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EUCLIDEAN STEINER SHALLOW-LIGHT TREES∗

Shay Solomon†

Abstract. A spanning tree that simultaneously approximates a shortest-path tree and
a minimum spanning tree is called a shallow-light tree (shortly, SLT). More specifically,
an (α, β)-SLT of a weighted undirected graph G = (V,E,w) with respect to a designated
vertex rt ∈ V is a spanning tree of G with: (1) root-stretch α – it preserves all distances
between rt and the other vertices up to a factor of α, and (2) lightness β – it has weight
at most β times the weight of a minimum spanning tree MST (G) of G.

Tight tradeoffs between the parameters of SLTs were established by Awerbuch et
al. in PODC’90 and by Khuller et al. in SODA’93. They showed that for any ε > 0, any
graph admits a (1 + ε, O(1

ε ))-SLT with respect to any root vertex, and complemented this
result with a matching lower bound.

Khuller et al. asked if the upper bound β = O(1
ε ) on the lightness of SLTs can be

improved in Euclidean spaces. In FOCS’11 Elkin and this author gave a negative answer to
this question, showing a lower bound of β = Ω(1

ε ) that applies to 2-dimensional Euclidean
spaces.

In this paper we show that Steiner points lead to a quadratic improvement in Eu-

clidean SLTs, by presenting a construction of Euclidean Steiner (1 + ε, O(
√

1
ε ))-SLTs in

arbitrary 2-dimensional Euclidean spaces. The lightness bound β = O(
√

1
ε ) of our con-

struction is optimal up to a constant. The runtime of our construction, and thus the
number of Steiner points used, are bounded by O(n).

1 Introduction

1.1 Background

Consider a weighted undirected n-vertex graph G = (V,E,w), w : E → R+. A minimum
spanning tree (shortly, MST) of G is a spanning tree T = (V,H,w) of G of minimum weight
ω(T ) =

∑
e∈H ω(e). A shortest-path tree (shortly, SPT) of G with respect to a root vertex

rt ∈ V is a spanning tree T = (V,H,w) that preserves all distances from rt, i.e., for every
vertex v ∈ V , the distance dT (rt, v) between rt and v in T is equal to their distance dG(rt, v)
in G. The MST and the SPT are among the most fundamental graph constructs, and have
been extremely well studied over the years.
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A spanning tree that simultaneously approximates a shortest-path tree and a mini-
mum spanning tree is called a shallow-light tree (shortly, SLT). This notion was introduced
in [5, 6, 29] (and goes by the name of LAST in [29]). For a pair of parameters α, β ≥ 1,
an (α, β)-SLT of a weighted undirected graph G = (V,E,w) with respect to a designated
vertex rt ∈ V is a spanning tree T of G with:

1. root-stretch α – it preserves all distances between rt and the other vertices up to a
factor of α.

2. lightness β – it has weight at most β times the weight of a minimum spanning tree
MST (G) of G.

Awerbuch et al. [5, 6] and Khuller et al. [29] independently showed that for every
ε > 0, a (1+ε, O(1

ε ))-SLT exists for every graph G. Moreover, this tradeoff was shown to be
tight in [29]. SLTs were found useful for numerous data gathering and dissemination tasks in
overlay networks [10, 44, 34], in the message-passing model of distributed computing [5, 6],
and in wireless and sensor networks [45, 9, 18, 36, 35, 43]. Moreover, SLTs find applications
in routing [3, 42, 28, 46] and in network and VLSI-circuit design [15, 16, 17, 41]. In addition,
SLTs are embedded within various related structures, such as light approximate routing trees
[46], shallow-low-light trees [19, 20], light spanners [6, 40], and others [41, 36, 35].

The plethora of both theoretical and practical applications of SLTs, only some of
which are listed above, testifies that SLTs constitute a fundamental graph structure of
independent interest.

A natural arising question, proposed by Khuller et al. [29] in SODA’93, is whether
the upper bound β = O(1

ε ) on the lightness of SLTs can be improved in Euclidean spaces.
In FOCS’11 [21] Elkin and this author provided a negative answer to this question, showing
a lower bound of β = Ω(1

ε ), for ε = Ω( 1
n), that applies to 2-dimensional Euclidean spaces.

Specifically, the lower bound of [21] applies to a set Cn of n points evenly spaced along the
boundary of a circle, and so it holds for any choice of root vertex.

Euclidean Steiner Trees. A Steiner tree for a set P of n points in R2 is a tree T =
(P ′, H, ‖·‖) spanning a superset P ′ ⊇ P of points, where H is a subset of the

(|P ′|
2

)
segments

connecting pairs of points from P ′, and the weight ω(e) of each edge e = (p, q) ∈ H is the
Euclidean distance ‖p, q‖ between its endpoints. The points in P ′ \P , called Steiner points,
may help to improve the quality of the tree.

A Steiner minimum tree (shortly, SMT) for P is a Steiner tree T = (P ′, H, ‖ · ‖) of
minimum weight ω(T ) =

∑
e∈H ω(e). The Steiner ratio is defined as the smallest possible

ratio between the weight of the SMT and that of the MST. In any metric, the Steiner ratio
is at least 1

2 (by the triangle inequality) and at most 1 (by definition). In 2-dimensional

Euclidean spaces, the Steiner ratio is between ≈ 0.824 and
√

3
2 ≈ 0.866, and the famous

“Gilbert-Pollak Conjecture” is that the upper bound
√

3
2 is tight [23, 14, 27].

For a pair of parameters α, β ≥ 1, a Steiner (α, β)-SLT for P with respect to a
designated vertex rt ∈ P is a Steiner tree T of P with:

1. root-stretch α – it preserves all distances between rt and the other points of P up to
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a factor of α.

2. lightness β – it has weight at most β times the weight of a Steiner minimum tree
SMT (P ) of P . (Notice that the lightness here is defined with respect to SMT (P )
rather than MST (P ).)

As mentioned, there is a lower bound of β = Ω(1
ε ) on the lightness of Euclidean

spanning SLTs, which applies to a set Cn of n evenly spaced points on the boundary of

a circle. For Euclidean Steiner trees, there is a weaker lower bound of β = Ω(
√

1
ε ), for

ε = Ω( 1
n2 ), which applies to the same point set Cn [21]. (See Appendix A for details.)

1.2 Our Results

In this paper we study the impact of Steiner points in the context of Euclidean SLTs.
Specifically, we show that for every ε > 0, any point set P ∈ R2 and every designated point

rt ∈ P , there is a Euclidean Steiner (1 + ε, O(
√

1
ε ))-SLT with respect to rt. Our bound

β = O(
√

1
ε ) on the lightness matches (up to a constant factor hidden by the O-notation)

the lower bound of [21]. Recall that another lower bound of [21] shows that the lightness
of Euclidean spanning SLTs with the same root-stretch is Ω(1

ε ), and so we conclude that
Steiner points lead to a quadratic improvement in Euclidean SLTs.

Our construction contains O(n) Steiner points. Also, it can be implemented in
O(n) time in the standard real-RAM model, which is the main model of computability in
Computational Geometry. In this model memory cells are allowed to store arbitrary real
numbers (such as coordinates of points), and all basic mathematical functions, including
the floor function, can be computed in constant time. (Refer to [1] for a more detailed
description of the real-RAM model.)

We did not make an effort to optimize the leading constant in the lightness bound

O(
√

1
ε ). Since the SMT and the MST differ by a constant, re-defining the lightness of

Steiner SLTs with respect to the MST will make no difference.

1.3 Do Steiner Points Really Help (in Euclidean Trees)?

The impact of Steiner points on Euclidean trees has been very well studied. This line of
research might lead to the impression that Steiner points do not help beyond constants, in
which case finding/achieving the optimal constants becomes the ultimate goal.

The SMT problem is a good example: It is known that Steiner points can reduce
the weight of the MST by a small constant factor (between ≈ 0.824 and ≈ 0.866), and
determining the exact constant is a central open question coinciding with the aforementioned
Gilbert-Pollak Conjecture.

Moreover, there are settings in which Steiner points are completely useless. For
example, in a recent COCOON’12 paper [11], it was shown that Steiner points cannot help
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at all in reducing the weight of the MST (1) in a natural budget allocation model, or (2)
under the Euclidean square root metric.

A similar situation is with maximum-stretch trees. While the maximum-stretch of
a Euclidean MST is O(n), any Euclidean Steiner tree for the point set Cn from Section 1.1
has maximum-stretch Ω(n) [4].

Yet another example occurs in the context of low-light trees, which combine small
lightness with small depth [19, 20]. It is known that Steiner points do not help in this
context either: Any Euclidean Steiner tree T can be converted into a spanning tree with
the same (up to constants) lightness and depth as those of T [20]. See Section 1.5 for more
examples of this “incompetence” of Steiner points.

In sharp contrast to previous results, Euclidean SLTs can be drastically improved
using Steiner points!

1.4 Proof Overview

Our strategy for obtaining optimal Euclidean Steiner SLTs is to identify a core example,
i.e., a simple example that manages to encapsulate the inherent complexity of the problem.
Specifically, our core example is a set of evenly spaced points lying on the base of an isosceles
triangle with apex angle Θ(

√
ε), plus another point at the apex of the triangle designated

as the root of the SLT.

Constructing a Steiner (1 + ε, O(1))-SLT for the core example won’t be too difficult
(see Section 2.1).

We next sketch a reduction from the problem of constructing Steiner (1+ε, O(
√

1
ε ))-SLTs in

arbitrary 2-dimensional Euclidean spaces to that of constructing a Steiner (1+ε, O(1))-SLT
for the core example.

The starting point is the construction of SLTs for general graphs due to Awerbuch et
al. [5, 6], adapted to 2-dimensional Euclidean spaces. This construction starts by building
an “MST-TOUR” L = (v1 = rt, v2, . . . , vn) for the input Euclidean point set P , which is a
Hamiltonian path of weight at most 2 · ω(MST (P )). While L is light, its root-stretch may
be unbounded. To control the root-stretch, the idea is to identify a set B = {b1 = rt, . . . , bk}
of special points (consecutive along L), called break-points, and connect each break-point bi
to rt via a direct edge ei = (rt, bi), i = 2, . . . , k.
The returned SLT is the SPT rooted at rt over the union of the edges in L and the k − 1
edges e2, . . . , ek.

Identifying the break-points is the tricky part. Fix an arbitrary parameter θ � 1;
having assigned b1 = rt, . . . , bi, the next break-point bi+1 is the first point after bi along
L such that dL(bi, bi+1) > θ · ‖rt, bi+1‖. This means that: (i) The path distance dL(bi, v)
between any point v /∈ B and its preceding break-point bi along L is at most θ · ‖rt, v‖, so
the concatenation of edge ei and the subpath of L between bi and v gives a (1 + 2θ)-path
between rt and v (i.e., a path of weight at most (1 + 2θ) · ‖rt, v‖). (ii) The weight of each
edge ei+1 = (rt, bi+1) can be “charged” to the path distance dL(bi, bi+1) between bi and bi+1

(up to a slack of 1
θ ), thus the total weight of all edges e2, . . . , ek is at most 1

θ ·L, and so the
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lightness is O(1
θ ).

We apply the above construction with θ = O(
√
ε) to get a (1 +O(

√
ε), O(

√
1
ε ))-SLT

T ∗. While the lightness bound is in check, the root-stretch is still too large. Denote by Li
the subpath of L between bi and bi+1, disregarding bi+1, and let Pi be the set of points in P
lying on that path. Define Ti as the spanning tree of the point set P+

i = {rt}∪Pi obtained
from the union of edge ei = (rt, bi) and path Li, and note that the “role” of Ti is to “take
care” of distances between rt and all points v ∈ Pi. A simple observation (but not trivial;
see Lemma 4) that we will use next is that the weight of Li is O(

√
ε) · ω(ei).

Next, to decrease the stretch between rt and the points in Pi, for 1 ≤ i ≤ k, we
replace each tree Ti = ei∪Li by a Steiner tree for P+

i rooted at rt, with root-stretch 1+O(ε)
and weight O(ω(Ti)); this will guarantee low root-stretch while increasing the lightness by
only a constant. As ω(ei) ≤ ω(MST (P+

i )) ≤ ω(Ti) ≤ (1 +O(
√
ε)) · ω(ei), we actually look

for a Steiner (1 +O(ε), O(1))-SLT for P+
i rooted at rt:

1. The above observation implies that all points in Pi are at distance roughly ω(ei) from
rt (up to an additive slack of O(

√
ε) · ω(ei)). Consider the largest isosceles triangle

4 with apex rt and apex angle α = Θ(
√
ε) that do not have any point from Pi in its

interior, such that the straight line connecting rt and an arbitrary point w from Pi
is a bisector of α. (It is instructive to take w to be the point in Pi closest to rt, but
any point will do.) It is easy to see that the triangle base has length Θ(

√
ε) · ω(ei).

(See Figure 1.(i) for an illustration.) Moreover, the straight line connecting rt and
any point v ∈ Pi intersects the triangle base, at some point denoted ṽ. (See Figures
1.(ii) and 2.(i) for an illustration.)

2. We distribute O(
√

1
ε ) evenly spaced Steiner points on the triangle base, so that the

distance between any two consecutive Steiner points is O(ε) · ω(ei). For each v ∈ Pi,
let v′ be the Steiner point on the triangle base closest to ṽ. Clearly, the path (rt, v′, v)
is a (1+O(ε))-path between rt and v. This means that if we add the two edges (rt, v′)
and (v′, v) for each v ∈ Pi, the root-stretch will be 1 + O(ε). (See Figure 2 for an
illustration.)

3. Alas, we cannot add all edges
⋃
v∈Pi{(rt, v′), (v′, v)}, as the weight will exceedO(ω(Ti)) =

O(ω(ei)).

Note that any edge (v′, v), for v ∈ Pi, has weight O(
√
ε) · ω(ei), and so we can safely

add O(
√

1
ε ) such edges. Since the weight of Li is O(

√
ε) · ω(ei), it is easy to see that

Pi can be “covered” via an ε-net Ni ⊂ Pi of size O(
√

1
ε ), in the sense that each point

v ∈ Pi will have a nearby point p(v) from the ε-net Ni satisfying dL(v, p(v)) ≤ ε ·ω(ei).
This means (but requires proof of course) that it suffices to add edges (v′, v) just for

the O(
√

1
ε ) points v from the ε-net Ni.

It is left to consider edges (rt, v′), for v ∈ Pi. Instead of adding such edges, we will

build a Steiner (1+ε, O(1))-SLT rooted at rt, which spans all the O(
√

1
ε ) evenly spaced
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Figure 1: (i) An illustration of the isosceles triangle 4 = (rt, a, b) of side length r := ‖rt, w‖
separating rt from Pi. No point of Pi may lie in the interior of the circle centered at rt
with radius r. (ii) An illustration of the cone Cα defined by the two rays coinciding with
the sides of triangle 4. The Euclidean distance between w and the boundaries of cone Cα
is at least r · sin(α2 ). Since all points of Pi belong to the circle centered at w with radius
2c
√
ε · ω(ei) < r · sin(α2 ), all of them must lie within cone Cα.

Steiner points lying on the triangle base. Note that this is exactly the aforementioned
core example (that we know how to solve), thus completing the reduction.

In this way we get a Steiner tree rooted at rt for P , with root-stretch 1+O(ε) and lightness

O(
√

1
ε ). We can reduce the stretch to 1 + ε by scaling the lightness up by some constant.

The number of Steiner points may be as large as O
(
n ·
√

1
ε

)
, but it can be reduced to O(n)

via simple adjustments.

1.5 Related Work

The impact of Steiner points on non-geometric trees was also extensively studied. A Steiner
tree for an arbitrary metric M = (V, δ), is a tree T = (V ′, H, ω′), with V ⊆ V ′ and
ω′ : H → R+, that dominates the metric M , i.e., for every pair of original points u, v ∈
V, dT (u, v) ≥ δ(u, v). Even under this relaxed notion of Steiner trees, it is known that
Steiner points almost always do not help much. A prime example is in the context of low
average-stretch trees. Bartal and Fakcharoenphol et al. [7, 8, 22] devised constructions of
Steiner trees for arbitrary metrics with the optimal average-stretch O(log n), which was
a significant improvement over the previous constructions of spanning trees [2]. However,
Konjevod et al. [32] and Gupta [25] demonstrated that the same bounds (up to constants)
as those of [7, 8, 22] can be obtained without Steiner points. In fact, Gupta [25] showed a
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Figure 2: (i) An illustration of the straight lines connecting rt with the points of Pi, all
of which must intersect the triangle base. Here Pi = {w, p, q}, and the lines connecting rt
with w, q and p intersect the triangle base at points w̃, q̃ and p̃, respectively, each depicted
by a small filled triangle. (ii) An illustration of the set V ′i of evenly spaced points along the
boundary of the triangle base, each depicted by a small filled square. (iii) An illustration
of the Steiner tree T ′i for P+

i with root-stretch 1 +O(ε), obtained from the union of the star
Si and the edge set E′i, where E(Si) = {(rt, v′) | v′ ∈ V ′i } and E′i = {(v′, v) | v ∈ Pi}. Here
E(Si) ⊃ {(rt, w′), (rt, q′), (rt, p′)} and E′i = {(w′, w), (q′, q), (p′, p)}.
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more general result, specifically, one can prune any Steiner tree T = (V ′, H, ω′) from Steiner
points to get a tree T ∗ = (V,E, ω) that preserves all pairwise distances of T (and has the
same weight) up to constants. The low-light trees of [19, 20] mentioned in Section 1.3 apply
in fact to arbitrary metrics, and also there Steiner points do not help beyond constants. We
refer to [21] for more examples where Steiner points do not help much.

The only “tree setting” we are aware of, where Steiner points do help significantly, is
in the context of SLTs. Specifically, it was shown in [21] that for any metric M = (V, δ) (or
any graph) and every point rt ∈ V , there exists a (1 + ε, O(log 1

ε ))-SLT with respect to rt,
yielding an exponential improvement in the lightness. However, this result is not applicable
to Euclidean spaces. Indeed, even if the input metric M is a Euclidean 2-dimensional space,
the SLTs of [21] will use Steiner points that do not belong to Rd! This weak spot in the
work of [21] was the trigger to our current study of Euclidean Steiner SLTs.

Approximation algorithms for spanning and Steiner SLTs were studied in [37, 13,
33, 38, 26]; online approximation algorithms for SLTs were given in [24]. Heuristics for
finding SLTs were developed in [31].

Another closely related notion is shallow-low-light trees [19, 20]. In addition to small
root-stretch and lightness, these trees have small depth. Similarly to the SLTs of [5, 6, 29],
the shallow-low-light trees of [19, 20] exhibit an inverse-linear tradeoff of 1 + ε versus Ω(1

ε )
between the root-stretch and lightness.

1.6 Structure of the Paper

In Section 2 we present our construction of Euclidean Steiner SLTs, and analyze its root-
stretch and lightness. In Section 3 we analyze the running time of the construction. Finally,
in Section 4 we give our conclusions and discuss some directions for future work.

1.7 Preliminaries

Let T = (T, rt) be either a Euclidean spanning or Steiner tree of a point set P ∈ R2 rooted at
some designated point rt. For a pair of points p, q in P , denote by ‖p, q‖ and dT (p, q) their
Euclidean distance and tree distance, respectively; clearly dT (p, q) ≥ ‖p, q‖. The stretch

between p and q in T is defined as StrT (p, q) = dT (p,q)
‖p,q‖ . The root-stretch of (T, rt) is defined

as RtStr(T, rt) = max {StrT (rt, p) | p ∈ P \ {rt}}. The weight ω(T ) of tree T is the sum
of all edge weights in it, i.e., ω(T ) =

∑
e∈T ω(e); similarly, the weight ω(Π) =

∑
e∈Π ω(Π)

of path Π is the sum of all edge weights in it. We say that a path Π between a pair p, q
of points in P is a t-path, for t ≥ 1, if ω(Π

) ‖p, q‖ ≤ t. We denote by Ψ(T ) = ω(T )
ω(MST (P ))

the lightness of a Euclidean spanning or Steiner tree T of P . For a pair k, n of integers,
0 ≤ k ≤ n, denote the sets {k, k + 1, . . . , n} and {1, 2, . . . , n} by [k, n] and [n], respectively.
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2 Euclidean Steiner SLTs

In this section we show that for any 2-dimensional Euclidean n-point set P , any point

rt ∈ P , and any ε > 0, there is a Euclidean Steiner (1 + ε, O(
√

1
ε ))-SLT T̂ for P with

respect to rt.
Our construction of Steiner SLTs in 2-dimensional Euclidean spaces is obtained via a two-
step strategy:

1. In Section 2.1 we identify a core example ϑ, i.e., a simple example that manages to
encapsulate the inherent complexity of the problem. We then show how to construct
a Steiner (1 + ε, O(1))-SLT for ϑ.

2. In Section 2.2 we provide a reduction from the problem of constructing Steiner (1 +

ε, O(
√

1
ε ))-SLTs in arbitrary 2-dimensional Euclidean spaces to that of constructing

a Steiner (1 + ε, O(1))-SLT for ϑ.

2.1 The Core Example

Our core example ϑ consists of a set V ′ of evenly spaced points lying on the base of an
isosceles triangle with apex angle Θ(

√
ε), plus another point at the apex of the triangle

designated as the root of the SLT.

We denote this triangle by 4 = (rt, a, b), where a and b are the endpoints of the
triangle base, and rt is the apex of the triangle. Suppose without loss of generality that
the side length of 4 equals 1, and let α :=

√
ε be the apex angle of triangle 4 (the smaller

α is, the better root-stretch we get). Note that the length of the triangle base is given by

2 sin(α2 ) ≈ α and the altitude of 4 is given by cos(α2 ) ≈ 1− α2

8 .

A Warm Up. We first build a Steiner (1 + ε, O(log |V ′|))-SLT T core for the point set
ϑ = {rt} ∪ V ′.

The construction is carried out recursively. (See Figure 3.(a) for an illustration.)

Break the triangle base into two equal parts, each serving as the base of an isosceles
triangle contained within 4, with the same apex angle α but half the side length. This
gives us two congruent triangles 41 and 42, whose apexes rt1 and rt2 lie in the middle of
the sides (rt, a) and (rt, b) of 4, respectively.

Let V ′1 and V ′2 be the subsets of all points in V ′ belonging to the triangle bases
of 41 and 42, respectively. We connect rt to the apexes rt1 and rt2 of triangles 41

and 42, respectively, with rt1 and rt2 serving as Steiner points in our Steiner SLT T core.
Next, we proceed recursively to building Steiner SLTs T core1 and T core2 for the point sets
ϑ1 = {rt1} ∪ V ′1 and ϑ2 = {rt2} ∪ V ′2 “within” triangles 41 and 42, respectively.

The recursion bottoms once we reach an isosceles triangle with only one point from
V ′ lying on its base, in which case the SLT T core contains a single edge connecting the
triangle’s apex with that point.

Lightness analysis. Notice that ω(MST (ϑ)) ≈ α+1− α2

8 < 2. Note also that the recursion

http://jocg.org/


JoCG 6(2), 113–139, 2015 122

Journal of Computational Geometry jocg.org

α

rt

a bo

α α

rt1 rt2

△1 △2

△

rt

v′1 v′4v′3

rt1 rt2

T core

v′2

(a.i) (a.ii)
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1 V ′

2

Figure 3: (a) An illustration of (a.i) triangle 4 and smaller triangles 41 and 42 contained
within 4, all with an apex angle of α; (a.ii) the corresponding Steiner tree T core for V ′ =
{v′1, v′2, v′3, v′4}, with dotted lines drawing the borders of the underlying triangles (the borders
of the 4 bottom-level triangles are not depicted in the figure). (b) A similar illustration,
but here (b.i) the apex angle of 41 and 42 is 3α

2 rather than α; (b.ii) the Steiner tree T core

has smaller (and, in general, constant) lightness.

bottoms after log |V ′| levels. Consider the first level of the recursion, in which we add the
two edges (rt, rt1) and (rt, rt2) to T core. Since ‖rt, rt1‖ = ‖rt, rt2‖ = 1

2 , the total edge
weights added in this level equals 1. While the number of edges grows geometrically with
the recursion level, their weights decrease geometrically at the same rate. Thus the total
edge weights added in each level of the recursion (except for the bottom level) equals 1. Also,
it is easy to see that the side length of the triangles at the bottom level of the recursion
is equal to 1

|V ′| , so the total edge weights added at the bottom level of the recursion is

bounded by 1. It follows that the weight of T core is at most log |V ′|+ 1, thus the lightness
is O(log |V ′|).
Root-stretch analysis. Denote the point in the middle of the triangle base by o. Consider
an arbitrary point w in V ′1 (without loss of generality), and note that ‖rt1, w‖ ≤ ‖rt1, a‖ =
‖rt1, o‖ = 1

2 . We also have ‖rt, rt1‖ = 1
2 , yielding ‖rt, rt1‖ + ‖rt1, w‖ ≤ 1, and so the

weight of the path (rt, rt1, w) is at most 1. On the other hand, the distance between rt

and any point of V ′1 is at least ‖rt, o‖ ≈ 1 − α2

8 = 1 − ε
8 . This means that, when going

from rt to any point of V ′1 , the additive slack incurred by taking a detour through rt1 is at
most ε

8 . Since we do not have direct edges from rt1 to points in V ′1 , we will need to apply
this argument recursively. It is easy to see that the additive slack incurred at each level of
the recursion decreases geometrically, at the same rate as the lengths of the triangle sides
decrease. Thus the total additive slack to all distances from rt can be bounded via the
following sum ε

8 · (1 + 1
2 + 1

4 + . . .) ≤ ε
4 . Finally, recall that the minimum distance between

rt and any point of V ′ is ‖rt, o‖, which is bounded below by say 1− ε
2 . It follows that the

root-stretch of T core is at most 1 +
ε
4

1− ε
2
< 1 + ε (assuming ε < 1).
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Achieving Constant Lightness. We showed how to get a Steiner (1+ε, O(log |V ′|))-SLT
T core for {rt}∪V ′. With minor adjustments, we can reduce the lightness bound to constant.
(See Figure 3.(b).)

The aforementioned construction starts off with an isosceles triangle4 of apex angle
α, and proceeds recursively with two isosceles triangles 41 and 42 built on the two halves
of the triangle base, having apex angle α each. Hence, in all levels of the recursion the
triangles preserve an apex angle of α. To reduce the lightness, we increase the triangles’
apex angle by a factor of ξ in each recursive call, for an appropriate constant ξ > 1, so that
in level i of the recursion the triangles’ apex angle will be α · ξi.
In particular, taking ξ = 3

2 does the job:

Lightness analysis. The total edge weights in each level of the recursion will decrease
geometrically by a factor of roughly 2

3 , giving a total weight of at most 1
cos(α

2
) · (4

3 + 8
9 + 16

27 +

. . .) ≤ 4
cos(α

2
) , hence constant lightness.

Root-stretch analysis. The additive slack on the root-distances will no longer decrease by
a factor of 2 at each level, but rather by a factor of roughly 4

3 . Consequently, the additive
slack can be bounded via the following sum ε

8 · (1 + 3
4 + 9

16 + . . .) ≤ ε
2 . Similarly to before,

the root-stretch will be at most 1 +
ε
2

1− ε
2
< 1 + ε (assuming ε < 1).

The next observation follows immediately from the construction.

Observation 1. 1. T core is a binary Steiner tree for {rt}∪V ′, with points in V ′ serving
as its leaves.

2. Each internal vertex in T core has exactly two children, except for the leaves’ parents
which have a single child each. In particular, the total number of points in T core is at
most |V ′| − 1 + |V ′|+ |V ′| = O(|V ′|).

3. This construction can be implemented within O(|V ′|) time in the obvious way.

2.2 A Reduction to the Core Example

In this section we construct a (1 + ε, O(
√

1
ε ))-SLT T̂ = T̂ (P ) for an arbitrary 2-dimensional

Euclidean n-point set P . Our construction consists of two phases that we describe next.
We remark that the construction from Section 2.1 (for the core example ϑ) will be used as
a “black-box” in the second phase.

We assume throughout that ε < 1
4 .

Phase 1: Spanning SLTs with Poor Root-Stretch.
Let T be an MST of P rooted at an arbitrary point rt ∈ P , and let D be an Euler tour of T
starting at rt. For every p ∈ P , remove from D all occurrences of p except for the first one,
and denote by L = {v1 = rt, v2, . . . , vn} the resulting Hamiltonian path of P . Observe that
ω(L) ≤ 2 ·ω(T ) = 2 ·ω(MST (P )). Also, L can be constructed in linear time, given T . Fix a
parameter θ � 1. The value of θ will determine the values of the root-stretch and lightness
of the constructed SLT. We start with identifying a set of “break-points” B = {b1, . . . , bk},
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B ⊆ P . The first break-point b1 is rt. The break-point bi+1, i ∈ [k − 1], is the first vertex
in L after bi such that

dL(bi, bi+1) > θ · ‖rt, bi+1‖. (1)

The path distance between a pair u, v of points is defined as the distance dL(u, v) between
them in L. Let S be the set of edges connecting rt with all other break-points, i.e., S =
{ei := (rt, bi) : i ∈ [2, k]}. Let G = (P,E(L) ∪ S) be the graph obtained from the path L
by adding to it all edges in S.
Finally, define T ∗ = T ∗θ to be an SPT over G rooted at rt.

We remark that the constructed tree T ∗ is similar to the original SLT construction
of [5, 6].

Disregarding the time needed to compute the MST T , the graph G can be con-
structed within O(n) time in the obvious way. Instead of taking an MST, we can use
a constant-approximate MST – this will increase the lightness by only a constant factor.
A constant-approximate MST can be built within O(n) time in constant-dimensional Eu-
clidean spaces [12]. Also, it is known that an SPT can be computed within linear time in
planar graphs [30]. Observing that G is planar (but not necessarily plane), we conclude
that T ∗ can be constructed within O(n) time.

Next, we analyze the properties of the constructed tree T ∗. Since T ∗ is an SPT over
G rooted at rt, the root-stretch of (T ∗, rt) is the same as that of (G, rt). Also, the lightness
of T ∗ is bounded above by that of G. It is therefore sufficient to establish the required
bounds for G rather than for T ∗.

For any pair of points vi, vj along L, with i ≤ j, let L(vi, vj) be the subpath of L
between vi and vj . For each i ∈ [k], denote by Li the subpath of L between bi and bi+1,
disregarding bi+1, i.e., Li contains all edges of L(bi, bi+1) except for the last one, and let Pi
denote the set of points in P lying on that path. (The path Lk is between bk and the last
point vn along L.) By definition, path L is obtained from the concatenation of the k paths
L(b1, b2), . . . , L(bk−1, bk), L(bk, vn), i.e., L = L(b1, b2) ◦ . . . ◦L(bk−1, bk) ◦L(bk, vn). Also, we
have P =

⋃
i∈[k] Pi.

Notice that the graph G can be partitioned into k edge-disjoint trees τ1, . . . , τk,
where τi is obtained from the union of edge ei = (rt, bi) and path L(bi, bi+1). For each
i ∈ [k− 1], let Ti be the spanning tree of the point set P+

i = {rt}∪Pi obtained from tree τi
by removing the last edge along L(bi, bi+1), or equivalently, obtained as the union of edge
ei and path Li. Also, let Tk = τk. Observe that the union of the k trees T1, . . . , Tk is a
spanning subgraph of G, and, in particular, it spans the entire point set P .

In Appendix B we prove the following lemma. (The proof of this lemma follows
similar lines as in [5, 6], and is provided in Appendix B for completeness.)

Lemma 2. 1. The root-stretch of each tree (Ti, rt) is at most 1 + 2θ, i ∈ [k]. (Thus the
root-stretch of G is at most 1 + 2θ as well.) 2. The lightness of G is O(1

θ ).

By substituting θ = c
√
ε in Lemma 2, for a small constant c < 1

10 , we obtain the
following proposition.
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Proposition 3. The constructed tree T ∗ = T ∗
c
√
ε

is a spanning (1 + O(
√
ε), O(

√
1
ε ))-SLT

for P rooted at rt. The runtime of this construction is O(n).

We proceed to analyzing more properties of the SLT T ∗ from Proposition 3. Fix
any index i ∈ [k].

Let j and j′ be the indices such that Pi = {vj , . . . , vj′}, with j ≤ j′. Note that
bi = vj , bi+1 = vj′+1.

We next argue that the path distance (i.e., the distance in L) between all points in
Pi is small with respect to ω(ei) = ‖rt, bi‖.

Lemma 4. ω(Li) = dL(bi, vj′) ≤ 2c
√
ε · ω(ei).

Proof. Since vj′ was not identified as a break-point, we have dL(bi, vj′) ≤ c
√
ε · ‖rt, vj′‖. By

the triangle inequality,

‖rt, vj′‖ ≤ ‖rt, bi‖+ ‖bi, vj′‖ ≤ ‖rt, bi‖+ dL(bi, vj′) ≤ ‖rt, bi‖+ c
√
ε · ‖rt, vj′‖,

and so

‖rt, vj′‖ ≤
1

1− c√ε · ‖rt, bi‖ =
1

1− c√ε · ω(ei).

Note that for ε ≤ 1
4 and c < 1, it holds that

c
√
ε

1− c√ε ≤
c
√
ε

1−√ε ≤ 2c
√
ε.

Altogether,

ω(Li) = dL(bi, vj′) ≤ c
√
ε · ‖rt, vj′‖ ≤

c
√
ε

1− c√ε · ω(ei) ≤ 2c
√
ε · ω(ei).

Lemma 4 implies the following corollary.

Corollary 5. 1. For any pair v, w of points in Pi, ‖v, w‖ ≤ 2c
√
ε · ω(ei).

2. For any point v ∈ Pi, (1− 2c
√
ε) · ω(ei) ≤ ‖rt, v‖ ≤ (1 + 2c

√
ε) · ω(ei).

3. ω(ei) ≤ MST (P+
i ) ≤ ω(Ti) = ω(ei) + ω(Li) ≤ (1 + 2c

√
ε) · ω(ei) ≤ 2 · ω(ei).

Proof. 1. By the triangle inequality, for any pair v, w of points in Pi, ‖v, w‖ ≤ dL(v, w) ≤
ω(Li) ≤ 2c

√
ε · ω(ei). (The last inequality follows from Lemma 4.)

2. By the previous assertion, ‖bi, v‖ ≤ 2c
√
ε · ω(ei). Hence ‖rt, v‖ ≤ ‖rt, bi‖ + ‖bi, v‖ ≤

(1 + 2c
√
ε) · ω(ei). Similarly, we have ‖rt, v‖ ≥ ‖rt, bi‖ − ‖bi, v‖ ≥ (1− 2c

√
ε) · ω(ei).

3. This assertion follows from the construction and Lemma 4.
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Phase 2: Reducing the Root-Stretch using Steiner Points.
Recall that T ∗ is defined as an SPT over G rooted at rt. Our way for reducing the root-
stretch of T ∗ will be to reduce the root-stretch of G.

We will show that by adding Steiner points, we can reduce the root-stretch of (G, rt)

from 1 +O(
√
ε) to 1 + ε while preserving lightness O(

√
1
ε ). The resulting Steiner graph Ĝ

will span all points of P and some additional Steiner points, and the ultimate Steiner SLT
T̂ will be obtained as an SPT over Ĝ rooted at rt.

Consider the partition of graph G into the k edge-disjoint trees τ1, . . . , τk, where τi
is obtained from the union of edge ei = (rt, bi) and path L(bi, bi+1). Recall that Tk = τk,
and for each i ∈ [k − 1], Ti is the spanning tree of the point set P+

i = {rt} ∪ Pi obtained
from τi by removing the last edge along L(bi, bi+1). We know (see Lemma 2) that the
root-stretch of each tree (Ti, rt) is at most 1 + 2c

√
ε. We also know that the union of the k

trees T1, . . . , Tk spans the entire point set P . By reducing the root-stretch of each tree Ti
to 1 + ε, the root-stretch of their union will be reduced to 1 + ε as well.

In what follows we construct a Steiner tree T̂i rooted at rt with root-stretch 1 + ε

and weight O(ω(Ti)), spanning P+
i and O(|Pi| +

√
1
ε ) additional Steiner points. By the

third assertion of Corollary 5, ω(Ti) = Θ(MST (P+
i )), thus we are actually looking for a

Steiner (1 + ε, O(1))-SLT for P+
i rooted at rt.

The graph Ĝ will be obtained from the union of the k Steiner trees T̂1, . . . , T̂k. As
mentioned, the root-stretch of Ĝ will be 1 + ε. The lightness will be fine too, as it is not
much greater than that of G:

ω(Ĝ) =
∑
i∈[k]

ω(T̂i) =
∑
i∈[k]

O(ω(Ti)) = O

∑
i∈[k]

ω(Ti)

 = O(ω(G)).

Fix an index i ∈ [k]. The description of the Steiner tree construction T̂i is divided
into three parts.

Part 1: computing an isosceles triangle separating rt from Pi.
Let w be the point in Pi closest to rt, and define r := ‖rt, w‖. By the second assertion of
Corollary 5,

(1− 2c
√
ε) · ω(ei) ≤ r ≤ ‖rt, bi| = ω(ei). (2)

Consider the isosceles triangle 4 = (rt, a, b) with apex rt, apex angle α :=
√
ε and side

length r, such that the bisector of the apex angle of this triangle 4 is the straight line
connecting rt and w. Observe that the endpoints a and b of the triangle base lie on the
boundary of the circle centered at rt with radius r, and no point of Pi lies in the triangle’s
interior. (See Figure 1.(i) for an illustration.)

Consider the cone Cα spanning an angle of α whose apex is at rt, defined by the two
infinite rays coinciding with the sides (rt, a) and (rt, b) of triangle 4.

Lemma 6. All points in Pi must belong to Cα.
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Proof. Observe that the length of the triangle base is equal to 2r · sin(α2 ). It is easy to see
that w is pretty far from the boundaries of Cα – the distance between w and any point on
the boundaries is equal to half the length of the triangle base, i.e., to r · sin(α2 ). (See Figure
1.(ii) for an illustration.) On the other hand, the first assertion of Corollary 5 implies that
all points in Pi are pretty close to each other – the distance between w and all points of Pi
is at most

2c
√
ε · ω(ei) ≤

2c
√
ε

1− 2c
√
ε
· r ≤ 4c

√
ε · r < r · sin

(α
2

)
.

(The first inequality follows from Equation (2), and the second inequality holds for ε < 1
4

and c < 1
2 ; recalling that α =

√
ε, the third inequality holds for c < 1

10 .)

Lemma 6 implies the following corollary.

Corollary 7. For any point v ∈ Pi, the straight line connecting rt with v intersects the
base of triangle4 = (rt, a, b), at some point denoted ṽ. (See Figure 2.(i) for an illustration.)

Part 2: distributing Steiner points on the triangle base and connecting them to P+
i to control

root-stretch.

We distribute d
√

1
ε e evenly spaced Steiner points along the triangle base. Since the length

of the triangle base is 2r · sin(α2 ), the distance between any two consecutive Steiner points is
at most 2r · sin(α2 ) · √ε = O(ε) · r. For each point v ∈ Pi, consider the point ṽ as defined in
Corollary 7, and let v′ be the Steiner point on the triangle base that is closest to ṽ. Observe
that ‖ṽ, v′‖ = O(ε) · r and ‖rt, v‖ = ‖rt, ṽ‖ + ‖ṽ, v‖. By definition, ‖rt, v‖ ≥ r. Consider
the path (rt, v′, v) = (rt, v′) ◦ (v′, v). By the triangle inequality,

ω(rt, v′, v) = ‖rt, v′‖+ ‖v′, v‖ ≤ ‖rt, ṽ‖+ ‖ṽ, v′‖+ ‖v′, ṽ‖+ ‖ṽ, v‖
= ‖rt, v‖+ 2 · ‖ṽ, v′‖ = ‖rt, v‖+O(ε) · r ≤ (1 +O(ε)) · ‖rt, v‖, (3)

and so (rt, v′, v) is a (1 +O(ε))-path between rt and v. This means that if we add the two
edges (rt, v′) and (v′, v) for each point v ∈ Pi, the resulting stretch between rt and all points
in Pi will be 1 +O(ε).

Denote by V ′i the aforementioned set of d
√

1
ε e evenly spaced Steiner points lying on

the triangle base. Let Si be the star rooted at rt with points in V ′i serving as its leaves, i.e.,
E(Si) = {(rt, v′) | v′ ∈ V ′i }. Also, let E′i = {(v′, v) | v ∈ Pi} be the set of edges connecting
each point v ∈ Pi with its corresponding point v′ as defined above. We can then define T ′i
as the Steiner tree of P+

i obtained from the union of Si and E′i, i.e., E(T ′i ) = E(Si) ∪ E′i.
(See Figure 2 for an illustration.) Equation (3) implies that the root-stretch of (T ′i , rt) is at
most 1 +O(ε). However, the lightness of tree T ′i is too large; in fact, it is much larger than
that of the original tree Ti.

Part 3: reducing the lightness without hurting the root-stretch.
Reducing the lightness of tree T ′i (while preserving a low root-stretch) is carried out in two
stages.

1. In the first stage we reduce the lightness contribution due to the edge set E′i.
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Lemma 8. For each edge (v′, v) ∈ E′i, v ∈ Pi, we have ‖v′, v‖ = O(
√
ε) · ω(ei).

Proof. Consider an arbitrary edge (v′, v) ∈ E′i, for v ∈ Pi. The first assertion of
Corollary 5 implies that w is within distance 2c

√
ε·ω(ei) from all points of Pi, including

v. Note also that w is within distance at most ‖w, a‖ = ‖w, b‖ ≈ r · sin(α2 ) =
O(
√
ε) · ω(ei) from all points of V ′, including v′. It follows that ‖v′, v‖ ≤ ‖v′, w‖ +

‖w, v‖ = O(
√
ε) · ω(ei).

We are going to keep just O(
√

1
ε ) edges of E′i, throwing the others away. By Lemma 8,

the total weight of the O(
√

1
ε ) edges that we keep will be bounded above by O(ω(ei)),

yielding the desired lightness bound. To determine which edges should we keep, we
use the following lemma.

Lemma 9. There is a point set Ni ⊂ Pi of size O(
√

1
ε ) which “covers” the point

set Pi in the following sense: Each point v ∈ Pi has a point p(v) from Ni satisfying
dL(v, p(v)) ≤ ε · ω(ei). (We say that Ni is an ε-net for Pi, and refer to the points of
Ni as net points.) Moreover, we can compute this ε-net Ni in time O(|Pi|).

Proof. By Lemma 4, the path distance (i.e., the distance in Li) between all points in

Pi is at most 2c
√
ε · ω(ei). This means that we can partition Li into ε′ = d2c

√
1
ε e

vertex-disjoint subpaths L
(1)
i , . . . , L

(ε′)
i , each of weight at most ε ·ω(ei). Note that each

subpath L
(j)
i spans a subset of Pi, denoted P

(j)
i , and we have Pi =

⋃
j∈[ε′] P

(j)
i . For each

j ∈ [ε′], we assign an arbitrary net point p
(j)
i ∈ P

(j)
i , and denote byNi = {p(j)

i | j ∈ [ε′]}
the set of all ε′ net points. By definition, for each j ∈ [ε′] and any point v ∈ P (j)

i , the

path distance (i.e., the distance in L
(j)
i ) between v and the net point p

(j)
i is at most

ε · ω(ei). Obviously, this ε-net Ni for Pi can be computed in time O(|Pi|).

Next, we argue that it suffices to keep edges (v′, v) of E′i just for the ε′ net points
v ∈ Ni; we call these edges the net edges of E′i. Indeed, for any j ∈ [ε′], each point

v ∈ P
(j)
i \ Ni can be “glued” to its net point p(v) = p

(j)
i ∈ Ni via the appropriate

subpath L
(j)
i of Li, whose weight is at most ε ·ω(ei) = O(ε) · r. Thus instead of taking

a direct edge (v, v′), we can go from v to the net point u := p
(j)
i via a short sub-path

of L
(j)
i , namely L(u, v), and then take a net edge (u, u′); the following claim shows

that this detour around u and u′ will not be too costly.

Lemma 10. The path (rt, u′, u) ◦ L(u, v) from rt to v is a (1 +O(ε))-path.

Proof. Recall that (rt, v′, v) is a (1 +O(ε))-path between rt to v, and so

ω(rt, v′, v) = ‖rt, v′‖+ ‖v′, v‖ ≤ (1 +O(ε)) · ‖rt, v‖. (4)

Consider the points ũ and ṽ, as defined in Corollary 7. It is easy to see that

‖ũ, ṽ‖ ≤ ‖u, v‖ ≤ dL(u, v) = O(ε) · r.
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Note also that both ‖u′, ũ‖ and ‖ṽ, v′‖ are bounded by O(ε) · r. By the triangle
inequality, ‖u′, v′‖ ≤ ‖u′, ũ‖+ ‖ũ, ṽ‖+ ‖ṽ, v′‖ = O(ε) · r. It follows that

ω(rt, u′, u) = ‖rt, u′‖+ ‖u′, u‖ ≤ ‖rt, v′‖+ ‖v′, u′‖+ ‖u′, v′‖+ ‖v′, v‖+ ‖v, u‖
= ω(rt, v′, v) + 2‖u′, v′‖+ ‖u, v‖ = ω(rt, v′, v) +O(ε) · r. (5)

Using Equations (4) and (5) and the fact that ‖rt, v‖ ≥ r, we conclude that

ω((rt, u′, u) ◦ L(u, v)) = ω(rt, u′, u) + dL(u, v) ≤ ω(rt, v′, v) +O(ε) · r
≤ (1 +O(ε)) · ‖rt, v‖.

Denote by Êi = {(v′, v) | v ∈ Ni} ∪
⋃
j∈[ε′]E(L

(j)
i ) the union of the edge set E′i and

the edges of all the subpaths L
(j)
i of Li; this edge set will replace E′i. By Lemma 10,

the root-stretch will remain 1 + O(ε). Moreover, the total weight of these edges is
O(ω(ei)), so the lightness becomes constant.

2. In the second stage we reduce the lightness contribution due to the star Si.

Note that the point set {rt} ∪ V ′i is exactly the core example from Section 2.1. We
employ the “black-box” construction with which we are equipped to obtain a Steiner
(1 + ε, O(1))-SLT T corei for the point set {rt} ∪ V ′i rooted at rt; this tree T corei will
replace the star Si.

The loss is negligible: Since the root-stretch of T corei is 1 + ε, the distances between rt
and all points of V ′i will grow by at most a factor of 1 + ε. As a result, the distances
between rt and all points of Pi will grow by at most the same factor, implying that
the root-stretch will remain 1 +O(ε).

The gain, however, is significant: While the lightness of Si is huge, the lightness of
T corei is constant.

Let T̂i be the graph obtained from the union of the edges of tree T corei and the edge set
Êi, i.e., E(T̂i) = E(T corei ) ∪ Êi. In light of the above, T̂i is a Steiner tree for P+

i with
root-stretch 1 +O(ε) and constant lightness. Also, we can reduce the root-stretch to 1 + ε
by scaling the lightness up by some constant.

The graph Ĝ obtained from the union of the k Steiner trees T̂1, . . . , T̂k has the desired

root-stretch and lightness, and the ultimate Steiner (1 + ε, O(
√

1
ε ))-SLT T̂ is defined as an

SPT over Ĝ rooted at rt.

Theorem 11. For any 2-dimensional Euclidean n-point set P , a designated point rt ∈ P
and a number ε < 1, there exists a Steiner (1 + ε, O(

√
1
ε ))-SLT T̂ = T̂ (P ) for P rooted at

rt.

Remarks. (1) We may assume that ε � 1. Indeed, for constant ε, we can simply use the
spanning SLT constructions of [5, 6, 29] which guarantee root-stretch 1 + ε and lightness
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O(1
ε ) = O(

√
1
ε ) = O(1).

(2) As mentioned, the tradeoff between root-stretch 1 + ε and lightness O(
√

1
ε ) guaranteed

by this theorem is tight in the regime ε = Ω( 1
n2 ). Note also that the star over P rooted

at rt (whose edge set is {(rt, v) | v ∈ P \ {rt}}) is a spanning SPT with lightness O(n).
Consequently, there is no reason to apply this theorem in the regime ε = o( 1

n2 ), where the

lightness bound O(
√

1
ε ) becomes super-linear in n.

3 Runtime Analysis

In this section we analyze the runtime of the construction as well as the number of Steiner
points used.

In Section 3.1 we provide a naive O
(
n ·
√

1
ε

)
-time implementation of our construc-

tion. In Section 3.2 we demonstrate that a simple modification of our construction can be
implemented in linear time.

3.1 A Naive Implementation

Number of Steiner Points. We argue that the SLT construction T̂ that is guaranteed

by Theorem 11 contains at most O
(
n ·
√

1
ε

)
Steiner points.

Recall that T̂ is defined as an SPT over the graph Ĝ rooted at rt, and that Ĝ is
obtained from the union of the k trees T̂1, . . . , T̂k, with k ≤ n.

By construction, each T̂i is a Steiner tree for P+
i . Moreover, all Steiner points of

T̂i belong to the tree T corei , and all points in V ′i are leaves of T corei . Hence, Observation 1

implies that the number of Steiner points in T̂i is bounded by O(|V ′i |) = O(
√

1
ε ). Summing

over all k ≤ n trees T̂1, . . . , T̂k, we conclude that the number of Steiner points in the ultimate

SLT T̂ is at most k ·O
(√

1
ε

)
= O

(
n ·
√

1
ε

)
.

Runtime. In Phase 1 of the construction, we built a spanning SLT T ∗
c
√
ε
. By Proposition

3, the time needed to build this tree is O(n).

In Phase 2 of the construction, the main goal is to transform each spanning tree Ti
of P+

i into a Steiner tree T̂i, for i ∈ [k]. We divided the description of this phase into three
parts.

In Part 1 we computed an isosceles triangle separating rt from Pi, which boils down
to finding a point w in Pi that is closest to rt, and can be done in O(|Pi|) time. We also
computed the intersection point of the straight line connecting rt and v and the triangle
base, for each v ∈ Pi, which takes O(|Pi|) time too.

In Part 2 we distributed |V ′i | = d
√

1
ε e Steiner points on the triangle base, and

connected them to P+
i to form a Steiner tree T ′i for P+

i ; both these tasks can be easily
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carried out within O(|V ′i |+ |Pi|) time.

In Part 3 we transformed the “heavy” tree T ′i constructed in Part 2 into the much
“lighter” tree T̂i. This was carried out in two stages.
1. The bottleneck of the first stage was to compute an ε-net Ni for Pi. By Lemma 9, this
takes O(|Pi|) time. Equipped with this ε-net Ni, computing the corresponding net edges
(i.e., the edges between the net points of Ni and the corresponding points from V ′i ) can be
done in another O(|Ni|) = O(|Pi|) time.
2. In the second stage we computed a tree T corei for the point set {rt} ∪ V ′i , using the
construction described in Section 2.1 for the core example. By Observation 1, this can be
done in O(|V ′i |) time.

Thus for each i ∈ [k], the runtime is bounded by O(|V ′i | + |Pi|) = O(
√

1
ε + |Pi|).

Summing over all k indices, with k ≤ n, the overall time needed to compute the Steiner
trees T̂1, . . . , T̂k is no greater than

∑
i∈[k]

O

(√
1

ε
+ |Pi|

)
= O

(
k ·
√

1

ε

)
+O

∑
i∈[k]

|Pi|


= O

(
k ·
√

1

ε

)
+O(n) = O

(
n ·
√

1

ε

)
. (6)

The time needed to compute the graph Ĝ, obtained as the union of these trees, is propor-

tional to the total number O
(
n ·
√

1
ε

)
of vertices. Finally, it is easy to see that graph Ĝ is

planar. As mentioned, an SPT can be computed in O(n) time in planar graphs [30], which
implies that the ultimate Steiner SLT T̂ can be extracted from Ĝ in linear time.

Summarizing, the total runtime of our SLT construction T̂ is O
(
n ·
√

1
ε

)
.

3.2 A Linear-Time Implementation

In Section 3.1 we showed that the tree T̂i can be constructed in time O(|V ′i | + |Pi|) =

O(
√

1
ε+|Pi|), for each index i ∈ [k]. We would like to reduce the runtime of this construction

to O(|Pi|). (As the number of Steiner points is a lower bound on the runtime, we should
keep at most O(|Pi|) Steiner points in T̂i.) If we manage to do this, the runtime of the SLT

construction T̂ (and the number of Steiner points used) will be reduced from O
(
n ·
√

1
ε

)
to
∑

i∈[k]O(|Pi|) = O
(∑

i∈[k] |Pi|
)

= O(n) (cf. Equation (6)).

Number of Steiner Points. Fix an arbitrary index i ∈ [k]. As mentioned, all Steiner
points of T̂i belong to the tree T corei , and moreover, all points in V ′i are leaves of T corei .

We would like to keep in T corei just O(|Pi|) points. To this end, we will keep a Steiner
point of T corei only if it lies on a path from rt to some point of Pi in T̂i. Such a point is
called useful, and the non-useful Steiner points (that we will not keep) are called redundant.

By definition, an internal vertex in T corei is useful if and only if one of its descendant
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leaves is useful. Thus distinguishing between useful and redundant Steiner points boils down
to determining the useful points in V ′i . To this end we use the the following observation,
which is immediate from the construction.

Observation 12. Each point v′ of V ′i is useful if and only if it is incident on a net edge
(v′, v), where v ∈ Ni is a net point. In particular, the number of useful leaves in T corei is
bounded by |Ni| ≤ |Pi|.

Note that we can remove the redundant Steiner points of tree T corei via a straight-
forward bottom-up traversal of the tree. The resulting tree, however, may still contain too
many Steiner points.

To reduce the size of the tree to O(|Pi|), we contract all single-child paths. As a
result, the number of internal vertices will be smaller than the number of leaves, which
is, in turn, bounded by |Ni| ≤ |Pi|. In other words, the size of the resulting pruned tree
Prune(T corei ) will be at most 2|Pi| − 1, as required.

By plugging the resulting tree Prune(T corei ) instead of T corei , we obtain a tree
Prune(T̂i) that spans all points in P+

i and contains just O(|Pi|) Steiner points. Observe
that this pruning procedure may only decrease the root-stretch and the lightness of the tree.

We apply this pruning procedure on each of the k trees T̂1, T̂2, . . . , T̂k. By taking the
union of the resulting pruned trees Prune(T̂1), P rune(T̂2), . . . , P rune(T̂k), we get a pruned
graph Prune(Ĝ) with only

∑k
i=1O(|Pi|) = O(n) Steiner points. Therefore, the pruned SLT

Prune(T̂ ) that we get in this way (defined as an SPT over the pruned graph Prune(Ĝ)
rooted at rt) will have O(n) Steiner points as well.

Runtime. To achieve a linear-time implementation, reducing the size of each tree T̂i to
O(|Pi|) is not enough – we need to be able to construct the corresponding pruned tree
Prune(T̂i) within time O(|Pi|).

Consequently, we cannot afford to construct the original tree T̂i explicitly. (Note

that even distributing the |V ′i | = d
√

1
ε e Steiner points on the triangle base in Part 2 of the

construction may be too costly.)

We next show how to build the pruned tree Prune(T̂i) directly, i.e., without using
the original tree T̂i that may contain too many Steiner points. It suffices to show how to
construct the tree Prune(T corei ) directly, within O(|Pi|) time. (Having constructed the tree
Prune(T corei ), the tree Prune(T̂i) is obtained from it by adding the net edges, which by
Lemma 9 requires O(|Pi|) time.)

Denote by Ui the set of vertices in the pruned tree Prune(T corei ). Also, denote by
Leaves(Ui) the set of leaves in Prune(T corei ), and note that Leaves(Ui) also designates the
set of useful Steiner leaves of the original tree T corei . By Observation 12 and Lemma 9,
the vertex set Leaves(Ui) can be computed within time O(|Pi|). In order to compute the
remaining vertices of Ui, we use the following observation.

Observation 13. Any vertex of Ui is a least common ancestor in the tree T corei of a pair
u, v of consecutive vertices in Leaves(Ui).

Note also that the pruned tree Prune(T corei ) preserves the hierarchical structure of
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the original tree T corei : The parent of any vertex v in Prune(T corei ) is the nearest ancestor
of v in T corei that belongs to Ui.

The main hurdle on the way to constructing tree Prune(T corei ) in time O(|Pi|) is to
be able to compute its vertex set Ui within this time bound. We remark that this is not a
geometric issue; even though this hurdle lies outside the scope of the current paper, below
we describe how it can be resolved.

Note that, disregarding the locations of the points in the plane, the structure of tree

T corei is independent of the point set Pi: (1) It contains precisely |V ′i | = d
√

1
ε e leaves.

(2) By contracting the leaves of this tree with their parents (each of these parent has a
single child), we get a complete binary tree.

Although we cannot build the tree T corei explicitly for each i, i ∈ [k], we can con-

struct a single skeleton Tbin of a complete binary tree with d
√

1
ε e leaves, which will be used

for answering least common ancestor queries efficiently: It is well-known that any com-
plete binary tree on n vertices can be preprocessed in O(n) time to answer least common
ancestor queries in constant time. (See, e.g., Chapter 2 in [39].) By the second remark

following Theorem 11, we may assume that the number d
√

1
ε e of leaves in Tbin is at most

n. Constructing this tree Tbin requires O(d
√

1
ε e) = O(n) time, but we only do it once.

To compute the vertex set Ui, we start by identifying the leaves of Tbin that corre-
spond to the vertices of Leaves(Ui), and inserting them into a linked list A0 in the same
order that they appear in the tree. This task can be carried out in O(|Pi|) time in the
obvious way.

For any pair u, v of consecutive leaves in A0, we can find their least common ancestor
z in Tbin within constant time. If z is at level ` in tree Tbin, then we insert it into list A`.
(We say that a vertex is at level ` of the tree, for any ` ≥ 0, if its minimum unweighted
distance from any leaf is equal to `.)

By Observation 13, at the end of this process, the union of the non-empty lists A`,
` ≥ 0, gives Ui. Moreover, this process can be easily implemented within time O(|Ui|) =
O(|Pi|).

Next, we need to compute the parent of each vertex v ∈ Ui in the tree Prune(T corei ).
This can be carried out via a simple bottom-up process, in which we do not traverse any of
the trees directly (as this would require too much time), but rather use the non-empty lists
A`, ` ≥ 0, to access just the vertices of Ui. If performed carefully, this process will increase
the overall runtime by at most a constant factor.

Summarizing, the pruned tree Prune(T corei ) can be constructed within time O(|Pi|).
Consequently, the runtime of the ultimate SLT construction Prune(T̂ ) that we get in this
way will be reduced to O(n).

The main result of this paper is summarized in the following theorem.

Theorem 14. For any 2-dimensional Euclidean n-point set P , a designated point rt ∈ P
and a number ε < 1, there exists a Steiner (1 + ε, O(

√
1
ε ))-SLT Prune(T̂ ) = Prune(T̂ (P ))
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for P rooted at rt, having O(n) Steiner points. Moreover, the runtime of this construction
is O(n).

4 Conclusions and Open Questions

In this paper we showed that Steiner points help significantly in the context of Euclidean
SLTs.

We anticipate that the ideas used here will be applicable to other geometric problems
that involve stretch or weight in Steiner trees.

There are various natural directions for future research, we mention below just three
of them.

The first question is whether one can obtain Euclidean (1 + ε, O(
√

1
ε ))-SLTs in Eu-

clidean spaces of any dimension d, d ≥ 2. In the proceedings version of this paper we outlined
the main ideas needed for extending the construction of Section 2 to higher-dimensional Eu-
clidean spaces d ≥ 2. However, the lightness bound of the resulting construction will be

O(
√

1
ε ) ·2d rather than O(

√
1
ε ), i.e., there is an exponential dependence on the dimension d

in the lightness bound. We conjecture that the 2-dimensional case is the hardest one, and

that the correct lightness in any dimension is O(
√

1
ε ).

Our results for 2-dimensional Euclidean spaces imply that, for any ε > 0, one can

get a Steiner SLT with root-stretch 1 + ε and lightness at most ζ ·
√

1
ε , for an appropriate

constant ζ. An intriguing question in this context is to determine the optimal value for the
leading constant ζ. In fact, this question is also open in the more basic setting of Euclidean
spanning SLTs (with no Steiner points), with the lightness bound there being ζ · 1

ε rather

than ζ ·
√

1
ε (for a possibly different leading constant).

Finally, we believe that Steiner points should lead to a quadratic improvement in
the context of light Euclidean spanners. More specifically, it is known for many years that
a spanning (1 + ε)-spanner (with no Steiner points) of lightness O((1

ε )
2d) exists in any d-

dimensional Euclidean space, and there is also a similar lower bound. (See Chapter 15 in
[39] for details.) We anticipate that, by combining the ideas presented in this paper with
known constructions of light spanning spanners, one could get a Steiner (1 + ε)-spanner
with lightness O((1

ε )
d).
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A A Lower Bound for Euclidean Steiner SLTs from [21]

In this appendix we describe a lower bound from the FOCS’11 paper [21]. The details
of this lower bound were deferred to the journal version of [21], which is currently under
review. These details are provided here for the sake of completeness.

Let Cn denote a set of n points that are uniformly spaced on the boundary of the
unit circle C centered at the origin, and define C̃n+1 = Cn ∪ {(0, 0)}. We will show that
any Euclidean Steiner tree (T, rt) for C̃n+1 rooted at rt = (0, 0) with root-stretch at most

1 + ε must have lightness at least Ω(
√

1
ε ), for ε = Ω( 1

n2 ).

Partition the circle C into t = Θ(
√

1
ε ) arcs A1, . . . , At of angle 2π

t = Θ(
√
ε) each.

Since ε = Ω( 1
n2 ), we may assume that each arc Ai contains at least Ω(1) points of Cn.

Consider two arbitrary points pi and pj that reside at the middle of two distinct arcs Ai
and Aj , respectively. They are at circular distance at least Ω(

√
ε) from each other. As the

root-stretch is at most 1+ε, we know that the stretches in T between rt and pi and between
rt and pj are at most 1 + ε.

Lemma 15. The paths in T from rt to pi and from rt to pj cannot intersect within the
annulus A with inner radius 1

2 and outer radius 1 centered at the origin.

Proof. Let qi (respectively, qj) be the point lying in the middle of the segment connecting rt
with pi (respectively, pj); note that qi and qj lie on the boundary of the annulus A. Let q be
the point lying in the middle of the arc connecting qi and qj on the boundary of A. Observe
that the circular distance between qi and qj is Ω(

√
ε). By symmetry considerations, if the

tree paths between rt and pi and between rt and pj intersect within the annulus A, the
maximum root-stretch is minimized if the intersection point is q. However, in the latter case,
a straightforward calculation shows that the root-stretch is ‖rt, q‖+ ‖q, pi‖ = 1

2 + ‖q, pi‖ ≥
1 + Ω(ε). By approximately setting the constant hidden by the O-notation in t = O(

√
1
ε )

we can guarantee here root-stretch greater than 1 + ε.

It follows that each point pi at the middle of arc Ai contributes 1
2 fresh units to the

weight of T , for each i = [t]. Since there are t = Θ(
√

1
ε ) such arcs, it follows that the weight

of T is at least 1
2 · t = Ω(

√
1
ε ). Note also that the weight of the MST for C̃n+1 is O(1),

which completes the argument.

Remark. The above lower bound for C̃n+1 holds for the specific choice of root vertex
rt = (0, 0). However, this argument can be easily strengthened to hold for Cn and any
choice of root vertex rt ∈ Cn.

B Proof of Lemma 2

In this appendix we provide the proof of Lemma 2 from Section 2.2. As mentioned, this
proof follows similar lines as those in the works of [5, 6], and is provided here for the sake
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of completeness.

The first assertion of Lemma 2 follows from the next claim.

Claim 16. The root-stretch of each tree (Ti, rt) is at most 1 + 2θ, i ∈ [k].

Proof. As Ti has a direct edge ei between rt and bi, dTi(rt, bi) = ‖rt, bi‖. Consider any
point v ∈ Pi \ {bi}, and let Πv := ei ◦ L(bi, v) be the path in Ti between rt and v obtained
by concatenating edge ei = (rt, bi) with the subpath L(bi, v) of L between bi and v. Since
v was not identified as a break-point, necessarily

dL(bi, v) ≤ θ · ‖rt, v‖, (7)

and so

dTi(rt, v) = ω(Πv) = ‖rt, bi‖+ dL(bi, v) ≤ ‖rt, bi‖+ θ · ‖rt, v‖. (8)

By the triangle inequality and Equation (7),

‖rt, bi‖ ≤ ‖rt, v‖+ ‖bi, v‖ ≤ ‖rt, v‖+ dL(bi, v) ≤ (1 + θ) · ‖rt, v‖. (9)

Plugging Equation (9) in Equation (8), we obtain

dTi(rt, v) ≤ ‖rt, bi‖+ θ · ‖rt, v‖ ≤ (1 + θ) · ‖rt, v‖+ θ · ‖rt, v‖ = (1 + 2θ) · ‖rt, v‖.

Recall that ω(L) ≤ 2 · ω(MST (P )). The next claim shows that the lightness of G
is at most O(1

θ ), thus proving the second assertion of Lemma 2.

Claim 17. ω(G) ≤ (1 + 1
θ ) · ω(L).

Proof. By construction, ω(G) = ω(L) +
∑k−1

i=1 ω(ei+1). The choice of break-points implies
that ω(ei+1) = ‖rt, bi+1‖ < 1

θ · dL(bi, bi+1), for each index i ∈ [k − 1]. Since L =
L(b1, b2) ◦ . . . ◦ L(bk−1, bk) ◦ L(bk, vn), it holds that

k−1∑
i=1

dL(bi, bi+1) ≤
n−1∑
i=1

dL(vi, vi+1) =
n−1∑
i=1

‖vi, vi+1‖ = ω(L).

Therefore,

k−1∑
i=1

ω(ei+1) =
k−1∑
i=1

‖rt, bi+1‖ <
1

θ
·
k−1∑
i=1

dL(bi, bi+1) ≤ 1

θ
· ω(L).

It follows that

ω(G) = ω(L) +

k−1∑
i=1

ω(ei+1) ≤
(

1 +
1

θ

)
· ω(L).
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