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Abstract
Programmable logic architectures increase in capacity before

commercial circuits are designed for them, yielding a distinct problem
for FPGA vendors: how to test and evaluate the effectiveness of
new architectures and software. Benchmark circuits are a precious
commodity, and often cannot be found at the correct granularity, or
in the desired quantity.

In previous work, we have defined important physical character-
istics of combinational circuits. We presented a tool (CIRC) to extract
them, and gave an algorithm and tool (GEN) which generates random
circuits, parameterized by those characteristics or by a realistic set of
defaults. Though a promising first step, only a small portion of real
circuits are fully combinational.

In this paper we extend the effort to model sequential circuits.
We propose new characteristics and generate circuits which are se-
quential. This allows for the generation of truly useful benchmark
circuits, both at and beyond the sizes of next-generation FPGAs. By
comparing the post-layout properties of the generated circuits with
already existing circuits, we demonstrate that the synthetic circuits
are much more realistic than random graphs with the same number
of nodes, edges and I/Os.

1 Introduction

In an ideal world, an FPGA vendor would use hundreds of benchmark
circuits in determining the architecture of a next generation device,
as well as developing the associated automatic placement and routing
software for it. In this way, the architectural design space would be
adequately explored and the best software algorithms would be used
and well-tested.

However, because the part is new, there are few designs available
at the correct granularity and size to perform this kind of exploration.
Some circuits will always exist via customer migration from gate-
arrays, synthesis from high-level design languages,or through various
other means, but these rarely suffice and companies are forced to
purchase benchmarks or to expend considerable effort creating them
internally.

There exist alternatives to using “real" benchmarks of the desired
size. The PREP benchmark set [8] places a number of disconnected
copies of the same small circuit into one netlist. Random graphs are
another possibility but we have demonstrated [7] that random graphs
are too unrealistic.
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In previous work we addressed the problem of random gener-
ation of combinational circuits [7]. We defined properties such as
size, delay, physical shape, edge-length distribution, fanout distribu-
tion and reconvergence to describe the physical characteristics of a
purely combinational circuit after the technology mapping stage. A
public-domain tool, CIRC, was developed to extract these parameters.
We gave an algorithm to randomly generate a circuit with an exact pa-
rameterization, and presented another tool, GEN, which implemented
it. By comparing characteristics of the generated circuit that were not
specifiedas parameters to generation (post-placement wire-length and
track-count and a quantification of reconvergence)we showed that the
generated circuits behaved very comparably to real circuits, whereas
random circuits of the same size did not.

In a different approach to the generation problem, Darnauer and
Dai [4] gave an algorithm for generating random undirected graphs
to meet a given I/O ratio and Rent parameter, primarily aimed at
a study of routability, and with applications to creating partitioning
benchmarks. They showed the validity of their approach for relatively
small combinational circuits, but it is not yet clear how successful it
is for evaluating new architectures and place and route software or for
larger or sequential circuits.

In this paper we address the problem of generating sequential cir-
cuits, i.e. circuits that contain flip-flops and directed cycles (broken
by a flip-flop) in the logic. We expand on the combinational circuit
characteristics by defining additional parameters for sequential cir-
cuits. The same approach can be applied to modeling and generating
hierarchical circuits. Using the new parameters, we have made sig-
nificant changes to the basic combinational algorithm to allow for
the generation of these circuits, and added new aspects to deal with
hierarchy. The tool is capable of quickly generating electrically valid
and reasonable sequential benchmark circuits which can be read by
commercial FPGA software.

To show that that these benchmarks are realistic, we use the ap-
proach illustrated in Figure 1. Given an industrial benchmark circuit,
we use CIRC to extract its parameterization, and GEN to generate a
clone circuit with the precisely specified set of characteristics. We
also generate a random graph with the same number of nodes, edges
and I/Os, but otherwise unconstrained by our characterization pa-
rameters. Then we place and route all three with an academic tool
VPR [3], and with Altera Corporation’s MAX+PLUS2 software. By
comparing the post-placement and routing statistics for the original
circuit and its clone, and contrasting this to the results for a random
graph of the same size as the original circuit, we are able to show that
our method generates circuits which significantly more realistic than
random graphs.

Though this paper concentrates mostly on circuits taken from ex-
act specifications, GEN also comes with a sophisticated set of defaults
to generate circuits “from scratch," in which the only required param-
eter is the circuit size. We have developed a specification language in
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Figure 1: Approach to Circuit Generation

which parameters can be chosen from various standard and new sta-
tistical distributions and provided default GEN-scripts which provide
compatible values for any missing parameters in an input specifica-
tion. The user can use these defaults, drawn from our experiments on
MCNC circuits and personal experience with the tools, or program
their own in the specification language.

In Section 2 we briefly review the characteristic definitions and
the algorithm from [7] for generating combinational circuits. Section
3 describes the new sequential characteristics needed to model and
generate sequential circuits hierarchically. The overall algorithm in-
tegrating combinational and sequential generation comprises Section
4. In Section 5 we discuss and validate the quality of the synthetic
circuits by comparing their routability with industrial benchmark cir-
cuits and random graphs of the same size. We conclude in Section 6
and discuss extensions to the current prototype software.

2 Background: Combinational Circuits.

In this section we review the definitions, algorithm, and terminology
of [7], which dealt with combinational circuits only.

2.1 Combinational circuit parameterization. We model a com-
binational circuit C by a series of scalar and vector parameters. Our
base representation of a circuit is as a graph with nodes and 2-point
connections (edges, as opposed to nets or hyper-edges). Define nPI
andnPO as the number of primary inputs and outputs inC , andnLOG
as the number of logic nodes. Then n, the size of C , is nPI + nLOG

(we treat a PI as node type, but a PO as a property of a logic node).
For any nodex, fanin(x) is the number of edges entering x. Similarly,
fanout(x) is the number of edges leaving x and max fanout(C) is
MAX{fanout(x)}over all x in C . We assume that fanin(x) is always
bounded by some constant k (typically 4), but that max fanout(C) is
bounded only by n. Defining fanouts[i], i=0..max fanout, as the
number of nodes in C with fanout i, we have the fanout distribution
of C . The number of edges nedges in C is the sum, over all x in C ,
of fanin(x) (equivalently the sum of fanout(x)).

The remaining parameters are related to combinational delay.
Each node x has a maximum combinational delay, defined by d(x) =
0 if x is a PI, otherwise d(x) = 1 + MAX(d(yi)) over all inputs yi to x.
The combinational delay of C , d(C) is the maximum d(x) over all x
inC . Defineni as the number of nodes inC with combinationaldelay
i. Then the shape distribution ofC is shape(C) = [ni], i = 0::d(C).
For an edge e = (x; y), define length(e) = d(y) � d(x). Define ei
as the number of edges in C with length i, inducing the edge-length
distribution, edges(C) = [ei], i = 0::d(C). An edge of length-one
is a unit edge and of any other length a long edge. In [7], we found
that shape (similarly edges) does vary from circuit to circuit, but
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Figure 2: The Combinational Generation Algorithm.

that there is a typical class of distributions which applies to most real
circuits but differs from the shapes of random graphs.

2.2 Generating combinational circuits. Also in [7], we described
an algorithm for generating combinational circuits from the list pa-
rameters described above: n, nPI , nPO , nedges, k, max fanout,
max delay and the fanouts, shape, and edge-length (edges) distri-
butions. The algorithm will create a graph (netlist) on n nodes and
nedges edges, such that each node x is assigned one fanout value from
the set represented by the fanouts, that assigned value corresponds
to the actual fanout of x in the graph, combinational delay is well-
defined for all nodes (i.e. d(y) < d(x) for all fanins y of x, and at least
one fanin y0 has d(y0) = d(x)-1), fanin is bounded by k for all nodes,
and all fanins to x are distinct (i.e. any signal enters a logic node at
most once).

The algorithm for generating a combinational circuit is illustrated
in Figure 2, and we give a brief overview of it here. The parame-
terization defines a set of disconnected nodes at each combinational
delay level (Figure 2(a)), and sets of unassigned edges and fanouts.
We initially consider all nodes on the same level as collapsed to a
single level-node. Step I computes boundaries on the maximum and
minimum in and out-degree of each level. Step II assigns the major-
ity of edges between levels, yielding the intermediate representation
shown in the Figure 2(b). Step III partitions the total out-degree of
each level into ni values chosen from fanouts. Step IV divides the
level-nodes into individual nodes and assigns fanout values each. Step
V connects edges (currently between levels) to nodes, and introduces
some local clustering to the netlist. The overall algorithm yields a
circuit as shown in Figure 2(c). In Section 4 we will overview the
modifications necessary for sequential circuits.

The GEN system actually has two phases. The above algorithm
describes the second phase, generation of a circuit from an exact spec-
ification. More typically, the user will specify only a few of the scalar
parameters, and the front-end to GEN will create the remaining pa-
rameters from the default scripts (mentioned earlier). The parameter
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selection phase will then complete the parameterization to generate
an exact specification, and pass a complete description to the main
algorithm.

2.3 Quality of combinational GEN-circuits. We demonstrated the
validity of the combinational chararacterization and the generation al-
gorithm using MCNC circuits and the process illustrated in Figure 1,
as discussed in the Section 1 (though we used VPR alone for the combi-
national experiments.) We found that the post-placement wirelength
of the GEN clone-circuits differed by 11%, on average, from the source
circuit, whereas the corresponding random graph differed by 63% on
average. Looking only at the largest 12 circuits, the numbers were
28% and 218%, respectively.

The major weakness of the first GEN was that it did not handle
sequential circuits. In addition to being more difficult to generate,
sequential circuits would be more difficult to place and route, because
the underlying graph is more complex. The extensions to the model
to deal with sequential circuits and to generate them comprise the
remainder of this paper.

3 A Model For Sequential Circuits.

In order to generate sequential circuits, it is necessary to form a
model of what we mean by a sequential circuit. We describe this
as a hierarchy of two or more1 combinational circuits connected by
“flip-flop-edges" (FF-edges) and “back-edges," as shown in Figure 3.
We assume that there are D-type flip-flops between combinational
portions of a circuit, so all nodes are of type PI, logic or flip-flop.
Recall that PO is a property of a logic node, not a separate node type.
For simplicity, all flip-flops in a circuit will share a single global clock,
which is not represented in the netlist.

Under this model, the definitions of primary input, primary output,
and all fanout measures remain as before. However, combinational
delay is modified so that any flip-flop node is at combinational delay
0, independent of its (single) input. The sequential level, level(x)
of node x is defined as 0 if x is a primary input, 1 + level(y) for a
flip-flop x with input y, and MIN(level(yi )) over all inputs yi to x

otherwise. Notice that all primary inputs must thus occur in sequential
level 0. Define an edge (x; y) to be a forward-edge if level(x) =
level(y) and a back-edge if level(x) > level(y). All other edges
are necessarily FF-edges connecting a logic node to a flip-flop at the

1By our definitions, a single level would be a purely combinational circuit.

immediately next sequential level. The definition of edge-length is
as before, even if the nodes are at different sequential levels, except
that FF-edges are always of length one. The size of the circuit is now
n=nLOG+nPI+nDFF .

We define a sequential circuit as a hierarchy of combinational
sub-circuits which are connected together with FF-edges and back-
edges, as illustrated in Figure 4. To generate the interface where
these sub-circuits are to be joined, we introduce ghost input (GI) and
ghost output (GO) ports in each sub-circuit. These are reserved fanin
(fanout) ports attached to logic nodes in the combinational circuit.
Note that GI and GO ports correspond more closely to edges than
to nodes, since a single node can have up to k � 1 ghost inputs and
up to max fanout ghost outputs. The number of ghost outputs, nGO ,
is divided into those which will eventually feed a flip-flop (nlatch)
and the remainder, which will become the source of a back-edge. A
final sequential circuit will have no ghost inputs or outputs, as they
will have all been “glued" together into back-edges (a ghost output
connected to a ghost input at a preceding sequential level) or FF-edges
(a ghost output connected to a flip-flop at the immediately next level2).
Ghost outputs are assigned (in sub-circuit generation) such that nodes
with a ghost output destined for FF-edge connection will have just
that one ghost output3.

Though the hierarchy and locality in a sequential circuit is partly
captured by the number of ghost inputs and ghost outputs between sub-
circuits, it is also important to describe the shape of these connections.
This is becausecombinational delay constrains us to connecting ghost
outputs at a lower combinational delay level than the corresponding
ghost input (though any ghost output can be connected to a flip-flop).
Define the vector GIshape[d] as the number of ghost inputs at com-
binational delay d, d = 0::max delay, and GOshape[d] similarly
for ghost outputs. These will introduce a topological constraint on
the connections between different sub-circuits in addition to simply
the number of connections. In practice, we find that these vectors are
important, especially for generating clones, because they often un-
cover “quirky" aspects of different circuits. Note that the GIshape for
one level and the GOshape for the other level in a 2-level circuit will
roughly correspond, but would only correspond exactly if all edges in
the circuit were unit-edges, which is not usually the case.

The definitions are best understood with an example. Figures 4(a)
and 4(b) represent combinational sub-circuits which will be glued
together into the complete sequential circuit shown in Figure 4(c).
The sub-circuit in Figure 4(a) has parameterization4 {n=7; level=

0; nPI = 3; nPO = 1; nedges = 6; nGI = 2; nGO = 2; nlatch =

2; shape = (3; 2; 2);GIshape = (0; 0; 2); GOshape = (0; 0; 2)}.

2In fact, the gluing algorithm is more general than this, and GEN has no restriction
against joining nodes at the same sequential level with compatible delays, as long as
they are in different sub-circuits. However, the current discussion is limited to sequential
circuits which have only a single combinational sub-circuit at each level, as pictured in
Figure 3. We have written GEN scripts which contain multiple combinational sub-circuits
at each sequential level, in order to generate partitioning benchmarks with known cut-
sizes. Unfortunately, there is no automatic process for writing this kind of fine-grained
hierarchy at this time, so the user would have to specify the sub-circuits and the GI/GO
interface completely in their GEN-script.

3This is for two reasons. Firstly, we don’t want to register the same signal through
two different flip-flops. Secondly, we don’t want to generate circuits which map poorly to
FPGA logic blocks, which are typically a 4-input LUT followed by an optional flip-flop
where only one of the registered and un-registered signals are externally available.

4Note that these are partial parameter lists only, as some parameters not relevant to the
current discussion of sequential circuits are left out.
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The circuit in Figure 4(b) has {n = 4; level = 1; nPI = 2; nGI =

0; nGO = 2;GOshape = (0; 2); nPO = 0; nlatch = 0}. The com-
plete circuit is described by {n = 11; nPI = 3; nPO = 1; levels=

2; nDFF = 2; nback = 2}in addition to the specification of its sub-
circuits. Note that the flip-flops serve as primary inputs in the spec-
ification of the sub-circuit, but primary inputs cannot exist at levels
greater than zero (by definition) in the final circuit, so these are con-
verted to flip-flops as they are glued to ghostoutputs from the previous
level.

For an exact specification of a sequential circuit, this information
is sufficient to generate the complete circuit5 . An example of a
complete exact specification for the MCNC circuit bbtas, output by
CIRC as a GEN-script, is shown later in Figure 5, along with example
clone-circuits produced from it.

4 The Algorithm for Sequential Generation.

In this section we describe our algorithm for generating sequential
circuits. There are two major topics: outlining the modifications to
our algorithm to generate base-level sub-circuits with ghost inputs and
outputs; and describing the process for gluing sub-circuits together.

4.1 Generating combinational sub-circuits. To generate sub-
circuits, we use a modification of the original combinational algorithm
[7]. The additional constraints in the model implied by nGI , nGO ,
nlatch, GIshape, and GOshape necessitate changes throughout the
algorithm, as they change the ratio of nodes to edges, introduce nodes
with no fanout, and nodes with fanin of one when ghost inputs are
present. Because the original algorithm is rather long, it is not possible
to re-iterate all steps in sufficient detail to convey the changes, so we
will restrict the discussion here to a discussion of the most important
aspects and refer the interested reader to the software documentation
and the public-domain code available from the authors.

Referring to the five steps of the algorithm in Section 2.2, our
most important changes involve the identification of registered nodes,
ghost inputs and ghost outputs, as follows:

1. The nlatch registered nodes must be separated from the other
ghost outputs in Step I, because we would like to make these have
no other fanouts, if possible, so they must be known before degree
allocation.

2. Ghost inputs do not need to be assigned until Step IV, though
we do need to take care in earlier steps to allow for ghost inputs in
the total combinational fanin of a delay-level. The ghost inputs are

5However, if a circuit is defined using defaults, sequential user-parameters such as
nDFF and nBack are automatically broken into GI and GO by the first phase of GEN.

assigned randomly and uniformly across the nodes in a level with
available fanin.

3. The assignment of non-registered ghost outputs are kept until
a new post-processing step VI. Sequential sub-circuits usually have
fewer available edges than fully combinational circuits, so we use the
ghost outputs, in part, to “repair" any extra zero-fanout nodes which
may exist (usually some, but a small proportion) on the delay-level
they are assigned to. The remaining ghost outputs are not assigned
uniformly. We want to generate more realistic circuits which tend
to have a smaller number of high-fanout nodes to previous levels,
rather than many nodes with a single ghost output. To do this, we
choose a random subset of the nodes on each delay-level requiring
ghost outputs, smaller than the number of ghost outputs available,
then assign the ghost outputs uniformly to nodes in the subset.

This process generates a combinational circuit with the correct
number of ghost inputs and outputs at the required combinational
delay levels so that the gluing process can take multiple circuits and
glue them together.

4.2 Gluing sub-circuits. The problem of joining sub-circuits to-
gether into the final sequential circuit C is essentially one of ap-
propriately matching the ghost ports between the sub-circuits into
back-edges and FF-edges.

When gluing begins, we have a list of sub-circuits Ci , i = 1::c to
be connected, sorted by increasing sequential level. Each sub-circuit
contains a list GIlist of ghost inputs, a list FF outlist of ghost
outputs which have been labeled as targeting a flip-flop (from nlatch

in the specification), a list GOlist of other ghost outputs intended for
back-edges and a list FF inlist of primary inputs in sub-circuits at
non-zero sequential levels which will become flip-flops. Each ghost
input and output is attached to a node in the sub-circuit, and inherits
the combinational delay of that node.

The matching is constrained by combinational delay and sequen-
tial levels. We cannot join a node at sequential level l to a node at level
l+1, unless that node is a PI (i.e. intended to become a flip-flop). We
also cannot join a node to any node at a level beyond l + 1 without
violating the definition of sequential level on the nodes of C . Simi-
larly, we cannot join a ghost output on a node x to a ghost input on a
node y if d(x) � d(y), without violating the combinational delay of
y, and we cannot connect two ghost outputs attached to x with two
ghost inputs to y, or we create a duplicate fanin to y.

This problem reduces to a standard bipartite matching problem
and there are known exact algorithms to solve it. However, the ex-
act approaches are based on network-flow algorithms which are too
slow (i.e. O(n

p
n) time) to allow us to generate large circuits. Fur-

thermore, in order to apply the geometric locality heuristic used in
combinational generation to gluing, and later to extend the gluing
algorithm to one which does not find all connections, but leaves some
ghost inputs and outputs disconnected (as would be desired for multi-
level hierarchical generation) we would require weighted matching,
which usesO(n2 log n) time [9]. Since the other parts of GEN operate
in either linear or O(n log n) time, this would not be acceptable.

Thus we approach the gluing problem heuristically with a greedy
algorithm. The most important aspect of the operation is to prop-
erly order the connections so as to increase the chances of finding a
good solution. A solution which fails to connect all possible edges
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will result in GEN later having to diverge from its input-specification
by creating extra flip-flops or by moving ghost inputs or outputs to
different nodes.

Because registered ghost outputs are labeled separately from the
other ghost outputs, the problems of gluing back-edges and gluing
FF-edges are independent. However, different sub-circuits do “com-
pete" for back-edges. We give priority to earlier sequential levels by
processing in the following order (justified later):

for i = 0..c /* c is the num sub-circuits */
connect back-edges from other Cj to GIs of Ci.
connect FF-edges from registered GO

of Ci to next-level PIs other Cj

end for

4.2.1 Locality of connection. We have previously alluded to a
“locality metric" in making combinational connectionsbetween nodes
in Step V. Define the index of a node as an integer proportional to the
node’s location in the node-list for a given delay level in any sub-
circuit (the 0..ni � 1 ordering of the ni nodes in delay level i, scaled
to the maximum width over all combinational levels). When edges are
connected in Step V of the base algorithm, we probabilistically favour
connections between nodes which have closer indices, in order to
introduce clustering in the circuit. This form of geometric clustering
is evident when viewing pictures of circuits generated by heuristic
graph-drawing packages such as DOT [5] (e.g. see Figure 2(c)).

In order to generate realistic circuits it is important to continue this
process when connecting nodes to flip-flops and back-edges, or we
generate circuits with many crossing edges which are overly difficult
to place and route. Thus, we continue to use the node-index for
sequential gluing.

4.2.2 Gluing back-edges. The algorithm for gluing back edges
to the ghost inputs of one circuit Ci from all other sub-circuits is as
follows.

First create a destination list of all ghost inputs in Ci and a source
list of all ghost outputs in the other sub-circuits which are at later
sequential levels. Sort both lists by increasing index within decreasing
delay. The purpose of this order is to use up the highest delay ghost
outputs first (because they are more likely to not find a matching ghost
input and then require a flip-flop or movement later), and to match
them to the highest delay ghost inputs with which they are compatible.
Given that, we want to match indices as best as possible.

Now proceed through the source list in order. Define the match
value of a source node xwith a destination node y as1 if (x; y) is an
invalid edge (by the constraints above), and d(y)� d(x) otherwise.
We search the destination list for the first node with lowest match
value, which also lines up a compatible index by the sorting. Note
that we don’t actually have to look at the entire destination list: this can
be done in O(d) time, using a couple of additional pointers indexed
into the destination list, and combinational delay d is essentially a
constant so the algorithm is fast.

The time required for this gluing phase is dominated by the sort-
ing, so we needO(n log n) time6 per sub-circuit, of which there are a
constant number. Note that “n" in the algorithmic complexity refers

6Due to the fact that the node lists are already sorted, we can reduce this to anO(n�d)
algorithmwith appropriatedata-structures. However, given the tight constants which exist
for sorting algorithms, we believe the constant for doing this would dominate logn for

to the number of back-edges in C , which is typically about 5-10% of
the size of the whole circuit7 .

The reason that the main algorithm processessub-circuits in order
of their sequential level is that the earlier levels typically have both
many more nodes and greater combinational delay, and also a more
complex overall structure (later levels often reduce to a register-file
with only a couple of logic nodes.)

4.2.3 Gluing Edges to Flip-Flops. The process for gluing nodes
with ghost outputs labeled as latches to primary inputs at the next
sequential level is more straightforward. For each adjacent pair of
levels, create a source and destination list as before, sort the lists by
index (independent of delay), and line up nodes directly (the lists are
the same size, by the original specification of the sub-circuits). This
is an additive factor of O(n log n) time to the preceding steps, so the
entire gluing algorithm remainsO(n log n) time (In this case,n refers
to the number of flip-flops in the circuit which is, in practice, not the
entire size of the circuit.)

Note that the order in which sub-circuits are considered is unim-
portant, as the connections are independent.

4.2.4 Post-processing. As mentioned earlier, it is not always the
case that a perfect matching exists for the back-edges. A post-
processing step is necessary to resolve the remaining incompatible
ghost inputs and ghost outputs. In this step ghost inputs and outputs
are moved to suitable candidates elsewhere in the sub-circuits until
matches are found. In extreme cases (flagged by warnings from GEN)
up to 40% of back-edges can be unresolved before post-processing,
but typically only 0-5% of ghost inputs and outputs (which comprise
less than 1% of all edges) remain after the main gluing algorithm.

5 Validating the Quality of GEN-circuits

As mentioned in the introduction, we test the viability of sequential
GEN-circuits by generating clones of industrial benchmark circuits,
and comparing the post-placement and routing statistics from VPR and
MAX+PLUS2 for the original circuit with that of the clone circuit and
a equivalently sized (in terms of nodes, edges and I/O) random graph.
The circuits referred to here are actual industrial circuits belonging to
Altera. The first author was able to perform these experiments while
employed there on a summer internship.

Before giving the routing results, we need to describe how we
generate the random graphs used for comparison.

5.1 Generating random graphs. We generate a random directed
graph onn nodes andne edges with nPI primary inputs,nPO primary
outputs, with nDFF available flip-flops (for breaking combinational
cycles, as we want only synchronous designs) and kmax-bounded
fanin. The algorithm is as follows.

1. Determine the maximum k such that 2 � k � n is less than ne.
Create a random permutation � of size 2 � k � n, to represent 2 � k � n
nodes, and join nodes�2i and �2i+1 with an edge, i = 0::(k � n)� 1.
This creates a graph on 2 � k � n nodes with k � n edges, where each
node is connected to exactly one other, i.e. a random matching.

2. Now collapse all nodes labeled �ki::�(k+1)i�1 into a single

all reasonablen, so it is not of practical interest to do so. The same applies to most (but
not all) sorts which occur in GEN.

7This doesn’t change the abstract complexity, but the algorithm runs faster in practice
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node xi. The result is an n node undirected graph where the degree
of each node is exactly k (a k-regular graph8) and the distribution of
graphs generated is guaranteed to be uniformly distributed over all
k-regular graphs of size n.

3. Direct all edges from lower-numbered nodes to higher, to get
a directed graph. Randomly label nPI fanin-0 nodes as PI (similarly
nPO ) fanout-0 nodes as PO). Randomly connect non-labeled fanout-
0 and fanout-0 nodes by new edges until they are exhausted, then
continue randomly connecting random nodes to random nodes with
fanin less than kmax until the graph contains ne edges. When it is
necessary to connect a node to a node of a lower number, separate the
two by a flip-flop if one remains to allocate, otherwise search for an
alternate connection that does not involve a back-edge.

This process generates a graph with the specified number of each
node-type and the specified number of edges. A more standard defi-
nition random graph (i.e. G(n; p) on n nodes with each edge existing
with probability p), would not be an interesting comparison with GEN,
because it is much too hard to place and route (e.g. it contains a clique
on log(n) nodes, almost always).

The graphs generated by the above process could be seen as a “first
pass" version of GEN which takes fewer parameters into account. In
fact, this algorithm alone would be an improvement over most naive
approaches to generating random graphs for benchmarks. Comparing
real circuits to clones and these random graphs is essentially measur-
ing how far along the scale from “random" to “real" the current GEN

approach has traveled.

5.2 Comparing Routing Results. Table 1 shows the comparison
between the original, GEN and random circuits after placement and
global routing by VPR9 [3] and implementation on an Altera 10K20-
RC240 FPGA [2] by MAX+PLUS2. The benchmarks used are all
of the appropriate size (between 60 and 100% logic utilization, with
most in the higher end of the range) for exercising this 10K20 part,
which has 1152 LCELLS (logic blocks) and 240 user I/O pins.

The first column gives each circuit a name. The second column
gives the total wirelength after global routing. Then we give the per-
centage of extra wiring (beyond that required for the original) required
by the corresponding clone circuit and random graph. Similarly, we
then have the track-count (channel width) followed by the percent-
age increase in track-count for the corresponding clone circuit and
random graph. The last two columns show the percentage increase
in “routing resources" used by the clone circuit and the random cir-
cuit when implemented on the 10K20 FPGA. To respect information
about the benchmark circuits which is proprietary to Altera the actual
resource usage in the device is not displayed—for this study it is only
the percentage difference that is of interest.

For our metric of FPGA resource usage,we count the total number
of full-horizontal, half-horizontal and vertical lines used by the design
in a 10K20, as reported by MAX+PLUS2. Because we are using an
actual device, it is possible that a design does not “fit." Though all
original circuits do fit in the 10K20, 1 of the clone circuits and 13 of

8There are details to deal with the double and and self-connections between nodes
without sacrificing the uniform distribution, but these are beyond the current discussion.

9VPR uses the model of a symmetric array of logic blocks, similar to a gate-array or
a Xilinx 4000 series FPGA, and reports the total wirelength and the maximum channel
width (number of tracks) used after global routing.

VPR wire VPR tracks 10K20 tracks
clone rand clone rand clone rand

Circuit orig %diff %diff orig %diff %diff %diff %diff
A 5102 21 144 6 16 83 14 132
B 7719 64 215 5 80 160 71 .
C 6344 27 160 6 16 116 30 .
D 6818 20 147 6 16 133 32 .
E 6609 53 266 5 60 160 35 .
F 4293 57 188 5 40 140 41 197
G 4147 2 158 5 0 140 16 208
H 5107 21 137 5 40 120 0 123
I 4692 19 155 5 40 160 23 132
J 6087 34 153 5 60 120 51 165

K 9313 42 202 6 33 133 38 .
L 6546 36 222 6 33 100 55 .

M 7748 86 248 5 100 220 85 .
N 10794 -43 52 10 -40 30 -41 .
O 8070 17 140 7 14 100 25 .
P 5562 88 268 5 80 180 90 .
Q 6460 71 167 5 80 160 . .
S 6417 29 166 5 40 140 24 .
T 4662 28 170 6 0 83 16 108
U 8828 2 156 6 16 150 53 .
V 4876 81 201 4 75 175 63 174
W 4837 28 143 4 50 150 34 117

mean 6358 35% 175% 5.5 38% 134% 36% 151%

Table 1: Routability comparisons between original benchmark cir-
cuits, GEN-clones and random graphs (‘.’ indicates a no-fit).

the random graphs did not, and these are indicated by a ‘.’ in the table.
The last row of the table indicates the averages for each column.

For the last two columns, the missing data is not included in the
average.

We find that the clone circuits are, in general, harder to place
and route than are the original circuits we took the specifications
from, though a given clone is always closer to the original than the
corresponding random graph. On average, the clone circuits used
35% more wirelength and 38% more tracks than the original circuit,
whereas the random graphs used graphs used 175% more wirelength
and 134% more tracks. This is further reflected in the implementation
of the clone and random circuits on the commercial FPGA where
(when they did fit) the clone circuits used an average of 36% more
routing resources and the random graphs used 151% more routing
resources. We also find that about half of the random graphs do not
fit at all in the part, whereas only one clone failed to fit. In [6, 7]
we give the definition of a measure quantifying reconvergence in a
circuit. By this measure, GEN circuits differ by about 0.19 on average,
while random graphs differ by 0.28 on average.

These results show that the GEN clone circuits are significantly
more realistic than the random graphs. However, the GEN circuits are
also harder to place and route relative to the originals. We believe that
a greater amount of local clustering is required, and we are currently
exploring methods to provide this.

5.3 An Example. Here we present a small example that helps to
understand the overall operation of GEN, and the type of variation
that can occur in generating a clone. Figure 5 shows a picture of the
MCNC circuit “bbtas," and a clone circuit produced by its GEN-script
from CIRC. Note that we use node labels to illustrate back-edges to
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(b) Clone circuit

/* CIRC 3.0, compiled Wed Aug 28 15:36:17 PDT 1996. */

X = { name="bbtasclone";

L0=(@.comb_circ) { name="L0"; n=8; kin=4; nPI=2; nPO=2;

nDFF=0;nEdges=7;level=0;delay=2; nBot=3; shape=(2,3,3);

nGI=13;GIshape=(4,9,0);nGO=3; GOshape=(0,0,3); nZeros=5;

POshape=(0,2,0);edges=(0,7,0);outs=(5,0,2,1);max_out=3;};

L1=(@.comb_circ) { name="L1"; n=3; kin=4; nPI=0; nDFF=3;

level=1; delay=0; nEdges=0; nBot=3; shape=(3); nGI=0;

GIshape=(0); nGO=13; GOshape=(13); nPO=0; nZeros=3;

POshape=(0); edges=(0); outs=(3); max_out=0; };

glue=(L0, L1);

};

output(circuit(X));

(c) Clone script, produced by CIRC.

Figure 5: The MCNC circuit bbtas, its clone script from CIRC, and a
resulting clone produced by GEN.

improve readability.
Two aspects that the parameterization does not capture are symme-

try and the type of locality that would be reflected in the block-diagram
of the circuit. We observe that the clone circuit exhibits less symme-
try than the original, and in larger circuits we can see identifiable
block-structure in the original design which is not passed on to GEN

for duplication. Note, however, that re-capturing the block structure
and symmetry in a flat netlist are open (and very difficult) research
problems of their own. These problems will likely have to be tackled
(or simulated with a model in GEN) in order to further increase the
quality (routability) of the benchmark circuits generated.

6 Conclusions and Further Work

In this paper we have defined a new model for describing sequential
circuits as a hierarchy of combinational sub-circuits. The model
includes the parameters of ghost inputs, ghost outputs and their delay-
shapes. The model can also be used to describe more general forms of
hierarchy than simply that between sequential levels. We have given
an algorithm for generating realistic sequential benchmark netlists
given the exact parameterization of a circuit in this model. This
builds on previous research in which we gave a similar algorithm for
the simpler problem of purely combinational circuits.

In addition, we have described a public-domain10 prototype soft-
ware system which implements the sequential model with a charac-
terization program (CIRC V3.1) and a generation program (GEN V3.1).
Using the software, we have “cloned" a number of industrial bench-
mark circuits, and showed that GEN-circuits are significantly closer
to real circuits (in terms of placement and routing statistics) than
carefully generated random graphs.

GEN is also capable of generating circuits “from scratch" using

10See http://www.cs.toronto.edu/�mdhutton/gen or
http://www.eecg.toronto.edu/�jayar for details.

a set of default scripts based on analysis of benchmark circuits, and
which can be user-modified. The software executes quickly, and can
generate circuits for current FPGA sizes with only a few minutes of
CPU time. GEN is able to produce circuits in a number of netlist
formats, including Actel ADL, Altera AHDL (TDF) and Xilinx XNF.

CIRC and GEN prototypes have been installed for use at Xilinx,
Altera and Actel, several CAD software companies, as well as other
industrial and academic sites. In addition, we have contributed bench-
marks created by GEN to an informal partitioning competition at the
1996 Design Automation Conference (organized by Franz Brglez),
and to other partitioning researchers[1].

We see a number of areas for future exploration. One is to modify
the base generation algorithm to automatically impose a partition
hierarchy on the circuit as it is being built, possibly similar to Darnauer
and Dai’s [4] use of the Rent-exponent to introduce hierarchy in their
partitioning benchmarks. Though GEN will currently output circuits
of up to about 100,000 LUTs (about 20 times the size of a modern
FPGA), we believe generating high-quality large benchmarks will
require some degree of imposed symmetry and hierarchy within the
netlist. A second area for future work would be to generate “system"-
level hierarchy, by including datapath and other structured logic which
can be synthesized or produced with LPM modules and random logic
components from GEN.
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