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AU-optical networks promise data transmission rates several
orders of magnitudes higher than current networks. The key
to high transmission rates in these networks is to maintain
the signal in optical form, thereby avoiding the prohibitive
overhead of conversion to and from the electrical form, and
to exploit the large bandwidth of optical fibers by sending
man y signals at different frequencies along the same opti-
cal link. OpticaJ technology, however, is not as mature as
electronic technology. Hence it is important to understand,
how efficiently simple routing elements can be used for all-
optical communication. In this paper, we consider two types
of routing eIements. Both types can move messages at dif-
ferent wavelengths to different directions. If in the first type
a message wants to use an outgoing link that is already
occupied by another message using the same wavelength,
the arriving message is eliminated (and therefore has to be
rerouted). The second type can evaluate priorities of mes-
sages. If more than one message wants to use the same
wavelength at the same time then the message with highest
priority wins. We prove nearly matching upper and lower
bounds for the runtime of a simple and efficient protocol
for both types of routing elements, and apply our results to
meshes, butterflies, and node-symmetric networks.
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1 Introduction

The subject of this paper is to present and analyze a simple
protocol for sending messages in an emerging generation of
networks known as all-optical networks [6, 8, 12, 16, 23, 26].
These networks promise data transmission rates several or-
ders of magnitudes higher than current networks. The key
to high speeds in these networks is to maintain the signal
in optical form, thereby avoiding the prohibitive overhead of
conversion to and from the electrical form. (Traditional net-
works use the electrical form to switch signals along routes,
and to restore signal strength. Signals can be modulated
electronically at a maximum bit rate of about 50 Gbit/s,
while the optical fiber bandwidth is about 25 THz [7]. )
The high bandwidth of the optical fiber is utilized through
wavelength-division multiplexing two signals connecting dif-
ferent source-destination pairs may share a link, provided
they are transmitted on carriers having different frequencies
(i.e., wavelengths) of light.

The major applications for such networks are in video
conferencing, scientific visualization and real-time medical
imaging, high-speed supercomputing and distributed com-
puting [12, 26, 10]. We consider routing elements that are
capable of directing messages at different wavelengths to dif-
ferent destinations and detecting collisions of messages. A
routing element (or router in short) consists of wavelength-
selective switches and couplers.

The task of the switches is to direct different wavelengths
to different directions. Several types of optical switches have
already been developed [15, 5].

The task of the couplers is to combine the signals from
many incoming optical fibers into one outgoing optical fiber.
Since we do not want to rely on central control, collisions
might occur, that is, two or more signals from different in-
coming fibers use the same wavelength. In our design of
protocols we will consider two different strategies to avoid
collisions:

If a message that arrives at a coupler uses a wave-
length already used by another message traversing the
coupler, the new message is eliminated. This can be
realized with the help of detector arrays that tell the
electronic control of the coupler which wavelengths are
currently used, and wavelength-selective filters at each
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incoming fiber.

● If a message that arrives at a coupler uses a wave-
length already used by another message traversing the
coupler, the message wit h higher priority is forwarded
and the other suspel~ded. This can be realized by
using receiver-arrays at the incoming fibers that can
read headers of messages on the fly. and wavelength-
selective filters.

We call a coupler using the first rule serve-first coupler and
priority coupler otherwise.

The following picture illustrates how a 2 x 2 router can
be built by switches and couplers.

incoming

signals

switch coupler

Figure 1: A 2 x 2 router.

outgoing

signals

1.1 The Model

We model the topology of an optical network as an undi-
rected graph G = (V, E) where each node in V represents a
router (that is connected to a processor) and each edge in
E represents two optical links, one in each direction. Each
node in V contains an injettion buffer and a delivery buffer.
Initially. each message is stored in the injection buffer of its
source. Once a message reaches its destination, it is stored
in the destination’s delivery buffer. During the routing a
message cannot. be buffered and therefore has to be moved
forward or eliminated. Since we do not want to convert
messages to and from the electrical form, we do not require
the nodes to operate in discrete, synchronous time steps. In-
stead, we just need to assume that the nodes are fast enough
to operate correctly according to one of the collision rules
defined above. Hence one time step within our model is de-
fined as the time one bit oi the message needs to traverse a
link.

The routing problem will be defined by specifying a path
collection P, which is a multiset of paths in G. A path is
called

● shortcut-free if there is no piece of a path in it that is
shortcut by any combination of pieces of paths in P,
and

● leveled if levels can be assigned to the nodes in P such
that for every path in P every edge leads from a node
in level i to a node in level i + 1 for some i ~ O.

The routing problem consists of routing one message along
each of the paths in P. We measure the routing performance
of our protocols by

● the number n of paths in P,

s the dilation D of P, that is, the length of the longest
path in P, and

● the path congestion (?’ of “P, that is, the maximum num-
ber of paths that share a link with a path in P.

A major problem in all-optical networks is to interpret
the address header of messages arriving at optical switches,
since t heir switchinsz time is still slow com Dared with the
transmission speed ‘h optical fibers. An approach investi-
gated by ATkT [11, 13] and elsewhere employs a low bit-rate
header which is read on the fly by a photodiode or a contact
on a semiconductor amplifier. These electrical bits are fed
to a controller that operates an optical switch that sends
the unconverted optical data bits along the proper path. A
message might occupy several links on its way through the
network. We therefore model the messages as worms, each
of which consists of a seauence of fixed size units called flits.
We assume that it takes-one time step to send a flit alo~g a
link. The Zength of a worm is defined as the number of flits it
contains. The first flit is called the head and the remaining
flits are called the body of the worm. During the routing, a
worm occupies a contiguous sequence of links along its path,
one flit. per link.

The number of wavelengths a router can handle is called
the bandwidth of the router and denoted by B. As defined
for the coupler above, we distinguish between two rules for
the router: the serve-first rule and the priority rule.

1.2 Previous Results

Barry and H umblet [3, 4], Pieris and Sasaki [24] and Pankaj
[22] have given lower bounds on the number of wavelengths
required for permutation routing in any network, indepen-
dent of the topology, with a given number of wavelength-
selective switches. Pankaj [22] went on to consider lower
and upper bounds for a few specific networks; for example,
he gives an upper bound of 0(log2 n) wavelengths for per-
mutation routing on the hypercube. In addition, a number
of papers in the communication literature [2, 8, 20] have
formulated the routing problem for both switches that can
and cannot direct different wavelengths to different direc-
tions as combinatorial optimization problems. Aggarwal,
Bar-Noy, Coppersmith, Ramaswami, Schieber and Sudan [I]
gave bounds on the number of switches required without tak-
ing into account the network topology, as a function of the
number of wavelengths avaifable. In addition, they proved
results on routing in non-blocking permutation networks.
Raghavan and Upfa.1 [25] prove results that establish a con-
nection between the expansion of a network and the number
of wavelengths required for routing on it considering both
switches that can and cannot direct different wavelengths
to different directions. In [27], Ramaswami and Sivarajan
present a lower bound on the blocking probability for any
so-called routing and wavelength assignment (RW.A) algo-
rithm if requests and terminations of connections arrive at
randam, and wavelength-selective switches are used. They
study both the case that wavelength conversion is allowed
and not allowed at the routers.

To our knowledge, nothing has been found out so far
about the maximum number of trials to send a message
to its destination given an arbitrary path collection and a
fixed bandwidth, if wavelength conversion is not allowed. In
case that wavelength conversion is allowed at every router,
Cypher et al [9] presented an online protocol that routes
messages of length L along any simple path collection with
congestion C and dilation D h time O((L . C DIIB + (D +
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L) log n)/ B), w.h. p.’. However. all-optical devices for wave-
length conversion are still a topic in research and might sig-
nificantly increase the cost of a router. Therefore we want to
show in this paper how far one can get without wavelength
conversion.

1.3 New Results

In this paper we investigate how much time is necessary
to route messages to their destinations given an arbitrary
shortcut-free path collection with some fixed bandwidth in
case that wavelength conversion is not allowed.

Since the communication time is usually much higher
than the calculation time of processors, it is very important
to have routing protocols that are as simple as possible.
Hence the processors should usestrategies that do not need
any coordination. Since messages cannot be buffered during
the routing along their path there are basically two types of
strategies to handle such a situation: starting messages with
random delays, or assigning priorities to messages. Clearly,
the most simple protocol that can be thought of for send-
ing worms along a fixed path collection using routers with
bandwidth B is the following.

Trial-and-Failure Protocol:
dln
for t

b

s

●

worms are declared active
=1 to Tdo:

each active worm is sent out from its source
with random startup delay in some suitably
chosen range [At] using a random wavelength
in [B]

for every worm that completely reaches its des-
tination, an acknowledgement is sent back to
the source immediately afterwards

every source that .eets back an acknowledge-
ment declares its worm as inactive

Let us call the execution of one for-loop one round. Clearly,
round t requires at most At + 2(D + L) steps to be sure
that either an acknowledgement of a successful worm reaches
its source, or the worm or its acknowledgement has been
(partly) discarded. (Note that if we use priority routers it
can happen that worms are only partly discarded.)

Previously, only delay sequence arguments were used to
analyze such protocols (see, e.g., [9, 28]). In this paper
we use delay tree arguments that yield much more accu-
rate upper bounds on the runtime. In particular, we are
able to prove the following three results depending on the
contention resolution rule. Their proofs can be found in

Section 2 and Section 3. Let a = & + B(: + 1)+ 2 and

P = ~/fi +2. The first theorem presents a nearly tight
analysis of the protocol above for leveled path collections.

Main Theorem 1.1 For any leveled path collection of size
n with dilation D and path congestion 6 using serve-first
routers with bandwidth B the protocol above routes a worm
of length L along each of these paths in time

((~ L.ti
~ + ~~+loglogp n

)(

L log n

))
—+D+L ,

B

“By ‘<with high probabilityy“’ (or w.hp. for short) we mean a prob-
ability of at least 1 – l/nk for sny constant k > 0.

u.h.p. Furthermore therf. exists a levelcdpath collection such
that, for any L z 2, the expected runtime is bounded by

Since in contrast to leveled path collections it can happen
in some shortcut-free path collections that worms prevent
each other from reaching their destinations, we get a slightly
worse result for arbitrary shortcut-free path collections.

Main Theorem 1.2 For any shortcut-free path collection
of size n with dilation D and path congestion C using serue-
first routers with bandwidth B the protocol above routes a
worm of length L along each of these paths in time

(~L.k

(

L log~lz n
~ + (log. n + loglogpn)

B ))
+D+L ,

w.h.p. Furthermore there ezists a shortcut-free path col-
lection such that, for any L ~ 2, the ezpected runtime is
bounded by

(~L.~

)
~ + (log=n +loglogpn)(D + L) .

Note that for the case L = 1 (i.e., worms cannot pre-
vent each other from reaching their destinations) or there
are no directed loops in the path collection of length below

=, the upper bound in Main Theorem 1.2 can be re-
duced to the upper bound in Main Theorem 1.1. For any
other situation, we also obtain this bound if we replace the
serve-first routers by priority routers.

Main Theorem 1.3 For any collection of n shortcut-free
paths with dilation D and path congestion ~ using priority
routers with bandwidth B the protocol above routes a worm
of 2ength L aiong each of these paths in time

o(++(=+log,og,n)(W+D+~))l
w.h.p. Furthermore there is a shortcut-free path collection
and a strategy for assigning priorities to the worms such
that, for any L z 2, the expected runtime is bounded by

Q(~+(=+loglogP.)(D+L))
Note that the upper bound holds for any assignment of

priorities to the worms such that no two worms with the
same priority can meet in one round, whether these priori-
ties are changed from round to round, chosen randomly, or
deterministically.

The main theorems indicate that for shortcut-free path
collections the priority rule is more powerful than the serve-

first rule. Often, Q( ~ + D + L) is a lower bound for any
protocol using servefirst or priority routers. In this case
the runtime of our protocol can get optimal if ~ is large
enough compared to D and L. Note that, for instance, for
the butterfly network of size N the average path congestion
of permutation routing problems is @(logz N), whereas its
diameter is O(log N).

The upper and lower bounds in Main Theorems 1.1 and
1.3 will be proved in Section 2, and the upper and lower
bound in Main Theorem 1.2 will be given in Section 3. In
the following, we describe some applications of the trial-and-
failure protocol.
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1.4 Applications 2 Proof of Main Theorems I.l and 1.3

The results presented above can be applied. e.g., to node-
symmetric networks [9]. Note that node-symmetric net-
works form a very general class and include most. of the stan-
dard networks such as the d-dimensional torus, the wrap-
around butterfly, the hypercube, etc. Furthermore, the best
expanders that have an explicit construction are all node-
symmetric (see, e.g., [19]).

Theorem 1.4 Foranybounded degree node-symmetric net-
work of size n with diameter D using priority routers with
bandwidth B there is an online protocol for routing a ran-
domlychosen function in time

o(~+(=+loglog.)(~+~))
w.h.p.

Proof. In [21]it is shown that, for every node-symmetric
network of sizen with diameter D, ashortcut-free system of
paths can be chosen such that a collection of paths chosen
out of this system for routing a randomly chosen function
hasa path congestion of 0(D2+log n), w.h.p. Using this in
the time bound of Main Theorem 1.3 yields the theorem. H

The previous best time bound for the case B = 1 was
O(L D2 + (D + L)log n) [9]. (Note that for B > 1 the
protocols in [9] allow wavelength conversion which we do
not allow here. ) The result in Theorem 1.4 can be improved
for d-dimensional meshes and tori.

Theorem 1.5 For any d-dimensional mesh of side length
n using priority routers with bandwidth B there is an online
protocol for routing a randomly chosen function in time

o L.d. n

( (

L . dlogn

B
+ (W+ Ioglog n)

B ))
+d. n+L ,

w.h.p.

Proof. Using techniques in [9], it is easy to show that
there exists a routing strategy for routing a randomly chosen
function that has a path congestion of O(d. n), w.h.p. Since
the size N of a d-dimensional mesh with side length n is

d “t foUows thatequal to n , 1

where a is chosen as in the main theorems. In case that
W ~ log log N we have that n z N’l’OglOg ~ and therefore
log log N = O(log log n). This concludes the proof. m

Note that the previous best time bound for the case B =
1 was O(L . d . n + (d . n + L)logn) [9]. In case that we
use butterfly networks, we can use more simple serve-first
routers to obtain the following result.

Theorem 1.6 For any log n-dimensional butterfiy using ser-
ve-first routers with bandwidth B there is a leveled path sys-
tem such that a randomly chosen q-function can be routed
from the inputs to the outputs in time

O(L~n+~s(*+L+logn)),

w.h.p.

For B = 1, this improves for some cases the previous
best time bound of O(L ~qlog n + (L + log n) log n) [9].

In this section we prove upper and lower bounds on the run-
time of our protocol using serve-first routers in leveled path
collections, or priority routers in shortcut-free path collec-
tions. In order to simplify the presentation, we will concen-
trate on serve-first routers in leveled path collections, and
note the analogy to routing with priority routers in shortcut-
free path collections whenever it is necessary.

Hence suppose we want to route worms of length L -ilong
a collection of n leveled paths with path congestion C and
dilation D, using serve-first routers with bandwidth B. (In

order to simplify the analysis we assume that & covers both
messages and acknowledgements. )

2.1 The Upper Bound

In this section we want to prove an upper bound for the
number T of rounds that is necessary to route all worms
using the trial-and-failure protocol with some suitable values
of At. We first want to find a structure that witnesses a long
runtime of the protocol.

Assume that a worm UJOis stilf active after t rounds.
Then there must have been a worm WI that prevented it
from moving forward in round t. But if wo and WI have
been active at round t there must have been (not necessarily
different) worms wz and ws which prevented wo and WI
from moving forward in round t – 1. Continuing with this
argumentation until round 1 we find:

If worm wo is still active after t rounds then the following
tree can be constructed such that the nodes represent worms
and two nodes with a common father a collision event.

. . . . . . . . . . .

cm.....

round A
- t+]

.t

- t-1

Figure 2: The witness tree of depth t.

Let us call this tree a witness tree of depth t, and denote
it by W(t). The following definition formalizes what kind of
embeddings of worms into the nodes of W(t) we only have
to consider.

Definition 2.1 Let p be an embedding of worms into the
nodes of W(t). A pair of worms (w, w’) is called coflision
pair if w # w’, w is embedded in the left son, and w’ is
embedded in the right son of a common father in W(t). We
call p valid if for every collision pair (w, w’) embedded at
leuel z of W(t) it holds that

● w is also embedded in the father of w and w!,

● there is no collision pair (w, w“) at level i with w’ #
w)), and
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A ualtd embedding is called active if for any colliston pair
(w, w’) embedded at level i of )+’(t) it holds that w and w’
use the same wavelength and w’ prevents w from moving
forward in round t – i + 1.

Following the discussion above, we can state the follow-
ing lemma.

Lemma 2.2 If worm wo is still active after t rounds then
there is an active embedding p of worms into W(t) that maps
WO to the root of W(t).

The above lemma implies that it suffices to find a suitable
upper bound for the probability (w. r.t. random choices for
the delays and wavelengths used by the worms) that there
is an active embedding p for any worm UJOin order to prove
the upper bound in Main Theorem 1.1.

In order to count the number of valid embedding we
introduce the following graph.

Definition 2.3 Let ~ be a valid embedding. For each level
i c {1, . ,t} Oj W(t), /et Gi = (V,, E,) be a directed graph
whose nodes represent the set of worms embedded in level i
and whose edges (w, w’) represent the collision pairs (w, w’)
in level i. We call the worms in x-l old and the worms in
U \ ~-1 new rv.r.t. G,.

We assume Go to be the graph consisting only of a sin-
gle node. Let the set of graphs Go, . . . . G, be called valid if
they represent a valid embedding into W(t). Clearly, each
valid embedding into W(t) has a unique valid set of graphs
Go . . . . . G,. and vice versa. Thus we can switch between-., .
either considering valid sets of graphs GO, . . . . G~ or consid-
ering vahd embedding into W(t) in an arbitrary way.

For any valid embedding p into the witness tree W(t),
let m, = Iv I denote the total number of worms and /, =
m, —m, –I denote the number of new worms at level i. Let
~J be an upper bound for the path congestion that holds at
round j w.h.p. using the protocol above for suitably chosen
Al, ..., AJ (determined later). Then it holds for the number
V(t, k) of valid embedding in W(t) using k worms:

u, -

w.h. p. This formula is derived as follows.

● There are n ways to choose the worm that is embedded
in the root of W(t).

. There are (“’;-’) possibilities to choose ~i old worms
.-r,

that collide with (and therefore narrow down the choi-
ces for) each of the t, new worms. Hence afterwards

there are at most ~~:,+1 ways w.h.p. to choose the !,
new worms.

● For the remaining m,_l – Ii old worms there are at
most ii + m,-1 possibilities to choose the worm that
prevents it from moving forward.

Before \ve can proceed with our calculation, we need an up-

per bound that holds for the path congestion after every

round w.h. p., and need an upper bound for the probability
that the embeddings counted in V(t, k) are active.

Lemma 2.4 For all t >2 it holds that, if A, z 8e~ for

alli E {1 , . . . . t – 1}, then the path congestion ~t at round t

is at most max{~, O(log n)}, w.h.p.

Proof. The proof will be done by induction. Suppose,
the path congestion at the beginning of round t is bounded

by ~ ~ 2a log n for some arbitrary constant a >1. Let

At ~ 8e ~ be the delay range in round t.Consider any
fixed worm w. Let WI, . . . . Wk be the worms participating
in round t whose paths share a link with the path of w,

k ~ ~. Further let the binary random variable X, = 1
if and only if w, fails to reach its destination in round t.

Then X = ~~=1 Xi is a random variable denoting the path
congestion of w after round t.

Since the delays and wavelengths are chosen indepen-
dently and we only consider shortcut-free paths, it holds for
every pair of worms wi and w] that

Prob(w~ is (partly) discarded by WJ) < & .

Therefore,

independently from the other worms and hence E(X) ~
c Let p= -. Then we can use Chernoff bounds*e.~i–l .

(see [14]) to prove that, for c = 2e – 1,

Prob(X ~ (1 + c)p) ~
(&)(’+’)”= (*)2e-

< (;)”’O’”= ($ ~

For w >1, this yields the lemma. 9

Hence in the following we assume that ~i = max{ ~,

O(log n)} for all i ~ {1,...,t}.
Next we bound the probability that any of the embed-

ding counted in V(t, k) is active. As noted above, the prob-
ability that a collision pair (w, w’) in level i of W(t) is active
is at most ~.BA, _,+l Let a node in G, be called sink if it haa

out degree O. Then we can prove the following nice property.

Lemma 2.5 For every level i, the connected component in
G, are directed trees with new worms as sinks.

Proof. Every old worm needs a witness for its collision
in round i and therefore can not be a sink like the new
worms, that have no witness since they are just introduced
aa witnesses in round i. Further a connected component can
not have a cycle since

● in leveled path collections using the serve-first rule this
would mean that worms prevent each other from mov-
ing forward. This however, is not possible in a leveled
path collection.
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● in shortcut-free path collections using the priority rule for 4, > ~ that
this would mean that a worm WI is discarded by a
worm W2 that h~~ a higher priority than w, and W2

is discarded by a worm w?, that has a higher priority
than w2, and so on, until we arrive at a worm w, that

~(~.k) < ~(8;A:)k-’2t+k-1 (%)+(t-pogk,)2

is discarded by w], since it. has a higher priority than
w,. This, however, is not possible as long as no two
worms with the same rank can meet in a round.

= ~.,t(lyi:)’-’(%) +[pogk,”,”

For any constant ~ >0, let
B

(2+y)logn +1
Since every directed tree in Gi of size s implies a prob-

~A~~,~, )’-’ that its edges correspond to col-

~o=log(2+*(++ l))
ability of s ( —

--, -
lisions of worms, and since there are exactly t, trees in G,, and
we ,,obtain a probability of at most

(B::t+l)(m:-’+’’e-e’=(B::+l)m’-’
that the collisions in level i are active. Therefore the proba-
bfity P(t, k) that there exists an active embedding in W(t)
is at most

In case that t, s m,_l/2, we get

(:)‘~-’ (/1 + m,_, )*’-’ ‘“ < (3em,_, )m’-1 ‘“,

and otherwise (that is, rn; -1 /2 < ti s m,-1 )

()‘j-] (/, + ret-l )m’-’-” < 22’’ (2TTti-~)m’-’-”.
t

Therefore, P(t, k) is at most

. ~ fi22’1(3em,-*)”’’-f -f5f:i+1+1(*) ’’”-’
tl,....tt>o% :=1
~,t,=k-,

~ +#’ig)kko,lj(::;::)m’-’-f’
)’,,,=,-1

for A, chosen such that ~ ~ ~. Furthermore, the follow-

ing lemma holds. Its proof is omitted here.

Lemma 2.6 If A, > ~ and A,+l ~ A, jor all i E
{1,...,1}l} then

T>

J

2(2+ ~)logn

(( ))

+ pog kol.

log &+ fi+y

If the routing takes more than T rounds then one of the
following two cases must be true:

(1) There must exist an active embedding into a witness
tree W(t) with t s T and k E {ko, . . . .2ko} different
worms.

(2) There must exist an active embedding into a witness
tree W(T) with k s k. different worms.

Suppose that A, ~ max{~, ~, 40e~kQ} + D + L.

Then we get:

Prob(The routing takes more than T rounds)

s Prob(Case (1) holds) + Prob(Case (2) holds)

s ~ ~ I’(t, k) + ~ P(T,k)
tdog k. k=ko k=T

~ 5 Zq%$) k-’+
tdog k. k=ko

Therefore the overalf runtime is

S(A,+‘2(D+ -L))
C=l

= O($(D+L+;(&+&+lOgn)))
w.h.p., which is bounded by

~1,..,;t>o, ~(%i;jm-’-’< (%) ’(t-””gk’)’ ~(~+@~+,og,ogpn)(a+D+.)),

~yl, $=1 B

Clearly, there are (*+2-1) s 2’+k-* possibilities for choos- wherea =&+ B(~+l)+2and~ = 2+~(~+1). This corn-

ing the /1, . . . ,It such that ~~=1 1, = k — 1. Thus we get
pletes the proof of the upper bound of Main Theorems 1.1
and 1.3.
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2.2 The Lower Bound

In this section we will prove the lower bound in Main The-
orems 1.1 and 1.3. We use a path collection that consists of
the following two types of subcollections.

● Let d = 1~]+1. The first type consists of n/(2-)

structures consisting of = paths of length D that
are connected as shown in Figure 3.

P*Z ,SF?f’”-”
.-- .--/

W-L’ ‘“-”

o d 2d 3d ‘id #1.,4

Figure 3: A type-I structure.

In general, the ith path starts in level (i – 1)d for all
i ~ O. Paths i and i + 1 have a common edge from
level i.d to level id+l.

● The second type consists of n/(2~) structures each

consisting of ~ identical paths of length D.

We assume that along each of these paths one worm of length
L >2 has to be sent.

We first want to compute how long it takes to route
all worms in a type-1 structure. In case of routing along
shortcut-free paths using priority routers, we assume that
the worm traversing path i has rank i, and in case of conflicts
worms with higher ranks are preferred. In order to bound
the number of ways to sssign delays and wavelengths to
the worms such that conflicts occur, we need the following
lemma. Its proof is easy and therefore omitted here.

Lemma 2.7 Consider an arbitrary round of the trial-and-
jailure protocol with delay range A z L. Suppose that the
worms traversing the first i+ 1 paths are still active at the be-

ginning o~ this round. Then with probabi~ity at least (~)’

the worms traversing the jirst i paths are discarded.

Consider now the situation that it takes t+ 1 rounds
to route the worms traversing the first t+ 1 paths in a
type-1 structure. This could happen, e.g., if in round i
only wt _ 1+2 is able to reach its destination, and the worms
WI, ..., wt-i+l are discarded. According to the lemma above,
for L ~ 2 the probabfity of such an event is at least

‘+’ BAi (~)’-’+]
rI h (2BfA&)’-’~1(1)i=, (B(Ai + L)) ’-’+2 = i=,

where A, ~, 1 is the delay range for round i. Clearly, the
number of time steps necessary for the t rounds is at leaat

fl(~’=l (A, + D + L)). Given a fixed A = ~~=1 A,, the
product in (1) gets minimal if A, + L = (t– t+ 1)(A + t.

L)/(t~’)for W i E {1,.. ., t}.This is shown in the following
lemma.

Lemma 2.8 Considf. r XI, . . . z~ E ill+ with y = ~~=1 z,.

Then, for every b c [0, y], ~~=l(z, + fI)’ gets maximal if

~,+ b=i(y+n .b)/(’’~]) joralli C{l, . . .. n}.

The proof of the lemma is a simple induction argument.
Let A = A/t. Since there are n/(2=) type-1 structures,
and each structure has a probability of at least

(L- l)(t+ 1)
i( (,=1 2B2t-i+l)(A+L) )’-’+’ 2 (4:~:L))t’

to have active worms after t rounds, the expected number
of type-1 structures that have active worms after t rounds
is at least

Hence the expected number of rounds that are needed to
route all worms in all type-1 structures is at least

inIn order to bound the time needed to route all worm:
the type-2 structures, we distinguish between the cases C ~

2= and ~ < 2=.—

Note that any routing protocol needs at lesst Q( ~ + D+L)
steps to route all worms in a type-2 structure. Therefore
the expected number of steps the protocol needs to route all
worms is at least

(-$!-1 g+ )og~(~/~+2) TZ(A+ D + L) .

Since the runtime bound gets minimal for some A chosen in

0( ~ + D + L), the expected runtime of the protocol is at
least

where a = d+ B(%+ 1) +2. Let @ = cr/d +2. Since

@ s 2-, it holds that -< log log n only if B(++

1) ~ 210gn/(lw k n)z > ~. In this csse, however, log/3 =

@(log a), that is, ~~” z log logp n. Therefore we arrive
at an expected runtime of the protocol of at least

time steps.

Let ~, be the minimum over all type-2 structures P of the
number of worms that are still active in P after i rounds.
Then the following lemma holds.
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Lemma 2.9 Foreveryt >2 und L(~+l) < AI, . . .. It-I <

A with c/(&) 2’-’–’ > 71n n it holds that

w.h.p.

Proof. We only sketch the proof. For t = 1, the bound
on ~~ trivially holds. Suppose that the bound above for
~, is true for some t z 1. Then we want to show that, if

A, s A and d/( ~)”-’ ~ 71n n, then we get ~t+, 2

2*-1

~f (- “)
, w.h.p.

Assume in the following that &/( ~)”” ~ 6 [a in n]

for some fixed constant cr > 1. Consider any fixed type-2
structure P. Let WI, . . . . WCbe the worms participating in

round tthat use this type-2 structure, c ~ 6/( -)2’-”1.

Further let the binary random variable X: =’1 if’and only
if w, fails to reach its destination in round t, and X =

~~sl X, Then it can be shown that Xl,..., Xc,, can
be considered as (2 [rr In nl )-wise independent with proba-

bility at least ~ . ~ z ~ if A, z 2L. In

this case we get an expected path congestion after round

tof E(x’)~~. ~. Let p=$$. ~. Then

“)

2{-1
~>201(* “ Using this together with a result

shown in [29] (see Theorem 5), we get:

Prob

-aln n la

()
se = – .

n

Hence for a >1 the path congestion after round t is bounded

b ~1(~;_:;c—)2’-1 for all type-2 structures, w.h.p.

Thus for any L ~ 2 and A ~ 1 it holds for the expected
number tof rounds to route all worms in type-2 structures
that

(5
~,_l ~71nn

(
32B(~+L(d/B+2

(L–1)5 ‘9

where 7 = 3213(A+ L(&/B+2)~
(L-1)6 “ Since 6 > 2*, the ex-

petted runtime of the protocol is at least

“(~+(=+’og’og+’+”+’l
Since this bound gets minimal for A = 0( ~ + D + L), we
get an expected runtime of at least

time steps, where a =6+ B(~+l)+2 and /?= cr/~+2.

3 Proof of Main Theorem 1.2

In this section we prove upper and lower bounds on the run-
time of our protocol for shortcut-free path collections using
serve-first routers. Hence suppose we want t.o route worms
of length L along a collection of n shortcut-free paths with
path congestion ~ and dilation D, using serve-first routers
with bandwidth B. (We again awume that C covers both
messages and acknowledgments. )

3.1 The Upper Bound

In this section we want to prove the upper bound in Main
Theorem 1.2. Let the witness tree W(t) be defined as in Sec-
tion 2. For any vahd embedding w into W(t), let m, = IV, I
denote the total number of worms and L = m, – rn, -1 de-
note the number of new worms at level i. Furthermore let c,
denote the number of old worms that a~e in a connected com-
Donent in G, with a new worm. Let C, be an umer bound. . .
for the path congestion that holds w.h.p. after round j using
the trial-and-failure protocol for suitably chosen Al, . . . . A3
(determined later). Then it holds for the number V(t, k) of
valid embedding in W(t) using k worms:

~,t,=k-1

(1, + c,)=’-” . (m,-, - C,)m’-’-c’,

w.h.p. This formula is derived as follows.

● There are n ways to choose the worm that is embedded
in the root of W(t).

● There are (“’;:l) possibilities to choose., old worms
that lie in a connected component in G, with a new
worm, and (~’) possibilities to choose t, old worms,
that collide with (and therefore narrow down the choi-
ces for) each of the 1, new worms. Therefore afterwards

there are at most ~~:,+1 ways w.h. p. to choose the t?,
new worms. For the remaining c, —1, old worms there
are at most f,+ ci possibilities to choose the worm that
prevents it from moving forward.

● For each of the remaining rra,-l — c, old worms there
are at most mi–l —c, ways to determine the old worm
which prevents it from moving forward.

Before we can proceed with our calculation, we need an
upper bound that holds for the path congestion w.h.p., and
need an upper bound for the probability that the embed-
ding counted in V(t, k) are active.

Since the delays and wavelengths are chosen indepen-
dently and we only consider shortcut-free paths, it holds for
every pair of worms wi and w] at round t that

Prob(wi is blocked by Wj) ~ ~

Therefore we get analogous to Lemma 2.4 that, if A, ~

4e~ for all i c {1, . ...t– 1},then the path congestion

~, at round t is at most max{2~, O(log n)}, w.h.p.
Next we bound the probabihty that the embedding coun-

ted in V(t, k) are active. As noted above, the probability
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that a collision pair (w. w’) in level i of W(t) is active is at
most L—. For every level L, each connected componentBAt_,+,
in G, that contains no new worms has a size of at least three.
This is true since we only allow the worms to be routed along
shortcut-free paths and therefore two worms can not block
each other. Hence there are at most g, ~ ~ components
with no new worms. Since every connected component of
size s implies a probability of at most ( ~) ’-’ that its

edges represent collisions of worms we obtain ‘a probability
of at most

(B:-:+)
((m, _,–Cl)–g, )

5(B:-t+J2(m’-’’-c’)
that these components are active. Note that we can improve
this bound if we know that at least k >3 pieces of paths in
the collection are needed to obtain a directed cycle in G,.

According to Section 2, each connected component in G~
that contains a new worm forms a tree. Furthermore each
new worm lies in a different connected component. There-
fore the probability that their edges represent collisions of
worms is at most

(B:-l+l)(’’+c’)-”~
Altogether the probability that all collision pairs in level i
are active given mi-l and ci is at most

(B:-:+l)c’+’(m’-;-c’)~
Therefore the probability P(t, k) that there exists an active
embedding in W(t) is at. most

(m,_, - C,)m’-’-c’ (B:t+l)’’+’(m’-=”=”
The rest of the proof is similar to that in Section 2.1 with
the difference that, for any constant ~ >0, we choose

(2+7)logn +1

‘o=log(z+%(:+ l))

and

T>
(2+ 7) log n

(

+ pog kol .
log & + log ‘/2rz+:(++l))

Therefore the overall runtime is

5(A, + 2(D+ L))

t=l

= o($(D+,+$($+&+b3i2n)))

w.h.p., which is bounded by

where cr=~+13(~+l)+2 and /3=cr/~ +2.

3.2 The Lower Bound

In this section we wifl prove the lower bound in Main The-
orem 1.2. We use a path collection that consists of the fol-
lowing two types of subcollections.

● The first type consists of n/6 structures consisting of
three paths of length D that are connected as shown
in Figure 4.

path3

\
\

[W2] edges

Figure 4: A type-1 structure,

● The second type consists of n/(2@ structures each

consisting of & identical paths of length D.

We assume that along each of these paths one worm of length
L >2 has to be sent. (Note that in case of L = 1 no cycles
of cofliding worms can occur, that is, we are in a situation
of Main Theorems 1.1 and 1.3.)

We first want to compute how long it takes to route all
worms in a type-1 structure. Consider an arbitrary round
i of the trial-and-failure protocol. Suppose that in a given
type-1 structure all three worms are still active. Then we
want to calculate the probability that these three worms
block each other in round i.

Suppose that A, ~ L. Let the worm traveling along path
j E {1,2, 3} be called WJ. Then it is easy to show that the
pr~babihty that WI, WZ, and w, collide at round i is at least
( lTj/(BA, ))2. Therefore the probability that WI, WZ, and
W3 collide for t rounds is at least

for any choice of Al, . . . . A, ~ 1. Given a fixed A =
~~=1 A, this product yields the smallest probability if A, =
A/t for all i E {1, . . . . t}.Hence assume that all delay ranges
are equal to A = A/t. Since there are n/6 type-1 structures,
and each structure has a probability of at least ( ~B(~+L) )z~

to have active worms after t rounds, the expected number
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of type-1 structures that have active
is at le~st

worms after t rounds

log(n/6)

2’0’ (*)

Hence the expected number of rounds that are needed to
route all worms is fl(log~(al~+l) n). In order to bound the
time needed to route worms in the type-2 structures, we

distinguish between the cases ~ ~ 26 and ~ < 2=.

Case & <2-:

Note that any routing protocol needs at least $2(~ + D+ L)
steps to route all worms in a type-2 structure. Therefore the
expected runtime of the protocol is at leaat

(-0 ~+log9+2ra. (A+ D+L)
)

(- )
= O ~ + (logm n +loglogflrz)(D + L) ,

where a=d+B(~+l)+2 and,f3= a/6+2.

Case c ~ 2=:
This case follows analogous to Section 2.

4 Summary and Open Problems

In case that wavelength conversion is not allowed we pre-
sented a very accurate analysis of the performance of a sim-
ple routing protocol for two types of all-optical routing el-
ements. The question is, what the exact time bound for
the runtime of the trial-and-failure protocol is if wavelength
conversion is allowed. (The bound presented in [9] seems to
be too weak compared tc, the bounds obtained in this pa-
per.) Furthermore it would be interesting to consider cases
in which only a few routers can convert wavelengths (see,
e.g., [18]).
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