
A Summary of Domain Analysis

Experience By Way of Heuristics

W. Lam
Dept. of Computer Science, University of Hertfordshire

College Lane, Hatfield, Herts ALlO 9AB, UK
W. Lam@herts.ac.uk, Phone: +44 1707284337, Fax: +44 17072S4303,

J.A. McDermid
Rolls-Royce University Technology Centre

Dept. of Computer Science, University of York,
Heslington,YO15DD, UK.

Abstract
Domain analysis is seen by wme in the reuse commu-
nity to be a key process for achieving systematic, large-
scale, reuse. Howeverr the success of a domain analysis
is largely dependent upon how well the domain analysis
process is carried out. This paper describes a set of heu-
ristics for domain analysis, which summari ses our expe-
rience of domain analysis in a palatable way for others.
The aim of these heuristics is to provide an inexperi-
enced domain analyst with practical advice about how
to cope with problems during the domain analysis proc-
ess. We explain when and how to apply each heuristic,
illustrated with examples taken from the domain analy-
sis case-studies we have performed at RoSEC, a com-
pany which manufactures electronic controllers for air-
craft engines.

Keywords Domain analysis, Domain engirteerin~ Re-
quirements reuse.

1. Domain Analysis: Background
Reuse is suggested to be a key to improving software
development and productivity [1], particularly where
one can identify a ~arrzilyof systems [2]. In recent years,
domain analysis has emerged as a central process in
achieving systematic reuse (see for example, the number
of references to domain analysis in the 7th Amual
Workshop on Software Reuse [3] and the 4th Annual
Workshop on Software Reuse Education and Training
[4]). Prieto-diaz [5] first defined domain analysis as “a
process by which in@m@ion used in developing s@ware
systems is identified, captured, and organised with the pur-
pose of making it reusable when creating new systems”.

Permission to make digital/hard copy of part or all this work for
personal or classroom use ia granted without fee provided that

copiaa are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and ita date

appear, and notice ia given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to Iista, requirea prior specific permission and/or a fea.
SSR ’97 MA, USA
@ 1997 ACM 0-89791 -945 -9/97/0005.. .$3.50

Although early domain analysis methods such as Fea-
ture Oriented Domain Analysis (FODA) [6] were criti-
cised for being too code-oriented [71, more recent meth-
ods such as Organisational Domain Modeling (ODM)
[8] are aimed across all levels of software development.
In addition, several companies have reported reuse suc-
cess stories using domain-specific techniques [9], [10].

2. Paper Contribution

Given the perceived optimism for domain analysis and
domain-specific reuse in general, many organisations
will be attracted towards this technology. Unfortu-
nately, much of the existing literature on domain analy-
sis concentrates on the results of domain analysis stud-
ies, with little in-depth critique of the actual domain
analysis process carried out. There is also a scarcity of
detailed case-studies describing the practical, day-to-day
problems and decision-making which are part of a do-
main analysis project. To the potential domain-analyst,
with no prior knowledge of domain analysis techniques,
it would be hard to prepare for the practical issues in-
volved in domain analysis from the literature alone.

We have done several industrial domain analysis case-
studies in the avionics domain at RoSEC, a company
which manufactures electronic engine controllers for
aircraft. Like in a typical organisation settin~ we learnt
what we could from the literature, but developed a bet-
ter understanding of domain analysis through practical
experience. We feel such experience will be of value to
others, and so in this paper, we have attempted to write
down some of the heuristics which help to guide the
way we now do domain analysis. First, however, we
briefly describe the case-studies upon which our experi-
ence is based.

3. Case-Studies

Modern aircraft engines are fitted with Electronic En-
gine Controllers (lXC) - essentially a computer which
runs engine control software (Figure 1).

54

http://crossmark.crossref.org/dialog/?doi=10.1145%2F258366.258386&domain=pdf&date_stamp=1997-05-01

control
Un(t

I .t. tx d.tict, on
op.f’at>or>

I

,10! ..4”’”’”” ,,format,o,,

Figure 1 The ElectroNc Engine Controller (EEC)

The EEC uses sensors to monitor the engine and other
components on the airframe (the aircraft body). The
EEC controls the engine via the operation of actuators,
such as valve, igniters and pumps. The EEC also ac-
cepts pilot commands, and provides status information
about the engine back to the cockpit. The EEC is em-
bedded and safety-critical, and is physically located as a
‘black-box’ on the engine casing.

Engines are manufactured as part of a series. Each en-
gine in a series may have one or more variants w hich re-
flect the requirements of a specific customer (an airline
company) and the interfacing to a specific airframe. We
therefore view engines as part of an engine family, and

apply a similar notion of family to the development of
the control software for the EEC.

The EEC is required to provide control in a number of
different domains. Three typical control domains are
outlined below (a good technical guide to how aero-
engines work can be found in [11]):

● Engine Starting: The rotation of the engine shaft
from a still position to a self-sustaining idle speed.

This includes control of fuel-flow into the engine
and subsequent ignition.
Reverse Thrust; Slowing down the aircraft quickly
after landing by reversing the direction of engine
thrust. This includes control of the thrust-reverser
doors which deflect the engine thrust,
Signal Validation: Checking readings from sensors
fo; accuracy. This may include comparison with a
value taken from a pre-defined model of normal
engine operation, or cross-checking with similar
values.

We have performed domain analysis case-studies over
these three domains, a summary of which is shown in
Table 1. A distinctive feature of our case-studies is that
we aimed our domain analyses at the level of require-
ments, as we believe this will give us greater leverage in
any later design and code level analysis. This follows a
similar theme to work in domain-specific software m-
chitectures [12]. We also felt that because of the com-
plex nature of the systems in these domains, it would
not have been sensible to have attempted to identify re-
use at the design and code level without first under-
standing requirements. The ‘size of typical system
document’ field provides some indication as to the size
of the domain. The ‘key output’ addresses the question
of what tangible artifacts were produced from the do-
main analysis — essential for making a business case for
domain analysis which can be presented to senior man-
agement.

q. Choice of Domain Analysis Method

How did we carry out the domain analysis in these case-
studies? We used the Organisational Domain Modeling
(ODM) method, as the method has a background of in-
dustrial usage and is well-documented [8]). Very
briefly, the main stages in ODM are

● Define the Domain. Bound the domain of focus, and
put it in context by defining its relationship with
other domains.

● Acquire Domain Infimnation. Gather information
about the domain from examining system docu-
mentation and talking to domain experts.

Table 1 Summary of domain analysis case-studies

55

●

●

●

●

●

Deuelop Descriptizw Models. Develop different mod-
els of the domain, paying particular attention to
those aspects of the domain which might be con-
sidered common to all systems in the domain, and
those aspects which are more variable.
R#ine the Domain Model. Integrate the separate de-
scriptive models into a single, consistent domain
model.
Scope the Asset Base. Prioritize the variations, so that
the most used variations, or those pertaining to the
most important customer, are given a higher pri-
ority.
Architect the Asset Buse. Determine how assets —
the reusable components — are to be parameter-
ised and linked together.
Implement the Asset Buse. Create the assets, and de-
velop an infrastructure, such as a tool, for organ-
izing assets,

The full ODM includes two initial staizes
project objectives and defining candid~te
domain analysis; we have omitted them
choice of domain was already determined.

s. Heuristics for Domain Analysis

for selecting
domains for
here as our

In this section, we describe the heuristics we have for-
malised for domain analysis. The heuristics are in-
tended to complement the ODM method, although they
could work equally well with other domain analysis
methods. We have tried to think deeper beyond the
scope of our own case-studies and eliminated what we
see as possible bias towards the avionics domain
(although there may be an unavoidable element of bias
towards embedded control systems). This is essential if
the heuristics are to be of use to domain analysts work-
ing in non-avionics-related domains. In order to facili-
tate ease of understandin~ we have characterised each
heuristic using the following pattern

●

●

●

The

Triggers: When and in what situations to use the
heuristic. We also indicate the ODM stage or
stages the heuristic is most applicable to.
Guidelines: The steps the domain analyst should
take.
Erarnple: An illustrative example of the heuristic
being applied (t&en from one of our case-studies).

heuristics also form part of a domain analysis
guidebook that we are curre~tly developing. ‘

5.1 He-tic 01 - Delineate overlapping do-

maille

Triggers
. Unclear domain boundaries The first step in domain

analysis is the definition of domain boundaries.
However, domain analysts who themselves may be
new to a domain will often find it difficult to identify
clear-cut domain boundaries.

● Shared or distributed functionality: One domain may
use or provide ‘services’ to another domain. l%is
can confuse where the domain boundaries actually
are.

. ODM stage: Define the domain,

Guidelines
● Sketch out ‘rough domains pictures using simple

Venn-like diagrams (as shown in Figure 2) which
show the selected domain and its relationship with
other related domains.

oNon-Overlapping
Domain 0Po55ibly

Owriapping
Domain

overlap

Figure 2 Venn-diagrarn of domains

Identify definite regions of overlap between do-
mains. Note that overlap can be characterised in a
number of ways for example, shared functions,
functions used by one domain but ‘provided’ by an-
other and objects used in both domains.
Indicate any possible regions of overlap, where it is
unclear if there is some cross-over or interaction
between domains.
Decision time decide if the regions of overlap, both
definite and possible, should be included as part of
the domain in the domain analysis. This should take
the form of a consultation process with the domain
experts.
Avoid taking on ‘large’ domains (in our experience,
these tend to be domains which are beyond the
knowledge of a single individual) which are gener-
ally beyond which often results in an unwieldy and
difficult to manage domain analysis process. In-
stead, treat a large domain as the individual analysis
of sub-domains.
Note that once the domains have been ‘sketched out’
as above, one can then proceed to define an individ-
ual domain more thoroughly (for example, using ER
diagrams).

Example
Figure 3 shows the use of Venn-diagrams in defining
domain boundaries. The domain of engine starting has
a definite overlap with the domain of fuel management
– fuel needs to be properly scheduled into the engine
for a successful engine start. There is also potential
overlap with the domain of signal validation as all sig-
nals used by the EEC for engine starting are first vali-
dated before being used.

56

oKcver5e
Thrust o5ignal

Validation

are validated

fuel scheduling

Figure 3 Venn-diagram for engine starting and related
domains

The domain analyst needs to be aware and alert for such
subtle interactions when attempting to define the do-
main at the start of domain analysis. We decided in the
end to treat the detailed aspects of fuel scheduling and
signal validation as areas outside of the engine starting
domain to keep our anafysis as focused as possible.

5.2 Heuristic 02 — Consider the “style” of the
domain model

Triggers
● Confusion about the nature of the domain model: The

main output from domain analysis is often a domain
model, but what do we mean by a domain model?
Does a domain model contain all or any of the fol-
lowing a taxonomy of domain concepts, an object
model of the domain (cf. object-oriented analysis
[13]), an object-composition model (Figure 4), a set
of abstract system requirements, a semantic network
of concepts and relations.

Is-Comprised-Of II
compo61te

domainrelaticmwhip

\
object

‘“h’ : ‘, ~
I

domain domain domain
object 1 object 2 object 3

+
Iu

b d

@Eizl
Figure 4 Skeleton obj-t-composition diagram

Domain knuwledge representation What notations are
to be used to represent the domain model? If the
domain model contains different kinds of domain
knowledge, it is unlikely that a single representation
will be sufficient.
Guide during akvnain knowledge acquisition: What do-
main knowledge is being elicited from the domain
knowledge ? What kind of questions should be
asked?

● ODM stage: Acquire domain information.

Guidelines
. Review what the objective of the domain analysis is

Requirements reuse? Code reuse? Or to produce
pedagogical material for non-experts?

● Determine the information needed to create a do-
main model which supports the stated objectives.

. Think about the representations that are most ap
propriate for the kind of domain model desired.

Example
The objective of our domain analysis of the reverse
thrust domain (and the other domains) was to achieve
the reuse of requirements. Our domain model therefore
is essentially a model of requirements. In parallel, we
also found it useful to moral in the reve~ thrust do-
main, which we did using an object-composition model
(Figure 5).

Figure 5 Partial object-composition model for reverse
thrust

5.3 Heuristic 03 — Identify the domain issues

early on

Triggers
●

●

●

9

lack of domain road-mqx Unless the domain analyst is
also a domain expert, he or she will also need to
learn about the domain in order to perform a do-
main analysis effectively. In highly technical do-
mains, a good starting point is often a high-level
picture of the domain.
Injbrmation overload At the start of domain analysis,
a domain analyst may be faced with a large amount
of system documentation and domain-related mate-
rials.
Focus during knowledge acquisition: The acquisition of
knowledge, particularly in interview situations with
domain experts, needs to be coordinated in order to
ensure there is proper focus for discussion.
ODM stage: Acquire domain information

57

Guidelines
● Identify the main functional areas of the domain, as

these are likely to be central domain issues. l%is can
often be done by looking at the structure of system

●

●

documentation, and picking out wchons wh]ch ad-
dress key topics.
Write candidate issues down, and discuss them with
a domain expert: “can you explain this issue to
me?”. More often than not, explanation of an issue
will raise further questions and uncover new termi-
nology, providing further material for discussion.

Probe further Have some issues been left out? Are
some issues more important than others? Are some
issues mandatory and some optional? Look to pro-
duce a map of the domain using these issues.

Example
Reading the functional requirements documents for sev-
eral different starting systems provided pointers to the
important issues in the engine starting domain; some of
these issues are listed Table 2.

Table 2 Some issues in the engine starting domain

We used the domain issues are subject areas which we
could ‘expand’ on, for example, as a way of devising
questions before interviewing domain experts.

5.4 Heuristic 04 — Recognise knowledge spe-
cialism

Triggers
● Searchfm ratiwle and explanation: [t may not be ob-

vious why certain behavior occurs in the domain.
The search for rationale and explanation is expected
to form a large part of the work performed by the
domain analyst.

58

Parttal domam picturr and bias; Speaking to a single
domain expert or using only a single source of do-
main knowledge is likely to give ordy a partial pic-
ture of the domain. A domain anafyst should seek to
construct a broader picture of the domain,
ODM stages: Acquire domain information and de-
velop descriptive models.

Guidelines
●

●

●

Use system documentation and text books to find
detailed knowledge about a domain. Note down
any ideas which are difficult to understand.
Make effective use of the domain experts time. Use
the analytical expertise of the domain expert to help
explain hard-to-understand concepts (rather than
just regurgitate details readily found in system
documentation).
Recognise that it may be necessary to consult a num-
ber o; domain experts, each w ith _their own expertise
or viewpoint on the domain. In avionics-related
domains for example, there are typically functional,
safety and performance experts.

Example
In the signal validation domain, we noted from the sys-
tem documentation that timing delays were ‘built into’
the validation procedure. Initially, this was confusing,
as it was not apparent why such timing delays were
needed. We noted this point down for explanation at
the next scheduled meeting with one of the domain ex-
perts. The domain expert informed us that timing de-
lays are needed to ‘ride over’ momentary surges pro-
duced by the engine.

5.5 Heufitic 05 — Achieve a consistent view

Triggers
● Inconsistent irzfbrmation: Information from one source

conflicts with information from another source,
● Conflicting opinions Domain experts provide domain

know ledge which appears to be in conflict with ex-
isting domain knowledge.

● ODM stages Acquire domain information and de-
velop descriptive models.

Guidelines
●

●

●

●

Question conflicts: Is there really a conflict? If so,
what actually is at conflict?
Identify the type of conffict. Is the conflict based on
factuaf information or a difference in personaf opin-
ion? In practice, we have found that conflicts are
usually a result of personal opinion rather than
based on direct facts.
Is it necessary to resolve the conflict? Conflicts in
terminology for example, may be acceptable (and
perhaps desirable) in multi-project environments.
In situations where one expert directly disa~ees
with another, it may be wise to seek a further opin-
ion.

Example
With multiple domain experts being involved in all our
domain analyses, there was a need to cross-check the in-
formation given by each domain expert for consistency.

Opinions differed, for example, on the naming conven-
tion applied to engine start modes. We had chosen to in-
clude experts from many different projects to give a
large basis of expertise, and found that the terms used
varied with the definitions adopted on different projects.
However, we recognised this to be a point of consis-
tency management rather than conflict resolution.

S.6 Heuristic 06 — Domain knowledge and sys-

tem knowledge is entwined

Triggers
●

●

●

Developing a generic model of the domain: Reusable ar-
tifacts are usually generic in mture with application
across a family of systems in a domain. Deciding on
an appropriate level of generality, however, requires
an appreciation of the interaction between generic
and system-specific information.
Informah”on Weeding: Given a body of information,
one of main tasks of a domain analyst is to weed out
system-specific information from more generic in-
formatio~ or abstract out generic information from
system-specific information.
ODM stages Develop descriptive models and refine
the domain model.

Guidelines
● A useful way to view domain modeling is as the

separation of three layers of information (Figure 6).

Figure 6 Information kayering

●

●

●

The generic core is what we might equate as the do-
main model. Concepts in the generic core should be
common or optional to all systems in the domain (or
a selected portion of the domain).
The instantiated core represents the specialisation of
the generic core. The specialisation is specific to a
particular system.
The ‘final system’ includes novel or unusual features
which are not subject to reuse and therefore outside
of scope of the domain model.

Example
In the engine starting domain, the notion of ‘flight en-
velope’ is often used to express the relationship between
altitude and engine speed. Within a certain range of al-
titude and engine speeds, it is preferable to perform a
starter-assisted start rather than a windmill start (i.e.
without the starter motor), and vice-versa. We might

consider the basic idea as explained above, as domain
knowledge and part of the generic core. The specific
values for these ranges is considered as system know 1-
edge and part of the instantiated core, specific to an in-
dividual aircraft engine. Note, however, that in this case,
the system knowledge can not be understood in isola-
tion from the domain knowledge; we need both to ap
preciate the full picture of flight envelopes. Perhaps we
should say that we have to know how to instantiate
domain knowledge in order to generate system knowl-
edge, and that the process of refining domain knowl-
edge is aided by an analysis of the relationship between
the two. We also consider that the symbiotic relationship
between the domain and system knowledge is a char-
acteristic of the safety-critical systems domain.

A novel feature, such as the ability to prevent the
starter-motor operating under normal operating condi-
tions, would bean aspect of the final system.

5.7 Heuristic 07 — Familiar notations facilitate

undemanding

Triggers
● Domain knowledge representation: How should do-

main knowledge be described?
● Dif@dty understanding new notations: The domain

expert has difficulty understanding the domain
model.

. ODM stage: Develop descriptive models.

Guidelines
● Think about the notations that are most appropriate

for representing domain knowledge.
● If possible, chose notations which are already in use.
. Recognise that new notations or languages will incur

a learning overhead, and may not be conducive to
the overall domain analysis process.

Example
The domain experts we dealt with were already ac-
quainted with notations such as data-flow, entity-
relationship and state-transition diagrams. It seemed
sensible to use these for developing the descriptive
models wherever appropriate. For example, we used
state-transition diagrams to model the operation of dif-
ferent starting modes, and entity-relationship diagrams
to describe the components of an ignition system (note
here that there is some overlap in the sense that states in
the starting modes may be related to states of the entities
in the ER diagram). In the signal validation domain, we
used data-flow diagrams to model the validation
schemes for individual signals.

5.8 Heuristic 08 — The right way to genemlise

Triggers
●

●

59

‘Multiple generalisation options: An inherent part of
domain analysis is generalisation across a family of
systems. However, there are often different ways in
which concepts can be generalised.
ODM stages: Develop descriptive model and refine
the domain model.

Guidelines
. Identify thedifferent possible generalisation options.
. Balance the level of reuse afforded by each option

against other factors such as ease of understanding
and efficiency of reusable components.

Example
An engine starting system is often characterised as a
number of starting modes. There is a great deal of over-
lap between the functionality provided by the modes
(all of them control fuel flow, igniters and valves in
similar ways). The core control (the parameters on
which the decisions to control the start are based) is dif-
ferent for each starting mode. Figure 7 shows two dif-
ferent ways of generalizing a starting mode.

6X3

F@re 7 Two different generalisation strategies

On the left, a generic state-transition diagram exists for
each starting mode. The Ground Start mode is instanti-
ated with specific iti”ormation about ground start to
form a specific Wound start module. On the right, a sin-
gle generic state component applies to all starting
modes, combining the common functionality wherever
possible, and is again instantiated with information
about ground start. It is important to remember we are
talking about a requirement specification here not a de-
sign - whilst we wish to avoid repetition and to high-
light common functionality within the specificatio~ we
also need to make each part of the specification com-
plete and easy to understand.

The structure with separate generic modules for the dif-
ferent starting modes was eventually adopted, even
though there was a high degree of commonality be-
tween the functionality provided by the different start-
ing modes. The common functionality was factored out
into a number of starting utilities (one for each kind of
fuel valve and air valve for example) which could be
used by afl modules in the specification. The main rea-
son for this was readability, the number of switches
needed to specify the requirements as a single generic
module made the specification over complex and hard
to understand.

.5.9 Heuristic 09 — Organise and structun the

domain knowledge

Triggers
Framework fw organizing domain knuwiedg~ One out-
put from a domain analysis is a domain analysis re-
port which includes documentation of the domain
model and associated artifacts. Some thought needs
to go into how the domain analysis report should be
organised so that the document becomes a resource
to others in the organisation, not just the domain ex-
pert.
Need @r managerial or non-expert view of a domain:
Managers and engineers who are non-domain ex-
perts may want to view information about the do-
main. This information needs to be pitched at an

appropriate level: not too detailed and not ae.sufing
existing knowledge about the domain.
ODM stage At the end of domain analysis.

Guidelines
● We mentioned in heuristic 03 the importance of

identifying domain issues early on during the do-
main analysis process. Issues are also a logical way
of structuring domain information.

Example
Figure 8 shows a simplified view of how we have
structured the reverse thrust domain into issues.

Figure 8 Using patterns to structure the aero-engine
domain

We have identified three main issues in this domain
safety, door operation and maintenance. Within each
main issues, we have identified a number of sub-issues
(not all of them shown). For example, the safety issue
has sub-issues concerning the jamrning of door and
thrust limitation (when the doors are in the process of
being opened or closed, there is a maximum thrust limit
depending upon the position of the doors). We have
organised the sections of our domain analysis reports
around the issues in the domain and we feel this has
greatly improved readability, both from the perspective
of domain experts and non-experts.

60

5.10 Heuristic 10 — Parametisation can help fac-

tor our variability

Triggers
?;eating reusable wmponents Creating reusable com-
ponents which can be used by application develop
ers is one of the most tangible and visible outputs
from the domain analysis process.
ODM stages: Architect the asset base and implement
the asset base.

Guidelines
●

●

●

Isolate the optional or variable elements of a concept,
and build these in as parameters for reusable com-
ponents.
The common and more stable elements of a concept
should not be parametised.
Avoid, however, large components with an excessive
number of parameters as this can lead to internal
and external problems. Internal problems in relation
to the efficient implementation of the component,
and external problems in relation to developers un-
derstanding the component.

Example
We have developed a number of reusable requirements
for signal validation by identifying and parametising the
elements which vary in system-specific requirements.
The reusable requirement below is concerned with the
synthesised model check and range check typically
found in specific validation schemes

[F (Ff2Vis lessthan N2P30ModLim)AND (N2VStat is not
‘Failure’)THEN

P30RangeHighequalP30RangeHighl
ELSE

P30RangeHighequalsP30RangeHigh2
ENDIF
SETP300wnFauh RANGECHECK(P300wnRaw,
P30RangeLow,P30RangeHigh)

where

N2V= Thevalue of validated N2 (the middleengineshaftspeed)
N2P30ModLim= Thevalue of N2, above whicha model of F’30
witlbe usedfor validation
N2VStat= N2VStatUS
P30RangeHigh= The Variablewhich takesthe valueof these-
lectedupper range limit
P30RangeHighl= Theupper limitof P30 range check,whenN2
beiowP30N2ModLim
P30RangeHigh2= Theupper limitof P30 range check,when N2
aboveP30N2ModLim
P300wnFauk = A flagindicatingif P300wn is in range
P300wnRaw = The Valueof raw P300wn
P30RangeLow= Thelower limit for P30 range check

Note how we have factored out the variable elements as
parameters or requirement variables. We have also
found that timing and iteration requirements can be
readily parametised:

Thetimeallowedtoperformonesingleprocessofinput valida-
tionshallnot exceed ExecutionTimeLimitmilliseconds.

Theiterationrate for the process of input validationshalfbe It-
erationRatemilliseconds.

61

where:

ExecutionTimeLimit= Maximumsingleexecution time
IterationRate= Iterationrate

5.11 Heuristic 11 — Model mandatory and op-

tional concepts to understand choice in the do-
main

Triggers
● Documenting cmmmonalify and optionality relationships

One emerging principle of domain analysis is to
separate aspects which are common to all systems in
a domain from those which are not. In practice how-
ever, we discovered that concepts often ‘interacted’,
and resided at different levels of abstraction, making
it difficult to establish a clear-cut boundary between
what was common and what was optional.

● ODM stages: Develop descriptive models, refine the
domain model, scope the asset base and architect the
asset base.

Guidelines
● Use the framework shown in Figure 9 as a starting

point for modeling mandatory m-d optionaf concep~
(a concept may be a requirement, an object or any-
thing of importance in the domain).

Figure 9 Framework for modeling mandatory and op-
tional concepts

●

●

●

Model the main mandatory concepts, represented as
a white bubble, first. Mandatory concepts are the
concepts which are common to all systems in the
domain).
Model mandatory concepts which are dependent
upon a main mandatory concept using the ‘leads to’
relationship.
Model optional concepts (represented as a bubble
with a dotted line) using the “’may lead to’ relation-
ship.

Example
The engine starting domain has over 70 individual
‘leads to’ and ‘may lead to’ relationships - this accounts
for a significant portion of domain knowledge. Figure
10 shows the relationship between a number of concepts
in the domain.

Figure 11 shows a generic clataflow diagram (DFD)

Q

which represents the software structure for a signal
contin u5 validation scheme. In short, inputs to the EEC need to

i9r]iti n /“’, be validated to ensure that inaccurate measurements
,’ etart ‘ (when a sensor is fault for example) are not used for

Ieade to \ limiter ~
\ control purposes. We developed the generic DFD by/\

leads to ._.
,,..,.,,,,:.,....

\

studying several ‘concrete’ DFDs for particular valida-
,,,,X.;,;;,:~,,;.

....@*..

‘b

tion schemes and identifying common elements. How-

“.;:: ;:*[a ever, the generic DFD does make a number of assump-
.&J* “5 Ieade to tions. For example, assumptions are made about the ba-

i nj.t@~~.@., OFF

b

sic architecture of the EEC, such as existence of a fault
.,. &~,:).

system, aircraft maintenance system and health system..:..:..:: .,,
may ,..,. We have also assumed that there will be at least three

lead to ~gig+?. kinds of validation strategies in operation range check
,,.. - -.

““~~
:**E ...&t#@@ input, cross-check input and model-check input. In ad-.,..,..,,..:.,:..

dition, the existence of a cross-check input implies a
“Wtiiiiti ::’
1,:; :,.:.:;.: ..:.7

W’qfyfl
non-single lane EEC architecture (a lane may be thought
of as a ‘mirror’ processor and databus).

Figure 10 Modeling mandatory and optional concepts
in the starting domain We feel such assumptions are valid for EECS on civil

aero-engines, but are probably at question in the context
Here, the concept of ‘continuous ignition’
must lead to a way of detecting that the igni-
tion has been extinguished (known as a

,,,fa,l.w;~:te~~..

m“ ““g”
flarneout) and a continuous ignition signal ““ “““
from the cockpit (we call these ‘follow-on’ \

<

genecit-c words

EEC fault fs”lt. fl#ig5

concepts). Note, however, that a continuous flags

ignition signal may lead to an automatic rn nge

timer warning (as excessive use of continu-
ous ignition significantly reduces the normal
life of an igniter). ,.WJ--:!:” %#Yg5

lnpt!t

5.12 Hetistic 12 — Clarify Assump-

tions p:?~,:.<~r’:?’k$$q

Triggers

“ 6

check flngs ?8 5t&lZUS

● Querying the domain model: During the de- raw

<

~o>h~ flag f“” a:;5tatu5

velopment of a domain model, the do-
words

lrlput

(npu$

main analyst and domain expert will need v.

to review the domain model at various “’’!!. <::.-
fl,?,l

checkpoints to check the accuracy, com-
. ..

pleteness and usefulness of the domain Figure 11 Generic DFD for signal validation
model.

● Validating the domain model: At the end of domain
analysis, there should be a formal period of valida-
tion where the domain model can be inspected by aIl
the domain experts.

. ODM stages: Develop descriptive models, refine the
domain model, scope the asset base, architect the as-
set base and implement the asset base.

Guidelines
. Critique the assumptions made by the domain

model and reusable artifacts Are the assumptions
valid for all systems in a domain or just a selected
portion? Are such assumptions realistic? Are there
any known cases which refute the assumptions? Are
there any technological developments in the near
future which will supersede or render such assump
tions void (this is of particular importance in do-
mains which might be considered as ‘high-tech’)?

Example

of military aero-engines. Such assumptions need to be
clarified when validating the domain model and again
when using the domain model.

%13 Heuristic 13 — Group together dated op-

tions

Triggers
. Concepts w“th optionality A domain concept may

have a number of associated options. For example,
different ways to abort from a ground start might in-
clude. turning the fuel off, various signal failure
messages, engine over-heatin~ starter over-heatin~
hang/ stall signal, engine start off, invalid speed or
temperature signals or any combination of these.

● ODM stages: Develop descriptive models, refine the
domain model and scope the asset base.

Guidelines
● Identify the core, basic concept; these are typically

issue or function related.

62

Identify all the options associated with a concept.
Question the option set: Have all the options been

5.14 Heuristic 14 — Note domain constraints

Triggers
●

●

Modeling constraints: A domain analyst is often con-
cerned with modeling constraints in the domain. For
example, When is concept A valid? When is concept
A not valid? What is the relationship between con-
cept A and concept B? etc. We have found in the
safety-critical systems domain that such constraints
needed to be treated as ‘first-class’ domain concepts.
ODM stages Develop descriptive models, refine the
domain ~odel, amhhect th~ asset base and imple-
ment the asset base.

Guidelines
●

●

A useful starting point is to consider the general
kinds of constraints that may be worth recording in
the domain analysis For example, functional, per-
formance and safety constraints. This may help to
highlight important constraints in the domain, which
can then be checked over with other domain experts.
Record the constraints in a way that they can be
tested. This may be in naturaf f%glish as a manual
test by a human, or in a more formal notation which
can he automatically checked.

Example
We have an informal notion of ‘rules’ to model con-
straints between requirements in the engine starting
domain; Table 4 illustrates some of the rules we have
used.

Table 4 Illustration of rules

We feel that once a rule base is established it can be used
as a means of proving the domain model through pro-
viding direct statements which we can use when ques-
tioning engineers. The rules can then be used (probably
hidden behind a tool) when instantiating the model to
guide or automatically select certain domain options
depending on the result of related parts of the instantia-
tion. For example, once we have decided how many ig-
niters we have on a system then we can hide (grey out)
all of the related options relating to single igniters.

Note that we have yet to formalise the syntax and se-
mantics of the kind of rules in the table above or to fully
appreciate the way in which they can be used to express
the commonality and variability relationships. The rule
system is part of our on-going research.

S.15 Heuristic 15 — Do a variability analysis to

anticipate potential change in the domain

Triggers
●

●

‘Understand variability in the domain: One principle of
reuse is to distinguish elements in the domain which
are constant from those elements which are variable.
Understanding potential variability in a domain is a
central pillar to mastering reuse.
Validation of domain model: How can we assess if the
domain model is accurate, complete and usable?
Select market jbcus There maybe much variability in
a domain. However, from a business perspective, it

maY be more advantageous to focus on selected
variability to address a particular market segment.
ODM staszes Acquire domain information, develop
descriptiv~ mod~ls, refine the domain model and
scope the asset base.

Guidelines
● Gather together a group comprising of domain ex-

perts, systems analysts, end-users and marketing
people. Brainstorm to produce a list of variabilities
in the domain, i.e. things in the domain which can
change.

● Select and prioritise the most important variabilities
(this may be guided by a market analysis to identify
the most profitable market segments).

63

. Use the variabilities identified as a checklist against
the domain model: is the domain model flexible
enough to handle all desired variabilities? If not,
domain artifacts may need to be revised.

Example
We did a variability analysis for the reverse thrust do-
main in the form of a 20 minute brainstorm, the results

of which are shown in Table 5.

The results are presented in a hierarchical form, where
large-grain areas of variability have been decomposed
into finer-grain areas of variabilityy. We used the vari-
ability analysis as a means of scoping our domain
analysis. For example, in 1.1.1. Type of thrust reverser,
there are 34 main different designs of a thrust reverser;
we selected one which was typically used on civil air-
craft engines as our customer focus was towards pas-
senger-based airline companies. The variability analysis
also helped us pinpoint areas in our domain model
where greater flexibility was needed.

6. Conclusions: The human element of muse

This paper has described a set of heuristics for domain
analysis based on the industrial domain analysis case-
studies we have applied in the area of aero-engine con-
trol. We have argued that the success of a domain
analysis is largely dependent upon how well the domain
analysis process is carried out by the domain analyst.
The focus of our work therefore has been on the capture
and dissemination of the principles which can be identi-
fied with successful domain analyses. The heuristics we
have presented go some way towards this, and draw
attention to the human aspects of domain analysis

which have been overshadowed by largely technical ac-
counts of methods and techniques.

Acknowledgments
The author acknowledges the financial support given by
Rolls-Royce Plc, the insightful discussions with other
members of the University Technology Centre and en-
gineers at RoSEC, and the help of Dr. Ben Whittle.

References

[I] Poulin, J.S., Caruso, J.M. and Hancock, D.R. (1993),
The Business Case for Software Reuse, IBM Systems
Journzd, 32(4):567-594, 1993.

[2] Gomaa H. (1995) ‘Reusable Software Requirements
and Architectures for Families of Systems’ Journal of
Systems and Software, 28:189-202.

[3] WISR (1995), Proceedings of the 7th Amual Work-
shop on Software Reuse, St. Charles, Illinois, August 28-
30,1995.

[4] WSR~ (1995), Proceedings of the 4th International
Workshop on Software Reuse Education and Trainin~
Morgantown, West Virginia, 1418th August, 1995.

[5] Prieto-Diaz R. (1990) ‘Domain Analysis an Intro-
duction’, Software Engineering Notes, 1547-54.

[6] Kang K., Cohen S., Hess J., Novak W. and Peterson
S. (1990), ‘Feature-Oriented Domain Analysis Feasibility
Study’ CMU/SEl-90-TR-21, Software Engineering In-
stitute, Carnegie-Mellon University.

[7J Wartik S. and Prieto-Diaz P. (1992), ‘Criteria for
Comparing Reuse-Oriented Domain Analysis Ap
preaches’, International Journal of Software Engineering
and Knowledge Engineerin~ 2(3):403431,

[8] STARS (1995), ‘Organisation Domain Modelling
Guidebook’, STAR!+VC-A023/011 /00, March 1995.

[9] Lim, WC. (1994), Effects of Reuse on Quality, Pro-
ductivity, and Economics, IEEE Software, 11 (5):23-30,
1994.

[10] Joos, R. (1994), Software reuse at Motorola, IEEE
Software, 11(5):4247, 1994.

[11] Treager, I.E. (1994), Aircraft Gas Turbine Engine
Technology (2nd Edition), ISBN 0-07-065158-2, Glencoe,
Ohio.

[12] Tracz W., Coglianese L. and Young P. (1993), ‘A
Domain-Specific Software Architecture Engineering
Process Outline’, Software Engineering Notes, 18(2):40-
49.

[13] Rurnbaugh J., Blaha M., Premerkmi W., Eddy F. and
Lorensen W., ‘Object-Oriented Modelling and Design’
Prentice-Hall ISBN 0-13-6300545,1991.

64

