Check for
Updates

Another nail to the coffin of faceted
controlled-vocabulary component classification and retrieval

Hafedh Mili, Estelle Ah-Ki, Robert Godin, and Hamid Mcheick
Département d’Informatique
Université du Québec 2 Montréal
Case Postale 8888 (A)
Montréal, PQ H3C 3P8, CANADA

Abstract

Our research centers around exploring methodologies for developing reusable software, and developing methods and
tools for building with reusable software. In this paper, we focus on reusable software component retrieval methods that were
developed and tested in the context of ClassServer, an experimental library tool developed at the University of Québec at
Montréal to explore issues in software reuse [15]. The methods discussed in this paper fall into two categories, 1) string
search-based retrieval methods, and 2) keyword-based retrieval methods. Both kinds of methods have been implemented and
tested by researchers, both in the context of software repositories (see e.g. [6,9]) and in the context of more traditional docu-
ment libraries (see e.g. [2,25]). Experiments have shown that keyword-based methods, which require some manual, iabor-
intensive pre-processing, performed only marginally better than the entirely mechanical string-search methods (see e.g.[6,25]),
raising the issue of cost-effectiveness of keyword-based methods as compared to string search based methods. In this paper, we
describe an implementation and experiments which attempt to bring the two kinds of methods to a level-playing field by: 1)
automating as much of the pre-processing involved in controlled vocabulary-based methods as possible to address the costs
issue, and 2) using a realistic experimental setting in which queries consist of problem statements rather than component
specifications, in which query results are aggregated over several trials, and in which recall measures take into account overlap-
ping components. Our experiments showed that string search based methods performed better than semi-controlled
vocabulary-based methods, which goes further in the direction of more recent component retrieval experiments which chal-
lenged the superiority of controlled vocabulary based classification and retrieval of components (see e.g. [6]).

: Further, reuse being essentially a cost issue, comparing
L Introduction classification and retrieval methods based on retrieval perfor-
mance measures alone is of little use for methods whose set-up

The problem of component retrieval has been widely and use costs are significantly different. Finally, for a reuse
addressed in the software reuse literature. A wide range of com- library tool to be successful, the cost of reusing has to be per-
ponent categorization and searching methods have been pro- ceived by potential reusers as being significantly less than that
posed, from the simple string search (see e.g. [15]), to faceted of developing from scratch [26], and the cost of performing
classification and retrieval (e.g. [21]) to signature matching (see searches is only one of several costs associated with an instance
e.g. [27]) to behavioral matching (see e.g. [10,28] or even [8}). of reuse [17]. These issues have been a major concem of our
Different methods rely on more or less complex descriptions for research, both in the design of retrieval algorithms, and in
both software components and search queries, and strike dif- evaluating them.
ferent trade-offs between performance and cost of implementa- Within the context of our research, we have developed
tion {17). The cost of implementing a retrieval method involves four classes of retrieval algorithms: 1) retrieval using full-text
both initial set-up costs, and the cost associated with formul.at- search on software documents and program files, 2) navigation
ing, vexecuting and refining qu'cries. In this paper, we describe through the structure of components, 3) multi-faceted
the implementation and experimental comparison of two such classification and retrieval of components, and 4) signature
methgds, ' free-text. based retrieval and multi-faceted matching. We are as much interested in performance-based
classification and retrieval of reusable code components. comparisons between the different methods, as we are con-

Typically, retrieval experiments focus on abstract perfor- cemned about getting the tools and methods adopted by organiza-
mance measures such as recall and precision, which are used tions and used by their developers in a realistic development
both as absolute measures, or as a way of comparing methods environment. Issues of set-up costs for the various methods
(see e.g. [6]). Recall and precision, which have traditionally have been a major concern, and we tried to automate as much
been used to measure the performance of bibliographic retrieval of the pre-processing steps as possible, lest we degrade slightly
systems, have been criticized because they view relevance as a retrieval performances. The experiments described in this paper
yes/fno property, and because they don't take into account the compare full-text retrieval with a variant of multi-faceted
specific goal that the searcher is trying to achieve. classification in which we attempted to automate some of the

labor-intensive pre-processing steps. The experiment design
was aimed towards simulating real-life situations, and the
evaluation of retrieval performance was goal-oriented, rather
than a simple count of returmed and potentially useful com-

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date h 8
appear, and notice is given that copying is by permission of ACM, ponents. The experiments showed that our efforts at automating

Inc. To copy otherwise, to republish, to post on servers, or to multi-faceted classification of compone.nls were not very fruit-
redistribute to lists, requires prior specific permission and/or a fee. ful. They also showed that full-text retrieval of components was
SSR ‘97 MA,USA superior 10 multi-faceted retrieval, which contradicts the result

© 1997 ACM 0-89791-945-9/97/0005...$3.50

89

http://crossmark.crossref.org/dialog/?doi=10.1145%2F258368.258393&domain=pdf&date_stamp=1997-05-01

of document retrieval experiments in the information retrieval
literature.

In the next section, we describe the representation of
software components used by our library tool. In section 3, we
describe the multi-faceted retrieval of software components. The
retrieval experiments are described in section 4. We conclude in
section 5.

2. Representing reusable components

2.1. Overview

This work is part of ongoing research at the University of
Québec at Montréal aiming at developing methods and tools for
developing reusable software (see e.g. [7,14,18]), and for
developing with reusable software (see e.g. {15,16,19]). Our
work on supporting development with reusable components
centers around a too) kit called ClassServer that consists of vari-
ous tools for classifying, retrieving, navigating, and presenting
reusable components (see Figure 1). Reusable components con-
sist essentially of object-oriented source code components, occa-
sionally with the accompanying textual documentation. The
internal representation of reusable components supports the four
reuse functionalities mentioned above, namely, classification,
retrieval, navigation, and presentation. Raw input source files
are put through various tools— called extractors— which
extract the relevant pieces of information, and package them for
the purposes of the four reuse functionalities. The information
extracted by these tools includes language-defined structures,
such as classes, variables, methods, and method parameters. To
these, we added views, which are client- or application-specific
interfaces that classes may support, and the notion of object
frameworks, which are class-like object aggregates that are used
to represent application frameworks and design patterns {20].
Each kind of component is defined by a descriptive template
which includes: 1) structural information describing the kind of
subcomponents a component can or must have (e.g. a class has
views, a view has variables and methods), 2) code, which is a
string containing the definition or declaration of the component
in the implementing language, and 3) descriptive attributes,
which are used for search purposes, as in a class has an author
and an application domain, method has a purpose, eic.

The tool set may be seen as consisting of three subsys-
tems. The first subsystem supports the required functionalities
for full-text rewieval of source code files. Simply put, words
from user queries are matched against the contents of source
code files (or other kinds of textual information). Before this
matching is done, a number of pre-processing steps are per-
formed with two goals in mind: 1) speeding up search, and 2)
maximizing the chances for matching by removing inessential
lexical variations. To speed up the search, an inverted list is
created once and for all, which is a table whose keys are unique
"meaningful"1 words and whose values, for each word, are the
documents in which that word occurred. In order to remove
inessential lexical variations, the words of the table are first put
through a "word stemmer” which reduces a number of word
forms to the same "stem” (as in "facility” and "facilities” reduc-
ing to "facilit").

The component browser and the keyword retrieval sub-
systems use the structured representation of the components
extracted using the tool referred to as “semantic/structural

1. Common words such as "the” "however”, etc. are not laken into
account in either the inverted list or the queries.

90

parser” in the Figure. The parser for C++ was developed using
Lex and Yacc, and a public domain C++ grammar [23], which
we augmented to handle templates. The Smalltalk parser was
written directly in Smalltalk. For both parsers, the parsing pro-
duces a trace of the traversal of the abstract syntax stree. The
trace consists of a batch of component creation commands,
which are executed when we “load” the trace; that is the struc-
tured component loader.

2.2. A Mutti-Faceted Classification of Components

Attributes are used in ClassServer to represent
categorization/classification facets, as in Prieto-Diaz’s muld-
faceted categorization of components {21]. Attributes are them-
selves objects with two properties of their own: 1) fext, which is
a (natural language) textual description, and 2) values, which is
a collection of key words or phrases, taken from a predefined
set referred to as the vocabulary of the attribute. The text is
used mainly for human consumption and for documentation
generation [13]. Filling in the values property is referred to as
categorization or indexing. Typically, human experts read about
the software component, and chose key words or phrases from a
predefined list; this is referred to in the information retrieval
literature as manual controlled-vocabulary indexing [24]. In
some cases, we used automatic controlled-vocabulary indexing
whereby a key word or phrase is assigned to an attribute if it
occurs within the fext field. More on this in section 4.2.2.

For a given atribute, e.g. ‘‘Purpose’’, multiple values are
considered to be alternative values , rather than partial values.
For a given vocabulary, the terms of the vocabulary (key words
and phrases) may be organized along a conceptual hierarchy.
Figure 2 shows excerpts of the conceptual hierarchies of key
phrases for the attributes ‘‘Application Domain’* (Figure 2.a)
and *‘Purpose’’ (Figure 2.b). Typically, for a given attribute, the
keywords are organized in a single hierarchy whose root is the
name of attribute itself. Notice that the *‘Application Domain’’
hierarchy of key phrases is inspired from the (ACM) Computing
Reviews's classification structure [4]. The hierarchical relation-
ship between key phrases is a loose form of generalization,
commonly referred to in information retrieval as ‘‘Broader-
Term’’ [24]. Attribute values (key words and phrases) are used
in boolean retrieval whereby component attribute values are
matched against required attribute values (queries); more on this
in § 3. The hierarchical relationships within an indexing voca-
bulary are used to extend the basic retrieval algorithms by
adding different degrees of matching (instead of true or false)
between two key words, which now depend of the length of the
path separating them in the hierarchy (see [16]).

3. Muti-faceted Retrieval Of Reusable
Components

ClassServer includes a search tool-- called
ClassSearcher-- that enables developers to retrieve software
components based on the keyword values of their attributes. We
implemented three matching algorithms: 1) a weighted boolean
retrieval (see e.g. [24]), 2) conceptual distance measures, and 3)
classification. Both conceptual distance measurements and
classifigation use semantic relationships between keywords—
hierarchical relationships for the case of classification [16]. For
the purposes of this paper, we limit our discussion to boolean
and weighed boolean retrieval. We begin by discussing the
structure of queries and the operations that can be performed on
them.

J
1
|

Full-text retrieval

;Full-text search too

‘ Keyword indexer N

W AN

} > Full-text indexer X

)\) Structure}\com nents loader
™

Keyword-retrieval

Keyword search t({ol Component
\ browsers

=

{Ebl.

élass Woman: Persor

—_— Data flow

class Person: ...
///{t,hls class .. Semantic/
lic: ‘
l}l’el’:o'n(im. age,...) structural
// this constructor parser

Figure 1. Overall architecture of ClassServer

Filterimg - - -
DalaAcquifﬁé Sampling. _ _

AdministrativeDataProcessing
ComputerAidedEngineering
LifeAndMedicalSciences
SocialAndBehavioralSciences

Communicau'é Encoding Decoding = \

MessagePassing- - - v
: DataConversion- - - . (@)
Pu —. DataProcessing—" DataBaseInterrogation
rpo -

DecisionSu \< Informal.ionRe QuestionAnswering
=< Forecasting~ - DocumentRetrieval

Command AndControl

(b)

Figure 2. Hierarchies of key phrases for the attributes ‘*Application Domain’’ and ‘‘Purpose’’.

3.1. Queries

Qur choice for the representation of queries involved a
trade-off between flexibility and expressiveness, on the one
hand, and allowing users to specify the most common queries
most easily and most efficiently, on the other. As a guiding
principle, we likened the specification of a query to the process
of specifying a prototypical component. Accordingly, the sim-
plest form of a query is a list of so called atiribute query ierms
(AQTs), considered to be ANDed. In its simplest form, an
AQT consists of an attribute, and a list of key phrases, con-
sidered to be ORed. In the actual implementation, each AQT is
assigned a weight and cut-off point, used for weighted boolean
retrieval, discussed further below, and conceptual distance

91

measures, respectively. Symbolically:

* Query ::= AQT | AQT AND Query
* AQT ::= Attribute Weight CutOff ListOfKeyPhrases

* ListOfKeyPhrases ::= KeyPhrase | KeyPhrase OR Lis-
tOfKeyPhrases

A single AQT retrieves the components whose attribute <Attri-
bute> has at least one value in common with <ListOfKey-
Phrases>. Viewing attributes as functions, an AQT denoted by
the four-tuple <Attribute, Weight, Cut Off, ListOfKeyPhrases>
retrieves the components C such that Atribute(C) N Lis-
tOfKeyPhrases # ©. The query denoted by the tuple (AQT),...,

AQTy), returns the intersection of sets of components that
would have been returned by the individual AQTs.

With weighted boolean retrieval, components are
assigned numerical scores that measure the extent to which
they satisfy the query, instead of being either *‘in”” or ‘‘out”’.
Let Q be a query with terms (AQT,,...,AQT,), where AQT,; =
<Attribute;, Weight;, CutOff;, ListOfKeyPhrases;>. The score of a
component C is computed as follows:

X
3 Weight;xScore(AQT;,C)

Score(Q,C) = —————)
2 Weight,
i=1

where Score(AQT;,C) equals 1.0 if
ListOfKeyPhrases; N Auribute,(C) # &, and 0 otherwise.

Notice that only some combinations of AQTs make
sense since each kind of component has a different set of
applicable atwibutes. This, plus our goal of making the
specification of queries easy led us to support two ways of ini-
tializing queries: 1) by specifying the kind of component we
would like to search on, or 2) by specifying a component. In
the first case, the query is initialized to an initial list of AQTs
corresponding to the default set of attributes for the component
category with empty lists of key phrases; the user has then the
option of adding and/or removing AQTs, and must specify lists
of key phrases for the AQTs. When a query is initialized from
a component, in addition to using the attributes of the com-
ponent to select the initial list of AQTs, we use the values of
those attributes to initialize the list of key phrases for those
AQTs. We believe that this will actually be the most natural
way of submitting a query, in terms of integrating in the
workflow of developers: typically, a developer would start
entering, explicitly or implicitly, the specifications of a com-
ponent to be built depending on the problem at hand, and on
the component’s interactions with other components; those par-
tial specifications may serve as a way of searching, in the
library of components, for that that satisfies those require-
ments.

3.2. Operations On Queries

Queries in ClassSearcher may be combined, once pro-
cessed, using the usual set-theoretic operators (union, intersec-
tion, and set difference) directly on the answer lists. This
enables developers to formulate arbitrarily complex queries
involving negation, ORed AQTs, ANDed values for the same
AQT, or combinations thereof. Note, however, that within a
single query, the AQTs are always ANDed, and multiple
values are always ORed. This forces us to write queries such
as

FIND COMPONENTS C SUCH THAT
[Purpose(C) = Rename A Copy A —~(Move)] OR
{IntendedUsers(C) = UnixHacker]

as a boolean expression of four separate queries. Namely, let
Qi = ((Purpose,{Rename})), Q, = ((Purpose,{Copy})), Qs =
((Purpose,{Move})), and Qs =
((IntendedUsers,{ UnixHacker})), the above request can be
satisfied using the boolean expression Q =
Qi A Q A —Qy) V Qq), or the equivalent expression using set
operations: {(Q,NQy—Qs)Q,.

We chose not to generalize the format of queries for the
purposes of accommodating the above query more readily, for

92

a number of practical and theoretical reasons. First, we believe
that such queries are relatively uncommon so as not to warrant
complicating the format of queries, or offering two different
formats. Second, from a theoretical point of view, negation is
difficull to express mathematically in the context of graph-
based conceptual distance measurements (see [22]). Finally
classification is hard to interpret semantically if a query con-
tains two ORed AQTs that correspond to different attributes
{12].

3.3. ClassSearcher

Figure 3 shows the graphical interface to ClassSearcher.
The upper third of the window contains two identical lists of
queries, identified by names. The selection in the left list
determines the state of the rest of the interface. The right list is
used simply to specify (i.e. select with the mouse) the second
operand to the setflogical operations. The pane with heading
Query Transcription is used for output only, and shows an
SQL-like transcription of the currently selected query in the
left list; notice that weights and cut-off values are not
represented in the transcription.

e ey e,
!r»ASibﬁngs)AmTcslz)

Add Vake |- Rem Vate

{l

=)

Figure 3. Graphical Interface of ClassSearcher.

The pane labeled Search Types is used to set the parameters
(cut-off, to the right) and perform (button SEARCH) the
cwrrently selected search type— BooleanSearch in this case.
Result List(score) shows the answer list for the currently
selected search type, ordered by decreasing order of score
(shown between parentheses). The button ‘‘Add Term'’ is used
to add an attribute query term (AQT) to the currently selected
query. The list of AQTs for the currently selected query, with

their weight and cut-offs shown between parentheses, is shown
in the leftmost bottom pane labeled Query Terms(weight,cut
off). The buttons ‘‘Remove’’, ‘‘Weight’’, *‘Cut Off"’, and
‘“Add Value'’ are relative to the currently selected query term
(AQT), with self-explanatory names. ‘‘Add Value’ enables
developers to navigate through the hierarchy of keywords of
the corresponding attribute (see e.g. Figure 2.a) to select a
value. The button ‘‘Rem. Value’’ removes the currently
selected value in the list above it (Term Values).

4. Retrieval experiments
4.1. Experimental design

In this first set of experiments, we were more concerned
with establishing the usefulness of the library tool in a produc-
tion setting than we were with performing comparisons
between the various retrieval methods. It is our belief that such
comparisons do not mean anything if a developer won’t use
ANY of the methods in a real production setting. The decision
for a developer to use or not use a tool has to do with: 1)
his/her estimate of the effort it takes to build the components
from scratch {26}, 2) the cost of using the library tool, includ-
ing formulating the queries and looking at the results, and 3)
the perceived track record of the tool and the library in terms
of either finding the right components, or quickly ‘‘convinc-
ing”’ the developer that none could be found that satisfy the
query. Typically, comparative studies between the retrieval
methods focus on the retrieval performance, regardless of the
cost factors. Second, to obtain a fair and finely detailed com-
parison, the format of the queries is often restricted in those
experiments to reduce the number of variables, to the point
that they no longer reflect normal usage of the library.

With these considerations in mind, we made the follow-
ing choices:

1) we only controlled the search method that the users
could use to answer each of the queries, without giving
a time limit on each query, or a limit on the number of
trials made for each query; we assumed that users will
stop when they are convinced that they have found all
that is relevant,

2) we "spied” on the subjects’ interactions with the tool by
recording a trace of the actions performed. This allowed
us to obtain finer experimental data without interfering
with the subjects’ workflow.

Note that the trace data may not always be of sufficient quality
to make reliable statistical inferences. For example, with
boolean retrieval, subjects could search on two search attri-
butes, separately or in combination. One attribute, ‘‘Applica-
tion Domain'’, was indexed manually with a manually-built
vocabulary, while the other, ‘“‘Description’””, was indexed
automnatically with the automatically generated hierarchy (see §
4.2.1). We didn’t ask the subjects to use one or the other, or
both in combination. When we studied the traces, it turned out
that the ‘‘Description’’ attribute was used in only two of the
43 keyword queries performed by the different subjects, and
neither query returned a relevant document. Accordingly, we
have no basis for comparing the quality of the two attributes.
However the fact that the '‘Description’” attribute was used
only twice tells us that subjects didn’t feel it provided useful
information, and that, in and of itself, is a valuable data.

The experimental data set consisted of about 200 classes
and 2000 methods from the OSE library (see § 4.2). We used
11 queries, whose format is discussed in section 4.3. Seven

93

subjects participated in the experiment. All subjects were
experienced C++ programmers. They included two professors,
three graduate students, and two professional developers work-
ing for the industrial partners of the project. Two subjects (a
professor and a graduate student) did not complete the experi-
ment, and we had to discard the results of the few queries they
DID complete. The subjects were given a questionnaire which
included the statements of the queries, and blank spaces to
enter the answer as a list of component names, much like an
exam book. For each of the initial 77 (subject,query) pairs, we
randomly assigned a search method (keyword-based versus
plain text). For each (subject,query,search method) triplet, the
subject could issue as many search statements as s/he wishes
using the designated search, with no limitation on the time or
on the number of search statements. The experiment started
with a general presentation of the functionality of the tool set
(about 45 mn), followed by a hands-on tutorial with the tool
set (about 1 hour), providing the subjects with an understand-
ing of the theoretical underpinnings of the functionalities, as
well as some practical know-how. Before leaving, the subjects
were asked to fill out a questionnaire to collect their qualitative
appreciation of the toolset.

In order to analyze the results, we used the query ques-
tionnaires to compare the subjects’ answers to ours, which
were based on a thorough study of the library’s user manual
and some code inspection, where warranted. For this first
experiment, the traces generated for the subjects were analyzed
only to determine which attributes were used for boolean key-
word retrieval. The traces included enough details, however, to
support more and finer analyses.

4.2. The library

As mentioned earlier, the data set consisted of the entire
OSE library [5], which contained some 200 classes and 2000
methods distributed across some 230 files. A shell script put
the files through a C++ pre-processor (to process the #include
directives, among others) before they were input into the C++
extractor, which generated a file of Smalltalk commands to
construct the reusable C++ components. Because of the good
quality and format consistency of the in-line documentation,
we were able to assign C++ comments as text values for the
“‘Description’’ attribute of various components (classes,
methods, variables).

For the purposes of this experiment, we classified com-
ponents using two attributes ‘‘ApplicationDomain’’, and
“‘Description’’. Classification according to ‘‘Application-
Domain’" was done manually, although fairly systematically.
For this *‘attribute, the classification hierarchy followed closely
the table of contents of the textual documentation, whose
organization is based on the application areas covered by the
library. Generally speaking, if a component is discussed in
some paragraph, we assign it the title of the smallest section
that contains that paragraph. A consequence of this indexing
scheme is that not all methods had values for the attribute
“‘Application Domain’’. For example, constructor methods
were rarely discussed explicitly, and yet, are always present.
However, we can be sure that all the classes, or some of their
superclasses had values for ‘‘Application Domain’’. For the
“‘Description’” attribute, all the steps were automated, from the
construction of the vocabulary, to the actual indexing of reus-
able components. Both steps are briefly discussed below.
While the quality of the indexing vocabulary and of the index-
ing method have a significant impact on the quality of
retrieval, because the experimental subjects seldom used the
attribute “*Description™ in their queries, we shall keep the

descriptions very brief (see [19] for a thorough discussion); on
the other hand, this may very well be the ultimate measure of
the quality of that attribute, i.c. whether it was deemed useful
or not by the subjects.

4.2.1. Building a hierarchy of domain concepts

There are two aspects to building a conceptual hierar-
chy. First, there is the problem of finding a set of terms (key-
words or key phrases) that describe the important concepts
within a domain of discourse, and that use the most widely
accepted terminology. To this end, we used a variant of statist-
ical indexing which, given a document collection, it considers
as valid content indicators those terms which occur neither too
often, nor too rarely, and which occur unevenly in the docu-
ment collection, i.e. are concentrated in a small subset of the
document collection [24]. However, instead of using single
words as potential content indicators (or index terms), we used
"noun phrases?", which we extracted from the OSE software
documentation using Xerox’s Parts of Speech Tagger (XPost)
[31.

Having identified the set of important domain concepts,
it is important to organize them in a conceptual hierarchy, both
for navigation purposes (e.g. to find the proper term to use in
a query) and to support the extensions to boolean retrieval
mentioned earlier (see also [19]). We adapted an algorithm
that we had developed to organize a set of index terms into a
graph— more specifically, a hierarchy— based on their usage
profiles within a document collection [11]. The basis of that
algorithm was the hypothesis that index terms that often
characterize the same documents (i.e. co-occur in the docu-
ments’ indices) tend to be related, and should be connected;
additional heuristics were used to refine the relationships {11].
The new adaptation of the algorithm performed rather poorly
compared to the experiment described in [11], and this for a
variety of reasons, including the more problematic nature of
the data, and the much smaller size of the data set {19]. Note
however that the quality of the relationships within the gen-
erated graph has no impact on indexing (discussed next), and
that in the end, it had no measurable impact on retrieval per-
formance because the attribute ‘‘Description”” was seldom
used.

4.2.2. Automatic indexing from a controlled vocabulary

The information retrieval literature makes the distinction
between manual controlled vocabulary indexing, and automatic
"uncontrolled vocabulary” indexing [24]. With manual con-
trolled vocabulary indexing, subject experts read documents
and assign to them an index consisting of several terms, meant
to be content descriptors, taken from the predefined set of key
terms, referred to as the controlled vocabulary. By contrast, the
basic premise behind automatic uncontrolled-vocabulary index-
ing is that the words that occur in the document with a certain
statistical profile are good content indicators. The relative mer-
its of the two approaches have been thoroughly debated in the
literature (see e.g. [2,25], and we won’t indulge into the
debate for the purposes of this paper. Suffice it to say that we
used a mix of the two methods: we did use a conirolled voca-

2. Computer science being a relatively new field, most concepis are
still described by noun phrases, as in ‘“‘Sofiware Enginecring’’
‘‘Bubble Sort”, ‘‘Printing Monitor’’, eic., rather than single words
as is the case for more mature ficlds such as medicine; see {23) for
a fascinating treatment of the ecvolution of languages and
terminology.

94

bulary for indexing and retrieval, but the indexing was done
automatically [19]. At first glance, this approach shares simi-
lar problems with automatic plain-text indexing and retrieval to
the extent that classification (and retrieval) depends on authors
having used the same words as the controlled vocabulary, and
on the fact that matches are done in context. We argued in
[19] why this is not a big problem here, and that we are able
to achieve the advantages of controlled vocabulary indexing at
a fraction of the cost.

Simply put, automatic indexing with a controlled voca-
bulary works as follows: a document D is assigned a term
T=wyw; - - - w, if it contains (most of) its component words,
consecutively (".. wy;wy - w,.."), or in close proximity
("...wnnywow; © - wi."). In our implementation, we reduced
the words of both the terms of the vocabulary and the docu-
ments o their word stem by removing suffixes and word end-
ings. Also, we used two tunable parameters for indexing: 1)
proximity, and 2) threshold of number of words found in a
document, to the total number of words of a term, before the
term is assigned to the document; we refer to it as the partial
malch threshold. The proximity parameter indicates how many
words apart should words appear to be considered part of the
same noun phrase (term). Maarek et al. had found that 5
worked well for two-word phrases in english [9]. It has been
our experience that indexing works best when both parameters
depend on the size of the term.

This method was applied to the ‘‘Description” attribute
using the vocabulary produced by the algorithm described in §
42.1. As it turned out, the quality of indexing for the
“‘Description”’ attributes did not really matter because the attri-
bute was used only twice (see section 4.1).

4.3. Queries

Information retrieval systems suffer from the difficulty
users have in translating their needs into searchable queries.
The issue is one of translating the description of a problem
(their needs) into a description of the solution (relevant docu-
ments). With document tetrieval systems, problems may be
stated as "I need to know more about <X>", and solutions as
"A document that talks about <Y>". For a given problem, the
challenge is one of making sure that <X> and <Y> are the
same, and in systems that use controlled vocabulary indexing,
trained librarians interact with naive users to help them use the
proper search terms.

With software component rewrieval, the gap between
problem statement (a requirement) and solution description (a
specification) is not only terminological, but also conceptual.
In an effort to minimize the effect of the expertise of subjects
in an application, and their familiarity with a given library,
component retrieval controlled experiments usually use queries
that correspond closely to component specifications. This does
not reflect normal usage for a reusable components library tool
because. For instance, users typically do not know how the
solution to their problem is structured, and for the case of a
C++ component library, e.g., the answer could be a class, a
method, a function, or any combination thereof. It has gen-
erally been observed that developers need to know the underly-
ing structure or architecture of a library to search for com-
ponents effectively {17]. Accordingly, in an effort to get a
realistic experiment, we formulated our queries as problems to
be solved. Each query was preceded by a problem description
setting up the context, followed by a statement “Find a way of
<performing a given task>". The problem description is also
used to familiarize the subjects with the terminology of the

application domain using textbook-like language?.

4.4. Component relevance

The difference between traditional bibliographic docu-
ment retrieval and reusable component retrieval manifests itself
in the retrieval evaluation process as well. The concept of
relevance, which serves as the basis for recall and precision
measures, is notoriously difficult to define. Within the context
of bibliographic document retrieval, a search query for a con-
cept X is understood as meaning "I want documents that talk
about X", and hence, a document is relevant if it “talks about"
X. This definition is different from pertinence which reflects a
document’s usefulness to the user [24], which depends, among
other things, on the users’ prior knowledge, or on the per-
tinence of the other documents shown to them. Recall, which
measures the number of relevant documents returmned by a
query to the total number of relevant documents in the docu-
ment set, implicitly assumes that all the relevant documents are
equally pertinent and irreplacable: the user needs all of them.
In other words, assuming that a query Q has N relevant docu-
ments, and retrieved a set of documents S = {D;,...Dy}, we
can define pertinence or usefulness, and recall as follows:

i, if D, is relevant

PERT(D)) = d

0, if D; is not relevant’ an

PERT(S) = RECALL(S) = iPERT(Dj)

i=!

With software component retrieval, the notion of usefulness
and substitutability are much easier to define as both relate to a
developer's ability to solve a problem with the components at
hand. Symbolically, we view query as a requirement Q, which
may be satisfied by several, possibly overlapping, sets of com-
ponents S,,....S;, where §; = {(Dil‘Diz,....Di'}. For each i=1,...k,
we have, as a first approximation:
k
PERT(S)) = PERT(D;,,D;Z....,D&) = YPERT(D/S) =1 (A)
i Fl ’
where PERT(D/S;) is the usefulness or pertinence of the com-
ponent D in the context of the solution set S;. This illustrates
the fact that a retrieved component D is useful "only if" the
other components required to build a solution are retrieved
with it. Further, this definition of PERT means that total user
satisfaction can be achieved with a subset of the set of relevant
documents, which is not the case for recall. We illustrate the
properties of PERT through an example.

Consider two solutions sets S, = {D;, D;} and §, =
{D;,D3,D,}, and assume that D), D,, and D5 have the sizes 30,
20, 40, and 30, respectively, giving S; and S, the sizes 50, and
100, respectively. We can use the relative sizes of the com-

ponents with respect to the enclosing solution as (LBeir
size(D;

contextual/conditional pertinence, i.e. PERT(D/S;) = —).
size(S;)

In this case PERT(D\/S,) = 0.6, PERT(DyS,) = 04,
PERT(D,/Sy) = 0.3, PERT(DyS;) = 0.4, and PERT(DS,) =
0.3. Assume that a query retrieves the component Dy. In this
case, PERT(D,) = Max(PERT(D,/S,).,PERT(D,/S;)) = 0.6. If
the query retrieved D; and Ds, instead, PERT({D;,D;}) = Max

3. The subjects were mostly french-speaking, while the library’s
documentation and contralled vocabularies were in English.

95

(PERT({Dy.D3}/S,), PERT({D,,D3}/S;)) = Max (PERT(D,/S,)
+ PERT(D4/S,). PERT(D,/S;) + PERT(D4/Sy)) = Max (0.6 +
0.0, 03 + 04) = 0.7. This illustrates the fact that when
several partial solutions are retumed by the system, we take
into account the one that is most complete, and the value of
individual components is relative to that solution. Symboli-
cally, given the solution sets S;,...,Sy, a query that returns a set
of components S has the pertinence:

PERT(S) = MaxPERT(SSS)) ®)
=1,

Finally, we add another refinement which takes into
account the overlap of two components within the same solu-
tion set. Consider the solution S; above, and assume that the
system retrieves D, and D",, where D', is a superciass of D,
that implements only part of the functionality required of D,.
In this case, we could take PERT(D,,D’;) = 0.6 + 0.3 = 0.9. If
the query retrieved D', AND D,, then we discard the weaker
component. This is similar to viewing solutions sets as role
fillers and, for each role, take the component that most closely
matches the role. Within the context of reusable OO com-
ponents, roles may be seen as class interfaces, and role fillers
as class implementations.

For our experiments, some of the 11 queries were
straightforward in the sense that there was a single component
(a method or a class) that answered the query, and both com-
ponent relevance and recall were straightforward to compute.
Queries whose answered involved several classes collaborating
together (e.g. an object framework) were more complex to
evaluate and involved all of the refinements discussed above.

For the case of precision, we used the traditional meas-
ure, i.e. the ratio of the retrieved components that were
relevant (i.e. had a non-zero PERT(.)) to the total number of
retrieved documents. We can also imagine refining the
definition of precision to take into account the effective useful-
ness of the individual components, and factor that in with the
cost of retrieving and examining a useless component. The
cost of examining a usecless component is a function of its
complexity, and size could be used as a very first approxima-
tion of that complexity.

4.5, Performance results

Table 1 shows recall and precision for the 11 queries.
Initially, with the initial 7 subjects, for each query, we selected
3 subjects at random to perform the query using full-text
retrieval, and 4 subjects to perform keyword retrieval, or vice
versa, while making sure that each subject had a balanced load
of full-text and keyword queries (6 and 5, respectively, or
vice-versa). Because the results of two subjects could not be
used, we ended up with some queries answered by 4 subjects
using full-text retrieval, say, and only once using keyword
retrieval (see e.g. query 2). The 11th query was rejected
because the three keyword-based answers were all rejected for
one reason or another. Hence, comparisons between the two
methods for the individual queries are not reliable.

Intuitively, it appears that plain-text retrieval yielded
significantly better recall and somewhat better precision. It also
appears that it has done consistently so for the 10 queries, with
a couple of exceptions. In order to validate these two results
statistically, we have to ascertain that none of this happened by
chance. We performed a number of ANOVA tests, to check
whether recall and precision were random variables of the pair
(query, search method), and both tests were rejected [1]. Next,
we isolated the effect of the search type to see if the difference

in recall and precision performance is significant. The results
are shown in Table 2.

Full-text retrieval Keyword retrieval

Q.
Subj | Rec Prec Subj | Rec Prec

1 3 100 88.66 2 50 50
2 4 50 100 1 50 100
3 1 100 100 4 100 100
4 1 100 80 4 50 100
S 4 25 12.5 1 0 0
6 3 33.33 3333 2 125 25
7 2 65 75 3 66.33 50
8 2 30 75 3 30 83.33
9 3 53.33 | 100 2 30 78
10 3 78.33 80.33 1 35 100
Avg || (26) 63.49 7447 || 23) 4241 68.33

Table 1. Summary of retrieval results.

Effect of search method | Recall | Precision
F Value 4.1 0.93
Pr>F 0.0500 0.3404

Table 2. Significance of differences between plain-text retrieval
and keyword retrieval.

The "Pr > F” shows the probability that such a difference in

performance could have been obtained by chance. It is gen-

erally accepted that a threshold of 5 percent is required to

affirm that the differences are significant. Thus, we conclude

that:

. Full-text retrieval yields provably/significantly better
recall than controlled vocabulary-based retrieval

. Full-text retrieval yields comparable precision per-
formance to that of controlled vocabulary-based
retrieval

Our results seem to run counter to the available experimental
evidence. Document retrieval experiments have consistently
shown that controlled vocabulary-based indexing and retrieval
yielded better recall and precision than plain-text search
{2,24,25], although the difference hardly justifies the extra
costs involved in controlled vocabulary-based indexing and
retrieval {25]. Similarly, a comparative retrieval experiment
for reusable components conducted by Frakes and Pole at the
SPC showed that recall values were comparable, and a supe-
rior precision for controlled vocabulary-based retrieval [6].
Most surprising in our results is the significant difference is
recall performance.

We sought to explain the counter-intuitive/evidence
difference in recall performance. We first note that out of the
11 queries, some were supposed to retrieve single components
(often methods), as in Query 7, formulated as “getting the
length of a string”, and the others were supposed to retrieve a

3. Frakes and Pole compared 4 methods, and their test of statistical
significance was based on variance analysis of the precision
averages for the four methods, which was inconclusive [6).
However, we arc quasi-certain that by performing pairwise
comparison between plain-lext search (50%) and controlled
vocabulary search (what appears to be 100% on the plot [6]), they
would have established, statisucally, the supenority of controlled-
vocabulary retrieval.

96

collection of components with complex interactions, often a
mix of classes and methods. With full-text search, queries
retrieve indiscriminantly methods and classes. With
controlled-vocabulary search, users have to specify the kind of
components they are seeking (a class or a method), since the
two types do not support the same set of attributes/facets; this
makes the search more tedious and users may give up easily.
For this explanation to hold, there has to be a marked differ-
ence between the performance for the single-component
queries (queries 1,7,8,9) and the queries whose answers con-
sisted of collections of components (queries 2,3.4,5,6,10).
Table 3 compares the two kinds of queries.

Full-text Keyword
Query set
Rec Prec || Rec Prec
1 comp. q. 62.08 | 84.67 | 44.08 | 65.333
many comp. q. 64.43 | 68.17 i 4130 | 70.33

Table 3. Comparing the two sets of queries
Our hypothesis that plain-text retrieval favors component col-
lection queries is not validated. Along the same lines, we
hypothesized that plain-text retrieval favored queries whose
answers involved a mix of methods and classes, or just
methods, since the same query would retrieve both kinds of
components. Table 4 shows recall and precision values for the
two methods, separated into the two kinds of queries.

Full-text Keyword
Query set
Rec Prec || Rec Prec
Q. w. methods 41.333 | 5917 || 27.77 | 47.27
Q. w. classes only [85.65 89.77 || 57.05 | 89.40

Table 4. Comparing the two sets of queries depending on
whether they retrieve methods or not.

Interestingly, there is a marked difference in performance
between the two groups of queries. However, in both cases,
plain-text retrieval is markedly superior to controlled-
vocabulary retrieval with regard to recall (and precision, for
the case of queries retrieving methods). Another possible
explanation for the lower performance of controlled-vocabulary
based retrieval is related to the quality of indexing, but the
results didn’t seem consistent with the hypothesized effect on
retrieval performance {19].

5. Discussion

We set out to develop, evaluate, and compare two
classes of component retrieval methods which, supposedly,
strike different balances along the costs/benefits spectrum,
namely, the (quasi-) zero-investment free text classification and
retrieval versus the "up-front investment-laden” but presumably
superior controlled vocabulary faceted indexing and retrieval.
Recent experiments with software component repositories have
put into question the cost-effectiveness of the controlled voca-
bulary approach, but not its superior or at least as good
retrieval performance [6]. We attempted to bring the two
kinds of methods to a level-playing field by: 1) automating as
much of the pre-processing involved in controlled vocabulary-
based methods as possible to address the costs issue, and 2)
using a realistic experimental setting and realistic evaluation
measures. Our experiments showed that: 1) those aspects of
the pre-processing involved in controlled vocabulary methods
that we automated were of poor enough quality that they were
not used (the *‘Description’’ attribute; see section 4.2), and 2)

the fully automatic free text search performed better than the
fully manual controlled-vocabulary based indexing and
retrieval of components.

Because this result is somewhat counter-intuitive, we
continue to analyze the results, which suggest, in some cases, a
misunderstanding of the semantics of multiple-attribute queries,
or multi-valued attributes, leading to what seemed to be a
number of aimless queries with no clear search strategy. It thus
appeared that the two-hour tutorial was not sufficient and users
could have used some further experience with the toolset?.
However, whichever additional effort we can put into, either
the construction of the vocabulary, or the indexing of com-
ponents, or the training of users of the tool, will only add to
the costs of controlled vocabulary multi-faceted classification
and retrieval, and we are not guaranteed, by any means, to
achieve better results than with plain text search. Perhaps more
importantly, four subjects out of five preferred plain-text
search.

We hypothesize that multi-faceted classification and
retrieval of reusable components to be at the wrong level of
formality for the typical workflow of developers using a library
of reusable components. We identify two very distinct search
stages. The first stage is fairly exploratory, as developers do
not yet know which form the solution to their problem will
take, and a free-format search technique such as plain-text
search is appropriate. Multi-faceted search may be too rigid
and constraining for this early search step. This is even more
so, considering that one might be searching components in
several sites, each with its own representation conventions. The
second search stage aims at selecting, among an initial set of
potentially useful components, ones that will effectively solve
the problem at hand. At this second stage, we need a far more
detailed description of components and their inter-relationships
than that provided by multi-faceted classification.

Acknowledgements: This work was supported by grants from

Canada's Natural Sciences and Engineering Research
Council (NSERC), TANDEM Computers, Québec’s
Fonds pour la Création et I'Aide a la Recherche
(FCAR), and Québec’s Ministére de [Enseignement
Supérieur et de la Science (MESS) under the IGLOO
project organized by the Centre de Recherche Informa-
tique de Montréal.
Bertrand Fournier, a statistician with the Service de
Consultation en Analyse de Données (SCAD,
http://www.scad.ugam.ca) provided us with invaluable
assistance in measuring and interpreting the results.

References

1. Estelle Ah-Ki, in Reutilisation de Composantes Logi-
cielles Orientees-Objet, Department of Computer Sci-
ence, University of Quebec at Montreal, Montreal,
Canada, July 1996. 150 pages

2. David Blair and M E Maron, ‘‘An Evaluation of
Retrieval Effectiveness for a Full-Text Document-
Retrieval System,’” Comwmunications of the Association

4, The senior author of this paper, who did his Doctoral research on
intelligent retrieval systems, still can’t find a book using the
University of Quebec's library bibliographic retrieval system, after
8 years on the faculty.

97

10.

11,

13.

14.

16.

for Computing Machinery, 28, 3, pp. 289-299, March
1985.

Doug Cutting, Julian Kupiec, Jan Pedersen, and
Penelope Sibun, ''A Practical Part-of-Speech Tagger,”
in Proceedings of the Applied Natural Language Pro-
cessing Conference, 1992.

D Denning, J Minker, A Parker, A Ralston, E Reilly, A
Rosenberg, C Walston, T Willoughby, J Sammet, and A
Blum, ‘‘The Proposed New Computing Reviews
Classification Scheme,’’ Communications of the Associ-
ation of Computing Machinery, vol. 24(7), pp. 419434,
July 1981.

Graham Dumpleton, in OSE - C++ Library User Guide,
Dumpleton Software Consulting Pty Limited, Par-
ramatta, 2124, New South Wales, Australia, 1994. 124
pages

William B. Frakes and Thomas Pole, ‘‘An Empirical
Study of Representation Methods for Reusable Software
Components,”” [EEE Transactions on Software
engineering, pp. 1-23, August 1994,

Robert Godin and Hafedh Mili, ‘‘Building and Main-
taining Analysis-Level Class Hierarchies Using Galois
Lattices,”” ACM SIGPLAN Notices, vol. 28, no. 10, pp.
394-410, Washington, D.C., 26 Sept - 1 Oct, 1993.
OOPSLA"93 Proceedings

Robert J. Hall, *‘Generalized Behavior-based
Retrieval,”” in Proceedings of the 15th International
Conference on Software Engineering, pp. 371-380,
ACM Press, Baltimore, Maryland, May 17-21, 1993.

Yoelle S. Maarek, Daniel M. Berry, and Gail E. Kaiser,
**An Information Retrieval Approach for Automatically
Constructing Software Libraries,”” IEEE Transactions
on Software Engineering, vol. 17 (8), pp. 800-813,
August 1991.

Ali Mili, Rym Mili, and Roland Mittermeir, **Storing
and Retrieving Software Components: A Refinement-
Based Approach,”” in Proceedings of the Sixteenth
International Conference on Software Engineering,
Sorrento, Italy, May 1994,

Hafedh Mili and Roy Rada, ‘‘Building a Knowledge
Base for Information Retrieval,”” Proceedings of the
Third Annual Expert Systems in Government Confer-
ence, pp. 12-18, October 22-25, 1987.

Hafedh Mili, in Building and Maintaining Hierarchical
Semantic Nets, The George Washington University,
August 1988. Doctoral Dissertation

Hafedh Mili and Manon Grenier, ‘‘Managing Documen-
tation for Software Reuse,”’ Information and Decision
Technologies, vol. 18, pp. 115-134, 1992.

Hafedh Mili and Haitac Li, ‘‘Data Abstraction in
SoftClass, an OO CASE Tool for Software Reuse,”” in
Proceedings of TOOLS'93, ed. by Bertrand Meyer, pp.
133-149, Prentice-Hall, Santa-Barbara, CA, August 2.5,
1993.

Hafedh Mili, Roy Rada, Weigang Wang, Karl Strick-
land, Cornelia Boldyreff, Lene Olsen, Jan Witt, Jurgen
Heger, Wolfgang Scherr, and Peter Elzer, ‘‘Practitioner
and SoftClass: A Comparative Study of Two Software
Reuse Research Projects,”” Journal of Systems and
Software, vol. 27, May 1994,

Hafedh Mili, Odile Marcotte, and Anas Kabbaj, ‘‘Intel-
ligent Component Retrieval for Software Reuse,’’ in

17.

18.

19.

20.

21.

22.

BB

25.

26.

27.

28,

Proceedings of the Third Maghrebian Conference on
Artificial Intelligence and Software Engineering, pp.
101-114, Rabat, Morocco, April 11-14, 1994.

Hafedh Mili, Fatma Mili, and Ali Mili, ‘‘Reusing
Software: Issues and Research Directions,’” IEEE Tran-
sactions on Software Engineering, vol. 21, no. 6, pp.
528-562, June 1995.

Hafedh Mili, William Harrison, and Harold Ossher,
‘‘Supporting Subject-Oriented Programming in
Smalltalk,’’ in Proceedings of TOOLS USA '96, Santa-
Barbara, CA, July 29 - August 2, 1996.

Hafedh Mili, Estelle Ah-Ki, Robert Godin, and Hamid
Mcheick, ‘‘Representing and retrieving reusable com-
ponents,”’ JIEEE Transactions on Knowledge and Data
engineering, October 1996. Submitted (revised version
of 1994 draft).

Hafedh Mili, Houari Sahraoui, and Ilham Benyahia,
‘‘Representing and Querying Object Frameworks,”
Technical report, Dept of Computer Science, University
of Quebec at Montreal, May 1996.

Ruben Prieto-Diaz and Peter Freeman, *‘Classifying
Software for Reusability,”” JEEE Software, pp. 6-16,
January 1987.

Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria
Blettner, ‘‘Development and Application of a Metric on
Semantic Nets,”” /EEE Transactions on Systems, Man,
and Cybernetics, vol. 19(1), pp. 17-30, January/February
1989.

James Roskind, The C++ Grammar, July 1991.

Gerard Salton and Michael McGill, Introduction to
Modern Information Retrieval, McGraw-Hill, New
York, 1983.

Gerard Salton, ‘‘Another Look at Automatic Text-
Retrieval Systems,”’ Comvnunications of the Association
of Computing Machinery, vol. 29(7), pp. 648-656, July
1986.

Scott N. Woodfield, David W. Embley, and Del T.
Scott, '‘Can Programmers Reuse Software,”” IEEE
Software, pp. 52-59, July 1987.

Amy Moormann Zaremski and Jeannette M. Wing,
‘‘Signature Maiching: A Key to Reuse,” Software
Engineering Notes, vol. 18, no. 5, pp. 182-190, 1993.
First ACM SIGSOFT Symposium on the Foundations of
Software Engineering

Amy Moormann Zaremski and Jeannette M. Wing,
‘‘Specification Matching: A Key to Reuse,”’ Software
Engineering Notes, vol. 21, no. 5, 1995. Third ACM
SIGSOFT Symposium on the Foundations of Software
Engineering

98

Object Oriented Reuse

&
Reuse on the Internet

