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Abstract

We propose a metric for Reeb graphs, called the functional distortion distance. Under this distance, the
Reeb graph is stable against small changes of input functions. At the same time, it remains discriminative
at differentiating input functions. In particular, the main result is that the functional distortion distance
between two Reeb graphs is bounded from below by the bottleneck distance between both the ordinary
and extended persistence diagrams for appropriate dimensions.

As an application of our results, we analyze a natural simplification scheme for Reeb graphs, and
show that persistent features in Reeb graph remains persistent under simplification. Understanding the
stability of important features of the Reeb graph under simplification is an interesting problem on its own
right, and critical to the practical usage of Reeb graphs.

1 Introduction

One of the prevailing ideas in geometric and topological data analysis is to provide descriptors that encode
useful information about hidden objects from observed data. The Reeb graph is one such descriptor.
Specifically, given a continuous function f : X → IR defined on a domain X, the level set of f at value
a is the set f −1(a) = {x ∈ X | f (x) = a}. As the scalar value a increases, connected components appear,
disappear, split and merge in the level set, and the Reeb graph of f tracks such changes. It provides a simple
yet meaningful abstraction of the input domain. The concept behind the Reeb graph was first introduced
by G. Reeb in [32] for Morse functions on manifolds; the term Reeb graph was coined by R. Thom. The
first use of Reeb graphs for visualization applications can be found in work on shape understanding by
Shinagawa et al. [33]. Since then, it has been used in a variety of applications in graphics and visualization,
e.g, [25, 26, 29, 33, 35, 37]; also see [7] for a survey.

The Reeb graph can be computed efficiently in O(m log m) time for a piecewise-linear function defined
on an arbitrary simplicial complex domain with m vertices, edges and triangles [30] (a randomized algorithm
was given in [23]). This is in contrast to, for example, the O(m3) time (or matrix multiplication time) needed
to compute even just the first-dimensional homology information for the same simplicial complex. The Reeb
graph of a scalar field on a manifold can also be approximated from a point sample efficiently and with
theoretical guarantees [17]. It encodes meaningful information on the input scalar field, in particular the
so-called one-dimensional vertical homology group [17]. Being a graph structure, the Reeb graph is simple to
represent and manipulate. These properties make the Reeb graph appealing for analyzing high-dimensional
point data. For example, a generalization of the Reeb graph is proposed in [34] for analyzing high dimensional
data, and in [22], the Reeb graph is used to recover a hidden geometric graph from its point samples. Very
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recently in [10], it is shown that a certain Reeb graph can reconstruct a metric graph with respect to the
Gromov-Hausdorff distance.

Given the popularity of the Reeb graph in data analysis, it is important to understand its stability and
robustness with respect to changes in the input function (both in function values and in the domain). To
measure the stability, we first need to define a distance between two Reeb graphs. Furthermore, an important
application of the Reeb graph is to provide a descriptive summary of the function. Again, a central problem
involved is to have a meaningful distance between Reeb graphs.

In the special case of Reeb graphs of functions on curves, similar results were obtained in [18] using
an editing distance on Reeb graphs, and this approach is being extended to surfaces by the same authors.
Recently, Morozov et al. proposed the interleaving distance for merge trees, based on the concept of an
interleaving [11], and obtained similar upper and lower bounds relating this distance to ordinary persistence
diagrams [28]. Here, the merge trees are variants of the loop-free Reeb graphs (contour trees). However, it is
not clear how to generalize these results to Reeb graphs containing loops, an important family of features of
the Reeb graph. Another distance based on the branch decomposition of merge trees was proposed in [6],
together with a polynomial time algorithm to compute it. This distance, however, is not stable with respect to
changes in the function and also does not generalize beyond trees.

Recently, de Silva et al. introduced the interleaving distance for Reeb graphs, which is defined at the
algebraic topology level, utilizing the equivalence between Reeb graphs and a particular class of cosheaves
[16]. In a previous conference paper [4], we introduced the functional distortion distance to be described in
the current full version. Notably, it has been shown very recently in [5] that these two definitions of distances
between Reeb graphs are strongly equivalent, in the sense that they are within constant factor of each other.

Our work. In this paper, we propose a metric for Reeb graphs, called the functional distortion distance,
drawing intuition from the Gromov-Hausdorff distance for measuring metric distortion. Under this distance,
the Reeb graph is stable against perturbations of the input function; at the same time, it retains a certain
ability to discriminate between different functions (these statements will be made precise in Section 4). In
particular, the main result is that the functional distortion distance between two Reeb graphs is bounded from
below by (and thus more discriminative than) the bottleneck distance between the persistence diagrams of the
Reeb graphs. On the other hand, the functional distortion distance yields the same type of sup norm stability
that persistence diagrams enjoy [3, 11, 13, 14]. The persistence diagram has been a popular topological
summary of shapes and functions, and the bottleneck distance is introduced in [14] as a natural distance for
persistence diagrams. However, as the simple example in Fig. 1 (a) shows, the Reeb graph can be strictly
more discriminative than the persistence diagram of dimension 0.

In Section 5, we show the relation between our functional distortion distance to a functional-version of
the Gromov-Hausdorff distance. In Section 6, we show that, when applied to merge trees, our functional
distortion distance is equivalent to the interleaving distance proposed by Morozov et al. [28].

Finally, as an application of our results, we show in Section 7 that persistent features of the Reeb graph
remain persistent under a certain natural simplification strategy of the Reeb graph. Understanding the stability
of Reeb graph features under simplification is an interesting problem on its own right: In practice, one often
collapses small branches and loops in the Reeb graph to remove noise; see, e.g., [19, 22, 31]. It is crucial
that by collapsing a collection of small features, there is no cascading effect that causes larger features to be
destroyed, and our results confirm that this is indeed the case.

2 Preliminaries and Problem Definition

Reeb graphs. Given a continuous function f : X → IR on a finitely triangulable topological space X, for
each α ∈ IR, the set f −1(α) = {x ∈ X : f (x) = α} is called a level set of f . A level set may consist of several
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connected components. We define an equivalence relation ∼ on X such that x ∼ y iff f (x) = f (y) = α and
x is connected to y in f −1(α). The Reeb space of the function f : X → IR, denoted by R f , is the quotient

f X Rf
µ

µ(x) µ(y) = µ(z)
x y z

space X/∼, i.e., the set of equivalent classes equipped with the quotient topology induced by the quotient
map µ : X → R f . Under appropriate regularity assumptions (to be made precise later), R f has the structure of
a finite 1-dimensional regular CW complex, and we call it a Reeb graph. Throughout this paper, we tacitly
assume that all mentioned connected components are also path-connected.

The input function f : X → IR also induces a continuous function f̃ : R f → IR defined as f̃ (z) = f (x) for
any preimage x ∈ µ−1(z) of z. To simplify notation, we often write f (z) instead of f̃ (z) for z ∈ R f when there
is no ambiguity, and use f̃ mostly to emphasize the different domains of the functions. In all illustrations
of this paper, we plot the Reeb graph with the vertical coordinate of a point z corresponding to the function
value f (z).

Given a point x ∈ R f , we use the term up-degree (resp. down-degree) of x to denote the number of
branches (1-cells) incident to x that have higher (resp. lower) values of f than x. A point is regular if both of
its up-degree and down-degree equal to 1, and critical otherwise. A critical point is a minimum (maximum)
if it has down-degree 0 (up-degree 0), and a down-fork (up-fork) if it has down-degree (up-degree) larger
than 1. A critical point can be degenerate, having more than one types of criticality. From now on, we use the
term node to refer to a critical point in the Reeb graph. For simplicity of exposition, we assume that all nodes
of the Reeb graph have distinct f̃ function values. Note that because of the monotonicity of f̃ at regular
points, the Reeb graph together with its associated function is completely described, up to homeomorphisms
preserving the function, by the function values on the nodes.

Persistent homology and persistence diagrams. The notion of persistence was originally introduced by
Edelsbrunner et al. in [21]. There has since been a great amount of development both in theory and in
applications; see, e.g., [3, 9, 13, 38]. This paper does not concern the theory of persistence, hence we only
provide a simple description so as to introduce the notion of persistence diagrams, which will be used later.
We refer the readers to [24] for a detailed treatment of homology groups in general and to [20] for persistent
homology.

Given a continuous function f : X → IR defined on a finitely triangulable topological space X, we call
X≤a = {x ∈ X | f (x) ≤ a} a sublevel set of f . Let Hp(Y) denote the p-th homology group of a triangulable
topological space Y . Recall that a triangulation gives a CW structure and singular, simplicial, and cellular
homology are isomorphic (see [24] for details). In this paper, we always consider homology with coefficients
in Z2, so Hp(Y) is a vector space. We now investigate the changes of Hp(X≤a) for increasing values of
a. Throughout this paper, we will assume that f is tame in the following sense: there is a finite partition
−∞ = a0 < min f = a1 < · · · < aN = max f < ∞ = aN+1 such that for all i < n and s, t ∈ [ai, ai+1) with
s < t, the homomorphism Hp(X≤s)→ Hp(X≤t) induced by the inclusion X≤s ↪→ X≤t is an isomorphism, and
similarly, for all s, t ∈ (ai, ai+1] with s < t, the homomorphism Hp(X≥t)→ Hp(X≥s) induced by the inclusion
X≥t ↪→ X≥s is an isomorphism. Moreover, Hp(X≤ai) < ∞ for all i. This implies that R f is a Reeb graph. We
call ai a homologically critical level of f .
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Figure 1: (a) The height functions on the two trees have the same persistence diagrams (thus the bottleneck distance
between their persistence diagrams is 0), but their tree structures are different. The functional distortion distance
will differentiate these two cases. In (b), solid dots are minimum and maximum, empty dots are essential forks, and
crossed-dots are ordinary forks. The ordinary fork x6 merges components C1 and C2 in the sublevel set below it,
represented by minima x1 and x2 respectively. The resulting critical pair (x2, x6) gives rise to the point (a2, a6) in
Dg0(R f ) in (c), where ai = f (xi) for i ∈ [1, 12]. The essential fork x9 is paired with the up-fork x4, corresponding
to the thin loop x4x8x6x5x9x4 created at x9. This gives rise to the point (a4, a9) in the extended persistence diagram
ExDg1(R f ) in (d).

Consider the following sequence of vector spaces,

0 = Hp(X≤a0)→ Hp(X≤a1)→ · · · → Hp(X≤aN ) = Hp(X), (1)

where each homomorphism µ
j
i : Hp(X≤ai)→ Hp(X≤a j) is induced by the canonical inclusion X≤ai ↪→ X≤a j .

A homology class h is created at ai if

h ∈ Hp(X≤ai) but h < im µi
i−1.

It is destroyed at a j if
µ

j−1
i (h) < im µ

j−1
i−1 but µ j

i (h) ∈ im µ
j
i−1.

Persistent homology records such birth and death events. In particular, the p-th ordinary persistence diagram
of f , denoted by Dgp( f ), is a multiset of pairs (b, d) corresponding‘ to the birth value b and death value d of
some p-dimensional homology class. See Figure 1 (c) for an example of the 0-th persistence diagram. (We
note that this is only an intuitive and informal introduction of the persistence diagram; see [20, 38] for a more
formal treatment.)

In general, since Hp(X) may not be trivial, any nontrivial homology class of Hp(X), referred to as an
essential homology class, will never die during the sequence in Eq. (1). For example, there is a point (a1,∞)
in Fig. 1 (b) indicating a 0-dimensional homology class that was created at a1 but never dies. By appending a
sequence of relative homology groups to Eq. (1), we obtain a pairing of the essential homology classes (i.e.,
homology classes of Hp(X)):

0 = Hp(X≤a0)→ · · · → Hp(X≤aN ) = Hp(X) =

Hp(X, X≥aN )→ Hp(X, X≥aN−1)→ · · · → Hp(X, X≥a0) = 0. (2)

Here X≥a denotes the superlevel set X≥a = {x ∈ X | f (x) ≥ a}. Since the last vector space Hp(X, X≥a0) = 0,
each essential homology class will necessarily die in the relative part of the above sequence at some relative
homology group Hp(X, X≥a j). We refer to the multiset of points encoding the birth and death time of pth
homology classes created in the ordinary part and destroyed in the relative part of the sequence in Eq. (2)
as the pth extended persistence diagram of f , denoted by ExDgp( f ). In particular, for each point (b, d) in

4



ExDgp( f ) there is a (essential) homology class in Hp(X) that is born in Hp(X≤b) and dies at Hp(X, X≥d).
See Fig. 1 (d) for an example; note that the birth time is larger than or equal to death time in the extended
persistence diagram.

Reeb graphs and persistent homology. There is a natural way to define and quantify features of the Reeb
graph, which turns out to be consistent with the information encoded in the diagrams Dg0(R f ) and ExDg1(R f )
of the function f̃ : R f → IR. Since R f is a graph, we only need to consider persistent homology in dimensions
0 and 1. We provide an intuitive treatment below. For simplicity of exposition, we assume that all nodes have
different function values and are either a minimum, a maximum, a down-fork with down-degree 2, or an
up-fork with up-degree 2, noting that these assumptions hold in the generic case.

Imagine that we sweep through R f in increasing values of a and inspect changes in H0((R f )≤a). New
components in the sublevel sets are created at minima of R f . For any value a, associate each component C in
the sublevel set of (R f )≤a with the lowest local minimum m contained in C: intuitively, C is created at m.

Consider a down-fork node s with a = f (s). If the two lower branches are contained in different connected
components C1 and C2 of the open sublevel set (R f )<a, for reasons that will become obvious soon we call s
an ordinary fork; otherwise, it is an essential fork. Let x1 and x2 be the global minimum of C1 and C2,
respectively. Assume that f (x1) < f (x2). Then the homology class [x2 + x1] is created at f (x2) and dies at
f (s), giving rise to a unique point ( f (x2), f (s)) in the 0-th ordinary persistence diagram Dg0(R f ). Indeed,
there is a one-to-one correspondence between the set of such pairs of minima and ordinary down-forks and
points in the 0th persistence diagram Dg0(R f ) with finite coordinates; see Fig. 1 (b) and (c). A symmetric
procedure with − f will produce pairs of maxima and ordinary up-forks, corresponding to points in the 0th
persistence diagram Dg0(R− f ). Together, these pairs capture the branching features of a Reeb graph.

If, on the other hand, the two lower branches of s are connected in the sublevel set, we call s an essential
fork; see Fig. 1 (b) and (d). In this case, some cellular 1-cycle in the sublevel set (R f )≤a is born at a. Since R f

is a graph, this cycles is non-trivial in R f , and their corresponding homology classes will not be destroyed in
ordinary persistent homology. Consider the unique cycle γ with largest minimum value of f among all cycles
born at a and corresponding to an embedded loop in R f . Let s′ be the point achieving the minimum on γ.
Then the cycle γ is created at f (s) during the ordinary sequence of Eq. (2), and killed at time f (s′) in the
extended part, giving rise to a unique point ( f̃ (s′), f̃ (s)) in the 1st extended persistence diagram of f̃ . It turns
out that s′ is necessarily an essential up-fork [1], and we call such a pair (s′, s) an essential pair. Indeed,
the collection of essential pairs has a one-to-one correspondence to points in ExDg1(R f ). (The extended
persistence diagram ExDg1(R− f ) is the reflection of ExDg1(R f ) and thus encodes the same information as
ExDg1(R f ).) These essential pairs capture the cycle features of a Reeb graph.

In short, the branching features and cycle features of a Reeb graph give rise to points in the 0th ordinary
and 1st extended persistence diagrams, respectively. However, the persistence diagram captures only the
lifetime of features, but not how these features are connected; see Fig. 1 (a). In this paper we aim to develop
a way of measuring distance between Reeb graphs which also takes into account the graph structure.

3 A Metric on Reeb Graphs

Throughout this paper, by a distance we will mean an extended pseudometric, i.e., a binary symmetric
function d with values in [0,∞] that satisfies d(x, x) = 0 and d(x, z) ≤ d(x, y) + d(y, z). From now on, consider
two Reeb graphs R f and Rg, generated by tame functions f : X → IR and g : Y → IR. While topologically
each Reeb graph is simply a 1-dimensional regular CW complex, it is important to note that it also has a
function associated with it (induced from the input scalar field). Hence the distance should depend on both
the graph structures and the functions f̃ and g̃. Approaching the problem through graph isomorphisms does
not seem viable, as small perturbation of the function f may create an arbitrary number of new branches and
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loops in the graph. To this end, we first put the following metric structure on a Reeb graph R f to capture
information about the function f .

Specifically, for any two points u, v ∈ R f (not necessarily nodes), let π be a continuous path between u
and v. The range of this path is the interval range(π) := [minx∈π f (x),maxx∈π f (x)], and its height is simply
the length of the range, denoted by height(π) = maxx∈π f (x) −minx∈π f (x). We define the distance

d f (u, v) = min
π:u;v

height(π), (3)

where π ranges over all paths from u to v, denoted by u ; v. Equivalently, d f (u, v) is the minimum length
of any interval I such that u and v are in the same connected component of f −1(I). Note that this is in fact
a metric, since on Reeb graphs there is no path of constant function value between two points u , v. We
put f in the subscript to emphasize the dependency on the input function. Intuitively, d f (u, v) is the minimal
function difference one has to overcome to move from u to v.

To define a distance between R f and Rg, we need to connect the spaces R f and Rg, which is achieved
by continuous maps φ : R f → Rg and ψ : Rg → R f . Borrowing from the definition of Gromov–Hausdorff
distance given in [27], let

G(φ, ψ) =
{
(x, φ(x)) : x ∈ R f } ∪ {(ψ(y), y) : y ∈ Rg

}
and

D(φ, ψ) = sup
(x,y),(x̃,ỹ)∈G(φ,ψ)

1
2

∣∣∣d f (x, x̃) − dg(y, ỹ)
∣∣∣ , (4)

where G(φ, ψ), the union of the graphs of φ and ψ, can be thought of as the set of correpondences between R f

and Rg induced by maps φ and ψ. The functional distortion distance is defined as:

dFD(R f ,Rg) = inf
φ,ψ

max
{
D(φ, ψ), ‖ f − g ◦ φ‖∞, ‖ f ◦ ψ − g‖∞

}
, (5)

where φ and ψ range over all continuous maps between R f and Rg. The latter two terms address the fact
that composition with isometries of the real line (translation, negation) does not affect the metric d f induced
by a function f . Note that this definition can be considered as a continuous, functional variant of the
Gromov–Hausdorff distance, with the additional condition that the maps between R f and Rg are required to
be continuous, and taking into consideration the difference between the function values of corresponding
points as well. In fact, this definition is the continuous version of the extended Gromov-Hausdorff distance
introduced in Definition 2.4 of [12]. Furthermore, it turns out that for metric graphs, our continuous version
of the extended Gromov-Hausdorff (GH) distance is a constant factor approximation of the extended GH
distance induced by arbitrary maps, which we will make precise and show later in Section 5. As an example,
consider the two trees in Fig. 1. The distortion of distances in the two trees in (a) is large no matter how we
identify correspondences between points from them. Thus the functional distortion distance between them is
also large, making it more discriminative than the bottleneck distance between persistence diagrams.

It is straightforward to show that the functional distortion distance is a pseudometric, and a metric on the
equivalence classes of Reeb graphs up to function-preserving homeomorphisms. Note that this definition and
our results apply to any graph G with a function f that is strictly monotonic on the edges. This is easy to see
since in that case R f = G and f̃ = f .

4 Properties of the Functional Distortion Distance

In this section, we show that the functional distortion distance is both stable (upper bounded) and discrim-
inative (lower bounded). Note that it is somewhat meaningless to discuss the stability of a distance alone
without understanding its discriminative power – the constant function with value 0 is a pseudo-metric too.
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4.1 Stability

Suppose that f and g are defined on the same domain X. Furthermore, assume that the quotient maps µ f and
µg have continuous sections (right-inverses) s f and sg, i.e., µ f ◦ s f = idR f and µg ◦ s f = idR f . Then we have
the following stability result for the metric dFD for Reeb graphs.

Theorem 4.1. Let f , g : X → IR be tame functions whose Reeb quotient maps µ f : X → R f and µg : X → Rg

have continuous sections. Then dFD(R f ,Rg) ≤ ‖ f − g‖∞.

Proof. Let δ = ‖ f − g‖∞. Choose φ = µg ◦ s f , ψ = µ f ◦ sg. Now assume that (x, y), (x̃, ỹ) ∈ G(φ, ψ), with
G(φ, ψ) as defined in Eq. (4). Let ξ = s f (x), ξ̃ = s f (x̃), υ = sg(y), and υ̃ = sg(ỹ). Note that either y = φ(x) or
x = ψ(y), so either

µg(υ) = y = φ(x) = µg ◦ s f (x) = µg(ξ)

or
µ f (ξ) = x = ψ(y) = µ f ◦ sg(y) = µ f (υ).

In other words, ξ and υ are either in the same level set component of f or of g, and analogously for ξ̃ and υ̃.
Let [a, b] be such that x, x̃ are connected in f̃ −1[a, b]. Then ξ and ξ̃ are connected in

f −1[a, b] ⊂ g−1[a − δ, b + δ],

and hence, by the above, υ and υ̃ are also connected in g−1[a − δ, b + δ]. Therefore, y and ỹ are connected in
g̃−1[a − δ, b + δ]. We conclude that (b − a) + 2δ ≥ dg(y, ỹ). Since this inequality holds for all intervals [a, b]
with the stated properties, we have d f (x, x̃) + 2δ ≥ dg(y, ỹ). By symmetry of the above argument, we also
have dg(y, ỹ) + 2δ ≥ d f (x, x̃). Moreover, by assumption,

max
x∈R f
| f (x) − g ◦ φ(x)| ≤ max

y∈X
| f (y) − g(y)| = δ.

Similarly,
max
x∈Rg
|g(x) − f ◦ ψ(x)| ≤ max

y∈X
|g(y) − f (y)| = δ.

Hence ‖ f − g ◦φ‖∞ ≤ δ and ‖ f ◦ψ− g‖∞ ≤ δ. Combining these with Eq. (5), we conclude that dFD(R f ,Rg) ≤
‖ f − g‖∞. �

The above result is similar to the stability result obtained for the bottleneck distance between persistence
diagrams [15], as well as for the ε-interleaving distance between merge trees [28]. Note that the above stated
conditions (on the existence of continuous sections) are only required for the stability result. They are not
necessary for Theorems 4.2 and 4.3. The condition on the common domain X is required so that we can
define the distance between input scalar fields f and g. The condition on the existence of sections is purely
technical; it holds e.g. for Morse functions or for generic PL functions.

4.2 Relation to Ordinary Persistence Diagram

The main part of this section is devoted to discussing the discriminative power of the functional distortion
distance for Reeb graphs. In particular, we relate this distance with the bottleneck distance between persistence
diagrams. We have already seen in Fig. 1 (a) that there are cases where the functional distortion distance
is strictly larger than the bottleneck distance between persistence diagrams of according dimensions (0th
ordinary and 1st extended persistence diagrams). We next show that, up to a constant factor, the functional
distortion distance is always at least as large as the bottleneck distance. We take different approaches to
investigate the branching features (ordinary persistence diagram) and the cycle features (extended persistence
diagram). For the former, we have the following main result. The proof is rather standard, and similar to the
result on interleaving distance between merge trees in [28].
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Theorem 4.2. dB(Dg0(R f ),Dg0(Rg)) ≤ dFD(R f ,Rg). Similarly, dB(Dg0(R− f ),Dg0(R−g)) ≤ dFD(R f ,Rg).

Proof. Let φ : R f → Rg and ψ : Rg → R f be the optimal continuous maps that achieve δ = dFD(R f ,Rg) 1.
First, note that by Eq. (5), maxx∈R f | f (x) − g(φ(x))| ≤ δ. Hence φ : (R f )≤α → (Rg)≤α+δ is well defined for any
α ∈ R. Similarly, ψ : (Rg)≤β → (R f )≤β+δ is well defined for any β ∈ R. Let i denote the canonical inclusion
maps, and for any map ρ, let ρ∗ indicate the induced homomorphism on homology. We now show that the
following diagram commutes for any real value α:

H0
(
(R f )≤α

)
H0

(
(R f )≤α+2δ

)
H0

(
(Rg)≤α+δ

)
i∗

φ∗ ψ∗

To show the commutativity of the above diagram, we need to show that for any 0-cycle c in (R f )≤α,
[i(c)] = [ψ◦φ(c)], where [c′] is the homology class represented by a cycle c′. Assume w.l.o.g. that the 0-cycle
c = x1 + x2 contains only two points x1, x2 from (R f )≤α; the argument easily extends to the case where c
contains an arbitrary even number of points. Let x′1 = ψ ◦ φ(x1) and x′2 = ψ ◦ φ(x2). Since d f (x1, x′1) ≤ δ, we
know that there is a path (1-chain) π(x1, x′1) with height at most δ connecting x1 and x′1. In other words, x1
and x′1 are connected in (R f )≤α+δ ⊆ (R f )≤α+2δ. Similarly, x2 and x′2 are connected in (R f )≤α+2δ. Hence the
new 0-cycle c′ = x′1 + x′2 = ψ ◦ φ(c) is homologous to c in (R f )≤α+2δ. Thus, [i(c)] = [c′] = [ψ ◦ φ(c)].

A similar argument also shows that the symmetric versions of the diagrams in Footnote 1 (by switching
the roles of R f and Rg) also commute at the 0th homology level. This means that the two persistence
modules {H0((R f )≤α)}α and {H0((Rg)≤β)}β are strongly δ-interleaved (as introduced in [11]). The first half of
Theorem 4.2 then follows from Theorem 4.8 of [11].

The same argument works for the scalar fields − f̃ : R f → IR and −g̃ : Rg → IR, which proves the second
half of Theorem 4.2. Recall that Dg0(R f ) captures minimum and down-fork persistence pairs, while Dg0(R− f )
captures up-fork and maximum persistence pairs. �

4.3 Relation to Extended Persistence Diagram

Recall that the range of cycle features in the Reeb graph correspond to points in the 1st extended persistence
diagram. In what follows we will show the following main theorem, which states that dFD(R f ,Rg) is bounded
below by the bottleneck distance between the 1st extended persistence diagrams ExDg1(R f ) and ExDg1(Rg).

Theorem 4.3. dB(ExDg1(R f ),ExDg1(Rg)) ≤ 3dFD(R f ,Rg).

For simplicity of exposition, we assume that dFD(R f ,Rg) can be achieved by optimal continuous maps
φ : R f → Rg and ψ : Rg → R f . The case where dFD(R f ,Rg) is achieved in the limit can be handled by
considering a sequence of continuous maps that are optimal up to an arbitrarily small additive term ε. Let
δ = dFD(R f ,Rg).

Thin bases. Let Z1(R f ) be the 1-dimensional cellular cycle group of R f with coefficients in Z2, i.e., the
subgroup of the 1-dimensional cellular chains with zero boundary. Since the Reeb graph has the structure of
a 1-dimensional CW complex, the 1-dimensional cellular boundary group is trivial, and so every cellular
1-cycle of R f represents a unique homology class2 in H1(R f ); that is, H1(R f ) � Z1(R f ).

For a cellular 1-cycle γ =
∑
α eα, let im γ denote the union of the images of the characteristic maps for

all 1-cells (edges) eα. Let range(γ) = [minx∈im γ f (x),maxx∈im γ f (x)] denote the range of a cycle γ, and let

1If the dFD(R f ,Rg) is achieved only in the limit, then one can extend the argument by constructing two sequences of maps that
are optimal up to an arbitrarily small additive term ε and taking the limit in the distance they induce.

2Note that the same is not true for singular homology; this is the reason why we consider cellular cycles here.
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height(γ) be the length of this interval. A cycle is thinner than another one if its height is strictly smaller. A
cycle γ is thin if it cannot be written as a linear combination of thinner cycles. See Fig. 1 (b), where the cycle
x4x8x6x5x9x4 is thin, while the cycle x3x4x9x5x6x3 is not. Given a basis of Z1(R f ), consider the sequence of
the heights of the cycles contained in it, ordered in non-decreasing order. A basis for Z1(R f ) is a thin basis
if its height sequence is less than or equal to that of any other basis of Z1(R f ) in the lexicographic order.
Obviously, each cycle in a thin basis is necessarily a thin cycle.

From now on, we fix an arbitrary thin basis G f = {γ1, . . . , γn} of Z1(R f ) and Gg = {ζ1, . . . , ζm} of Z1(Rg),
with n and m being the rank of Z1(R f ) and Z1(Rg), respectively. It is known [15] that every cycle in a
thin basis of R f is necessarily a thin cycle, and the ranges [b, d] of cycles in G f (resp. in Gg) correspond
one-to-one to the points (b, d) in the 1st extended persistence diagram ExDg1(R f ) (resp. in ExDg1(Rg)). For
example, in Fig. 1 (b), the two cycles x3x4x8x6x3 and x4x8x6x5x9x4 form a thin basis, corresponding to points
( f̃ (x8), f̃ (x3)) and ( f̃ (x9), f̃ (x4)) in ExDg1(R f ) in (d).

Given any cycle γ of R f (resp. of Rg), we can represent γ uniquely as a linear combination of cycles in
G f (resp. Gg), which we call the thin basis decomposition of γ; we omit the reference to G f and Gg since
they will be fixed from now on. The thin cycle with the largest height from the thin basis decomposition of γ
is called the dominating cycle of γ, denoted by dom(γ). If there are multiple cycles with the same maximal
height, then by convention we choose the one with smallest index in G f (resp. in Gg) as the dominating
cycle. A cycle γ is α-stable if its dominating cycle has a height strictly larger than 2α. Let Zα1 (R f ) denote the
subgroup of Z1(R f ) generated by cycles with height at most 2α. Equivalently, a thin basis decomposition of a
cycle in Zα1 (R f ) consists only of cycles with height at most 2α. Hence, a cycle z is in Zα1 (R f ) if and only if z
is not α-stable. Note that this only means that the dominating cycle of z has height at most 2α; the height of z
itself can be larger than 2α. We have the following property of the dominating cycle:

Lemma 4.4. A set of cycles γ1, . . . γk ∈ Z1(R f ) with distinct dominating cycles is linearly independent.

Proof. We show that
∑a

j=1 γi j , 0 for any subset {i1, . . . , ia} ⊆ {1, 2, . . . , k}. Specifically, consider the
maximum height of dominating cycles of any cycle in {γi j}

a
j=1. First, assume that there is only a unique

cycle, say γia , whose dominating cycle dom(γia) has this maximum height. It then follows that this thin
cycle dom(γia) is not in the thin basis decomposition of any other cycle γi j , j , a. Since the thin basis
decomposition of the cycle

∑a
j=1 γi j is simply the sum (modulo 2) of thin basis decomposition of each γi j ,

dom(γia) must exist in the thin basis decomposition of the cycle
∑a

j=1 γi j ; in fact, dom(
∑a

j=1 γi j) = dom(γia).
Therefore

∑a
j=1 γi j , 0.

If there are multiple cycles whose dominating cycle has the maximal height, then we consider the one
whose dominating cycle has the smallest index among all of them. The same argument as above shows that
this cycle will present in the thin basis decomposition of the cycle

∑a
j=1 γi j , implying that

∑a
j=1 γi j , 0. �

α-matching. The main use of thin cycles is that we will prove Theorem 4.3 by showing the existence of
an α-matching between G f and Gg. Specifically, two thin cycles γ1 and γ2 are α-close if their ranges [a, b]
and [c, d] are within Hausdorff distance α, i.e., |c − a| ≤ α and |d − b| ≤ α. (Note that two α-close cycles can
differ in height by at most 2α.) An α-matching for G f and Gg is a set of pairsM ⊂ G f × Gg such that:

(I) For each pair (γ, ζ) ∈ M, the cycles γ and ζ are α-close; and

(II) Every α-stable cycle in G f and Gg (i.e., with height larger than 2α) appears in exactly one pair ofM;
every other cycle appears in at most one pair.

Since each point (b, d) in the extended persistence diagram corresponds to the range [b, d] of a unique cycle
in a given thin basis, dB(ExDg1(R f ),ExDg1(Rg)) ≤ α if and only if there is an α-matching for G f and Gg.
Our goal now is to prove that there exists a 3δ-matching for G f and Gg, which will then imply Theorem 4.3.

Properties of φ and ψ. Recall that φ : R f → Rg and ψ : Rg → R f are the optimal continuous maps that
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achieve δ = dFD(R f ,Rg). We now investigate the effect of these maps on thin cycles. Note that φ and ψ
induce maps Z1(R f )→ Z1(Rg) and Z1(Rg)→ Z1(R f ). To simplify notation, we denote these maps by φ and ψ
as well. Lemma 4.5 below states that ψ is “close” to being an inverse of φ. Lemmas 4.6 and 4.7 relate the
range of φ(γ) with the range of γ.

Lemma 4.5. Given any cycle γ ∈ Z1(R f ), we have ψ ◦ φ(γ) ∈ γ + Z2δ
1 (R f ). That is, ψ ◦ φ(γ) = γ + γ′, where

γ′ is not 2δ-stable. A symmetric statement holds for any cycle in Rg.

Proof. The input Reeb graph R f is a finite graph, and there are only a finite number of (cellular) cycles.
Hence there are only a finite number of height values (reals) that these cycles can have. Let α denote the
lowest height of any cycle whose height is strictly larger than 4δ. We set ρ to be any positive constant between
0 and α − 4δ; that is, 4δ + ρ < α. Note that if a cycle γ satisfies height(γ) ≤ 4δ + ρ < α, then it is necessary
that height(γ) ≤ 4δ.

Assume that im γ has only a single connected component – the case with multiple components can be
handled in a component-wise manner. This means that γ is generated by a loop `, i.e., a closed curve on R f , in
the sense that we can consider ` as a singular cycle and then use the isomorphism of singular homology and
cellular cycles. Without loss of generality, we may assume that ` is embedded; otherwise, ` can be split into
embedded subloops, which again can be treaded separately. Now for the given loop `, let ˜̀ denote ψ ◦ φ(`),
and for any point x on `, let x̃ ∈ ˜̀ denote x̃ := ψ ◦ φ(x). Since both (x, φ(x)) and (x̃, φ(x)) are in G(φ, ψ), by
Eq. (5), there is an embedded path π(x, x̃) connecting x to x̃ with range(π(x, x̃)) = [a, b], where b − a ≤ 2δ.

Let `[x, x′] and −`[x, x′] denote the orientation-preserving and orientation-reversing subcurves of ` from
x to x′, respectively. Start with an arbitrary point x = x0 on `, and consider x̃0 on ˜̀. Since ψ◦φ is a continuous
map, as we move x along ` continuously, x̃ moves continuously. In step i, as we move along ` (starting
from xi), we set xi+1 to be the first point such that the height of the loop `i = `[xi, xi+1] ◦ π(xi+1, x̃i+1) ◦
− ˜̀[x̃i+1, x̃i] ◦ π(x̃i, xi) is 4δ + ρ. If no such `i exists before x̃ moves back to x̃0, then we set xi+1 to be x0,
and the process terminates. Since both π(xi+1, x̃i+1) and π(x̃i, xi) are paths of height at most 2δ, the sum
of the heights of `[xi, xi+1] and − ˜̀[x̃i, x̃i+1] must be at least ρ. Hence, for a fixed value ρ, this process
terminates in a finite number of steps. Now let ci denote the cellular cycle homologous to the loop `i in
the above construction. By construction, we have that γ = γ̃ +

∑
i ci, where γ̃ = ψ ◦ φ(γ). Since each ci

satisfies height(ci) ≤ height(`i) ≤ 4δ + ρ < α, as discussed earlier it then follows that height(ci) ≤ 4δ. Hence
ci ∈ Z2δ

1 (R f ) for each i and γ′ =
∑

i ci ∈ Z2δ
1 (R f ), implying that ψ ◦ φ(γ) = γ̃ = γ + γ′ ∈ γ + Z2δ

1 (R f ). �

Lemma 4.6. Given any thin cycle γ ∈ Z1(R f ) with range [b, d], we have that the range of any cycle in the
thin basis decomposition of φ(γ) must be contained in the interval [b − δ, d + δ].

Proof. First, by Eq. (5), we have maxx∈R f | f (x) − g(φ(x))| ≤ δ. Hence range(φ(γ)) ⊆ [b − δ, d + δ]. Now let
b′ be the smallest left endpoint of the range of any cycle in the thin basis decomposition of φ(γ). We will
prove that b′ ≥ b − δ.

Suppose this is not case and b′ < b − δ. Now let ζi1 , . . . , ζia ∈ Gg, a ≥ 1, denote all those cycles in the
thin basis decomposition of φ(γ) whose ranges have b′ as the left endpoint. Set ρ = ζi1 + · · · ζia . Assume ζia
has the largest height among these thin cycles. Note that range(ζi j) ⊆ range(ζia) for any j < a, as all these
ranges share the same left endpoint b′. Clearly range(ρ) ⊆ range(ζia). On the other hand, by definition of b′

and ζi j , all other cycles in the thin basis decomposition of φ(γ) have a range whose left endpoint is strictly
greater than b′. Let ρ′ be the sum of these other cycles; we have that φ(γ) = ρ + ρ′. Since the left endpoint
of range(ρ′) is strictly bigger than b′, the left endpoint of range(ρ) also has to be strictly bigger than b′, as
otherwise the left endpoint of range(ρ + ρ′) would be b′, which contradicts to the fact that the left endpoint of
range(φ(γ)) is at least b − δ > b′. In other words, it is necessary that range(ρ) is a proper subset of range(ζia);
i.e., range(ρ) ⊂ range(ζia). This implies that ρ has strictly smaller height than ζia . This however contradicts
that Gg is a thin basis, because we can replace ζia in Gg with ρ and obtain a basis element with smaller height
(the resulting set of cycles remain independent). Therefore it is not possible that b′ < b − δ.
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A symmetric argument shows that the largest right endpoint of the range of any cycle in the thin basis
decomposition of φ(γ) is at most d + δ. Hence the range of any cycle in the thin basis decomposition of φ(γ)
is a subset of [b − δ, d + δ]. �

Lemma 4.7. For any 2δ-stable cycle γ ∈ Z1(R f ), we have

height(dom(φ(γ))) ≥ height(dom(γ)) − 2δ.

A symmetric statement holds for any cycle of Rg.

Proof. Note that in this lemma, γ is not necessarily a thin loop. Let γs = dom(γ); since γ is 2δ-stable, we have
height(γs) > 4δ. First, we claim that dom(ψ◦φ(γ)) = γs. This is because by Lemma 4.5, ψ◦φ(γ) ∈ γ+Z2δ

1 (R f ).
Since height(γs) > 4δ, γs still belongs to the thin basis decomposition of ψ ◦ φ(γ) and still has the largest
height.

Now set ζ̃ = φ(γ) with ζi1 + · · · + ζia being its thin basis decomposition. Observe that for any cycle
γ′ in R f , we have that height(φ(γ′)) ≤ height(γ′) + 2δ, which follows from the fact that for any x ∈ R f ,
| f (x) − g(φ(x))| ≤ δ; recall Eq. (5). A symmetric statement holds for a loop from Rg. We thus have:

height(dom(ψ(ζ̃))) = height(dom(
a∑

j=1

ψ(ζi j))) ≤
a

max
j=1

height(ψ(ζi j))

≤
a

max
j=1

[height(ζi j) + 2δ] =
a

max
j=1

height(ζi j) + 2δ

= height(dom(ζ̃)) + 2δ. (6)

Since we have shown earlier that dom(ψ ◦ φ(γ)) = γs, it follows that dom(ψ(ζ̃)) = dom(ψ ◦ φ(γ)) = γs =

dom(γ). Combining this with Eq. (6), we have

height(dom(φ(γ)) = height(dom(ζ̃)) ≥ height(dom(ψ(ζ̃))) − 2δ

= height(dom(γ)) − 2δ,

which proves the lemma. �

In fact, if γ is a thin cycle, Lemma 4.7 can be strengthened to show that dom(φ(γ)) is δ-close to γ . This
already provides some mapping of base cycles from G f to cycles from Gg such that each pair of corresponding
cycles are δ-close. However, the main challenge is to show that there exists a one-to-one correspondence for
all 3δ-stable cycles (recall the definition of a 3δ-matching of G f and Gg). For this, we need to take a slight
detour to relate cycles in G f with those in Gg in a stronger sense:

Proposition 4.8. For any thin cycle γk ∈ G f , one can compute a (not necessarily thin) cycle γ̂k such that
γk = dom(̂γk) and

φ(̂γk) ∈
r∑

j=1

ζk j + Z2δ
1 (Rg),

where each ζk j ∈ Gg is 3δ-close to γk, for any j ∈ [1, r].

Proof. Assume that the thin basis decomposition of φ(γk) has the form:

φ(γk) ∈
r∑

j=1

ζk j +

s∑
j=1

ζ̃ j + Z2δ
1 (Rg),
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where the first term contains the 2δ-stable thin cycles whose range is 3δ-Hausdorff close to range(γk), the
last term contains the thin cycles that are not 2δ-stable, and the middle term contains those thin cycles ζ̃ j

that are neither 3δ-close to γk nor small. We wish to get rid of the middle term ζ̃ =
∑s

j=1 ζ̃ j. Set γ′ = ψ(ζ̃).
By Lemma 4.5, we have that φ(γ′) = φ ◦ ψ(ζ̃) ∈ ζ̃ + Z2δ

1 (Rg). Set γ̂k := γk + γ′. It is then easy to verify that
φ(̂γk) = φ(γk) + φ(γ′) ∈

∑r
j=1 ζk j + Z2δ

1 (Rg), as claimed.
It remains to show that dom(̂γk) = γk. Let [b, d] = range(γk). By Lemma 4.6, range(ζ̃ j) ⊆ [b − δ, d + δ],

for any j ∈ [1, s]. Since each ζ̃ j is not 3δ-close to γk, it is then necessary that, for any j ∈ [1, s], either
range(ζ̃ j) ⊆ [b − δ, d − 3δ) or range(ζ̃ j) ⊆ (b + 3δ, d + δ]. W.l.o.g. assume that range(ζ̃ j) ⊆ [b − δ, d − 3δ).
Apply Lemma 4.6 to the cycle ζ̃ j. We have that the range of any cycle in the thin basis decomposition of
ψ(ζ̃ j) is contained in [b − 2δ, d − 2δ), thus its height strictly smaller than d − b. Hence all cycles in the thin
basis decomposition of γ′ = ψ(ζ̃) have a height strictly smaller than height(γk) = d − b. This means that γk

has the largest height among the cycles of the thin basis decomposition of γ̂k = γk + γ′, and it is the only
cycles with this largest height. It then follows that γk = dom(̂γk). �

Corollary 4.9. Let Ĝ f denote the set of cycles {̂γk}
n
k=1, where each γ̂k is as specified in Proposition 4.8.

Ĝ f forms a basis for Z1(R f ).

Proof. Since the dominating cycles for cycles in Ĝ f are all distinct, it follows from Lemma 4.4 that all cycles
in Ĝ f are linearly independent. Hence Ĝ f also forms a (not necessarily thin) basis for Z1(R f ). �

Let Φ denote the matrix of the mapping from the base cycles in Ĝ f (columns, domain) to those in Gg

(rows, range) as induced by φ, i.e., the ith column of Φ specifies the representation of φ(̂γi) using basis
elements from Gg, with Φi j = 1 if ζ j is in the thin basis decomposition of φ(̂γi). Let Φ̃ be the submatrix of Φ

with columns corresponding to basis elements γ̂i that are 3δ-stable, and rows corresponding to basis elements
ζ j that are 2δ-stable. See Fig. 2 (a). By Proposition 4.8, Φ̃i j = 1 implies that the basis element ζ j ∈ Gg is
3δ-close to the basis element γi ∈ G f . Recall that our goal is to show that there is a 3δ-matching for G f and
Gg. Intuitively, non-zero entries in Φ̃ will provide potential matchings for basis elements in G f to establish a
3δ-matching between G f and Gg that we need.

Lemma 4.10. The columns of Φ̃ are linearly independent.

Proof. Consider an arbitrary subset of indices i1, . . . , is whose corresponding columns are in Φ̃ (i.e, each γ̂ia
is 3δ-stable), and let γ̂ = γ̂i1 + · · · + γ̂is . We will show that φ(̂γ) is 2δ-stable; that is, dom(φ(̂γ)) has height
at least 4δ. This means that the linear combination of the corresponding columns in Φ̃ contains a non-zero
element. Since this holds for any subset of columns from Φ̃, we have that the columns in Φ̃ are linearly
independent.

It remains to show that φ(̂γ) is 2δ-stable. Recall that for any index a, γa is the dominating cycle of γ̂a.
Assume w.l.o.g. that γi1 has the largest height among all γi j , for j ∈ [1, s]. (If there are multiple cycles
from {γi j}

s
j=1 having this largest height, let γi1 be the one with smallest index.) From the end of the proof of

Proposition 4.8, we note that for any index a, γa is the only cycle with maximum height among all cycles
in the thin basis decomposition of γ̂a. In other words, all other cycles in the thin basis decomposition of γ̂a

have strictly smaller height than γa. Putting these together, it follows that γi1 must exist in the thin basis
decomposition of γ̂ w.r.t. the original thinnest basis G f and in fact, γi1 = dom(̂γ). Since γi1 is 3δ-stable (thus
its height at least 6δ), it then follows from Lemma 4.7 that height(dom(φ(̂γ))) ≥ height(dom(̂γ)) − 2δ > 4δ.
So φ(̂γ) is 2δ-stable. �

Corollary 4.11. We can identify a unique row index i for each column index j in Φ̃ such that Φ̃i j = 1.
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γ̂1 γ̂2 γ̂3 γ̂i γ̂n
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3δ -stable
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P (Gf) Q(Gg)

(a) (b)

Figure 2: (a): The ith column in the matrix Φ specifies the representation of φ(̂γi) using the basis elements in Gg. The
shaded submatrix represents Φ̃. (b): A bipartite graph view of the augmenting process. Left: Thick path alternates
between an F-induced (solid) and an G-induced (dash-dotted) edge. Right: Thick solid edges are induced by the
modified injective map F̃ (which are used to be G-induced edges in the left figure).

Proof. View the matrix Φ̃ as the adjacency matrix for the following bipartite graph G = (P ∪ Q, E), where P
are the columns of Φ̃, Q are the rows, and there is an edge between p ∈ P and q ∈ Q iff the corresponding
entry in the matrix Φ̃ is 1. We now claim that there is a P-saturated matching for G: that is, there is a
matching of G such that every node in P is matched exactly once, and each node in Q is matched at most
once. Note that this immediately implies the claim. Specifically, for any subset of nodes P′ ⊆ P, let Q′ ⊆ Q
be the union of neighbors of nodes from P′. In other words, Q′ is the set of rows with at least one non-zero
entry in the columns P′. If |Q′| < |P′|, then these columns of Φ̃ will be linearly dependent, which violates
Lemma 4.10. Hence we have |Q′| ≥ |P′|. Now by Hall’s Theorem (see, e.g., Page 35 of [36]), a P-satuated
matching exists for G. �

Proof of Theorem 4.3. Recall that by Proposition 4.8, Φ̃i j = 1 implies that the cycles γ j and ζi are 3δ-close.
It follows from Corollary 4.11 that there is an injective map F from the set of 3δ-stable cycles in G f to the
cycles in Gg such that each pair of corresponding cycles are 3δ-close. By a symmetric argument (switching
the role of R f and Rg), there is also an injective map G from the 3δ-stable cycles in Gg to cycles in G f

where each corresponding pair of cycles are 3δ-close. However, F and G may not be consistent and do not
directly give rise to a 3δ-matching of G f and Gg yet. In what follows, we will modify F to obtain another
injective map F̂ such that (i) any 3δ-stable cycle in G f is mapped by F̂ to a cycle in Gg that is 3δ-close, and
(ii) all 3δ-stable cycles in Gg are contained in im F̂, the image of F̂. Note that F̂ provides exactly the set of
correspondences necessary in a 3δ-matching between G f and Gg. In particular, the injectivity of F̂ and these
conditions guarantee that the condition (II) of a 3δ-matching. As discussed at the beginning of this section,
this then means that dB(ExDg1(R f ),ExDg1(Rg)) ≤ 3δ = 3dFD(R f ,Rg), proving Theorem 4.3.

It remains to show how to construct F̂ satisfying conditions (i) and (ii) above. Conditions (i) already holds
for F, so the main task is to establish condition (ii) while maintaining (i). Start with F̂ = F. Let y0 < im F̂
be any 3δ-stable cycle in Gg that is not yet in im F̂. Let x1 = G(y0) ∈ G f . We continue with yi = F̂(xi) if
xi is 3δ-stable. Next, if yi is 3δ-stable, then set xi+1 = G(yi). We repeat this process, until we reach xk or
yk which is not 3δ-stable any more. At this time, we modify F̂(xi) to be yi−1 for each j ∈ [1, k] (originally,
F̂(xi) = yi). Throughout this process, all yi other than y0 are already in im F̂. After the modification of F̂, we
have y0 ∈ im F̂, while all other yi remain in im F̂. The only exception is when the above process terminates
by reaching some yk which is not 3δ-stable (the termination condition), in which case yk will not be in im F̂
after the modification of F̂. However, the number of 3δ-stable cycles contained in im F̂ increases by one (i.e.,
y0) by the above process. It is easy to verify that since F is injective, F̂ remains injective. Furthermore, xi

and yi−1 = F̂(xi) are still 3δ-close, since by construction xi = G(yi−1).
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An alternative way to view this is to consider the specific bipartite graph G′ = (P ∪ Q, E′), where nodes
in P and Q correspond to basis cycles in G f and Gg, respectively, and edges E′ are those corresponding to
a cycle and its image under either the map F̂ or G. The sequence y0, x1, y1, . . . specifies a path with edges
alternating between the F̂-induced and the G-induced matchings. The modified assignment of F̂(x j) changes
a G-induced matching to an F̂-induced matching along this path, much similar to the use of augmenting paths
to obtain maximum bipartite matching. See Fig. 2 (b) for an illustration.

We repeat the above path augmentation process for any remaining 3δ-stable cycle in Gg \ im F̂. This
process will terminate because after each augmentation process, the number of 3δ-stable cycles contained
in im F̂ strictly increases. In the end, we obtain an injective map F̂ from the set of 3δ-stable cycles of G f

to cycles in Gg such that im F̂ contains all 3δ-stable cycles of Gg. Hence, F̂ induces a 3δ-matching from
ExDg1(R f ) to ExDg1(Rg), finishing the proof of Theorem 4.3.

5 Relation to Gromov–Hausdorff Distance

As mentioned earlier in Section 3, the functional distortion distance can be considered as a variant of the
Gromov-Hausdorff distance (between metric spaces), restricted to continuous correspondences and taking
function values into account. We now discuss this relation in more detail.

We can view the Reeb graphs R f and Rg as metric spaces, equipped with metrics d f and dg, respectively.
A natural distance for metric spaces is the Gromov–Hausdorff distance, which, using the notation of Eq. (4),
is defined as

dGH(R f ,Rg) = inf
φ,ψ

(D(φ, ψ)) , (7)

where φ : R f → Rg and ψ : Rg → R f range over all maps between R f and Rg. Here the maps φ, ψ are not
required to be continuous, which is different from our definition of the functional distortion distance.

Note that translation f + c and negation − f do not change the metric structures of the Reeb graph R f . To
account for the difference in function values, we define the functional GH distance between R f and Rg, which
measures not only the metric distortion but also the difference in function values between corresponding
points:

d fGH(R f ,Rg) := inf
φ,ψ

max (D(φ, ψ), ‖ f − g ◦ ψ‖∞, ‖ f ◦ φ − g‖∞) , (8)

where φ and ψ range over all maps between R f and Rg.
It turns out that we have the following relations, which imply that the functional distortion distance

roughly measures the minimum distortion in both function values (between f and g) and in their induced
metrics (between d f to dg).

Theorem 5.1. d fGH(R f ,Rg) ≤ dFD(R f ,Rg) ≤ 3d fGH(R f ,Rg).

We note that a similar result also holds for the Gromov–Hausdorff distance, without the terms controlling
the function values. Specifically, for metrics d f and dg the standard Gromov–Hausdorff distance as defined in
Eq. (7) is equivalent to its continuous variant up to a constant factor, restricting φ and ψ to continuous maps.
This relation does not hold in general.

Proof. The left inequality d fGH(R f ,Rg) ≤ dFD(R f ,Rg) is immediate from the definitions. We now prove
the right inequality dFD(R f ,Rg) ≤ 3d fGH(R f ,Rg). Fix an arbitrary positive real value ε. Let C denote an
ε-optimal correspondence, i.e., the maximum of the three terms in the right hand side of Eq. (8) is less than or
equal to d fGH(R f ,Rg) + ε. Set β = d fGH(R f ,Rg). Our final goal is to show that dFD(R f ,Rg) ≤ 3β. We do this

14



by constructing continuous maps φε : R f → Rg and ψε : Rg → R f , based on the ε-optimal pair of maps (φ, ψ)
(which are not necessarily continuous), so that each of the terms in Eq. (5) can be bounded by 3β + O(ε).

We now show how to construct a certain continuous map φε : R f → Rg from the map φ : R f → Rg. To
do so, we will first construct an ε-subdivition of R f as follows: We subdivide all arcs in R f to obtain a set of
nodes Vε = {v1, . . . , vN} such that f is monotonic on each resulting arc, and the height of an arc viv j (which is
| f (vi) − f (v j)| since f is monotonic on viv j) is at most ε. We set φε(vi) = φ(vi).

Next, we extend this map defined on the nodes in Vε to a continuous map defined on the entire graph R f .
In particular, consider an arc viv j and assume w.l.o.g. that f (vi) ≤ f (v j). Consider ṽi = φε(vi) and ṽ j = φε(v j).
Since (φ, ψ) is ε-optimal, we know that

1
2
|d f (vi, v j) − dg(ṽi, ṽ j)| ≤ β + ε,

thus
dg(ṽi, ṽ j) ≤ d f (vi, v j) + 2(β + ε) ≤ 2β + 3ε.

This means that there is an embedded path π(ṽi, ṽ j) in Rg connecting ṽi to ṽ j whose height is at most 2β + 3ε.
We now extend φε to an arbitrary homeomorphism from the arc viv j of R f to this path π(ṽi, ṽ j) with φε(vi) = ṽi

and φε(v j) = ṽ j. Assembling all these pieces of φε on each arc of R f yields the continuous map φε : R f → Rg.
Given any point x ∈ R f , assume that x lies on the arc viv j. Then x̃ := φε(x) is mapped to some point in

π(ṽi, ṽ j). Since (φ, ψ) is ε-optimal, by definition in Eq. (8),

g(ṽi) ∈ [ f (vi) − β − ε, f (vi) + β + ε] and g(ṽ j) ∈ [ f (v j) − β − ε, f (v j) + β + ε].

Since the path π(ṽi, ṽ j) has height at most 2β + 3ε, we then have

range(π(ṽi, ṽ j)) ∈ [ f (vi) − 3β − 4ε, f (v j) + 3β + 4ε].

Since x ∈ viv j and x̃ ∈ π(ṽi, ṽ j), it then follows that g(x̃) ∈ [ f (vi) − 3β − 4ε, f (v j) + 3β + 4ε] and thus
|g(x̃) − f (x)| ≤ 3β + 5ε for any x ∈ R f . Hence we have that maxx∈R f | f (x) − g ◦ φε(x)| ≤ 3β + 5ε.

Symmetrically, we can take an ε-subdivision of Rg with nodes Uε = {ũ1, . . . , ũM}, and construct a
continuous map ψε : Rg → R f . Using the same argument as above, we have that maxỹ∈Rg |g(ỹ) − f (ψε(ỹ))| ≤
3β + 5ε.

We now bound d f (x, y) − dg(x̃, ỹ) for any (x, x̃), (y, ỹ) ∈ G(φε, ψε). If x ∈ viv j and x̃ ∈ π(ṽi, ṽ j) (i.e,
x̃ = φε(x)), we let wi = vi and w̃i = ṽi and have d f (x,wi) ≤ ε and dg(x̃, w̃i) ≤ 2β + 3ε (as the height of
path π(ṽi, ṽ j) is at most 2β + 3ε as discussed earlier). If, on the other hand, x̃ ∈ ũiũ j and x ∈ π(ui, u j) (i.e,
x = ψε(x̃)), we let wi = ui and w̃i = ũi and have d f (x,wi) ≤ 2β + 3ε and dg(x̃, w̃i) ≤ ε. In either case, we have
d f (x,wi) + dg(x̃, w̃i) ≤ 2β + 4ε. See the illustrations of both cases below. In an analogous way, we also obtain

wi = vi

vj ṽj = φ(vj)

w̃i = ṽi = φ(vi)

x

x̃

wi = ui = ψ(ũi)

uj = ψ(ũj) ũj

w̃i = ũi

x̃
x

wa, w̃a with d f (y,wa) + dg(ỹ, w̃a) ≤ 2β + 4ε. Note that by the construction of φε and ψε, both (wi, w̃i) and
(wa, w̃a) are from the ε-optimal correspondence generated by the maps (φ, ψ). In other words, we have that
d f (wi,wa) ≤ dg(w̃i, w̃a) + 2β + 2ε. It then follows that:

d f (x, y) ≤ d f (x,wi) + d f (wi,wa) + d f (wa, y)

≤ d f (x,wi) + d f (wa, y) + (dg(w̃i, w̃a) + 2β + 2ε)

≤ d f (x,wi) + d f (wa, y) + 2β + 2ε + dg(w̃i, x̃) + dg(x̃, ỹ) + dg(ỹ, w̃a)

≤ dg(x̃, ỹ) + 6β + 10ε.
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By symmetry of the above argument, we obtain

1
2

∣∣∣d f (x, x̃) − dg(y, ỹ)
∣∣∣ ≤ 3β + 5ε.

Putting everything together, we have that dFD(R f ,Rg) ≤ limε→0 3β + 5ε = 3d fGH(R f ,Rg). �

6 Relation to Interleaving Distance for Merge Trees

A merge tree is simply a rooted tree T f equipped with a function f : T f → IR such that the function value of
f from the root to any leaf is monotonically descreasing. For technical reasons, the version of “merge trees"
defined by Morozov et al. [16] further adds an extra arc from the root whose function value extends to +∞,
and they proposed an interleaving distance for two merge trees under this modification. From now on, we
assume merges are such extended merge trees.

We first introduce the interleaving distance for merge trees defined in [16]. Assume that we are given two
merge trees T f and Tg with associated functions f : T f → IR and g : Tg → IR.

Definition 6.1 ([16]). Two continuous maps αε : T f → Tg and βε : Tg → T f are said to be ε-compatible for
some ε ≥ 0, if

g(αε(x)) = f (x) + ε ; f (βε(y)) = g(y) + ε; (9)

βε ◦ αε = i2ε ; αε ◦ βε = j2ε; (10)

where i2ε : T f → T f and j2ε : Tg → Tg are the 2ε-shift maps in the respective trees.
The interleaving distance, dI(T f ,Tg), between two merge trees T f and Tg, is the greatest lower bound on

ε for which there are ε-compatible maps:

dI(T f ,Tg) = inf{ε | there are ε compatible maps αε : T f → Tg and βε : Tg → T f }. (11)

Let dFD(T f ,Tg) be the functional distortion distance for Reeb graphs that we introduced. The main result
of this section is that, for merge trees, the interleaving distance of [16] and our functional distortion distance
are isometric.

Theorem 6.2. Given two merge trees T f and Tg, equipped with functions : T f → IR and g : Tg → IR, we
have dI(T f ,Tg) = dFD(T f ,Tg).

Proof. We break down the proof into two steps, which are shown in Lemmas 6.3 and 6.4. �

Lemma 6.3. d fGH(T f ,Tg) ≤ dI(T f ,Tg).

Proof. Let ε = dI(T f ,Tg). We assume that ε is obtained by a pair of ε-compatible maps3, αε : T f → Tg

and βε : Tg → T f . We will show that the correspondances generated by these two maps αε and βε induce a
distance distortion at most ε. This implies that dFD(T f ,Tg) ≤ ε. Specifically, let G(αε, βε) and D(αε, βε) as
introduced in Eq. (4). We now bound D(αε, βε).

Consider two pairs (x1, y1), (x2, y2) ∈ G(αε, βε). we first aim to bound |d f (x1, x2) − dg(y1, y2)| from above.
Assume first that y1 = αε(x1) and y2 = αε(x2). Let π1 be the optimal path connecting x1 to x2 that

achieves d f (x1, x2), which is necessarily the unique simple path connecting x1 to x2 in the tree T f . Its image
π′1 = αε(π1) is a path connecting y1 and y2. By Eq. (9), αε shift every point up by ε in the corresponding

3We note that εmay be only achieved in the limit. Our argument can be extended to that case by taking a sequence of ε′-compatible
maps and send ε′ to ε.
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function value. Hence the range of π1 is shifted up by ε to the range of π′1 while their heights are the same.
Hence we have dg(y1, y2) ≤ d f (x1, x2).

Now consider the optimal path π2 connecting y1 to y2 to achieve dg(y1, y2) in Tg. Let x′1 = βε(y1),
x′2 = βε(y2). The image π′2 = βε(π2) of π2 under the map βε is a path connecting x′1 to x′2 in T f . Similarly, we
have that height(π2) = height(π′2) and the range of π2 is translated up by ε to π′2. On the other hand, by Eq. (10),
we have x′1 = i2ε(x1), and x′2 = i2ε(x2). By the definition of the shift map, there is a monotone path from x1 to
x′1 (along the path from x1 to the root of the merge tree T f ) in T f ; and similarly for x2 and x′2. Concatenating
these two montone paths with π′2 we obtain a path π3 connecting x1 to x2. Since the two new paths are
monotone, of height 2ε each, and both going up, we have that height(π3) ≤ height(π′2) + 2ε = height(π2) + 2ε.
It then follos that d f (x1, x2) ≤ dg(y1, y2) + 2ε. Putting this together with that dg(y1, y2) ≤ d f (x1, x2) proved
earlier, we thus have |d f (x1, x2) − dg(y1, y2)| ≤ 2ε.

If the two pairs are obtained via x1 = βε(y1) and x2 = βε(y2), a symmetric argument will show |d f (x1, x2)−
dg(y1, y2)| ≤ 2ε as well.

We now consider the remaining case where y1 = αε(x1) but x2 = βε(y2). Let π be the optimal path
connecting x1 to x2 in T f to achieve d f (x1, x2). Let π′ = βε(π) be its image in Tg: note π′ connects y1 to
y′2 = βε(x2). By Eq. (9) of the definition of ε-compatible maps, we have that π′ is of the same height of π (and
its range is that of π shifted upward by ε). By Eq. (10) of the definition of ε-compatible maps, we have that
y′2 = j2ε(y2) and thus there is a monotone path π4 of height 2ε connecting y2 to y′2. Hence the concatenation
π5 = π′ ◦ π4 is a path connecting y1 to y2. Thus height(π5) ≤ height(π′) + 2ε = height(π) + 2ε, implying that
dg(y1, y2) ≤ d f (x1, x2) + 2ε.

A symmetric argument shows that d f (x1, x2) ≤ dg(y1, y2) + 2ε. Hence |d f (x1, x2) − dg(y1, y2)| ≤ 2ε. It
then follows that D(αε, βε) ≤ ε. On the other hand, by Eq. (9), ‖ f − g ◦ αε‖∞ = ε and ‖ f ◦ φ← − g‖∞ = ε. By
Eq. (5), it then follows that dFD(T f ,Tg) ≤ ε. �

Lemma 6.4. dI(T f ,Tg) ≤ dFD(T f ,Tg).

Proof. Let δ = dFD(T f ,Tg) denote the functional distortion-distance between two merge trees T f and Tg,
and let φ∗ : T f → Tg and ψ∗ : Tg → T f be the optimal continuous maps4 achieving δ. We will now construct
a pair of δ-compatible maps for T f and Tg using φ∗ and ψ∗. This then implies that dI(T f ,Tg) ≤ dFD(T f ,Tg)
as claimed.

First, we construct the map αδ : T f → Tg as follows: For every point x ∈ T f , let y = φ∗(x). Now set
ρ = f (x) + δ − g ◦ φ∗(x) — by the definition of dFD in Eq. (5), ρ is a non-negative real value in the range
[0, 2δ]. We now set αδ(x) = jρ(y) = jρ ◦ φ∗(x). Easy to see that by the choice of ρ, g(αδ(x)) = f (x) + ε. Since
φ∗ is continuous, the function ρ : T f → IR is continuous, and the map αδ is thus also a continuous map.
Similarly, we construct βδ : Tg → T f . By their construction, the requirements in Eq. (9) are satisfied. We
now show that Eq. (10) also hold for αδ and βδ.

Indeed, consider a point x ∈ T f , and let y = φ∗(x) and y′ = αδ(x). By the definitino of αδ, g(y′) =

f (x) + δ ≥ g(y) and there is a monotone path π connecting y to y′ (in particular, y′ is along the path from y to
the root of the merge tree Tg). Now map π back to T f via the map βδ, which is necessarily a monotone path
π′ connecting x̃ := βδ(y) and x′ := βδ(y′) = βδ ◦ αδ(x). In other words, x′ is along the path from x̃ to the root
of the merge tree T f . By the definition of αδ and βδ, f (x′) = f (x) + 2δ. We now show that x′ is along the
path from x to the root of the merge tree T f : this would then imply that x′ = i2δ, namely, βδ ◦ αδ = i2δ.

To see that there is a monotone path from x up to x′ in T f , set x̃′ = ψ∗(y). By the construction of βδ,
x̃ is along the unique monotone path from x̃′ up to the root of T f . Furthermore, f (x̃) = g(y) + δ, f (x̃′) ∈
[g(y) − δ, g(y) + δ] and f (x̃′) ≤ f (x̃). Note that (x, y) and (x̃′, y) are in the set of correspondances G(φ∗, ψ∗)
(this is because y = φ∗(x) and x̃′ = ψ∗(y)). Hence by the definition of dFD which is achieved by φ∗ and ψ∗,

4Again, if the optimal is achieved in the limit, we can modify our argument by taking a sequence of near optimal maps and take
them to the limit.
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Figure 3: (a): Removing a branching feature spanned by (m, s) by merging paths π1 and π2. This removes the point
( f (m), f (s)) from the 0-th ordinary persistence diagram. (b): Removing a cycle feature spanned by (s1, s2); this removes
the point ( f (s1), f (s2)) from the 1st extended persistence diagram.

there is a path π̃ connecting x to x̃′ such that height(π̃) ≤ 2δ. This means that the least common ancester of x
and x̃′ has a function value at most f (x) + 2δ which is f (x′). Since x̃′ and x̃ are connected by a monotone
path, the least common ancester of x and x̃ has a function value at most f (x′). Since x′ is an ancester of x̃,
it follows that x′ is an ancestor for x as well. Hence x′ = i2δ(x) and βδ ◦ αδ = i2δ. A symmetric argument
shows that αδ ◦ βδ = i2δ. Putting everything together, we have that αδ and βδ form a δ-compatible pair of
maps between T f and Tg. As such, dI(T f ,Tg) ≤ δ = dFD(T f ,Tg).

�

7 Simplification of Reeb Graphs

Reeb graphs have been used as a meaningful summary of the input functions. Simplifying a Reeb graph
can help to remove noise or single out major features, and to create a multi-resolution representation of
the input domain; see e.g., [19, 22, 31]. As we described in Section 2, there is a natural way to quantify
branching and loop features in terms of ordinary and extended persistence in the according dimensions.
Indeed, it is common practice to simplify the Reeb graph by removing all features with persistence smaller
than a given threshold. In this section, we prove that by removing small features using a natural merging
strategy, (branching and loop) features with large persistence will not be killed, and will roughly maintain
their persistence (“importance”).

7.1 A Natural Simplification Scheme for Reeb Graphs

We first introduce a natural simplification scheme for Reeb graphs (see, e.g., [22, 31]). See Fig. 3 for an
illustration.

Given an ordinary persistence pair (m, s), assume that m is a minimum and s is a down-fork. Recall that
the down-fork s merges two connected components C1 and C2 of the sublevel set below f (s), and m is the
higher minimum of the two. To remove the feature (m, s), we wish to merge the branch containing m, say
C1, into the other branch C2, so that afterwards, m and s become regular points (i.e., with up-degree and
down-degree both being 1). In particular, we perform the following operation (see Fig. 3 (a)). Let m2 denote
the minimum of C2. We choose an arbitrary embedded path π1 ⊆ C1 from s to m, and an arbitrary π′ ⊆ C2
from s to m2. Now imagine we traverse π′ starting from s. We stop when we encounter the first point x on π′

such that f (x) = f (m), and set π2 to be the subcurve of π′ from s to x. By identifying points with the same
function value, we merge im π1 and im π2 to form the image of a new monotonic arc π3 between s and x
such that any point p ∈ im π1 ∪ im π2 is mapped to some q ∈ im π3 with f (q) = f (p). Pairs of type (up-fork,
maximum) are treated in a symmetric way.
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Given an extended persistence pair (s1, s2) between an up-fork s1 and a down-fork s2, let γ be a thin
cycle that spans it. W.l.o.g. assume that im γ consists only of a single connected component: if im γ has
multiple connected components, then there must exist one that contains both s1 and s2. That component is
necessarily an embedded loop and thus we can simply set γ to be the thin cycle corresponding to that loop.
Let π1 and π2 denote the two disjoint sub-curves of the loop that connect s1 and s2. To cancel the feature,
intuitively, we wish to merge π1 and π2 to kill the cycle γ. Note that π1 and π2 may not be monotonic (w.r.t.
the input function f ); however, all points in π1 and π2 have function values within the range [ f (s1), f (s2)].
The merging of π1 and π2 results in a new monotonic arc π3 from s1 and s2, such that every point p ∈ im γ is
mapped to some q ∈ π3 with f (q) = f (p). See Fig. 3 (b) for an illustration.

Note that since a critical pair (m, s) (resp. an essential pair (s1, s2)) corresponds uniquely to a persistence
pair ( f (m), f (s)) in the ordinary persistence diagram (resp. ( f (s1), f (s2)) in the extended persistence diagram),
the above process also removes a point from the respective persistence diagram.

Let R and R′ denote the Reeb graph before and after the simplification of a persistence pair τ = (b, d)
by collapsing its corresponding branching or loop feature. Let πτ1 and πτ2 be as introduced above. Call
γτ = πτ1 ∪ π

τ
2 the merging path w.r.t. τ. Note that γτ is a closed curve corresponding to a thin cycle spanning

(b, d) when it is an extended persistence pair, and a connected path with b and d being the respective minimum
and maximum function values on it otherwise. In either case, the height of the merging path is at most |d − b|,
the persistent of this pair (b, d). The merging path γτ will be collapsed into a single monotonic arc in order
to eliminate the persistence pair τ. We can view the removal of τ in a more formal way as follows: We say
that two points x, y ∈ R are τ-equivalent, denoted by x ∼τ y, if f (x) = f (y) and x, y ∈ γτ. The simplified
Reeb graph R′ is the quotient space R/∼τ; the corresponding quotient map µτ : R→ R′ satisfies µτ(x) = µτ(y)
if and only if x ∼τ y. The function f : R → IR induces a function f ′ : R′ → IR such that for any x′ ∈ R′,
f ′(x′) = f (x) for any x ∈ µ−1

τ (x′).
Now given an input Reeb graph R, suppose we wish to eliminate a set of persistence pairs {τ1 =

(b1, d1), τ2 = (b2, d2), . . . , τk = (bk, dk)}. Compute the merging path γτi for each persistence pair τi in R. We
now define an equivalence relation ∼ as the transitive closure of all ∼τis for i ∈ [1, k]. This is equivalent to
collapsing γτis for all i ∈ [1, k] in an arbitrary order to kill the persistence pairs τ1, . . . , τk. The final simplified
Reeb graph R̃ is obtained as the quotient space R/∼, with µ : R→ R̃ being the associated quotient map. We
have a well-defined function g : R̃→ IR induced by the function f : R→ IR such that g(µ(x)) = f (x) for any
x ∈ R. Let δ denote the largest persistence of τ1, . . . , τk. We have the following properties of R̃.

Observation 7.1. (i) Given any two points x, y ∈ R, we have dg(µ(x), µ(y)) ≤ d f (x, y).
(ii) Given a point x̃ ∈ R̃, for any two points x0, x1 ∈ µ

−1(x̃) we have d f (x0, x1) ≤ 2δ.

Proof. Claim (i) follows easily since the quotient map µ preserves function values. We now prove (ii). Since
µ(x0) = µ(x1) = x̃, by the definition of µ there exists a set of equivalent relations ∼τ j1

, . . . ,∼τ ja
with the index

set { j1, . . . , ja} ⊆ {1, . . . , k} such that y0 := x0 ∼τ j1
y1 ∼τ j2

y2 · · · ∼τ ja
ya := x1. Set α = f (x0) = f (x1). All yi

have the same function value α. For each i ∈ [1, a], we have that yi−1 ∼τ ji
yi, which is induced by the merging

path γτ ji with height(γτ ji ) ≤ δ. In other words, there is a subpath πi of γτ ji connecting yi−1 to yi such that
range(πi) ⊆ [α − δ, α + δ]. The concatenation of these paths πi gives rise to a path π connecting y0 = x0 and
ya = x1, and range(π) ⊆ [α − δ, α + δ]. This proves claim (ii). �

A similar argument of the above observation can in fact lead to the following more refined statements.

Lemma 7.2. Let ya, yb ∈ R̃ be two points in R̃ such that there exists a monotonic path π∗ between ya and yb

with dg(ya, yb) = height(π∗) = g(yb)− g(ya), where g(yb) > g(ya). Let xa and xb be arbitrary preimages for ya

and yb, respectively. Then d f (xa, xb) ≤ 2δ + height(π̃).
In fact, there is a path π from xa to xb such that the highest point t in im π satisfies f (t) ≤ f (xb) + δ, and

the lowest point w in im π satisfies f (w) ≥ f (xa) − δ.
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7.2 Distance between R and R̃

While the simplification scheme removes persistence pairs τ1, . . . , τk, it is not clear how other points in the
persistence diagram of the original Reeb graph R are affected. In this section, we aim to bound the functional
distortion distance dFD(R, R̃), which in turn will give an upper bound on the respective persistence diagrams.
We do so through the functional Gromov-Hausdorff distance, d fGH(R, R̃), between R and R̃. In particular, by
using the quotient map µ : R→ R̃ which describes the simplification process implemented on R so that R̃ is
obtained, we will show that the functional Gromov-Hausdorff distance between R and R̃ is bounded by δ.

First, we rewrite the definition of functional GH distance inEq. (7) by the following using the concept of
correspondance: A correspondance C ⊂ X × Y between two topological spaces X and Y is a relation whose
projection on X and on Y are both surjective. We can then rewrite Eq. (7) as follows:

D(C) =
1
2

max
(x1,y1),(x2,y2)∈C

|d f (x1, x2) − dg(y1, y2)|; and

d fGH(R, R̃) = inf
C:R×R̃

max{D(C), max
(x,y)∈C

| f (x) − g(y)|}, (12)

where C ranges over all the correspondence between R and R̃.
Set Ĉ = {(x, µ(x))|x ∈ R}. Note that this indeed is a correspondence since µ is a subjective map from R to

R̃. We will now bound D(Ĉ). Specifically, given any {(x1, y2), (x2, y2)} ∈ Ĉ with y1 = µ(x1) and y2 = µ(x2),
we aim to show that |d f (x1, x2) − dg(y1, y2)| ≤ 2δ; that is,

−2δ ≤ d f (x1, x2) − dg(y1, y2) ≤ 2δ (13)

To see that the left inequality in Eq. (13) holds, note that by Observation 7.1, we have dg(y1, y2) −
d f (x1, x2) ≤ 0.

q1

q2

q3

q4

q6

y1

y2

R̃

π̃ = [la, lb]π ⊆ [la − δ, lb + δ]

lb

la

q5

x2
p1

p2

p3

p4

p5
R

x1

p6

Figure 4: Right: An arc (qi, qi+1) ∈ R̃ denotes a monotonic path. Each of them has a correspondent path
(pi, pi+1) ∈ R, with qi = φ(pi). The path between y1 and y2 is the concatenation of a set of monotonic paths,
i.e., π̃(y1, y2) = {(y1, q1, ), · · · , (q5, y2)} ∈ R̃ with range(π̃(y1, y2)) = [la, lb]. Left: There exists a path π(x1, x2)
in R, with x1 and x2 be the arbitrarily preimages of y1 and y2, respectively. The range of π(x1, x2) can be
bounded as [la − δ, lb + δ].

We now show the right part of Eq. (13). Assume w.l.o.g that the Reeb graph R and thus also R̃ are
connected. Let π̃(y1, y2) ∈ R̃ denote the path with the minimum height connecting y1 and y2 (i.e, achieving
dg(y1, y2)) in R̃. Suppose that π̃(y1, y2) ∈ R̃ is the concatenation of a set of monotonic paths in R̃; see Fig. 4:

π̃(y1, y2) = {π̃(y1 = q0, q1), π̃(q1, q2), · · · , π̃(qs−1, qs = y2)} ∈ R̃
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By Lemma 7.2, each π̃(qi, qi+1) gives rise to a path π(pi, pi+1) ∈ R such that µ(pi) = qi, µ(pi+1) = qi+1,
and height(π∗(pi, pi+1)) ≤ 2δ + height(π̃∗(qi, qi+1)). In fact, we can choose p0 and ps as x1 and x2 (which
are preimages of y1 and y2), respectively. Concatenating all π(pi, pi+1), for i = 0, · · · , s, we obtain a path
π(p0 = x1, ps = x2) with height(π(p0, ps)) ≤ height(π̃(q0, qs)) + 2δ. Hence

d f (x1, x2) ≤ height(π(x1 = p0, x2 = ps)) ≤ height(π̃(y1 = q0, y2 = qs)) + 2δ = dg(y1, y2) + 2δ.

The right part of Eq. (13) thus holds. Hence D(Ĉ) ≤ δ.
Furthermore, since max(x,y)∈Ĉ | f (x) − g(y)| = 0 (as for any y = µ(x), g ◦ µ(x) = f (x)), we have that

d fGH(R, R̃) ≤ δ. Therefore, by Theorem 5.1, we have

dFD(R, R̃) ≤ 3d fGH(R, R̃) = 3δ (14)

Combining this with Theorems 4.2 and 4.3, we conclude with the following main result on the simplifica-
tion of the Reeb graphs:

Theorem 7.3. Suppose we simplify a Reeb graph R by removing features of persistence ≤ δ using the strategy
detailed in Section 7.1. The bottleneck distance between the (ordinary and extended) persistence diagrams
for R and for its simplification R̃ is at most 9δ.

We remark that instead of invoking Theorem 5.1, one can use a direct argument similar to the proof
of that theorem to improve the bound on dFD(R, R̃) to 2δ, which further improves the bound on bottleneck
distance between persistence diagrams for R and R̃ to 6δ.

8 Concluding Remarks

In this paper, we propose a distance for Reeb graphs, under which the Reeb graph is stable with respect
to changes in the input function under the L∞ norm. More importantly, we show that this distance is
bounded from below by and thus more discriminative at differentiating scalar fields than the bottleneck
distance between both 0th ordinary and 1st extended persistence diagrams. Similar to the Gromov-Hausdorff
distance for metric spaces, the functional distortion distance provides a rigorous setting for describing and
studying various properties of Reeb graphs. Indeed, by bounding the functional distortion distance between
a Reeb graph and its simplification, we can prove that important (persistent) features are preserved under
simplification, which addresses a key practical issue.

Our current bound in Theorem 4.3 has a constant factor of 3. It will be interesting to see whether this
factor can be improved to 1 to match the bound in Theorem 4.2, either for the functional distortion distance
or for some other distance.

A natural question is how to compute the functional distortion distance. We believe that there is an
exponential time algorithm to approximate dFD(R f ,Rg), similar to what is known for the ε-interleaving
distance for merge trees [28]. However, it remains an open problem to develop more efficient algorithms.
We remark that comparing unlabeled trees is computationally hard in general: The commonly used tree
edit distance and tree alignment distance are NP-hard to compute (and sometimes even to approximate) [8].
Similarly, it has been shown that computing the Gromov-Hausdorff distance is NP-hard even for two metric
trees [2]. It will be interesting to see whether by leveraging the scalar field associated with merge trees and
Reeb graphs, more efficient approximation algorithms for computing functional distortion distance can be
developed.
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