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Abstract 
Given a set of sparse and heterogeneous outcrop and drilling data, 
WC want to retrieve a complete and coherent model of the under- 
ground model, i.e. to determine the entire geometry of the surfaces 
and volumes of the model as well as the topology of the contacts. 

The reconstruction method proposed in this article is intended to 
assist the geologist in his interpretation of 2-dimensional geological 
cross-sections. It constructs the geological formations one by one in 
an appropriate order. The reconstruction of each formation consists 
of three main steps. We construct a first model from the Voronoi 
diagram of the input data. Then we smooth the boundary of this 
formation without changing the topology. Lastly, we possibly shift 
part of the formation along faults. 

Expcrimcntal results on several examples show that the method 
is very effective. The method extends without major difficulties to 
truly 3-climensional reconstructions. 

Keywords : Shape reconstruction, Voronoi diagrams, Dcformablc 
curves, Geological structures. 

Topics : GIS software tools and environment, Novel applications 
in scientific and environmental domains. 

1 Introduction 

Besides scientific interest, a better knowledge of the subsoil 
is required in many applications. Let us mention the natu- 
Jai resource exploration (gas and oil reservoirs, ore bodies), 
civil engineering (tunnels with thick rock covering), cnviron- 
mental sciences (surface hazard linked to deep-seated exca- 
vations, undergroundmigration of pollutants, waste storage). 

The usual representations of underground geometry con- 
sist in 2D cross-sections. In the most common cast of scdi- 
mcntary terrains. cross-sections show geological formations, 
sedimentary interfaces and discontinuities of tectonic origin. 
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A geological formation correspond to a set of homogeneous 
layers having a given age, a sedimentary interface to a bound- 
ary between two or more formations, a discontinuity to a fault 
or a thrust sheet contact, which both result from tectonic dif- 
ferential underground motions. 

The existing and usual terrain modeling methods, arc most- 
ly based on surface oriented interpolations ([Mal89, SSM:W93, 
RHC+92]). These methods assume dense set of data, and 
their principal difficulties were collected by [May931 :: (I) 
creating surfaces with large variety of topology and geomc- 
try (2) creating volumes from surfaces (intersection of half 
spaces divided by these surfaces). Most of these modcling 
tools have been dcvclopcd in the context of oil exploration, 
where the seismic data arc very dense, and concern sedimen- 
tary terrains submitted to moderate tectonic deformations. 

However, in other contexts such as civil enginccrir,g or 
environment , it is much more difficult to collect data and 
also to interpolate them since tectonic deformations can bc 
very intcnsc. One has then to deal with data that arc J~JC, 
heterogeneous and sparse. Typical example are shown in 
Figures 17,24,26. In these cases, the interpolation methods 
cannot be applied any more and reconstructing a consistent 
model of the geometry of the subsoil from such data is a 
highly non trivial and time consuming task that requir-es a 
large cxpcrtise. The situation is even worse when truly 3D 
models arc searched. 

The goal of our work is to assist the geologist in this task. 
This paper considers only the reconstruction of 2D cross- 
sections. Our method constructs the fonnations one by one 
in an appropriate order. The reconstruction of each forma- 
tion consists of several steps that successively refines the dc- 
scription of its reconstructed model. The first step (Scclion 2) 
dcfincs the formation according to the nearest neighbor rule : 
a point P belongs to a given formation F if the nature of the 
soil at the data point closest to P is F. The corresponding 
map can bc cfficicntly obtained from the Voronoi diagram 
of the input data. This allows to separate the current forma- 
tion from the not yet JeconstJucted ones. However, additi.onal 
smoothing is required to obtain a geological correct fonna- 
tion, without changing the topology provided by the Voronoi 
diagram (Section 3). Faults are considered in a last step and 
the formation is updated to take them into account (Section 
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4). The overall reconstruction algorithm is presented in Sec- 
tion 5 and results are discussed. 

2 Topological Reconstruction 
2.1 The Voronoi Diagram 

LetS= {sir... , sn} be a finite set of points, called sites, of 
the Euclidean plane E2. The Voronoi diagram of these sites 
is the partition of the plane assigning each point to its nearest 
site (see Figure 1). The Voronoi diagram consists of n cells, 
one per site. The Voronoi cell V(s;) consists of all the points 
at least as close to si as to any other site : 

TV = {X E E’,‘d~q E S \ Sir 6(x, si) < 6(X, 4)) 

where 6 is the Euclidean distance in E2. 

Figure 1: Voronoi diagram and Delaunay triangulation of 
points in the plane. 

For convenience, we suppose that the sites are in general 
position, meaning that no four sites are co-circular. This is no 
real loss of generality since WC can symbolically perturb the 
sites [Sei94]. 

The dual graph of the Voronoi diagram is obtained by 
connecting the pairs of sites that belong to adjacent Voronoi 
cells by line segments (see Figure 1). Under the general 
position assumption, the dual graph of the Voronoi diagram 
is a triangulation called the Delaunay triangulation. The 
Delaunay triangulation has the property that the circumdisk 
of every triangle contains no sites in its interior; such a disk 
will be simply called an empty disk for short. 

The Voronoi diagram and the Delaunay triangulation of a 
set of n points in the plane can be constructed optimally in 
O(n log n) time [Au19 I]. For reasons that will be clear in the 
sequel, we use an incremental algorithm that allows to insert 
new sites efficiently. Although incremental algorithms may 
be quadratic in the worst-case, the algorithm we use requires 
O(logn) expected’ time for inserting a new site, which is 
optimal [BT93]. 

2.2 Data Discretization 

The initial data are not only points (samples or point obscr- 
vations) but more generally line segments and arcs of curves 
(seismic interfaces, directions). The Voronoi diagram can be 

‘Expectation is obtained by averaging over all the permutations of the 
entries. 

extended to such non punctual sites [Yap87]. However, the 
algorithms become more difficult to implement and to make 
robust. Rather than constructing a generalized Voronoi dia- 
gram, we prefer to discretize the data and to simply consider 
the Voronoi diagram of a discrete set of points. This is done 
in such a way that successive points on a discretized curve 
belong to adjacent cells in the Voronoi diagram (or cquiva- 
lently are joined by an edge in the Delaunay triangulation). 
This is always possible provided that sufficiently many points 
are taken (see [Boi88, ET921 for details). 

Moreover, the data may correspond to points inside a for- 
mation (typically drilling data) or to points belonging to the 
interface between two formations (mostly obtained from seis- 
mic images). Each point on a drilling line is colored accord- 
ing to the geological formation it belongs to, this informn- 
tion being part of the input. Each point on an inter&c is du- 
plicated. The two copies are slightly displaced, one on each 
side of the interface (see Figure 2). Each copy is colored ac- 
cording to the formation it belongs to. Interface directions on 
points, are handled like local known interfaces. 

Figure 2: Data discretization. 

2.3 Construction of Homogeneous Regions 

Each site in S has now a color and we color each cell in the 
Voronoi diagram of S as its corresponding site. By merging 
the adjacent Voronoi cells that have the same color, we obtain 
a partition of the plane into colored connected regions (see 
Figure 3). These regions are first approximations of the 
geological formations obtained by applying the following 
rule : A point P belongs to a formation F iff the site closest 
to P belongs to F. 

This rule dots not take into account the heterogeneous 
spatial distribution of the data. However, it will be used in 
our algorithm, to provide a solution that is. in most casts, 
topologically correct, ic. homotopic to the actual geological 
cross-section. 

Figure 3: Voronoi diagram of the discretized data of Figure 
27 (except the faults) - Homogeneous regions. 
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However, the shapes of the interfaces arc not smooth and 
do not look quite natural. The basic idea of our approach 
is to use the above rule (and the associated method based 
on the Voronoi diagram) to produce a first approximation of 
the topology and geometry of the cross-section. In the next 
section, we will see how it is possible to obtain smoother 
interfaces while keeping the same topology for the map. 

3 Smoothing the Interfaces 

Let us illustrate our goal on the simple example in Figure 
4. The bold polygonal lines are the original data (portions 
of interfaces). The dashed polygonal curve is the interface 
between the formations A and B as reconstructed by the 
method above using the Voronoi diagram. The thin curve is 
the smooth interface we are looking for. 

Figure 4: Two known contacts separating A from B (in bold 
line), the reconstructed interface (in dashed line) and the 
smoothed interface. 

We proceed as follows: a given formation is bounded by 
a sequence of polygonal lines, that arc alternatively original 
data (bold lines) and reconstructed portions (dashed lines). 
Each reconstructed portion c will bc smoothed so that the 
smooth curve 21 satisfies the following requirements : 

Conditi.on 1 : the endpoints of v and c are the same; 
Condition 2 : the tangent to w and to care the same at their 

endpoints; 
Conditi.on 3 : the (possibly multi-connected) region be- 

tween v and c does not contain any data points. 
Condition 4 : variation of tension and bending is mini- 

mized along 21. 
The first two conditions will guarantee smooth transitions 

between the original data and the reconstructed portions. The 
third condition will guarantee that the new map is homotopic 
to the first one. The last condition insures the new curve v to 
bc smooth. 

To realize thcsc conditions, we use defonnable curves (or 
snakes) introduced by [KWT87] and also studied in more 
rcccnt work by [NFGK]. A snake is considered as a dynamic 
system subject to internal forces and cxtcrnal constraints. 
The snake will deform until it reaches an equilibrium that 
corresponds to a local minimum of its energy. 

3.1 Desc:ription of the Energies 

Let c(s) be a reconstructed polygonal chain joining two data 
points as produced by the Voronoi reconstruction. The chain 
is parameterized by its normalized arc length s (i.e. arc length 
divided by the total length of c). In order to smooth c(s), 

WC consider a deformable curve ?J(s, t) parameterized by its 
normalized arc length s and by time t. We associate to the 
deformable curve an energy. The snake deforms itself in 
order to minimize its cncrgy and reaches an equilibrium when 
its energy reaches a (local) minimum. 

The total energy is the sum of an internal energy and of an 
external energy. The interml energy measures the resistance 
of the curve to tension (elasticity) and to bending (rigidi1.y). 

Intern = Etension + &ending 

E tension(t) (1) 

In our experiments, the parameters 7uI and w2 are kept 
constant along the whole curve and equal to 1. 

The external energy Eczrer7, measures the distance be- 
tween ~(s, t) and c(s). When this cncrgy decreases, v gets 
closer to c. 

E eltern(t) = I’ ~w,(sp(v(s, t), c(s)Ws (3) 

D(v(s, t), c(s)) denotes the distance bctwcen the two points 
of the curves u and c that have the same normalized arc length 
s. In practice, the distance D is evaluated at some discretized 
vertices of the curves and the integral is rep&cd by a :jum 
(see 3.2). 

If we increase dog, the importance of Eerte+,, with respect 
to Einl.mrn grows, and the curve ~I(.s, t) of minimal energy 
gets closer to c(s) (see Figure 5). This will be used to insure 
that condition 3 is satisfied. 

Figure 5: Evolution of U(S) when increasing the paramctcr 
‘W3. 

3.2 Minimizing the Energy 

Minimizing the energy of 7~ amounts to solve the Euler dif- 
fcrential equation [NFGK]: 

Let v(s,~) = (:c(s,t),~(.s!t)) et c(s) = (II(S), (I(S)). 
Equation 4 becomes : 
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{ 

-7u,& +w&x) = -w&(x-p)‘) 
--PO1 S(Y) + V2$(Y) = -7u3g+?J - d2) 

(3 
In order to solve this differential equation, we discretize 

the curves c and u by taking N + 1 regularly spaced points 
vi = (:ci, yi),N=e on v and N + 1 regularly spaced points 
Ci = (pi, qi)yco on C. 

Spatial derivatives are approximated by finite differences : 

g(Xi) = Xi - xi-1 (first derivative) 

$(Xi) = Xi+1 - 2Zi + Xi-1 (second derivative) 

The system above then becomes a linear system of N + 1 
equations in xi and N + 1 equations in yi : 

l for i E [2..N - 21 : 

UXi-2 + bXi-1 + CXi + bXi+l + UXi+2 = -W32)i 

nyi-2 + byi- + Cyi + byi+l + aj/i+2 = -WSqi 

with 

{ 

a = wg 
b = -4w2 - w1 (6) 
c = 6~2 + 2701 - ‘103 

l and for i E (0, 1, N - 1, N}, the initial conditions give 
us: 

~1 = pi et y1 = q1 (same endpoints) 

xi - ~0 = pi et yi - ya = qi (same tangents) 

Minimizing the energy is now reduced to solving this linear 
system. 

3.3 Ensuring Condition 3 

We initialize the external energy of u with ‘ws = 0, and 
therefore we obtain a smoothed curve that satisfies Condi- 
tions I, 2 and 4. However, Condition 3 is not necessarily sat- 
isficd as is shown in Figure 6 : differently from c (thin line), 
the smoothed curve 21 (dashed line) does not separate all the 
points labeled A from those labeled B. 

Figure 6: The region between c (in dashed line) and 21 (in thin 
line) contains a data point. 

In order to ensure that Condition 3 is satisfied, WC itera- 
tively increase the paramctcr ‘1~s until all the data points are 

correctly separated. Let us explain in more detail how this 
is implemented. Since c is composed of Voronoi edges, its 
vertices are the centers of empty disks circumscribing some 
triangles of the Delaunay triangulation of the data points (see 
Figure 7). Let T be the set of these triangles and U the union 
of their circumscribing disks. As c is contained in U, Con- 
dition 3 will be satisfied if u is also contained in U. If this 
is not true, the parameter ws is increased by a fixed amount. 
The procedure is repeated until 2, meets the requirement (see 
Figure 8). 

Figure 7: The union of Delaunay circumdisks. 

Figure 8: snake evolution with ws = 0.1 and ws = 0.4 

4 Faults 
Faults are accidents due to differential underground motions: 
geological formations are shifted along a fault as shown in 
Figure 9. 

Figure 9: Example of faults. 

In our method, faults are considered in a second stage, once 
the formation has already been rcconstructcd and smoothed. 
We then take them into account as described below, and 
update the formation. 

For each reconstructed interface, WC search all its intcrsec- 
tions with the fault. If there is no intersection, the interface 
is not changed. If there is one point of intcrscction, WC cut 
the interface at the intersection point leading to two picccs. 
We then smooth independently the two pieces. The only dif- 
ference between this smoothing and the one in Section 3 is 
that now the end point which is on the fault is not fixed but 
can move along the fault. An example is shown in Figure IO. 
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The input data (portions of an interface and a fault) are in bold 
line and the reconstructed interface is in dashed line. The two 
pieces lo/l and 121s of the interface after the insertion of the 
fault <arue in thin line. 

Figure IO: Insertion of a fault. 

If there are more than one intersection with the fault, we 
cut the interface at each of the intersection points. This leads 
to k + 1 pieces of interface. The first and the last ones arc 
smoothed as in the previous case. The I; - 1 other pieces are 
interpolated (set Figure 11 j. 

Figure 11: Insertion of a set of faults 

5 Global Reconstruction 
5.1 Order of Reconstruction 
Smoothing is not enough to produce interfaces that are mean- 
ingful from a geological point of view. Indeed, the junc- 
tions between the interfaces are “T-junctions” that obey some 
syntactic rules that must be respected (see [PS95, SSMW93, 
Fle92]). If two intcrfaccs S, and Sb intersect, either S, in- 
terrupts Sl, (Figure 12 left) or .S’b interrupts S,. 

This allows to dcfinc a partial order among the formations. 
A formation A will bc said to precede a formation B if the 
interface between A and B is interrupting another interface 
bounding B. On the left of Figure 12, A precedes B and C; 
on the right, C precedes A and B. 

Figure 12: S, interrupts S’b - Sb interrupts S,. 

Our algorithm will process the formations in this order, 
which will result in a correct reconstruction of the junctions 

between the iInterfaces. On the other hand, ignoring this order 
or using a b.ad order may result in a wrong reconstruction. 
This is illustrated in Figure 13. For the same initial data 
(in bold), WI: can obtain three different results, depending 
whether we s.tart the reconstruction with B, A or C (from left 
to right). 

Figure 13: Reconstructions associated to different orders. 

Let us consider now a more realistic example in Figure 14. 
Fo, , F7 are eight formations bounded by the interfaces 

so. . . . . SC. 

Figure 14: Example of a geological section. 

We can represent the partial order relations bctwcen the 
formations as a tree : A formation Fj is a child of a formation 
Fi iff Fi prcccdcs Fj. Figure IS shows the tree corresponding 
to Figure 14. 

I F-r 

Figure 15: The tree representing the order relations between 
the formations of the previous figure. An arrow from r; to 
Fj means that F; precedes Fj. 

Formations that are children of a given node in the tree 
arc not sorted by the order just defined. Such formations arc 
called conformable. Processing the conformable formations 
in an appropriate order is also important. Indeed, if formation 
A is documented by more data than a formation B, it is hcttcr 
to reconstruc:t A before B. This is illustrated in Figure 16, 
where formal:ions A, B, C, D are more and more distant from 
the topographic surface and thus less and less documcntcd. 
If we reconstruct formation D first, this fonnation appears 
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to be erroneously divided in two disconnected parts and not 
the one expected (left part of the figure). On the other hand, 
if we process the formations in the order A, B, C, D, E, 
we obtain the correct result (right part of the figure). If we 
only consider the case of moderately deformed terrains whcrc 
the geological formations lie in a normal order, the younger 
are closer to the topographic surface. Assuming in addition 
that the geological formations considered are less and less 
documented as they are deeper-seated, we therefore define 
a total order on the formations which, in addition to the 
previous partial order, sorts the children of each node in the 
tree according to their age. Our algorithm assumes that this 
order is known and given as part of the input. 

Figure 16: Importance of the order of reconstruction for 
comformable formations. 

5.2 Incremental Reconstruction 

We will now reconstruct the formations one by one in the or- 
der just defined. The reconstruction of a formation F con- 
sists of several steps. First, we reconstruct F ignoring the 
data points associated to the (already reconstructed) fonna- 
tions preceding F. The portions of the interfaces between F 
and the non yet reconstructed formations arc then smoothed. 
Then we shift F along the faults that possibly intersect F. Fi- 
nally, we remove the portions of F that lie inside the preced- 
ing formations. 

We sum up the overall reconstruction algorithm below : 

input : M a discrete set of colored data points 
c = (1,. . . , c} the set of sorted colors 
Mi the set of data points of color i 
a set of faults Li, i = 1,. . ,1 

output : the reconstructed formations Fl, . . . , F, 

for i = 1 to c ( 

I. compute the Voronoi diagram of lJfci b1j ; 

2. compute the union Fi of the cells of color i ; 

3. smooth the interfaces between F; and the Fj, j > i ; 

4. insert the faults L,, . . Ll and update Fi ; 

5. remove the portions of Fi that are included in one of the 
Fk,k<i) 

The algorithm is illustrated on the example shown in Fig- 
ure 17. Figures 18-23 show the different steps in the recon- 
struction of formation B, C and D. Figure 23 (right) shows 
the final result. 

F;l”ll / 

Figure 17: Initial data. 

Figure 18: Formation A is known - Reconstruction of Forma- 
tion B, Steps 1 and 2. 

Figure 19: Reconstruction of object B, Steps 3-5. 

Figure 20: Reconstruction of Formation C, Steps l-3 

Figure 21: Reconstruction of Formation C, Steps 4 and 5. 
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Figure 22: Reconstruction of Formation D, Steps 1-3. 

Figure 23: Reconstruction of Formation D, Steps 4 and 5 

The three other examples shown in Figures 24-25, 26-27 
and 28-29, correspond to real cross-sections given by BRGM 
(French Research Group in Geology). The initial heteroge- 
neous data are discretized (see Section2.2 ) and finally con- 
sist of 346 points in the example of Figure 24, 282 points in 
the example of Figure 26, and 194 points in the example of 
Figure 28. The reconstruction time for these instances takes 
about one second on a Sun Spare 5. 

Figure 24: Initial data. 

1 

drilling line fi”hS 

Figure 26: Initial data. 

Figure 27: Final reconstruction. 

-Typ , 
-- ._ 

Figure 28: Initial data. 

Figure 29: Final reconstruction. 

6 Conclusion 
We have presented a method to reconstruct a map of 2D ge- 
ological sections from sparse and heterogeneous data. Our 
method automatically subdivides the underground into for- 
mations and produces a volume based representation of the 
underground. It has run successfully on many examples. 
Several extensions will he pursued. 
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First, we have used the usual Euclidean Voronoi diagram. 
However, if additional knowledge on the orientation of the 
strata is known at some points, we can use this information 
to adapt locally the metric. For instance, in Figure 16, it 
would be more appropriate to use a metric that reflects the 
horizontal orientation of the strata. This can be obtained by 
using a metric whose unit ball is a horizontal ellipsis instead 
of a circle. Voronoi diagrams can be computed for such more 
general metrics and the rest of the method would remain 
unchanged. 

We arc currently extending the method to 3D reconstruc- 
lion. This can be done without major changes since the tools 
used in this paper can be extended in 3-space. Usually, the 
input consists of a set of 2D sections, typically along two or- 
thogonal directions. We can first use the above method to re- 
construct the sections and then extend the method to recon- 
struct the underground between the sections. Results will ap- 
pear in a companion paper. 
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