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TRAJECTORY GROUPING STRUCTURE∗

Kevin Buchin,†Maike Buchin,‡Marc van Kreveld,§Bettina Speckmann,† and Frank Staals§

Abstract.The collective motion of a set of moving entities like people, birds, or other
animals, is characterized by groups arising, merging, splitting, and ending. Given the tra-
jectories of these entities, we define and model a structure that captures all of such changes
using the Reeb graph, a concept from topology. The trajectory grouping structure has three
natural parameters that allow more global views of the data in group size, group duration,
and entity inter-distance. We prove complexity bounds on the maximum number of max-
imal groups that can be present, and give algorithms to compute the grouping structure
efficiently. We also study how the trajectory grouping structure can be made robust, that is,
how brief interruptions of groups can be disregarded in the global structure, adding a notion
of persistence to the structure. Furthermore, we showcase the results of experiments using
data generated by the NetLogo flocking model and from the Starkey project. The Starkey
data describe the movement of elk, deer, and cattle. Although there is no ground truth
for the grouping structure in this data, the experiments show that the trajectory grouping
structure is plausible and has the desired effects when changing the essential parameters.
Our research provides the first complete study of trajectory group evolvement, including
combinatorial, algorithmic, and experimental results.

1 Introduction

In recent years there has been an increase in location-aware devices and wireless communi-
cation networks. This has led to a large amount of trajectory data capturing the movement
of animals, vehicles, and people. The increase in trajectory data goes hand in hand with an
increasing demand for techniques and tools to analyze them, for example, in transportation
sciences, sports, ecology, and social services.

An important task is the analysis of movement patterns. In particular, given a set
of moving entities we wish to determine when and which subsets of entities travel together.
When a sufficiently large set of entities travels together for a sufficiently long time, we call
such a set a group (we give a more formal definition later). Groups may start, end, split
and merge with other groups. Apart from the question what the current groups are, we
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also want to know which splits and merges led to the current groups, when they happened,
and which groups they involved. We wish to capture this group change information in a
model that we call the trajectory grouping structure.

The informal definition above suggests that three parameters are needed to define
groups: (i) a spatial parameter for the distance between entities; (ii) a temporal parameter
for the duration of a group; (iii) a count for the number of entities in a group. We will
design our grouping structure definition to incorporate these parameters so that we can
study grouping at different scales. We use the three parameters as follows: a small spatial
parameter implies we are interested only in spatially close groups, a large temporal param-
eter implies we are interested only in long-lasting groups, and a large count implies we are
interested only in large groups. By adjusting the parameters suitably, we can obtain more
detailed or more generalized views of the trajectory grouping structure.

The use of scale parameters and the fact that the grouping structure changes at
discrete events suggest the use of computational topology [6]. In particular, we use Reeb
graphs to capture the grouping structure. Reeb graphs have been used extensively in shape
analysis and the visualization of scientific data (see e.g. [2, 8, 10]). A Reeb graph captures
the structure of a two- or higher-dimensional scalar function, by considering the evolution of
the connected components of the level sets. The computation of Reeb graphs has received
considerable attention in computational geometry and topology; an overview is given in [5].
Recently, a deterministic O(n log n) time algorithm was presented for constructing the Reeb
graph of a 2-skeleton of size n [20]. Edelsbrunner et al. [8] discuss time-varying Reeb graphs
for continuous space-time data. Although we also analyze continuous space-time data (2D-
space in our case), our Reeb graphs are not time-varying, but time is the parameter that
defines the Reeb graph. Ge et al. [11] use the Reeb graph to compute a one-dimensional
“skeleton” from unorganized data. In contrast to our setting, in their applications the data
comes without a time component. They use a proximity graph on the input points to build
a simplicial complex from which they compute the Reeb graph.

Our research is motivated by and related to previous research on flocks [1, 12, 13, 23],
herds [14], convoys [16], moving clusters [17], mobile groups [15, 24] and swarms [18]. These
concepts differ from each other in the way in which space and time are used to test if entities
form a group: do the entities stay in a single disc or are they density-connected [9], should
they stay together during consecutive time steps or not, can the group members change
over time, etc. Only the herds concept [14] includes the splitting and merging of groups.
They consider the partition of the entities into clusters for two consecutive time stamps ti
and ti+1. For a cluster A at time ti and a cluster B at time ti+1 they classify the relation
between A and B based on the number of members in A \ B, A ∩ B, and B \ A. This
classification includes join (merge) and leave (split).

Contributions. We present the first complete study of trajectory group evolvement, in-
cluding combinatorial, algorithmic, and experimental results. Our research differs from and
improves on previous research in the following ways: Firstly, our model is simpler than herds
and thus more intuitive. Secondly, we consider the grouping structure at continuous times
instead of at discrete steps (which was done only for flocks). Thirdly, we analyze the algo-
rithmic and combinatorial aspects of groups and their changes. Fourthly, we implemented
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Figure 1: (a) The entities and their ε-discs at a particular time t. The entities form two
maximal ε-connected sets, or components, at time t; a red component and a blue component.
(b) For m = 2 and t2 − t1 ≥ δ > t4 − t3 there are four maximal groups: {x1, x2}, {x3, x4},
{x5, x6}, and {x1, .., x4}.

our algorithms and provide evidence that our model captures the grouping structure well
and can be computed efficiently. Fifthly, we extend the model to incorporate persistence.

We created videos based on our implementation showing the maximal groups we
found in simulated NetLogo flocking data [25, 26] and in real-world data from the Starkey
project [19].

A Definition for a Group. Let X be a set of entities of which we have locations during
some time span. The ε-disc of an entity x (at time t) is a disc of radius ε centered at x at
time t. Two entities are directly connected at time t if their ε-discs overlap. Two entities x
and y are ε-connected at time t if there is a sequence x = x0, .., xk = y of entities such that
for all i, xi and xi+1 are directly connected.

A subset S ⊆ X of entities is ε-connected at time t if all entities in S are pairwise
ε-connected at time t. This means that the union of the ε-discs of entities in S forms a single
connected region. The set S forms a component at time t if and only if S is ε-connected,
and S is maximal with respect to this property. See Figure 1(a). The set of components
C(t) at time t forms a partition of X at time t.

Let the spatial parameter of a group be ε, the temporal parameter δ, and the size
parameter m. A set G of k entities forms a group during time interval I if and only if
the following three conditions hold: (i) G contains at least m entities, so k ≥ m, (ii) the
interval I has length at least δ, and (iii) at all times t ∈ I, there is a component C ∈ C(t)
such that G ⊆ C.

We denote the interval I = [ts, te] of group G with IG. Group H covers group G if
G ⊆ H and IG ⊆ IH . If there are no groups that cover G, we say G is maximal (on IG). In
Figure 1(b), groups {x1, x2}, G̃ = {x3, x4}, Ĝ = {x5, x6}, and G = {x1, .., x4} are maximal:
G̃ and Ĝ on [t0, t5], G on [t1, t2]. Group {x1, x3} is covered by G and hence not maximal.

Note that entities can be in multiple maximal groups at the same time. For example,
entities {y1, y2, y3} can travel together for a while, then y4, y5 may become ε-connected, and
shortly thereafter y1, y4, y5 separate and travel together for a while. Then y1 may be in two
otherwise disjoint maximal groups for a short time. An entity can also be in two maximal

http://jocg.org/


JoCG 6(1), 75–98, 2015 78

Journal of Computational Geometry jocg.org

groups where one is a subset of the other. In that case the group with fewer entities must
last longer. That an entity is in more groups simultaneously may seem counterintuitive at
first, but it is necessary to capture all grouping information. We will show that the total
number of maximal groups is O(τn3), where n is the number of entities in X and τ is the
number of edges of each input trajectory. This bound is tight in the worst case.

Our maximal group definition uses three parameters, which all allow a more global
view of the grouping structure. In particular, we observe that there is monotonicity in the
group size and the duration: If G is a group during interval I, and we decrease the minimum
required group size m or decrease the minimum required duration δ, then G is still a group
on time interval I. Also, if G is a maximal group on I, then it is also a maximal group
for a smaller m or smaller δ. For the spatial parameter ε we observe monotonicity in a
slightly different manner: if G is a group for a given ε, then for a larger value of ε there
exists a group G′ ⊇ G. The monotonicity property is important when we want to have a
more detailed view of the data: we do not lose maximal groups in a more detailed view.
The group may, however, be extended in size and/or duration.

We capture the grouping structure using a Reeb graph of the ε-connected compo-
nents together with the set of all maximal groups. Parts of the Reeb graph that do not
support a maximal group can be omitted. The grouping structure can help us in answering
various questions. For example:

• What is the largest/longest maximal group at time t?
• How many entities are currently (not) in any maximal group?
• What is the first maximal group that starts/ends after time t?
• What is the total time that an entity was part of any maximal group?
• Which entity has shared maximal groups with the most other entities?

Furthermore, the grouping structure can be used to partition the trajectories in independent
data sets, to visualize grouping aspects of the trajectories, and to compare grouping across
different data sets.

We also discuss robustness of the grouping structure in the following sense. If an
entity x leaves a group G and almost immediately returns, we would like to ignore the small
interval on which x and G were separate, and just consider G ∪ {x} as one group. The
maximal group definition given above is not robust, but later in the paper we will study
an extension that is. Note that robustness requires an additional parameter that captures
how short any interruption in a group may last to be ignored.

Results and Organization. We discuss how to represent the grouping structure in Sec-
tion 2, and prove that there are at most O(τn3) maximal groups, which is tight in the worst
case. Here n is the number of trajectories (entities) and τ the number of edges in each
trajectory. We present an algorithm to compute the trajectory grouping structure and all
maximal groups in Section 3. This algorithm runs in O(τn3 +N) time, where N is the total
output size. In Section 4 we make our definitions more robust, and extend our algorithms
to this case. In Section 5 we evaluate our methods on synthetic and real-world data.
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Figure 2: (a) The manifold M for the entities X = {a1, .., a7}. At time ť the component
{a4, a5}merges with {a6, a7}, and at time t̂ the group {a1, a2, a3} splits. (b) The Reeb graph
R corresponding to M. The colored squares indicate which entities are in the component
associated with each edge of R. The merge of {a4, a5} and {a6, a7} yields a merge vertex u
at time ut = ť, and the split of {a1, a2, a3} yields a split vertex v at time tv = t̂.

2 Representing the Grouping Structure

Let X be a set of n entities, where each entity travels along a path of τ edges. To compute
the grouping structure we consider a manifold M in R3, where the z-axis corresponds to
time. The manifoldM is the union of n “tubes” (see Figure 2(a)). Each tube consists of τ
skewed cylinders with horizontal radius ε that we obtain by tracing the ε-disc of an entity
x over its trajectory.

Let Ht denote the horizontal plane at height t, then the set M ∩ Ht is the level
set of t. The connected components in the level set of t correspond to the components
(maximal sets of ε-connected entities) at time t. We will assume for simplicity that all
trajectories have their known positions at the same times t0, .., tτ and that no three entities
become ε-(dis)connected at the same time, but most of our theory does not depend on these
assumptions.

2.1 The Reeb Graph

We start out with a possibly disconnected solid that is the union of a collection of tube-like
regions: a 3-manifold with boundary. Note that this manifold is not explicitly defined. We
are interested in horizontal cross-sections, and the evolution of the connected components
of these cross-sections defines the Reeb graph. Note that this is different from the usual
Reeb graph that is obtained from the 2-manifold that is the boundary of our 3-manifold,
using the level sets of the height function (the function whose level sets we follow is the
height function above a horizontal plane below the manifold), see [6] for a background on
these topics.

To describe how the components change over time, we consider the Reeb graph R
ofM (Figure 2(b)). The Reeb graph has a vertex v at every time tv where the components
change. The vertex times are usually not at any of the given times t0, .., tτ , but in between
two consecutive time steps. The vertices of the Reeb graph can be classified in four groups.
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Figure 3: Every pair of entities rj and d` are at the same point at time ti + j + `. This
yields Ω(n2) vertices in the interval [ti, ti+1].

There is a start vertex for every component at t0 and an end vertex at tτ . A start vertex has
in-degree zero and out-degree one, and an end vertex has in-degree one and out-degree zero.
The remaining vertices are either merge vertices or split vertices. Since we assume that no
three entities become ε-(dis)connected at exactly the same time there are no simultaneous
splits and merges. This means merge vertices have in-degree two and out-degree one, and
split vertices have in-degree one and out-degree two. A directed edge e = (u, v) connecting
vertices u and v, with tu < tv, corresponds to a set Ce of entities that form a component
at any time t ∈ Ie = [tu, tv]. The Reeb graph is this directed graph. Note that the Reeb
graph depends on the spatial parameter ε, but not on the other two parameters of maximal
groups.

Lemma 1. The Reeb graph R for a set X of n entities, each of which travels along a
trajectory of τ edges, can have Ω(τn2) vertices and Ω(τn2) edges.

Proof. Assume without loss of generality that n is even. We construct n trajectory edges on
which the entities travel in between two consecutive time stamps, say ti and ti+1, such that
the Reeb graph for ε = 0 has Ω(n2) vertices v with tv ∈ [ti, ti+1]. We use this construction
in between all times t2i and t2i+1, and move the entities back to their starting position
in between t2i+1 and t2i+2. Therefore, the total number of vertices is Ω(τn2). Since each
vertex has degree one or three it follows that the number of edges is also Ω(τn2).

Let X = R ∪D, with R = r1, .., rn/2 and D = d1, .., dn−n/2. At the start (time ti)
all entities start at the line y = x. In particular, we place rj on (−j,−j) and d` on (`, `).
All entities move with speed one. The entities in R move to the right, and the entities in D
move downwards (see Figure 3). It follows that each entity rj and d` are both at the same
point at time ti + j + `. Hence, we get a vertex in the Reeb graph. There are Ω(n2) such
intersections, and thus Ω(n2) vertices. The lemma follows.

Theorem 2. Given a set X of n entities, in which each entity travels along a trajectory of
τ edges, the Reeb graph R = (V,E) has O(τn2) vertices and edges. This bound is tight in
the worst case.
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Proof. Lemma 1 gives a simple construction that shows that the Reeb graph may have
Ω(τn2) vertices and edges. For the upper bound, consider a trajectory edge (vi, vi+1) of
(the trajectory of) entity x ∈ X . During interval [ti, ti+1], the distance between x and any
other entity y ∈ X is a convex (hyperbolic) function in t, so y is directly connected to y
during at most one interval I ⊆ [ti, ti+1]. This interval yields at most two vertices in R. The
trajectory of x consists of τ edges, hence a pair x, y produces O(τ) vertices in R. This gives
a total of O(τn2) vertices. Each vertex has constant degree, so there are O(τn2) edges.

Remark 3. For any constant d, the distance between two entities x and y, each moving
along a line in Rd, is a convex (hyperbolic) function. Hence, the above result also holds for
entities moving in Rd, with d > 2.

The Trajectory Grouping Structure. The trajectories of entities are associated with
the edges of the Reeb graph in a natural way. Each entity follows a directed path in the
Reeb graph from a start vertex to an end vertex. Similarly, (maximal) groups follow a
directed path from a start or merge vertex to a split or end vertex. If m > 0 or δ > 0, there
may be edges in the Reeb graph with which no group is associated. These edges do not
contribute to the grouping structure, so we can discard them. The remainder of the Reeb
graph we call the reduced Reeb graph, which, together with all maximal groups associated
with its edges, forms the trajectory grouping structure.

2.2 Bounding the Number of Maximal Groups

t1t1t0 t2 t3 t4

{3}
{3, 4}

{1..4}
{1..8}

1
2
3
4
5
6
7
8

1, 3, 5, 7

2, 4, 6, 8v

{1, 3}, {1, 3, 5, 7}

Figure 4: The maximal groups con-
taining entity 3 (green). Vertex v
creates six new groups, including
{1, 3} and {1, 3, 5, 7}.

To bound the total number of maximal groups, we
study the case where m = 1 and δ = 0, because
larger values can only reduce the number of maximal
groups. It may seem as if each vertex in the Reeb
graph simply creates as many maximal groups as it
has outgoing edges. However, consider for example
Figure 4. Split vertex v creates not only the maxi-
mal groups {1, 3, 5, 7} and {2, 4, 6, 8}, but also {1, 3},
{5, 7}, {2, 4}, and {6, 8}. These last four groups are
all maximal on [t2, t], for t > t4. Notice that all six
newly discovered groups start strictly before tv, but
only at tv do we realize that these groups are max-
imal, which is the meaning that should be understood with “creating maximal groups”.
This example can be extended to arbitrary size. Hence a vertex v may create many new
maximal groups, some of which start before tv. We continue to show that we may obtain
Ω(τn3) maximal groups, and that it cannot get worse than that, that is, the number of
maximal groups is at most O(τn3) as well.

Lemma 4. For a set X of n entities, in which each entity travels along a trajectory of τ
edges, there can be Ω(τn3) maximal groups, each of size Ω(n).

Proof. Similar to Lemma 1 we construct n trajectory edges on which the entities travel in
between tu and tu+1, and repeat this construction in Ω(τ) time intervals. Our construction
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Figure 5: An illustration of the lower bound construction at time j2 in round three. The
black discs correspond to the stationary entities in S. The red discs correspond the entities
in D.
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Figure 6: The time intervals on which Gab is a maximal group in a given round.

yields Ω(n3) maximal groups G with IG ⊆ [tu, tu+1], resulting in Ω(τn3) maximal groups
overall as claimed.

For ease of notation we assume that n is divisible by thirteen, and we write x to
denote both the entity x and the ε-disc of entity x. We partition our set of entities X into
two sets S and D of sizes 12n

13 and n
13 , respectively. We first construct S, whose entities are

stationary. We place 8n
13 entities from S on the line y = 0, with a distance r, ε < r < 2ε, in

between two consecutive entities. On every fifth stationary entity si we build a tower Ti,
that is, we place two more stationary entities vertically above si. We place them such that
the distance between two consecutive entities is r. See Figure 5. Note that S contains 2n

13
towers, and that all entities in S are ε-connected.

The remaining entities D will move on a horizontal line y = 3r. At time tu, the
discs D = {d1, .., dn/13}, ordered from right to left, all lie to the left of the discs in S. They
all move to the right with the same speed. The distance between two consecutive entities
is 5r + 1

n .

The sequence of events in interval [tu, tu+1] can then be partitioned into rounds.
Round z starts with k merge events j1, .., jk, followed by a series of k split events `1, .., `k.
More specifically, at time `i, entity di becomes directly connected with (the topmost entity
of) tower T1+z−i, and at time `i entity di stops being directly connected with T1+z−i.

Merge ji will start a new maximal group G1i, where Gab = S ∪ ⋃b
h=a dh. Hence

after the k merges, k maximal groups have started. In the subsequent series of split events,
the discs d1, .., dk stop being directly connected with their corresponding tower. When di
leaves, the sets of entities Gii, .., Gik end as maximal groups. However, when di leaves Gih,
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Figure 7: DAG R′v (black) as a subgraph of R (grey) (a), and the tree Tv obtained by
unfolding R′v (b).

it creates G(i+1)h as a new maximal group that started on ji+1 (see Figure 6). This means

`i creates k− i new maximal groups. Hence, round z creates a total of
∑k

i=1(k− i) = Ω(k2)
maximal groups.

We now show that, for any m ≤ 12n
13 and any δ, this construction yields Ω(n3)

maximal groups. Since we can choose the speed of the discs in D, we can choose it such
that all groups have a minimum duration of at least δ. Now consider the rounds n

13 , ..,
2n
13 .

In each of these n
13 rounds we have k = n

13 . Hence, each round creates Ω(n2) new maximal
groups. This yields a total of Ω(n3) maximal groups. Since each group contains S, its size
is at least 12n

13 .

Theorem 5. Let X be a set of n entities, in which each entity travels along a trajectory of
τ edges. There are at most O(τn3) maximal groups, and this is tight in the worst case.

Proof. Lemma 4 gives a construction that shows that there may be Ω(τn3) maximal groups.

We proceed with the upper bound. Every maximal group starts either at a start
vertex, or a merge vertex. We will show that the number of maximal groups starting at a
start or merge vertex is O(n). Since there are O(τn2) start and merge vertices the lemma
follows. We will discuss only the merge vertex case; the proof for a start vertex is the same.

Let v be a merge vertex, let S ⊂ X and T ⊂ X be the components that merge at
v, and let px denote the path of entity x ∈ S ∪ T through R, starting at v. The union over
all x of these paths px forms a directed acyclic graph (DAG) R′v, which is a subgraph of R
(see Figure 7 (a)). Consider “unraveling” R′v into a tree Tv as follows. If px and py split in
some vertex u and merge again in vertex w, with tw > tu we duplicate the subpath starting
at w. We duplicate these subpaths by decreasing order of time tw. This yields a tree Tv
with root v and at most |S| + |T | ≤ n leaves. Furthermore, all nodes in Tv have degree at
most three (see Figure 7 (b)).

Since all maximal groups end at either a split or an end vertex, all maximal groups
G1, .., Gk that start at v can now be represented by subpaths in Tv starting at the root.
The path corresponding to a maximal group G ends at the first node where two entities
x, y ∈ G split, or at a leaf if no such node exists. Clearly, paths px and py can split only at
a degree three node. Since Tv has at most n leaves it follows there are at most O(n) degree
three nodes.

Finally, we show that there is at most one maximal group that ends at a given leaf
or degree three node of Tv. Assume by contradiction that Gi and Gj , with i 6= j, both
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end at node u. Both maximal groups share the same path from the root of Tv to u, so all
entities in Gi and Gj are in the same component at all times t ∈ I = [tv, tu]. Hence Gi ∪Gj
is a maximal group on I, contradicting that Gi and Gj were maximal. We conclude that
the number of maximal groups k that start at v is at most the number of leaves plus the
number of degree three nodes in Tv. Hence k = O(n). Summing over all O(τn2) start and
merge vertices gives O(τn3) maximal groups in total.

Remark 6. It is easy to see that the proof of Theorem 5 actually gives us a bound of
O(|R|n), where |R| denotes the complexity of the Reeb graph.

3 Computing the Grouping Structure

To compute the grouping structure we need to compute the reduced Reeb graph and the
maximal groups. We now show how to do this efficiently. Removing the edges of the Reeb
graph that are not used is an easy post-processing step which we do not discuss further.

3.1 Computing the Reeb Graph

We can compute the Reeb graph R as follows. We first compute all times where two entities
x and y are at distance 2ε from each other. We distinguish two types of events, connect
events at which x and y become directly connected, and disconnect events at which x and
y stop being directly connected.

We now process the events on increasing time while maintaining the current compo-
nents. We do this by maintaining a graph G = (X , Z) representing the directly-connected
relation, and the connected components in this graph. The set of vertices in G is the set
of entities. The graph G changes over time: at connect events we insert new edges into G,
and at disconnect events we remove edges.

At any given time t, G contains an edge (x, y) if and only if x and y are directly
connected at time t. Hence the components at t (the maximal sets of ε-connected entities)
correspond to the connected components in G at time t. Since we know all times at which
G changes in advance, we can use the same approach as Parsa [20] to maintain the con-
nected components: we assign a weight to each edge in G and we represent the connected
components using a maximum weight spanning forest. The weight of edge (x, y) is equal to
the time at which we remove it from G, that is, the time at which x and y become directly
disconnected. We store the maximum weight spanning forest F as an ST-tree [21], which
allows connectivity queries and updates in O(log n) time.

We spend O(n2) time to initialize the graph G at t0 in a brute-force manner. For
each component we create a start vertex in R. We also initialize a one-to-one mapping M
from the current components in G to the corresponding vertices in R. When we handle a
connect event of entities x and y at time t, we query F to get the components Cx and Cy
containing x and y, respectively. Using M we locate the corresponding vertices vx and vy
in R. If Cx 6= Cy we create a new merge vertex v in R with time tv = t, add edges (vx, v)
and (vy, v) to R labeled Cx and Cy, respectively. If Cx = Cy we do not change R. Finally,
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we add the edge (x, y) to G (which may cause an update to F ), and update the mapping
M .

At a disconnect event we first query F to find the component C currently containing
x and y. Using M we locate the vertex u corresponding to C. Next, we delete the edge
(x, y) from G, and again query F . Let Cx and Cy denote the components containing x and
y, respectively. If Cx = Cy we are done, meaning x and y are still ε-connected. Otherwise
we add a new split vertex v to R with time tv = t, and an edge e = (u, v) with Ce = C as
its component. We update M accordingly.

Finally, we add an end vertex v for each component C in F with tv = tτ . We connect
the vertex u = M(C) to v by an edge e = (u, v) and let Ce = C be its component.

Analysis. We need O(τn2 log n) time to compute all O(τn2) events and sort them according
to increasing time. To handle an event we query F a constant number of times, and we
insert or delete an edge in F . These operations all take O(log n) time. So the total time
required for building R is O(τn2 log n).

Theorem 7. Given a set X of n entities, in which each entity travels along a trajectory of
τ edges, the Reeb graph R = (V,E) has O(τn2) vertices and edges, and can be computed in
O(τn2 log n) time.

3.2 Computing the Maximal Groups

We now show how to compute all maximal groups using the Reeb graph R = (V,E). We
will ignore the requirements that each maximal group should contain at least m entities
and have a minimal duration of δ. That is, we assume m = 1 and δ = 0. It is easy to adapt
the algorithm for larger values.

Labeling the Edges. Our algorithm labels each edge e = (u, v) in the Reeb graph with
a set of maximal groups Ge. The groups G ∈ Ge are those groups for which we have
discovered that G is a maximal group at a time t ≤ tu and G ⊆ Ce. Each maximal group
G becomes maximal at a vertex, either because a merge vertex created G as a new group
that is maximal, or because G is now a maximal set of entities that is still together after a
split vertex. This means we can compute all maximal groups as follows.

We traverse the set of vertices of R in topological order. For every vertex v we
compute the maximal groups on its outgoing edge(s) using the information on its incoming
edge(s).

If v is a start vertex it has one outgoing edge e = (v, u). We set Ge to {(Ce, tv)}
where tv = t0. If v is a merge vertex it has two incoming edges, e1 and e2. We propagate
the maximal groups from e1 and e2 on to the outgoing edge e, and we discover (Ce, tv) as
a new maximal group. Hence Ge = Ge1 ∪ Ge2 ∪ {(Ce, tv)}.

If v is a split vertex it has one incoming edge e, and two outgoing edges e1 and e2. A
maximal group G on e may end at v, continue on e1 or e2, or spawn a new maximal group
G′ ⊂ G on either e1 or e2. In particular, for any group G′ in Gei , there is a group G in Ge
such that G′ = G ∩ Cei 6= ∅. The starting time of G′ is t′ = min{t | (G, t) ∈ Ge ∧G′ ⊆ G}.
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v

Ce1

u

Ce2

s

e1

e e2

G1

G2

G3

G4

Figure 8: After split vertex v, Ge1 contains the groups Ce1 = G1 ∪ G2 (with starting time
ts), G1, and G2. Maximal groups Ce2 = G3 ∪G4 (with starting time tu), G3, and G4 go to
e2. The maximal groups Ce and G1 ∪G2 ∪G3 end at v.
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2
3
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(2, t0)
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(4, t0) (34, t1)

(2, t0)
(1, t0)

(3, t0)
(4, t0)

(12, t1) (34, t1)
(2, t0)
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(4, t0)

(2, t0)

(1, t0)
(3, t0)

(4, t0)

(13, t2)

(24, t2)

Figure 9: The maximal groups as computed by our algorithm (a set {i, j, k} is denoted by
ijk).

Thus, t′ is the first time G′ was part of a maximal group on e. Stated differently, t′ is the
first time G′ was in a component on a path to v. Figure 8 illustrates this case. If v is an
end vertex it has no outgoing edges. So there is nothing to be done.

Figure 9 shows a complete example of a Reeb graph after labeling the edges with
their maximal groups.

Storing the Maximal Groups. We need a way to store the maximal groups Ge on an
edge e = (u, v) in such a way that we can efficiently compute the set(s) of maximal groups
on the outgoing edge(s) of a vertex v. We now show that we can use a tree Te to represent
Ge, with which we can handle a merge vertex in O(1) time, and a split vertex in O(k) time,
where k is the number of entities involved. The tree uses O(k) storage.

We say a group G is a subgroup of a group H if and only if G ⊆ H and IH ⊆ IG.
For example, in Figure 1(b) {x1, x2} is a subgroup of {x1, .., x4}. Note that both G and H
could be maximal.

Lemma 8. Let e be an edge of R, and let S and T be maximal groups in Ge with starting
times tS and tT , respectively. There is also a maximal group G ⊇ S ∪ T on e with starting
time tG ≥ max(tS , tT ), and if S ∩ T 6= ∅ then S is a subgroup of T or vice versa.

Proof. Clearly, S, T ⊆ Ce and thus S ∪ T ⊆ Ce. Component Ce itself is also a maximal
group on e. By construction Ce must have the largest starting time t of the groups in Ge.
Hence tG ≥ max(tS , tT ).
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We prove the second statement by contradiction: assume S ∩ T 6= ∅, and S 6⊆ T or
vice versa. Assume w.l.o.g. that tS ≤ tT . So the entities in S are all in a single component
at all times t ≥ tT ≥ tS . At any time t ≥ tT all entities in T are also in a single component.
Since S ∩ T 6= ∅ this must be the same component that contains S. Hence S ⊆ T , which
together with tS ≤ tT proves the statement.

We represent the groups Ge on an edge e ∈ E by a tree Te (see Figure 10). We call
this the grouping tree. Each node v represents a group Gv ∈ Ge. The children of a node v
are the largest subgroups of Gv. From Lemma 8 it follows that any two children of v are
disjoint. Hence an entity x ∈ Gv occurs in only one child of v. Furthermore, note that the
starting times are monotonically decreasing on the path from the root to a leaf: smaller
groups started earlier. A leaf corresponds to a smallest maximal group on e: a singleton
set with an entity x ∈ Ce. It follows that Te has O(n) leaves, and therefore has size O(n).
Note, however, that the summed sizes of all maximal groups can be quadratic.

vu

{1} {2} {3} {4}

w Gw = {1, .., 4}
Gv = {3, 4}Gu = {1, 2}

Figure 10: The grouping tree for the
edge between t2 and t3 in Figure 9.

Analysis. We analyze the time required to label
each edge e with a tree Te for a given Reeb graph R.
Topologically sorting the vertices takes linear time.
So the running time is determined by the processing
time in each vertex, that is, computing the tree(s)
Te on the outgoing edge(s) e of each vertex. We can
handle all start vertices in O(n) time in total. The
end and merge vertices can be handled on O(1) time
each: the end vertices are trivial, and at a merge vertex v the tree Te is simply a new root
node with time tv and as children the (roots of the) trees of the incoming edges. At a
split vertex we have to split the tree T = T(u,v) of the incoming edge (u, v) into two trees
for the outgoing edges of v. For this, we traverse T in a bottom-up fashion, and for each
node, check whether it induces a vertex in one or both of the trees after splitting. This
algorithm runs in O(|T |) time. Since |T | = O(n) the total running time of our algorithm is
O(n|R|) = O(τn3).

Reporting the Groups. We can augment our algorithm to report all maximal groups
at split and end vertices. The main observation is that a maximal group ending at a split
vertex v, corresponds exactly to a node in the tree T(u,v) (before the split) that has entities
in leaves below it that separate at v. The procedures for handling split and end vertices
can easily be extended to report the maximal groups of size at least m and duration at
least δ by simply checking this for each maximal group. Although the number of maximal
groups is O(τn3) (Theorem 5), the summed size of all maximal groups can be Ω(τn4). The
running time of our algorithm is O(τn3 +N), where N is the total output size.

Theorem 9. Given a set X of n entities, in which each entity travels along a trajectory of
τ edges, we can compute all maximal groups in O(τn3 + N) time, where N is the output
size.

Remark 10. Once again we can formulate our result in terms of the size |R| of the Reeb
graph R: our algorithm runs in O(τn2 log n + |R|n + N) time where N is again the size
of the output (which is now at most O(|R|n2)). The main difficulty in improving this is in
getting an output-sensitive algorithm to construct R.
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4 Robustness

The grouping structure definition we have given and analyzed has a number of good prop-
erties. It fulfills monotonicity, and in the previous sections we showed that there are only
polynomially many maximal groups, which can be computed in polynomial time as well. In
this section we study the property of robustness, which our definition of grouping structure
does not have yet. Intuitively, a robust grouping structure ignores short interruptions of
groups, as these interruptions may be insignificant at the temporal scale at which we are
studying the data. For example, if we are interested in groups that have a duration of one
hour or more, we may want to consider interruptions of a minute or less insignificant.

We introduce a new temporal parameter α, which is related to the temporal scale
at which the data is studied. Our robust grouping structure should ignore interruptions of
duration at most α. We realize this by letting the precise moment of events be irrelevant
beyond a value depending on α. Events that happen within α time of each other may cancel
out, or their order may be exchanged. The objective is to incorporate α into our definitions
while maintaining the properties that we have for the (non-robust) grouping structure. Note
that α is another parameter that allows us to obtain more generalized views of the grouping
structure by increasing its value. Obtaining generalized views in this way is related to the
concept of persistence in computational topology [6, 7].

A possible definition of a robust grouping structure is based on the following intu-
ition: A set of entities forms a robust group on I as long as every interval I ′ ⊆ I on which
its entities are not in the same component has length at most α. More formally: we say G
is a robust group on time interval I if and only if: (i) G contains at least m entities, (ii) I
has length at least δ, and (iii) for any time t ∈ I there is a time t′ ∈ [t−α/2, t+α/2] and a
component C ∈ C(t′) such that G ⊆ C. Unfortunately, we can show that even determining
whether there is a robust group of size k is NP-complete (see Appendix A).

t

t+ α/2

t− α/2

x1

x2 x3

x4

x5 x6

Figure 11: An α-component at time t.

We consider a second definition for a robust
group, which we will use from now on. Two entities
are α-relaxed directly connected at time t if and
only if they are directly connected at some time
t′ ∈ [t−α/2, t+α/2]. Two entities x and y are α-
relaxed ε-connected at time t if there is a sequence
x = x0, .., xj = y such that xi and xi+1 are α-
relaxed directly connected. Note that the precise
times may be different for different pairs xi and xi+1, as long as each time is in the interval
[t − α/2, t + α/2]. A maximal set of α-relaxed ε-connected entities at time t is an α-
relaxed component, or α-component for short. An α-component at time t corresponds to
a connected 3D-component in a horizontal slice of M with thickness α and centered at t
(see Figure 11). This notion of α-component is similar to the α-Reeb graph as defined by
Chazal and Sun [4].

A subset G of k entities is a robust group if and only if it is a group by the definition
in the introduction, but where “component” is replaced by “α-component” in condition
(iii). This immediately leads to the definition of maximal robust groups and a robust
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grouping structure. The robust grouping structure has the property of monotonicity in the
new parameter α as well. Note that every group which is a robust group according to the
first definition, is also a robust group according to the second definition. The opposite is
not true. For instance, in Figure 11, entities x1, .., x6 form a component by the second
definition, but not by the first.

4.1 Computation of Maximal Robust Groups

We can compute all maximal robust groups according to the (second) definition. The idea
is to modify the Reeb graph to a version that is parametrized by α and captures exactly
the robust grouping structure for parameter α.

LetR be the Reeb graph that we used for the grouping structure without considering
robustness. Note that this is the same as assuming α = 0 in the definition of the robust
grouping structure, and we let R0 = R. For α > 0 we define the Reeb graph parametrized
in γ as Rγ by imagining a process that changes the Reeb graph for a growing parameter γ,
starting with R0 and ending with Rα/2.

We observe that a new α-component starts at time α/2 before two regular compo-
nents merge and form a new component. Symmetrically, an α-component ends due to a
split at time α/2 after a regular component splits. Both facts follow from the new defini-
tion of α-relaxed directly connected. It implies that in the process that maintains Rγ for
growing γ, the split nodes move forward in time, zippering together the outgoing edges, and
the merge nodes move backward in time, zippering together the incoming edges. All nodes
move at the same rate in γ, which implies that in the process, the only event where the
Reeb graph changes structurally is when an (earlier) split node encounters a (later) merge
node. This can happen only if they are endpoints of the same edge of the Reeb graph. The
encounter is either a passing or a collapse (see Figure 12).

(a) (b)

Figure 12: Passing encounter,
before and after (a). Collapse
encounter, before and after (b).

Both encounters lead to new edges in the Reeb
graph and can thus give rise to new encounters when
growing γ further. The collapse encounter reduces the
complexity of the Reeb graph: two nodes of degree 3 dis-
appear and four edges become a single edge. The collapse
event is exactly the situation where a component splits
and merges again, so by removing a split-merge pair in-
volving the same entities we ignore the temporary split of
a component (or group).

A passing encounter maintains the complexity of the Reeb graph. Before the passing
encounter, a part of one group splits and merges with a different group. After the passing
encounter, the two groups merge (for a short time) and then split again. Next, we show that
there are O(τn3) encounter events in the Reeb graph of the robust version of the trajectory
grouping structure, and this bound is tight in the worst case.

Lemma 11. For some set X of n entities, in which each entity travels along a trajectory
of τ edges, the structure of the Reeb graph Rγ of X changes Ω(τn3) times when increasing
γ from zero to infinity.
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d4
d1
d2
d3

S

d4

ta tb

d1

Figure 13: The part of the Reeb graph that yields Ω(n3) encounter events (for n = 16).

Proof. We show that there is a set of n trajectories, each consisting of τ edges, for which
there are Ω(τn3) encounter events. The lemma then follows.

We use the same construction as in Lemma 4. So in all time intervals [t2i, t2i+1]
we have a set S of 3n/4 stationary entities/discs and a set D = {d1, .., dn/4} entities,
ordered from right to left, that move to the right in such a way that di becomes directly
(dis)connected with S before di+1 (see Figure 5). Let ta be the first time at which dn/4
becomes directly connected with S, and let tb denote the last time d1 becomes directly
disconnected with S. We now show that the part of Reeb graph R′ corresponding to the
interval (ta, tb) already yields Ω(n3) encounter events. We note that no other encounter
events involving other parts of the Reeb graph can interfere with the encounter events in
R′.

In between ta and tb every disc di becomes directly (dis)connected with S Ω(n)
times. So R′γ initially contains of a path P of Ω(n2) edges. Each edge has at least the
set of entities S associated with it, and possibly other entities as well. The vertices on P
can be grouped in Ω(n) sequences of k = n/4 split vertices u1, .., uk followed by k merge
vertices v1, .., vk. At vertex ui entity di splits from S and at vi entity di merges with S. See
Figure 13.

By increasing γ each split vertex ui will have a passing encounter with the merge
vertices v1, .., vi−1 before it collapses with vi. Hence each sequence involves

∑k
i=1(i− 1) =

Ω(n2) encounter events. Since there are Ω(n) such sequences this gives Ω(n3) encounter
events in a single timestep, and hence Ω(τn3) in total.

Theorem 12. Let X be a set of n entities, in which each entity travels along a trajectory
of τ edges. The structure of the Reeb graph Rγ of X changes at most O(τn3) times when
increasing γ from zero to infinity. This bound is tight in the worst case.

Proof. Lemma 11 gives a construction that shows that there may be Ω(τn3) encounters.

Since each collapse event decreases the number of edges by three it follows the
number of collapse events is at most O(τn2). What remains is to prove that the number of
passing events is O(τn3). Each passing event involves a split vertex u and a merge vertex
v. We now show that there are at most n passing events involving a given split vertex u.
Since there are O(τn2) split vertices this means the number of passing events is at most
O(τn3).

Assume by contradiction that there are k > n passing events involving split vertex
u. Let γ1, .., γk be the values for γ for which these passing events occur in non-decreasing
order, and let v1, .., vk be the corresponding merge vertices. Just before u passes vi the edge

http://jocg.org/


JoCG 6(1), 75–98, 2015 91

Journal of Computational Geometry jocg.org

vi
u vj

w

Xi = {x, ..} Xj = {x, ..}
{x, ..}

vi
Xi

u Ce

(a) (b)

Figure 14: The part of Rγ before u encounters vi. The set Xi merges with Ce at vertex vi
(a). If x merges at both vi and vj it has to leave (split) at a vertex w in between (b).

e = (u, vi) is an incoming edge of vi. Let Xi denote the set of entities on the other incoming
edge of vi, that is the set of entities that merges with Ce at vertex vi (see Figure 14(a)).

Since k > n there must be an entity x that u “passes” at least twice. That is, u
passes vi and vj , with i < j, and x ∈ Xi and x ∈ Xj . Now consider the Reeb graph Rγ
just after u passes vi (which means γ > γi). Since u still has to pass vj there is a path Q
connecting u to vj . By further increasing γ this path will eventually become a single edge
(u, vj), which will flip to (vj , u) when u passes vj at γ = γj .

Entity x is present at the first vertex of Q (vertex u), and it merges again with path
Q at vj . Clearly, this means that Q contains a split vertex w at which x splits from path
Q before it can return to Q in vertex vj (see Figure 14 (b)).

We now have two paths connecting w to vj : the path that x follows and the subpath
of Q. We again have that by increasing γ both paths will become singleton edges connecting
w to vj . Eventually both these edges are removed in a collapse event for some γ̂. If w = u
this means (u, vj) is actually a collapse event instead of a passing event. Contradiction. If
w 6= u we have that tw > tu, and therefore γ̂ < γj . The collapse event at γ̂ will consume
both w and vj , which means u can no longer pass vj . Contradiction. Since both cases yield
a contradiction we conclude that the number of passing events involving u is at most n.
With O(τn2) vertices this yields the desired bound of O(τn3) passing events.

Algorithmically, we start with the Reeb graph R0 and examine each edge. Any edge
that leads from a split node to a merge node and whose duration is at most α is inserted in
a priority queue, where the duration of the edge is the priority. We handle the encounter
events in the correct order, changing the Reeb graph and possibly inserting new encounter
events in the priority queue. Each event is handled in O(log n) time since it involves at
most O(1) priority queue operations. Since there are O(τn3) events (Theorem 12) this
takes O(τn3 log n) time in total. Once we have the Reeb graph Rα/2, we can associate the
trajectories with its edges as before. The computation of the maximal robust groups is
done in the same way as computing the maximal groups on the normal Reeb graph R. We
conclude:

Theorem 13. Given a set X of n entities, in which each entity travels along a trajectory
of τ edges, we can compute all robust maximal groups in O(τn3 log n + N) time, where N
is the output size.
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Figure 15: The maximal groups for varying parameter values. The time associated with
each trajectory vertex is proportional to its x-coordinate.

5 Evaluation

To see if our model of the grouping structure is practical and indeed captures the grouping
behavior of the entities we implemented and evaluated our algorithms. We would like to
visually inspect the maximal groups identified by our algorithm, and compare this to our
intuition of groups. For a small number of (short) trajectories we can still show this in a
figure, see for example Figure 15, which shows the monotonicity of the maximal groups in
size and duration. However, for a larger number of trajectories the resulting figures become
too cluttered to analyze. So instead we generated short videos.1

We use two types of data sets to evaluate our method: a synthetic data set generated
using a slightly modified version of the NetLogo Flocking model [25, 26], and a real-world
data set consisting of deer, elk, and cattle, tracked in the Starkey project [19].

NetLogo. We generated several data sets using an adapted version of the NetLogo Flocking
model [25]. In our adapted model the entities no longer wrap around the world border,
but instead start to turn when they approach the border. Furthermore, we allow small
random direction changes for the entities. The data set that we consider here contains 400
trajectories, with 818 edges each. Similar to Figure 15, our videos show all maximal groups
for varying parameter values.

The videos show that our model indeed captures the crucial properties of grouping
behavior well. We notice that the choice of parameter values is important. In particular,
if we make ε too large we see that the entities are loosely coupled, and too many groups
are found. Similarly, for large values of m virtually no groups are found. However, for
reasonable parameter settings, for example ε = 5.25, m = 4, and δ = 100, we can see that
our algorithm identified virtually all sets of entities that travel together. Furthermore, if
we see a set of entities traveling together that is not identified as group, we indeed see that
they disperse quickly after they have come together. The coloring of the line-segments also

1See www.staff.science.uu.nl/~staal006/grouping.
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nicely shows how smaller groups merge into larger ones, and how the larger groups break
up into smaller subgroups. This is further evidence that our model captures the grouping
behavior well.

Starkey. We also ran our algorithms on a real-world data set, namely on tracking data
obtained in the Starkey project [19]. This data set captures the movement of deer, elk,
and cattle in Starkey, a large forest area in Oregon (US), over three years. Not all animals
are tracked during the entire period, and positions are not reported synchronously for all
entities. Thus, we consider only a subset of the data, and resample the data such that
all trajectories have vertices at the same (regularly spaced) times. We chose a period of
30 days for which we have the locations of most of the animals. This yields a data set
containing 126 trajectories with 1264 vertices each. In the Starkey video we can see that
a large group of entities quickly forms in the center, and then slowly splits into multiple
smaller groups. We notice that some entities (groups) move closely together, whereas others
often stay stationary, or travel separately.

Running Times. Since we are mainly interested in how well our model captures the
grouping behavior, we do not extensively evaluate the running times of our algorithms.
On our desktop system with a AMD Phenom II X2 CPU running at 3.2Ghz our algorithm,
implemented in Haskell, computes the grouping structure for our data sets in a few seconds.
Even for 160 trajectories with roughly 20 thousand vertices each we can compute and report
all maximal groups in three minutes. Most of the time is spent on computing the Reeb
graph, in particular on computing the connect/disconnect events. Our implementation
uses a slightly easier, yet slower, data structure to represent the maximum-weight spanning
forest during the construction of the Reeb graph compared to the ST-trees described in
Section 3.1. So we expect that some speedup is still possible.

6 Concluding Remarks

We introduced a trajectory grouping structure which uses Reeb graphs and a notion of
persistence for robustness. We showed how to characterize and efficiently compute the
maximal groups and group changes in a set of trajectories, and bounded their maximal
number. Our paper demonstrates that computational topology provides a mathematically
sound way to define grouping of moving entities. The complexity bounds, algorithms and
implementation together form the first comprehensive study of grouping. Our videos show
that our methods produce results that correspond to human intuition.

Throughout this paper, we assumed that the entities move in R2. Note however,
that our analysis and our algorithms do not actually use, or need, this information. Indeed,
they use only the structure of the Reeb graph. Furthermore, to construct the Reeb graph
we need only the times at which two entities are at distance ε. There are only O(τn2) such
times, even for entities moving in Rd. Hence, all our results also hold for entities moving in
Rd, with d > 2.

Further work includes more extensive experiments together with domain specialists,
such as behavioral biologists, to ensure further that the grouping structure captures groups
and events in a natural, expected way, and changes in the parameters have the desired
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effect. At the same time, our research may be linked to behavioral models of collective
motion [22] and provide a (quantifiable) comparison of these.

We expect that for realistic inputs the size of the grouping structure is much smaller
than the worst-case bound that we proved. We plan to confirm this in experiments, and
to provide faster algorithms under realistic input models. We will also work on improving
the visualization of the maximal groups and the grouping structure, based on the reduced
Reeb graph.
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Videos accompanying this paper can be found on www.staff.science.uu.nl/~staal006/

grouping.
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Figure 16: An input graph G = (V,E) (a), the trajectories for G, the x-coordinate of the
points corresponds to the time (b). The trajectory corresponding to v4 is shown in bold.

A NP-completeness of robust grouping by the �rst de�nition

Theorem 14. Determining whether there is a robust group of size k is NP-complete using
the first definition of robust groups.

Proof. We prove this by a reduction from Clique: given a graph G = (V,E) is there a
clique of size k? Choose ε = 0, m ≤ k, δ ≤ n + 1, and α = 3/4. We now construct a set
of n trajectories, one for each vertex, each consisting of O(n) vertices such that there is a
robust group R on I = [1, n + 1] consisting of k entities if and only if G contains a clique
R′ of size k. The proof idea is similar to that in [12].

Let N(v) denote the neighbours of vertex v ∈ V . For each vertex vi we define five
points pi, ai, bi, ci, and di. Additionally, we define a point pn+1. We assume that all these
points (over all vertices) are different. Let si = (i+1)−α = i+(1/4) and ti = i+α = i+(3/4)
be two times corresponding to vertex vi. We now construct an entity/trajectory xi for each
vertex vi ∈ V such that:

• at time j, xi is at pj ,
• at time sj , xi is at aj if vi = vj , and at bj otherwise,
• at time tj , xi is at cj if vi ∈ {vj} ∪N(vj), and at dj otherwise, and
• at any other time no two entities are at the same place at the same time.

Figure 16 shows an example of this construction.

Since ε is set to zero all entities in a robust group R have to be at the same point
in every interval of length α. The only times when multiple entities are at the same point
are at times i, si ti, with 1 ≤ i ≤ n + 1. Because i + 1 − i > α it follows all entities in R
have to be together at si or ti. We now select a vertex to be part of the clique R′ if and
only if the entities in R were not together at time si. All entities except xi are together at
time si, so it follows that xi ∈ R. We then have R′ = {vi | xi ∈ R}.

Suppose there is a robust group R of size k on I. We now show that for every pair
vi, vj ∈ R′, vi and vj are neighbours. Hence R′ forms a clique (of size k).

Both vi and vj are in R′, so xi and xj are in R. Entities xi and xj cannot be at the
same point at time si since xi is the only entity on point ai. The same holds for sj . So they
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must have been together at ti and tj . In particular, they must have been at points ci and
cj , and hence vi and vj are neighbours.

The proof for the other direction, i.e., if R′ is a clique in G then R is a robust group,
is symmetrical. Clearly, the reduction is polynomial. Since it is also easy to check that a
given set of entities forms a robust group we conclude that the problem is NP-complete.
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