
Another nail to the coffin of faceted
controlled-vocabulary component classification and retrieval

Hafedh Mili, Estelle Ah-Ki, Robert Godin, and Hamid Mcheick
D4partement d’htformatique

Universit6 du @e& h Montr~al
Case Postale 8888 (A)

Montr6al, PQ H3C 3P8, CANADA

Abstract

Our research centers around exploring methodologies for developing reusable software, and developing methods and
toofs for building with reusable software. In this paper, we focus on reusable software component retrieval methods that were
developed and teated in the context of ClassServer, an experimental library tool developed at the University of Qu6bec at
Montr6al to explore fssues in software reuse [15]. The methods dfscusaed in tbfa paper fall into two categori~ 1) string
search-based retrieval metbod$ and 2) keyword-based retrieval methods. Both kinds of methods have been implemented and
tested by researchers, both in the context of software repositories (see e.g. [6,9]) and in the context of more traditional docu-
ment tibrarles (see e.g. [2,25]). Experiments have shown that keyword-based methods, which require some manual, labor-
intensive pre-proceashrg, performed only marginally better than the entfrely mechanical strhtgsearch methods (see e.g.[6, 2S]),
raising the issue of cost-effectivene= of keyword-based methods as compared to string search baaed methods. In this paper, we
describe an implementation and experiments which attempt to brfng the two khtds of methods to a level-playing field by: 1)
automating as much of the pre-processing involved hr controlled vocabulary-based methods as possible to address the crds
issue, and 2) using a realistic experimental setting in which queries consist of problem statemenlx rather than component
specifications, in whjch query results are aggregated over several trials, and in which recaU measures take into account overlap-
ping components. Our experiments showed that string search based methods performed better than semi-controlled
vocabulary-based method$ which goes further in the direction of more recent component retrfeval experiments which chal-
lenged the superiority of controlled vocabulary based clarification and retrieval of components (see e.g. [61).

1. Introduction

The problem of compcment retrieval has been widely
addressed in the software reuse literature. A wide range of com-
ponent categorization and searching methods have been pro-
pose~ from the simple string search (see e.g. [15]), to faceted
classification and retrieval (e.g. [21]) to signature matching (see
e.g. [27]) to behavioral matching (see e.g. [10, 28] or even [8]).
Different methods rely on more or less complex descriptions for
both software componertts and search queries, and strike dif-
ferent trade~ffs between performance and cost of implementa-
tion [17]. The cost of implementing a retrieval method involves
both initial set-up costs, and the cost associated with formulat-
ing, executing and refining queries. In this paper, we describe
the implementation and experimental comparison of two such
methods, free-text based retrieval and multi-faceted
classification and retrieval of reusable code components.

Typically, retrieval experiments focus on abstract perfor-
mance measures such es recall and precision, which are used
lwth as absolute measures, or as a way of comparing methods
(see e.g. [6]). Recall and precision, which have traditionally
been used to measure the performance of bibliographic retrieval
systems, have been criticized because they view relevance as a
yes/no property, and because they don ‘t take into account the
specific goal that the searcher is trying to achieve.

Permission to make digitaUhard copy of part or all this work for
personal or clessroom use is grented without fee provided that

copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date

appear. and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific parmisaion and/or a fee.
SSR ’97 MA, USA
@ 1997 ACM 0-89791 -945 -9/97 /0005 ...$3.50

Further, reuse being essentially a cost issue, comparing
classification and retrieval methods based on retzievaf perfor-
mance measures alone is of little use for methods whose set-up
and use costs are significantly different. Finally, for a reuse
library tool to be successful, the cost of reusing has to be per-
ceived by potential reusers as being significantly less than that
of developing from scratch [26], and the cost of performing
searches is only one of several costs associated with an instance
of reuse [17]. These issues have been a major concern of our
research, both in the design of retrieval algorithms, and in
evaluating them.

Within the context of our research, we have developed
four classes of retrieval algorithms: 1) retrieval using full-text
search on software documents and program files, 2) navigation
through the structure of components, 3) multi-faceted
classification and retrieval of components, and 4) signature
matching. We are es much interested in pwformance-based
comparisons between the different methods, as we are con-
cerned about getting the tools and methods adopted by organiza-
tions end used by their developers in a realistic development
environment. Issues of set-up costs for the various methods
have been a major cmtce~ and we tried to automate as much
of the pre-processing steps as possible, lest we degrade slightly
retrieval performances. The experiments described in this paper
compiwe full-text retrieval with a variant of multi-faceted
classification in which we attempted to automate some of the
Iabr-irrtensive pre-processing steps. The experiment design
was airned towards simulating real-life situations, and the
evaluation of retrieval performance was goal-oriented, rather
than a simple count of returned and potentially useful com-
ponents. The experiments showed that our efforts at automating
multi-faceted classification of compnents were not very ffrtit-
ful. They also showed that full-text retrieval of components was
superior to multi-faceted retrieval, which contradicts the result

89

http://crossmark.crossref.org/dialog/?doi=10.1145%2F258368.258393&domain=pdf&date_stamp=1997-05-01

of document re~ieval experiments in the information retrieval
literature.

In the next section, we describe the representation of
software compvmts used by our library tool. In section 3, we
describe the multi-faceted retrieval of software components. The
retrievaf exue.riments are described in section 4. We conchtde in
section 5. -

2. Representing

2.1. Overview

reusable components

Thii work is part of ongoing research at the University of
Qu6bec at Montr&l aiming at developing methods and tools for
developing reusable software (see e.g. [7, 14, 18]), and for
developing with reusable software (see e.g. [15, 16, 19]). Our
work on supporting development with reusable components
centers around a tool kit called ClassServer that consists of vari-
ous tools for classifying, retrieving, navigating, and presenting
reusable components (see Figure 1). Reusable components con-
sist essentially of object-oriented source code components, occa-
sionally with the accompanying textual documentation. The
internal representation of reusable components supports the four
reuse functionalities mentioned above, namely, classification
retrieval, navigation, and presentation. Raw input source files
are put through various tools— called extractors— which
extract the relevant pieces of information and package them for
the purposes of the four reuse functionalities. The information
extracted by these tools includes language-defined structures,
such as classes, variables, methods,and methodparameters. To
these, we added views, which are client- or application-specific
interfaces that classea may support, and the notion of object
jhrmeworks, which are class-like object aggregates that are used
to represent application frameworks and design patterns [20].
Each kind of component is defined by a descriptive template
which includes: 1) structural information describing the kind of
subcomponents a component can or must have (e.g. a class has
views, a view has variables snd methods), 2) code, which is a
string containing the definition or declaration of the component
in the implementing language, and 3) descriptive attributes,
which are used fol search purposes, as in a claw has an author
and an application domai~ method has a purpose, etc.

The tool set may be seen as consisting of three subsys-
tems. The first subsystem supports the required functionalities
for full-text retrieval of source code files. Simply puL words
from user queries are matched against the contents of source
code files (or other kinds of textual information). Before this
matching is done, a number of pre-processing steps are per-
formed with two goals in mind: 1) speeding up searck and 2)
maximizing the chimces for matchmg by removing inessential
lexical variations. To speed up the search an inverted list is
created once and for all, which is a table whose keys are unique
“meaningful” * words and whose values, for each word, are the
documents in which that word occurred. In order to remove
unessential lexical variations, the words of the table are first put
through a “word stemmer” which reduces a number of word
forms to the same “stem” (as in “facility” and “facilities” reduc-
ing to “facilit”).

The component browser and the keyword retrieval sub-
systems use the structured representation of the components
extracted using the tool referred to as “semantic/structured

1. Commonweds such as “the” “however”, etc. are not taken into
account in either the inverted list or the queries,

parser” in the Figure. The parser for C++ was developed using
Lcx and Yacc, and a public domain C++ grammar [23], which
we augmented to handle templates. The Smalltalk parser was
written directly in Smalltafk. For both parsers, the parsing pro-
duces a trace of the traversal of the abstract syntax stree. The
trace consists of a batch of component creation commands,
which are executed when we “load” the trace; that is the struc-
tured component loader.

2.2. A Multi-Faceted Classification of Components

Attributes are used in ClassServer to represent
categorization/classification facets, as in Rieto-Diaz’s multi-
faceted categorization of components [21]. Auributes are them-
selves objects with two properties of their owrx 1) te.xf, which is
a (natural language) textual description, and 2) values, which is
a collection of key words or phrases, taken from a predestined
set referred to as the vocabulary of the attribute. The text is
used mainly for human consumption and for documentation
generation [13]. Filling in the values property is referred to as
categorization or indexing. Typically, human experts read about
the software componen~ and chose key words or phrases from a
predetirted lis~ this is referred to in the information retrievaf
literature as munual controlled-vocabulary intkcing [24]. In
some cases, we used automatic controlled-vocabulary indexing
whereby a key word or phrase is assigned to an attribute if it
occurs within the tatfield. More on this in section 4.2.2.

For a given attribute, e.g. “Purpose”, multiple values are
considered to be alternative values , rather than partial values.
For a given vocabulary, the terms of the vocabulary (key words
and phrases) may be organized along a conceptual hierarchy.
Figure 2 shows excerpts of the conceptual hierarchies of key
phrases for the attributes “Application Domain” (Figure 2a)
and “Purpose” (Figure 2.b). Typically, for a given attributq the
keywords are organized in a single hierarchy whose root is the
name of attribute itself. Notice that the “Application Ekmain”
hierwchy of key phrases is inspired from the (ACM) Computing
Reviews’s classification structure [4]. The hierarchical relation-
ship between key phrases is a loose form of generalization,
commonly referred to in information retrievaf as “Broader-
Term” [24]. Attribute values (key words and phrases) me used
in boolean retrieval whereby component attribute vrdues are
matched against required attribute values (queries); more on this
in $ 3. The hierarchical relationships within an indexing voca-
bulary are used to extend the basic retrieval algorithms by
adding different degrees of matching (instead of true or fake)
between two key words, which now depend of the iength of the
path separating them in the hierarchy (see [16]).

3. Muti-faceted Retrieval Of Reusable
Components

ClassServer includes a search tool-- called
ChrsSeardter-- [hat enables developers to retrieve software
components based on the keyword values of their attributes. We
implemented three matching algorithms: 1) a weighted boolean
retrieval (see e.g. [24]), 2) conceptual distance measures, and 3)
classification. Both conceptual distance measurements and
classification use semantic relationships between keywords-
hierarchical relationships for the case of classification [16]. For
the purposes of tits paper, we limit our discussion to boolean
and weighed boolean retrieval. We begin by discussing the
structure of queries and the operations that can be prformed on
them.

90

-—.-
1

Full-text retrieval

I ~
I FGiii=id

1k%$h:bab]’

/

#LJlgl&>

II rhis class::’

~ikc,
Peraqn(mtage,...)
// rfrlsConstnsc[o
.,.

}
classWoman: Perso

/

r TKeyword-retrieval

T

-1

) Data flow

Figure 1. Overall architectu~ of ClassSetver

z AdministrativeDataProwssing

~

Application airs
ComputerAidedEngineesing

d

Filtering--- \
Samptirlg-- \

DaraAcqul .
LifeAndMedicalSciences

!

EncodingDecoding-
\ SocialAndBehavioralScisme.s

Communica< MessagePassin& -- ,

DataProcess< DataConvemiew --, DataBasefnIerrogation
(a)

T~cisionSu~ ‘foma*Re
QuestionAnswering

. .Forccastrqy - DocusnentRelricval

‘ CommandAndCknrtrol

(b)

Figure 2. Hierarchies of key phrases for the attributes “Application Domain” and “Purpose”.

3.1. Queries measures, respectively. Symbolically:

Our choice for the representation of queries involved a
trade-off between flexibility and expressiveness, on the one
hand, and allowing users to specify the most common queries
most easily and most efficiently, on the other. As a guiding
principle, we liened the specification of a query to the process
of specifying a prototypical component. Accordingly, the simp-
lest form of a quety is a list of so called atwibtie query terms
(AQTs), considered to be ANDed. h its simplest form, an
AQT consists of an attribute, and a list of key phrases, con-
sidered to be ORed. In the actual implementation, each AQT is
assigned a weight and cut-off poin~ used for weighted boolean
retrieval, discussed further below, and conceptual distance

* Query ::= AQT I AQT AND Query
* AQT ::= Attribute Weight CutOff ListOfKeyPhrases
* ListOfKeyPhrases ::= Key Phrase I Key Phrase OR Lis-

tOfKeyPhrases

A single AQT retrieves the cxsmponenta whose attribute <Attri-
bute> has at least one value in common with <LutOfKey -
Phraaes>. Viewing attributes aa functions, an AQT denoted by
the four-tuple cAttribute, Weight, Cut Off, LktOfKeyPhrase~
retrieves the components C such that Attribute n Lis-
tOfKeyPhrases #0. The query denoted by the tuple (AQTt,,..,

91

,4 QTk), returns the intersection of sets of components that

would have been returned by the individual AQTs.

With weighted boolean retrieval, components are
assigned numerical scores that measure the extent to which
they satisfy the query, instead of being either ‘‘in” or “out”,
Let Q be a query with terms (AQT1,...,AQTJ, where AQT, =
<Attibut~,Weigh~, CutOffi,ListOfKey Pftrmesi>. The score of a
component C is computed as follows:

~Weigh@core(AQTi,C)

Score(Q,C) = ‘1 (1)

~Weigh~
j=)

where Score(AQTi,C) equals 1.0 if
ListOfKeyPhrasesi n Attribute,(C) # 0, and O otherwise.

Notice that only some combinations of AQTs make
sense since each kind of component has a different set of
applicable attributes. This, plus our goal of making the
specification of queries easy led us to support two ways of ini-
tializing queries: 1) by specifying the kind of component we
wouId like to search on, or 2) by specifying a component. In
the fist case, the query is initialized to an initial list of AQTs
corresponding to the default set of atrnbutes for the component
category with empty lists of key phrases; the user has then the
option of adding and/or removing AQTs, and must specify lists
of key phrases for the AQTs. When a query is initialized from
a componen~ in addition to using the attributes of the com-
ponent to select the initiaf list of AQTs, we use the values of
those atrnbutes to initialize the list of key phrases for those
AQTs. We believe that this will actually be the most natural
way of submitting a query, in terms of integrating in the
worktlow of developers: typically, a developer would start
entering, explicitly or implicitly, the specifications of a com-
ponent to be built depending on the problem at hand, and on
the component’s interactions with other components; those par-
tial specifications may serve as a way of searching, in the
library of components, for that that satisfies those require-
ments.

3.2. Operations On Queries

Queries in ClassSearcher may be combirre~ once pro-
cessed, using the usual set-theoretic operators (union, intersec-
tio~ and set difference) directly on the answer lists. This
enables developers to formulate arbitrarily complex queries
involving negation, ORed AQTs, ANDed values for the same
AQT, or combinations thereof. Note, however, that within a
single query, the AQTs are always ANDed, and multiple
vafues are always ORd. This forces us to write queries such
as

FIND COMPONENTS C SUCH THAT
[Purpose(C) = Rename A Copy A ~(Move)] OR
[IntendedUsers(C) = UnixHacker]

as a boolean expression of four separate queries. Namely, let

QI = ((purpoSe,{Rename})).Q:; ((Purpose, $,opy})), @ =
((Purpose,{Move})),
((IntendedUsers, {UnixHacker})), the above request can ;
satisfied using the boolean expression Q =
(QIA CLA -@i) V Q,), or the equivalentexpressionusing set
operations: (Q1n(&Q.JwQ4.

We chose not to generalize the format of queries for the

purposes of accommodating the above query more readily, for

a number of practical and theoretical reasons, FirsL we believe
that such queries are relatively uncommon so as not to warrant
compl icsting the format of queries, or offering two different
formats. Second, from a theoretical point of view, negation is
difficult co express mathematically in the context of graph-
based conceptual distance measurements (see [22]). Finally
class ifrcation is hard to interpret semantically if a query con-
tains two ORed AQTs that correspond to different attributes
[12].

3.3. ClassSearcher

Figure 3 shows the graphical interface to ClassSearcher.
The upper third of the window contains two identical lists of
queries, identified by names. The selection in the left list
determines the state of the rest of the interface. The right list ia
used simply to specify (i.e. select with the mouse) the second
operand to tie set/logical operations. The pane with heading
Query Transcription is used for output only, and shows m
SQL-like tmnscription of the currently selected query in the
left lis~ notice that weights and cut-off values are not
represented in the transcription.

Figure 3. Graphical Interface of ClassSearcher.

The pane labehd Search Types is used to set the parameters
(cut-off, to the right) and perform (button SEARCH) the
currently selected search type— BooleanSearch in this case.
Result List(score) shows the answer list for the currently
selected search type, ordered by decreasing order of score
(shown between parentheses). The button “Add Term” is used
to add an attribute query term (AQT) to the currently selected
query. The list of AQTs for the currently selected query, with

92

their weight and cut-offs shown between parentheses, is shown
in the leftmost bottom pane labeled Query Terms(weight,cut
off). The buttons “Remove”, “weight”’, “Cut Off”, and
“Add Value” are relative to the currently selected query term
(AQT), with self-explanatory names. “Add Value” enables
developers to navigate through the hierarchy of keywords of
the corresponding attribute (see e.g. Figure 2a) to select a
value. The button “Rem. Value” removes the currently
selected value in the list above it (Term Values).

4. Retrieval experiments

4.1. Experimental design

In this first set of experiments, we were more concerned
with establishing the usefulness of the library tool in a produc-
tion setting than we were with performing comparisons
between the various retrieval methods. It is our belief that such
comparisons do not mean anything if a developer won’t use
ANY of the methods in a real production setting. The decision
for a developer to use or not use a tooi has to do with: 1)
his/her estimate of the effort it takes to build the components
from scratch [26], 2) the cost of using the library tool, inchsd-
ing formulating the queries and looking at the results, and 3)
the perceived track record of the tool and the library in terms
of either finding the right components, or quickly ‘‘convinc-
ing” the developer that none could be found that satisfy the
query. Typically, comparative studies between the retrieval
methods focus on the retrieval performance, regardless of the
cost factors. Second, to obtain a fair and finely detailed com-
parison the format of the queries is often restricted in those
experiments to reduce the number of variables, to the point
that they no longer reflect normal usage of the library.

With these considerations in mind we made the follow -
ing choices:

1) we only cxmttrolled the search method that the users
could use to answer each of the queries, without giving
a time limit on each query, or a limit on the number of
trials made for each query; we assumed that users will
stop when they are convinced tiat they have found all
that is relevanh

2) we “spied” on the subjects’ interactions witlr the tool by
recording a trace of the actions performed. This allowed
us to obtain finer experimental data without interfering
with the subjects’ workflow.

Note that the trace &ta may not always be of sufficient quality
to make reliable statistical inferences. For example, with
boolean retrieval, subjec~ could search on two search atrn-
butes, separately or in combination. One attribute, ‘‘Applica-
tion Domain”, was indexed manually with a manually-built
vocabukuy, while the other, “Description”, was indexed
automatically with the automatically generated hierarchy (see $
4.2.1). We didn’t ask the subjects to use one or the other, or
both in combmation. When we studied the tnces, it turned out
that the “Description” attribute was used in only two of the
43 keyword queries performed by the different subjects, and
neither query returned a relevant document. Accordingly, we
have no basis for comparing the quality of the two attributes.
However the fact that the “Description” attribute was used
only twice tells us that subjects didn‘t feel it provided useful
information, and tha~ in and of itself, is a valuable data.

The experimental data set consisted of aboul 200 classes
and 2000 methods from the OSE library (see $ 4.2). We used
11 queries, whose format is discussed in section 4.3. Seven

subjects participated in the experiment. All subjects were
experienced C++ programmers. They included two professors,
three graduate students, and two professional developers work-
ing for the industrial partners of the project. Two subjects (a
professor and a graduate student) did not complete the experi-
ment, and we had to discmd the results of the few queries they
DID complete. The subjects were given a questiomtaire which
included the statements of the queries, and blank spaces to
enter the answer as a 1ist of compmrent names, much like an
exam book. For each of the initial 77 (subjec~query) pairs, we
randomly assigned a search method (keyword-based versus
plain text). For each (subject,query, search method) triple~ the
subject could issue as many search statements as s/he wishes
using the designated search, with no limitation on the time or
on the number of search statements. The experiment started
with a general presentation of the ftsnctionafity of the tool set
(about 45 inn), followed by a hands-on tutoriaf with the tool
set (about 1 hour), providing the subjects with art tmderstand-
ing of the theoretical underpinnings of the functionalities, as
well as some practical know-how. Before leaving, the subjects
were asked to fill out a questionnaire to collect their qualitative
appreciation of the toolset.

In order to analyze the results, we used the query ques-
tionnaires to compare the subjects’ answers to ours, which
were based on a thorough study of the library’s user manual
and some code inspection where warranted. For this first
experiment, the traces generated for the subjects were analyzed
only to determine which attributes were used for boolean key-
word retrieval. The traces included enough details, however, to
support more and finer analyses.

4.2. The library

As mentioned earlier, the data set consisted of the entire
OSE library [5], which contained some 200 classes and 2000
methods distributed across some 230 files. A shell script put
the files through a C++ pre-processor (to process the #include
directives, among others) before they were input into the C++
extractor, which generated a file of Smalltafk commands to
construct the reusable C++ components. Because of the good
quality and format consistency of the in-line documentation,
we were able to assign C++ comments as text values for the
“Description” attribute of various components (classes,
methods, variables).

For the purposes of this experiment, we classified com-
ponents using two attributes ‘‘ApplicationDomain”, and
“Description”. Classification according to “Application-
Domain” was done manually, although fairly systematically.
For this “attribute, the classification hierarchy followed closely
the table of contents of the textual documentation, whose
organization is based on the application areas covered by the
library. Generally speaking, if a component is dkcussed in
some paragraph, we assign it the title of the smallest section
that contains that paragraph. A consequence of this indexing
scheme is that not all methods had values for the attribute
“Application Domain”. For example, constructor methods
were rarely discussed explicitly, and ye~ are always present.
However, we can be sure that all the classes, or some of their
superclasses had values for “Application Domain”. For the
“Description” attribute, all the steps were automated, from the
construction of the vocabulary, to the actual indexing of reus-
able COItIpOIteIttS. Both steps are briefly discussed below.
While the quality of the indexing vocabulary and of the index-
ing method have a significant impact on the quality of
retrieval, because the experimental subjects seldom used the
attribute “Description” in their queries, we shall keep the

93

descriptions very brief (see [19] for a thorough discussion); on
the other hand, this may very well be the ultimate measure of

the quality of that attribute, i.e. whether it was deemed useful
or not by the subjects.

4.2.1. Building a hierarchy of domain concepts

These are two aspects to building a conceptual hierar-
chy. FWSLthere is the problem of finding a set of terms (key-
words or key phrases) that desaibe the important concepts
withii a domain of dmcourae, and that use the most widely
accepted terminology. To this end, we used a variant of statist-
ical indexing which, given a document collection, it considers
ss valid cament indicators those terms which occur neither too
often, nor too rarely, and which occur unevenly in the docu-
ment collection i.e. are concentrated in a small subset of the
document collection [24]. However, instead of using single
words as potential content indicators (or index terms), we used
“noun phraaesz”, which we extracted from the OSE software
documentation using Xerox’s Parts of Speech Tagger (XPost)
[3].

Having identified the set of important domain concepts
it is important to organize them in a conceptual hierarchy, both
for navigation purposes (e.g. to find the proper term to use in
a query) and to support the extensions to boolean retrieval
mentioned earlier (see also [19]). We adapted an algorithm
that we had developed to organize a set of index terms into a
graph- more specifically, a hierarchy— based on their usage
profiles within a document collection [11]. The basis of that
algorithm was the hypothesis that index terms that often
characterize the same documents (i.e. co-occur in the docu-
ments’ indices) tend to be related, and should be connected;
additional heuristics were used to refine the relationships [11].
The new a&ptation of the algorithm performed rather poorly
compared to the experiment described in [11], and this for a
variety of reasons, including the more problematic nature of
the da~ and the much smaller size of the data set [19]. Note
however that the quality of the relationships within the gen-
erated graph has no impact on indexing (discussed next), and
that in the end, it had no measurable impact on rerneval per-
formance because the attribute “Description” was seldom
used.

4.2.2. Automatic indexing from a controlled vocabulary

The information retrieval literature makes the distinction
between manual controlled vocabulary indexing, and automatic
“unconmolled vocabulary” indexing [24]. With manual con-
trolled vocabulary indexing, subject experts read documents
and assign to them an index consisting of several terms, meant
to be content descriptors, taken from the predeflrted set of key
terms, referred to as the controlled vocabulary. By contrast, the
basic premise behind automatic uncontrolled-vocabulary index-
ing is that the words that occur in the document with a certain
statistical profile are good content indicators. The relative mer-
its of the two approaches have been thoroughly debated in the
literature (see e.g. [2, 2S], and we won’t indulge into the
debate for the purposes of this paper. Suffice it to say that we
used a mix of the two methods: we did use a controlled voca-

2. Curnputerscience bcins a relatively new field, most concepts am

stilt described by noun phmsses, as in “Software Engineering”

“Bubble Smt”, ‘‘Riming Monitm’ ‘, ere., radur than singte words

as is the essc fu mom maure fietds such as mcdicinq see [23] for

a fasciristing trestmcs!t of lhe cvotution of languages and

rerrninology.

bulary for indexing and retrieval, but the indexing was done
automatically [19]. At first glance, this approach shares simi-
lar problems with automatic plain-text indexing and retrieval to
the extent that classification (and retrieval) depends on authors
having used the same words as the controlled vocabulary, and
on the fact that matches are done in context. We argued in
[19] why this is not a big problem here, and that we are able
to achieve the advantages of controlled vocabulary indexing at
a fraction of the cost.

Simply pu~ automatic indexing with a controlled voca-
bulary works as follows: a document D is assigned a term
T=wlwz . ~. Wn if it contains (most of) its component worda,
consecutively (“... w]wz ~“ “ w....”), or in close proximity
(“...wlnlnzwzwJ . . . wn... “). In our implementatio~ we reduced
the words of both the terms of the vocabulary and the docu-
ments to their word stem by removing suffixes and word end-
ings. Also, we used two tunable parameters for indexing: 1)
proximity, and 2) threshold of number of words found in a
document, to the total number of words of a term, before the
term is assigned to the document; we refer to it as the purtial
mulch rhreshofd. The proximity parameter indicates how many
words apart should words appear to be considered part of the
same noun phrase (term). Maarek et al. had found that 5
worked well for two-word phrases in english [9]. It has been
our experience that indexing works best when both parameters
depend on the size of the term.

This method was applied to the “Description” attribute
using the vocabulary produced by the algorithm described in #
4.2.1. As it turned OUL the quality of indexing for the
“Description” attributes did not really matter &cause the attri-
bute was used only twice (see section 4.1).

43. Queries

Information retrieval systems suffer from the difficulty
users have in translating their needs into searchable queries.
The issue is one of translating the description of a problem
~theirneeds) into a &scription of the solution (relevant docu-
ments). With document re~ievrd systems, problems may be
stated as “I need to know more about ~>”, and solutions as
“A document that tafks about <Y>”. For a given problem, the
challenge is one of making sure that cX> and <Y> are the
same, and in systems that use con?solled vocabulary in&xing,
traird librarians interact with naive users to help them use the
proper search terms,

With sojlware componenl retrieval, the gap between
problem statement (a requirement) and solution &scription (a
specification) is not only terminological, but also conceptual.
In an effort to minimize the effect of the expertise of subjects
in art application, and their familiarity with a given fibrary,
component retrieval controlled experiments usually use queries
that correspond closely to component specifications. This does
not reflect normal usage for a reusable components library tool
because. For instance, users typically do not know how the
solution to their problem is structured, and for the case of a
Ctt component library, e.g., the answer could be a class, a
method, a function, or any combination thereof. It has gen-
erally been observed that developers need to know the underly-
ing structure or architecture of a library to search for com-
ponents effectively [17]. Accordingly, in an effort to get a
realistic experimen~ we formulated our queries as problems to
be solved. Each query was preceded by a problem description
setting up the contex~ followed by a statement “Fred a wuy of
qxrfonning a given tasb”. The problem description is also
used to familiarize the subjects with the terminology of the

94

application domain using textbook-like language3

4.4. Component relevance

The difference between traditional bibliographic docu-
ment retrieval and reusable component retrieval manifests itself
in the retrieval evaluation process as well. The concept of
relevance, which serves as the basis for recall and precision
measures, is notoriously difficult to define. Within the context
of bibliographic document retrieval, a search query for a con-
cept X is understood as meaning “I want documents that talk
about X“, and hence a document is relevant if it “tafks about”
X. This definition is different from pertinence which reflects a
document’s usefulness to the user [24], which depends, among
other things, on the users’ prior knowledge, or on the per-
tinence of the other documents shown to them. Recall, which
measures the number of relevant documents returned by a
query to the total number of relevant documents in the docu-
ment se~ implicitly assumes that sfl the relevant documents are
equally pertinent and irreplaceable: the user needs all of them.
In other words, assuming that a query Q hm N relevant docu-
ments, and retrieved a set of documents S = {D1,..., D~}, we
can define pertinence or usefulness, and recall as follows:

,

{

1.
—, If Di is relevant
N

PJ3RT(Di)= 0, if Di is not relevant’ and

PERT(S) = RECALL(S)= ~PERT(Dj)
j=]

With software component retrieval, the notion of usefulness
and substitutability are much easier to define as both relate to a
developer’s ability to solve a problem with the components at
hand. Symtmlicsfly, we view query as a requirement Q, which
may be satisfied by several, possibly overlapping, sets of com-
ponents Sl,...,S~, where Si =. {(Di,,Di,,Di.}. For each i=l ,...,k,

we have, as a first approximation:

PERT(Si) = PERT(Di,,Di,,... $Di,) = ~PERT(D~i) = 1 (A)
j=l

whine pERT(D/fji) is the usefulness or pertinence of the cOm-

ponent D in the context of the solution set Si. This illustrates
the fact that a retrieved component D is useful “only i~ the
other components required to build a solution are retrieved
with it. Further, this definition of PERT means that total user
satisfaction can be achieved with a subset of the set of relevant
dccuments, which is not the case for recall. We ilhsstrate the
properties of PERT through an example.

Consider two solutions sets S, = {Dl, D2} and S2 =
{D1,D3,Dd}, and assume that D,, D2, and Dg have the sizes 30,
20, 40, and 30, respectively, giving S1 and S2 the sizes 50, and
100, respectively. We can use the relative sizes of the com-
ponents with respct to the enclosing solution as @eir

size(Di)
contextualhxmditional pertinence, i.e. PERT(DJSj) = ~

SIZt?(S1)“

In this case PERT(D1/SL) = 0.6, PERT(DJSI) = 0.4,
PERT(D1/SJ = 0.3, PERT(Ds/S~ = 0.4, and PERT(D~S2) =
0.3, Assume that a query retrieves the component Dl. In this
case, PERT(D1) = Max(PERT(D1/S1), PERT(Dl/S~) = 0.6. If
the query retrieved DI and ~, instead, PERT({D1,D3}) = Max

3, The subjects were mostty frwrch-spukingwhile he tibrary’s
d-eatstim md ccistrottadvoeabutsrks wem in Engtish.

(PERT({ D), D~}/Sl), PERT({D:,Dj}/S2)) = Max (PERT(D1/Sl)
+ PERT(DJS1), PERT(D1/SJ + PERT(D~SJ) = Max (0.6 +
0.0, 0.3 + 0.4) = 0,7. This illustrates the fact that when
several partial solutions are returned by the system, we take
into account the one that is most complete, and the vafue of
individual components is relative to that solution. Symboli -
cally, given the solution sets Sl,...,S~, a query that returns a set
of components S has the pertinence:

PERT(S) = jM~LPERT(SmS~j) @)

Finally, we add another refinement which takes into
account the overlap of two mmponents within the same sohr-
tion set. Consider the solution S, above, and assume that the
system retrieves D, and D2, where Dz is u superck.ars of D2
that implements only part of the functionality required of D2.
In this case, we could take PERT(Dl,D~ = 0.6 + 0.3 = 0.9. If
the query retrieved D’2 AND D2, then we discard the weaker
compmwnt. This is similar to viewing solutions sets as role
fillers and for each role, take the component that most closely
matches the role. Within the context of reusable 00 com-
ponents, roks may be seen as class interfaces, and role fillers
as class implementations.

For our experiments, some of the 11 queries were
straightforward in the sense that there was a single component
(a method or a class) tha[answered the query, and both com-
ponent relevance and recall were straightforward to compute.
Queries whose answered involved several classes collaborating
together (e.g. an object framework) were more mmplex to
evaluate and involved all of the refinements discussed above.

For the case of precision, we used the traditional meas-
ure, i.e. the ratio of the retrieved components that were
relevant (i.e. had a non-zero PERT(.)) to the total number of
retrieved documents. We can also imagine refining the
definition of precision to take into account the effective useful-
ness of the individual components, and factor that in with the
cost of retrieving and examining a useless component. The
cost of examining a useless component is a function of its
complexity, and size could be used as a very first approxima-
tion of that complexity.

4S. Performance results

Table 1 shows recall and precision for the 11 queries.
Initially, with the initial 7 subjects, for each query, we selected
3 subjects at random to perform the query using full-text
retrieval, and 4 subjec~ to perform keyword retrieval, or vice
versa, while making sure that each subject had a balanced load
of full-text and keyword queries (6 and 5, respectively, or
vice-versa), Because the results of two subjects could not k
used, we ended up with some queries answered by 4 subjects
using full -text retrieval, say, and only once using keyword
retrieval (see e.g. query 2). The 11th query was rejected
because the three keyword-based answers were all rejected for
one reason or another. Hence, comparisons between the two
methods for the individual queries are not reliable.

Intuitively, it appears that plain-text retrievaf yielded
signiticantfy better recall and somewhat better precision. It also
appears that it has done consistently so for the 10 queries, with
a couple of exceptions. In order to validate these two results
statistically, we have to ascertain that none of this happened by
chance. We performed a number of ANOVA tests, to check
whether recall and precision were random variables of the pair
(query, search method), and both tests were rejected [1]. Next,
we isolated the effect of the search type to see if the difference

95

in recall and precision performance is significant. The results
are shown in Table 2.

Full-text retrieval Keyword retrieval
Q.

Sub] Rec Prec Sub] Rec Prec
1 3 100 88.66 2 50 50
2 4 50 100 1 50 100
3 1 100 100 4 100 100
4 1 100 80 4 50 100, II I ,

Is
8,
1 4125 1’2.5 1 0 0

6 3 33.33 33.33 2 12.5 25

7 2 65 7.5 3 66.33 50
8 2 30 7.5 3 30 83.33
9 3 53.33 100 2 30 78
10 II 3 I 78.33 80.33 1 35 100
Avg][(26) 63.49 74.47 (23) 42.41 68.33

Table 1. Summary of retrieval results.

Effect of search method Recall Precision
F Value 4.1 0.93

Pr>F 0.0500 0.3404

Table 2. Significance of differences between plain-text retrieval
and keyword retrieval.

The “Pr > F“ shows the probability that such a difference in
performance could have been obtained by chance. It is gen-
erally accepted that a threshold of 5 ~rcent is required to
affirm that the differences are significant. Thus, we conclude
that

●

●

Full-text retrieval yields provablykignificantly better
recall than controlled vocabulary-based retrieval

Full-text retrieval vieids com~arable rmecision ~er-
formance to that” of contr&led voc~bulary-b&ed
retrieval

Our resuits seem to run counter to the available experimental
evidence. Document retrieval experiments have consistently
shown that controlled vocabulary-based indexing and retrieval
yielded better recall and precision than plain-text search
[2, 24, 2S], although the difference hardiy justifies the extra
costs involved in controlled vocabulary-based indexing and
retrieval [25]. Similarly, a comparative retnevai experiment
for reusable components conducted by Frakes and Pole at the
SPC showed that recall values were comparable, and a supe-
rior precision for controlled vocabulary-based retrieval [6].
Most surprising in our resui~ is the significant difference is
recall performance.

We sought to explain the courtter-intuitive/evidence
difference in recall performance. We first note that out of the
11 queries, some were supposed to retrieve single components
(often methods), as in Query 7, formulated as “’getting the
length of a string”, and the others were supposed to retrieve a

3. Fraku and Pole compared 4 methods, and tkii test of stausucal

significance was based on variance analysis of dse precision

averages for the four methods, which was inconclusive [6].
However, we are quasi-cenam thaL by p.domnng pairwise

comparison between plain-mxt search (50%) and comrotted

vocabulary search (what appears to be lCKl% m tic plot [6]), hey

would have esmbtished, swtisticatty, be superiority of controlled-

vccabulary rauieval

collection of componerm with complex interactions, often a
mix of classes and methods. With full-text search queries
retrieve indiscriminantly methods and classes. With
controlled-vocabulary search, users have to specify the kind of
components they are seeking (a class or a method), since the
two types do not support the same set of attributes/facets; this
makes the search more tedious and users may give up easily.
For this explanation to hold, there has to be a marked differ-
ence bet ween the performance for the singie-component
queries (queries 1,7,8,9) and the queries whose answers con-
sisted of collections of components (queries 2,3,4,5,6,10).
Tabie 3 compares the two kinds of queries.

Table 3. Comparing the two sets of queries
our hypthesis that plain-text retrieval favors component col-
lection queries is not validated. Along the same lines, we
hypothesized that plain-text retrieval favored queries whose
answers involved a mix of methods and classes, or just
methods, since the same query would retrieve both kinds of
components. Table 4 shows recall and precision values for the
two methods, separated into the two kinds of queries.

Table 4. Comparing the two sets of queries depending on
whether they remieve methods or not.

Interestingly, there is a marked difference in performance
between the two groups of queries. However, in both cases,
plain-text retrieval is mmkedly superior to controlled-
voeabulsry retrieval with reg srd to retail (and precision, for
the case of queries retrieving methods). bother possible
explanation for the lower performance of controlled-vocabulary
based retrieval is reiated to the quality of indexing, but the
results didn’ t seem consistent with the hypothesized effect on
retnevai performance [19].

5. Discussion

We set out to deveiop, evaluate, and compare two
classes of component retrieval methods which, supposedly,
strike different balances along the costs/benefits spectmu-n,
namely, the (quasi-) zero-investment free text classification and
retrieval versus the “uplYont investment-laden” but presumably
superior controlled vocabulary faceted indexing and retrieval.
Recent experiments with software component repositories have
put into question the cost-effectiveness of the controlled voca-
bulary approach, but not its superior or at least us good
retrieval performance [6]. We attempted to bring the two
kinds of methods to a level-playing field by: 1) automating as
much of the pre-processing involved in controlled vocabulary -
based methods as possible to address the costs issue, and 2)
using a realistic experimental setting artd realistic evahtation
measures. Our experiments showed that: 1) those aspects of
the pre-processing invoived in controlled vocabulary methods
that we automated were of poor enough quality that they were
not used (the “Description” attribute; see section 4.2), and 2)

96

the fully automatic free text search performed better than the
fully manurd controlled-vocabuhry based indexing and
retieval of components.

Because this result is somewhat counter-intuitive, we
continue to analyze the results, which suggest, in some cases, a
tnisunderstandmg of the semantics of multiple-attribute queries,
or multi-valued attributes, leading to what seemed to be a
number of aimless queries with no clear search strategy. It thus
appeared that the two-hour tutorial was not sufficient and users
could have used some further experience with the toolset4.
However, whichever additional effort we can put into, either
the construction of the vocabulary, or the indexing of com-
ponents, or the training of users of the tool, will only add to
the costs of controlled vocabulary multi-faceted classification
and retrieval, and we are not guaranteed, by any means, to
achieve bettes results than with plain text search. Perhaps more
irrtportarrtly, four subjects out of five preferred plain-text
search.

We hypothesize that multi-faceted classification and
retrieval of reusable components to be at the wrong level of
formality for the typicaf worktlow of developers using a library
of reusable components. We identify two very distinct search
stages. The first stage is fairly exploratory, as developers do
not yet know which form the solution to their problem will
take, and a free-format search technique such as plain-text
search is appropriate. Multi-faceted search may be too rigid
and constraining for this early search step. This is even more
so, considering that one might be searching components in
several sites, each with its own representation conventions. The
second search stage aims at selecting, among an initial set of
potentially useful components, ones that will effectively solve
the problem at hand. At this second stage, we need a far more
detailed description of components and their inter-relationships
than that provided by multi-faceted classification.

Acknowledgements: This work was supported by grants from
Canada’s Natttraf Sciences and Engineering Research
Council (NSERC), TANDEM Computers, Qu&rec’s
Fends pour la Crdiztion et l’Ai& h la Recherche
(FCAR), and Qur%ec’s Minis;tire de i’Errseignement
Supt?rieur et de la Science (MESS) under the IGLOO
project organized by the Centre de Recherche Irtforma-
tique de Montr6al.
Bertrand Foumier, a statistician with the Service &
Consultation en Anaiyse de Donne’es (SCAD,
http://www.scad. uqam.ca) provided us with invaluable
assistance in measuring and interpreting the results.

References

1. Estelle Ah-Ki, in Reutilisation de Cornposantm Logi-
cieiks Orientees-Objet, Department of Computer Sci-
ence, Universiv of Quebec at Montreal, Montreaf,
Canada, July 1996. 150 pages

2. David Blair and M E Maron, “An Evaluation of
Retrieval Effectiveness for a Full-Text Document-
RetrievafSystem,” Commum”c&ions of the Associatwn

4, The smitx AIM of this paper, who did his Doctoral research cm

intsttigcnt retrkvd systmrs, stitt can’t find a bock using the

Univasity of Quebec’s tibrary bibliographic re&ieval systsm, after
S years an the facutty.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

for Computing Machinery, 28, 3, pp. 289-299, March
1985.

Doug Cutting, Julian Kupiec, Jan Pedemen, and
Penelope Sibun, “A Practical Part-of-Speech Tagger,”
in Proceedings of the Applied Natural .hnguage Pro-
cessing Co#erence, 1992.

D Denning, J Minker, A Parker, A Ralston, E Reilly, A
Rosenberg, C Walston, T Willoughby, J Strtnme~ and A
Blum, “The Proposed New Conqmting Reviews
Classification Scheme,” Conmunic atwnr of the Asscxi-
ation of Computing Machinery, vol. 24(7), pp. 419434,
Ju]y 1981.

Graham Dumpletom in OSE - C++ Library User Guide,
Dumpleton Software Consulting Pty Limited, Par-
ramatta, 2124, New South Wales, Australia 1994. 124
pages

William B. Frakes and Thomas POIG ‘ ‘AII Ernpiric~
Study of Representation Methods for Reusable Software
Components,” IEEE Transactions on Software
engineering, pp. 1-23, August 1994.

Robert Godin and Hafedh Mili, “Building and Main-
taining Analysis-Level Class Hierarchies Using Galois
Lattices,” ACM SIGPLAN Notices, vol. 28, no. 10, pp.
394-410, Washington, D.C., 26 Sept - 1 OCL 1993.
00PSLA’93 Proceedings

Robert J. Hall, “Generalized Behavior-based
Retrieval,” in Proceedings c# the 15th Internatwnal
Conference on Software Engineering, pp. 371-380,
ACM press, Baftimore, Maryland May 17-21, 1993.

Yoelle S. Maiwek, Daniel M. Berry, and Gail E. Kaiser,
“An Information Retrieval Approach for Automatically
Constructing Software Libraries,” IEEE Transactions
on Sojiware Engineering, vol. 17 (8), pp. 800-813,
August 1991.

Ali Mili, Rym Mili, and Roland Mittermeir, “Storing
and Retrieving Software Components: A Refinement-
Based Approach,’ ‘ in Proceedings of the SL@zrmth
International Conference on Software Engineering,
Sorrento, Italy, May 1994.

Hafedh Mili and Roy RadA “Building a Knowledge
Base for Information Retrieval,” Proceedings of the
Third Aruwal Expert Systems in Government Confer-
ence, pp. 12-18, October 22-25, 1987.

Hafedh Mili, in Building and Maintaining Hierarchical
Semantic Nets, The George Washington University,
August 1988. Doctoral Dissertation

Hafedh Mili and Manon Grenier, “Managing Documen-
tation for Software Reuse, ” Information and Deciswn
Technologies, vol. 18, pp. 115-134, 1992.

Hafedft Mili and Haitao Li, “Data Abstraction in
SoftClass, an 00 CASE Tool for Software Reuse, ” in
Proceedings of TOOLS 93, ed. by Bertrand Meyer, pp.
133-149, Prentice-Hall, Santa-Barbara, CA, August 2-5,
1993.

Hafedh Mili, Roy Rad& Weigang Wang, Karl Strick-
land, Comelia Boldyreff, Lene Olsen, Jan Wi~ Jurgen
Heger, Wolfgang Scherr, and Peter Elzer, “Practitioner
and SoftClass: A Comparative Study of Two Software
Reuse Research Projects,” Journal of System and
Sojhwrre, vol. 27, May 1994.

Hafedh Mili, Odile Marcotte, and Anas Kabbaj, “intel-
ligent Component Retrieval for Software Reuse,” in

97

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Proceedings of the Third Maghrebian Conference on
Artifiial Intelligence and Sojtware Engineering, pp.
101-114, Rabat, Morocco, April 11-14, 1994.

Hafedh Mili, Famta Mili, and Ali Mili, “Reusing
Software: Issues artd Research Duections,” IEEE Tran-
sactwns on Sof!ware Engineering, vol. 21, no. 6, pp.
528-562, June 1995.

Hafedh Mili, WiJliarn HarrisorL and Harold Ossher,
‘‘supporting Subject-Oriented Programming in
Smalltalk,” in Proceedings of TOOLS USA ’96, Santa-
BarbarL CA July 29- August2, 1996.
Hafedh Mili, Estelle Ah-Ki, Robert Godin, and Harnid
Mcheick “Representing and retrieving reusable com-
ponents,” IEEE Transactions on Knowledge and Data
engineering, October 1996. Submitted (revised version
of 1994 draft).

Hafedh Mili, Houari Sahraoui, and Ilharn Benytila,
“Representing and Querying Object Frameworks,”
Tectilcal report, Dept of Computer Science, University
of Quebec at Mormeal, May 1996.

Rubesr Prieto-Dkw and Peter Freeman, ‘‘Claasiljing
Software for Reusability,” IEEE Software, pp. 6-16,
Janumy 1987.

Roy Rad~ Hafedh Mili, Ellen BickneIl, and Maria
Bletmer, “Development and Application of a Metric on
Semantic Nets, ” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 19(1), pp. 17-30, January/February
1989.

James Roskind, The C+ + Grammar, July 1991.

Gerard Salton and Michael McGill, Introduction to
Modern Ir@ortnatwn Retrieval, McGraw-Hill, New
York, 1983.

Gerard Sahon, “‘Another Look at Automatic Text-
Retrievrd Systems, ” Cornmunic atwns of the Associatwn
of Computing Machitwy, vol. 29(7), pp. 648-656, July
1986.

Scott N. Woodfield, David W. Embley, and Del T.
Scott! “Can programmersReuse Software,” IEEE
Sojiware, pp. 52-59, July 1987.

Amy Moormarm Zaremski and Jeannette M. Wing,
“Signature Matching: A Key to Reuse,” Software
Engineering Notes, vol. 18, no. 5, pp. 182-190, 1993.
First ACM SIGSOFT Symposium on the Foundations of
Software Engineering

Amy Moorrnann Zaremski and Jeannette M. Wing,
“Specification Matching: A Key to Reuse,” Sofhvare
Engineering Notes, vol. 21, no. 5, 1995. Third ACM
SIGSOFT Symposium on the Foundations of Software
Engineering

98

Object Oriented Reuse
&

Reuse on the Internet

