter Some geometric
probability problems, pages 293–376. Probability and its Applications (New York).
Springer-Verlag, Berlin, 2008.

[36] R. Schneider and J. A. Wieacker. Random polytopes in a convex body. Z. Wahrsch.
Verw. Gebiete, 52(1):69–73, 1980.

[37] O. Schwarzkopf, U. Fuchs, G. Rote, and E. Welzl. Approximation of convex figures
by pairs of rectangles. Comput. Geom., 10(2):77–87, 1998.

30

	1 Introduction
	2 About convexity
	2.1 Inner approximation using random sampling
	2.2 Outer containment in a parallelogram
	2.3 Largest convex polygon in a visibility graph.

	3 Probability for visibility
	4 Algorithm
	4.1 Description
	4.2 Analysis

	5 Convex body of maximum perimeter
	5.1 Perimeter of the convex hull of random samples
	5.2 Bounds depending on the fatness
	5.3 Algorithm

	6 Conclusions

