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Accessing Nearby Copies of Replicated Objects

in a Distributed Environment
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Consider a set of shared objects in a distributed net-
work, where several copies of each object may exist at
any given time. To ensure both fast access to the objects
as well as efficient utilization of network resources, it is
desirable that each access request be satisfied by a copy
“close” to the requesting node. Unfortunately, it is not
clear how to efficiently achieve this goal in a dynamic,
distributed environment in which large numbers of ob-
jects are continuously being created, replicated, and de-
stroyed,

In this paper, we design a simple randomized algo-

rithm for accessing shared objects that tends to satisfy
each access request with a nearby copy. The algorithm is
based on a novel mechanism to maintain and distribute

information about object locations, and requires only a
smaIl amount of additional memory at each node. We

analyze our access scheme for a class of cost functions
that captures the hierarchical nature of wide-area net-
works. We show that under the particular cost model
considered: (i) the expected cost of an individual access
is asymptotically optimal, and (ii) if objects are suffi-
ciently large, the memory used for objects dominates
the additional memory used by our algorithm with high
probability. We also address dynamic changes in both
the network as well as the set of object copies.
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1 Introduction

The advent of high-speed networks has made it feasible
for a large number of geographically dispersed comput-
ers to cooperate and share objects (e.g, files, words of
memory). This has resulted in the implementation of
large distributed databases like the World Wide Web
on wide-area networks. The large size of the databases
and the rapidly growing demands of the users has in turn
overloaded the underlying network resources. Hence, an
important goal is to make efficient use of network re-
sources when providing access to shared objects.

As one might expect, the task of designing efficient
algorithms for supporting access to shared objects over
wide-area networks is extremely challenging, both from
a practical as well as a theoretical perspective. With

respect to any interesting measure of performance (e.g.,
latency, throughput), the optimal bound achievable by
a given network is a complex function of many parame-
ters, including edge delays, edge capacities, buffer space,
communication overhead, pat terns of user communica-
tion, and so on. Ideally, we would like to take all of
these factors into account when optimizing performance
with respect to a given measure. However, such a task

may not be feasible in general because the many net-
work parameters interact in a fairly complex manner.
For this reason, we adopt a simplified model in which
the combined effect of the detailed network parameter
values is assumed to be captured by a single function
that specifies the cost of communicating a fixed-length
message bet ween any given pair of nodes. We antic-
ipate that analyzing algorithms under this model will
significantly aid in the design of practical algorithms for
modern distributed networks.

Accessing shared objects. Consider a set A of
m objects being shared by a network G, where several
copies of each object may exist. In this paper, we con-
sider the basic problem of r-eading objects in A. Moti-

vated by the need for efficient network utilization, we
seek algorithms that minimize the cost of the read op-
eration. We do not address the write operation, which

involves the additional consideration of maintaining con-
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sistency among the various object copies. The problem
of consistency, although an important one, is separate
from our main concern, namely, that of studying locality.
Our results for the read apply for the write in scenarios
where consistency either is not required or is enforced
by an independent mechanism.

We differentiate between shared and unshared copies
of objects. A copy is shared if any node can read this
copy; it is unshared if only the node which holds the
copy may read it. We say that a node u znserts (resp.,
deietes) a copy of object A (that u holds) if u declares
the copy shared (resp., unshared).

We refer to the set of algorithms for read, insert,
and delete operations as an access scheme. Any ac-
cess scheme that efficiently supports these operations
incurs an overhead in memory. It is desirable that this
overhead be small, not only because of space consider-
ations, but also because low overhead usually implies
fast adaptability to changes in the network topology or
in the set of object copies.

The main difficulty in designing an access scheme that
is efficient with respect to both time and space is the
competing considerations of these measures. For ex-
ample, consider an access scheme in which each node
stores the location of each copy of each object in the net-
work. This allows very fast read operations since a node

can easily determine the location of the closest copy of
any desired object. However, such an access scheme
is impractical because: (i) it incurs a prohibitively large
memory overhead, and (ii) every node of the network has
to be informed whenever a copy of an object is inserted
or deleted. At the other extreme, one might consider
an access scheme using no additional memory. In this
case insert and delete operations are fast, but read oper-
ations are costly since it may be necessary to search the
entire network in order to locate a copy of some desired
object.

Our access scheme. We design a simple random-
ized access scheme that exploits locality and distributes
control information to achieve low overhead in memory,
The central part of our access scheme is a mechanism
to maintain and locate the addresses of copies of ob-
jects. For a single object, say A, we can provide such
a mechanism by the following approach. We embed an
n-node “virtual” height-balanced tree T one-to-one into

the network. Each node u of the network maintains in-
formation associated with the copies of A residing in
the set of nodes that form the subtree of T rooted at
u. Given the embedding of T, the read operation may
be easily defined as follows. When a node u attempts
to read A, u first checks its local memory for a copy of
A or information about copies of A in the subtree of T

rooted at u. If u is unable to locate any copy on the
basis of local information, it forwards its request to its
parent in T,

Saive extensions of the above approach to account

for all objects require significant overhead in memory

for control information at individual nodes. We over-

come this problem by designing a novel method to em-

bed the different trees associated with different objects.

Our embedding enables us to define simple algorithms

for read, insert, and delete operations, and to prove their

efficiency for a class of cost functions that is appropriate

for modeling wide-area networks.

The cost model. As indicated above, we assume
that a given function determines the cost of communi-
cation between each pair of nodes in the network. Our
analysis is geared towards a restrictive class of cost func-
tions which we believe to be of practical interest. The
precise set of assumptions that we make with respect to
the cost function is stated in Section 2. Our primary
assumption is that for all nodes z and costs r; the ratio

of the number of nodes within cost 2r of node x to the
number of nodes within cost r of node x is bounded from

above and below by constants greater than 1 (unless the
entire network is within cost 2r of node x, in which case
the ratio may be as low as 1).

There are several important observations we can make
concerning this primary assumption on the cost func-
tion. First, a number of commonly studied fixed-
connection network families lead naturally to cost func-
tions satisfying this assumption. For example, fixed-
dimension meshes satisfy this assumption if the cost of
communication between two nodes is defined as the min-
imum number of hops between them. As another ex-
ample, fat-tree topologies can be made to satisfy our
assumption if the cost of communication between two
nodes is determined by the total cost of a shortest path
between them, where the cost assigned to individual
edges grows at an appropriate geometric rate as we move
higher in the tree. The latter example is of particular
interest here, because of all the most commonly studied
fixed-connection network families, the fat-tree may pro-
vide the most plausible approximation to the structure

of current wide-area networks.

Even so, it is probably inappropriate to attempt to
model the Internet, say, with any kind of uniform topol-

ogy, including the fat-tree. Note that our assumption on
the cost function is purely “local” in nature, and allows
for the possibility of a network with a highly irregular

global structure. This may be the most important char-
acteristic of our cost model,

Performance bounds. We show that our access
scheme achieves optimality or near-optimality in terms
of several important complexity measures for the re-
stricted class of cost functions discussed above. In par-
ticular, our scheme achieves the following bounds:

. The expected cost for any read request is asymptot-
ically optimal.
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If the number of objects that can be stored at each
node is q, then the additional memory required is

O(qlog2 n) words whpl, where a word is an O(log n)-

bit string, Thus, if the objects are sufficiently large,

i.e., Q(log2 n) words, the memory for objects domi-

nates the additional memory.

The number of nodes that need to be updated upon

the addition or removal of a node is O(log n) ex-
pected and O(log2 n) whp.

The expected cost of an insert (resp., delete) opera-
tion at node u is O(C) (resp., O(Clog n)), where C
is the maximum cost of communicating a single word
message between any two nodes.

An obvious shortcoming of our analysis is that it only
applies to the restricted class of cost functions discussed
above. While we do not expect that all existing networks
fall precisely within this restricted class, we stress that:
(i) our access scheme is well-defined, and functions cor-
rectly, for arbitrary networks, and (ii) we expect that our
access scheme would have good practical performance on
any existing network. (Although we have not attempted
to formalize any results along these lines, it seems clear
that our performance bounds would only degrade signif-
icantly in the presence of a large number of non-trivial
violations of our cost function assumptions. )

Related work. The basic problem of sharing mem-
ory in distributed systems has been studied exten-
sively in different forms. Most of the earlier work in
this area, e.g., emulations of PRAM on completely-
connected distributed-memory machines (e.g., [9, 16] )

or bounded-degree networks (e.g., [14]), and algorithms
for providing concurrent access to a set of shared ob-
jects [12], assume that each of the nodes of the network
has knowledge of a hash function that indicates the lo-
cation of any copy of any object.

The basic problem of locating an object arises in every
distributed system [10], and was formalized by Mullen-
der and Vit6nyi [11] as an instance of the distributed
matchmaking problem. Awerbuch and Peleg [3], and
subsequently Bart al et al. [4] and Awerbuch et al. [I],
give near-optimal solutions in terms of cost to a re-
lated problem by defining sparse-neighborhood covers
of graphs. Their studies do not address the overhead

due to control information and hence, natural exten-
sions of their results to our problem may require an ad-
ditional memory of m words at some node, However,
we note that their schemes are designed for arbitrary
cost functions, whereas we have focused on optimizing
performance for a restricted class of cost functions,

1We use the abbreviation “whp” throughout the paper to
mean “with high probability” or, more precisely, “with proba-
bility 1 – n–c, where n is the number of nodes in the network and
c is a constant that can be set arbitrarily large by appropriately
adjusting other constants defined within the relevant context. ”

In recent work, access schemes for certain Internet ap-
plications have been described in [7, 8, 17]. Some of the
ideas in our scheme are similar to those in [17]; how-
ever, the two schemes differ considerably in the details.
Moreover, the schemes of [7] and [17] have not been an-

alyzed. As in our study, the results of [8] concerning
locality assume a restricted cost model. However, their
cost model, which is based on the ultrametric, is dif-
ferent from ours. Also, their algorithms are primarily
designed for problems associated with “hot spots” (i.e.,
popular objects).

A closely related problem is that of designing a dy-
namic routing scheme for networks [2, 5]. Such a scheme
involves maintaining routing tables at different nodes of

the network in much the same way as our additional
memory. However, in routing schemes the size of addi-
tional memory is a function of network size, i.e., n, while
in our problem the overhead is primarily a function of
m. Straightforward generalizations of routing schemes
result in access schemes that require an additional mem-
ory of m words at each node.

The remainder of this paper is organized as follows.
Section 2 defines the model of computation. Section 3
formally describes our access scheme. Section 4 con-
tains a formal statement of the main results. Section 5
analyzes the algorithm and establishes the main results.

Section 6 discusses directions for future research.

2 Model of Computation

We consider a set V of n nodes, each with its own local
memory, sharing a set A of m = poly(n) objects. We
define our model of computation by characterizing the
following aspects of the problem: (i) objects, (ii) com-
munication, (iii) local memory, (iv) local computation,

and (v) complexity measures,

Objects. Each object A has a unique (log m)-bit
identification. For i in [log ~], we denote the ith bit of
the identification of A by A’. (For any positive integer

x, we use [z] to denote the set {O, .,z – l}. ) Each
object A consists of /(A) words, where a word is an
O(log n)-bit string.

Communication. Nodes communicate with one an-
other by means of messages; each message consists of at
least one word. We assume that the underlying network

supports reliable communication.

We define the cost of communication by a function
c : V2 s R. For any two nodes u and v in V, C(U, v)

is the cost of transmitting a single-word message from
u to v. We assume that c is symmetric and satisfies the
triangle inequality. We also assume for simplicity that
for u, v, and w in V, C(U, v) equals C(U, w) iff v equals

w.

The cost of transmitting a message of length t from
node u to node v is given by f(l)c(u, v), where ~ : N ~

313



R+ is any non-decreasing function such that j(1) equals
1.

Given any u in V and any real r, let M(u1 r) denote

the set {v E V : C(U, v) S“ r}. We refer to M(u, r) as the
ball of radius r around u. We assume that there exist

real constants 8 > 8 and A such that for any node u in
V and any real r z 1, we have:

min{JIM(u, r)l, n} < /M(u,2r)l < AIM(u, r)l (1)

Local Memory. We partition the local memory of
each node u into two parts. The first part, the main

memory, stores objects. The second part, the auxiliary

memory, is for storing possible control information.

Local Computation. There is no cost associated
with local computation. (Although the model allows an
arbitrary amount of local computation at zero cost, our
algorithm does not perform any particularly complex
local operations.)

Complexity measures. We evaluate any solution
on the basis of four different complexity measures. The
first measure is the cost of reading an object. The sec-
ond measure is the size of the auxiliary memory at any
node. The remaining twc} measures concern the dynamic
nature of the problem, where we address the complexity
of inserting or deleting a copy of an object and adding
or removing a network node. The third measure is the
cost of inserting or deleting a copy of an object. The
fourth measure is adaptobiiity, which is defined as the
number of nodes whose auxiliary memory is updated
upon the addition or removal of a node. (Our notion of
adaptability is analogous to that of [5]. )

3 The Access Scheme

In this section, we present our access scheme for shared

objects. We assume that n is a power of 2b, where b is a
fixed positive integer to be specified later. For each node
x in V, we assign a label independently and uniformly

at random from [n]. For i in Dog n], let xi denote the
ith bit of the label of z, Note that the label of a node
x is independent of the (log n)-bit unique identification
of the node. For all z in V (resp., A in d ), we define

z[i] = X(i+l)b-l . .xib (reSp.,~[~]= Afi+l)b-l.. Aib),
for i in [(log n)/b]. We also assign a total order to the
nodes in V, given by the bijection ,B : V + [n]. We
partition the auxiliary memory of each node into two
parts, namely the neighbor table and the pointer list of
the node,

Neighbor table. For each node x, the
neighbor table of z consists of (log n) /b levels. The ith

level of the table, i in [(log n)/b], consists of primary, sec-
ondary, and reverse (i, j) -neighbors, for all j in [2b]. The
primary (i, j)-neighbor y of z is such that y[k] = x[k]

for all k in [i], and either: (i) i < (log rz)/b – 1 and y is
the node of minimum c(2, y) such that y[i] = j, if such a

node exists, or (ii) y is the node with largest B(y) among
all nodes z such that z[i] matches j in the largest number
of rightmost bits. Let d be a fixed positive integer, to

be specified later. Let y be the primary (i, j)-neighbor

of z. If y[i] = j, then let Wi,j denote the set of nodes w

in V \ {y} such that w[k] = x[k], for k in [i], w[i] = j,

and C(Z, w) is at most d C(Z, y). Otherwise, let Wi,j be
the empty set. The set of secondary (i, j) -neighbors of x
is the subset U of min{d, IWi,j I} nodes u with minimum
c(z, U) in Wi,j; that is, c(z, U) is at most c(z, w), for all
w in Wi,j, and for all IAin U. A node w is a reverse

(i, j)-neighbor of z iff z is a primary (i, j)-neighbor of
w.

Pointer list. Each node x also maintains a

pointer list Ptr(z) with pointers to copies of some ob-
jects in the network. Formally, Ptr(z) is a set of triples
(A, y, k), where A is in d, y is a node that holds a copy
of A, and k is an upper bound on the cost C(Z, y). We

maintain the invariant that there is at most one triple
associated with any object in FVr(z). The pointer list of
z may only be updated as a result of insert and delete
operations. All the pointer lists can be initialized by in-
serting each shared copy in the network at the start of
the computation. We do not address the cost of initial-
izing the auxiliary memories of the nodes.

Let r be the node with highest ~(r) such that there
exists i in [(log n)/b] satisfying: (i) r[k] = A[k] for all
k in [i], (ii) r[i] matches A[i] in the largest number of
rightmost bits, and (iii) if i < (log n)/b — 1, there is no
node y with y[k] = A[k] for all k in [i + 1]. We call r
the root node for object A. The uniqueness of the root
node for each A in A is crucial to guarantee the success
of every read operation.

In this section and throughout the paper, we use the
notation (a)k to denote the sequence (of length k + 1)

aO, al,..., ak (of length k + 1). When clear from the
context, k will be omitted. In particular, a primary

neighbor sequence for A is a maximal sequence (u)k such
that U. is in V, uk is the root node for A, and ui+l is the
primary (i, A[i])-neighbor of ~i, for all i. It is worth not-
ing that the sequence (u) is such that the label of node
ui satisfies (ui[i– 1], ., .,ui[O]) = (A[i– 1],. ., AIO]), for
all i. We now give an overview of the read, insert, and

delete operations,

Read. Consider a node z attempting to read an ob-
ject A. The read operation proceeds by successively for-
warding the read request for object A originating at node
z along the primary neighbor sequence (x) for A with
X. = z. When forwarding the read request, node Zi_ 1

also informs ~i of the current best upper bound k on the
cost of sending a copy of A to z. On receiving the read
request with associated upper bound k, node xi proceeds
as follows. If Zi is the root node for A, then Zi requests

that the copy of A associated with k be sent to z, Other-

314



wise, xi communicates with its primary and secondary
(i, A[i])-neighbors to check whether the pointer list of

any of these neighbors has an entry (A, z, kl) such that
/cl is at most k. Then, xi updates k to be minimum of
k and the smallest value of kl thus obtained (if any),

If k is within a constant factor, of the cost of following

(z) UP to z;,thatk,kkO(xjD~ C(Zj, .Ej+I)), then Zi

requests that the copy of A associated with the upper
bound k be sent to x. otherwise, xi forwards the read
request to z~+l.

Insert. An insert request for object A generated by
node y updates the pointer lists of some nodes that form
a prefix subsequence of the primary neighbor sequence

(y) for A with y. = y. When such an update arrives
at a node yi by means of an insert message, yi updates
its pointer list if the upper bound ~~~~ c(yj, Yj+l ) on
the cost of getting object A from y, is smaller than the

current upper bound associated with A in this list. In
other words, yi updates .Ptr(yi ) if (A, ., .) is not in this
list, or if (A, ~,k) is in Ptr(yi) and k is greater than

~~~~ C(Y~,Y~+l) Node y; forwards the insert request
to node yi+l only if PtrI yi ) is updated.

Delete. A delete request for object A generated by
node y eventually removes all triples of the form (A, y, ~)

from the pointer lists Pt~(yi ), where (y) is the primary
neighbor sequence for A with y. = y, making the copy of
A at y unavailable to other nodes in the network, Upon

receiving such a request by means of a delete message,
node yi checks whether the entry associated with A in its
pointer list is of the form (A, y, .). In case it is not, the
delete procedure is completed and we need to proceed no
further in updating the pointer lists in (y). Otherwise,

Yi deletes this entry from its pointer list, and checks
for entries associated with A in the pointer lists of its
reverse (i —1, A[i — 1])-neighbors. If an entry is found, yi
updates Ptr(yi ) by adding the entry (A, W, k + c(w, yi)),

where w is the reverse (i – 1, A[i – 1])-neighbor of yi
with minimum upper bound k associated with A in its

pointer list. A delete message is then forwarded to yi+l.

The read, insert, and delete procedures for an object
A are formally described in Figure 1, The messages
and requests in the figure are all with respect to object
A. A read request is generated by node x when x (= XO)
sends a message Read(x, m, .) to itself, if z does not hold

a copy of A, A read message Read (x, k, y) indicates a
read request for object .1 generated at node x, and that
the current best upper bound on the cost of reading
Ais k and such a copy resides at y. An insert (resp.,
delete) request is generated when node y (= y.) sends

a message Insert (y, O) (resp., Delete(y) ) to itself, An

insert message Insert (y, k) indicates to its recipient node
z that the best known upper bound on the cost incurred
by z to read the copy of A located at y is k. We assume

that y holds a copy of A and that this copy is unshared

(resp., shared) when an Insert (resp., delete) request for

A is generated at y.

The correctness of our access scheme follows from the
two points below:

(1) The insert and delete procedures maintain the fol-

lowing invariants. For any A in A and any y in
V, there is at most one entry associated with A in
the pointer list of y. If y holds a shared copy of A

and (y) is the primary neighbor sequence for A with

YO = y, then: (i) there is an entry associated with
A in the pointer list of every node in (y), and (ii)
the nodes that have a pointer list entry associated
with the copy of A at y form a prefix subsequence
of (y). The preceding claims follow directly from
the insert and delete procedures as described.

(2) Every read request for any object A by any node
z is successful. That is, it locates and brings to
x a shared copy of A, if such a copy is currently
available. The read operation proceeds by following
the primary neighbor sequence (z) for A with Z. =
z, until either a copy of A is located or the root for
A is reached. By point ( 1), there exists a shared
copy of A in the network if and only if the root for
A has a pointer to it.

4 Results
In this section, we formally state the main results of our
access scheme. In Theorems 1, 2, 3, and 4, we prove
bounds on the cost of a read, the cost of an insert or

delete, the size of auxiliary memory, and the adaptabil-
ity of our access scheme. Let C denote max{c(u, v) :
U)vc v}.

Theorem 1 Let x be any node in V and let A be any

object In A. If y is the nearest node to x that holds a

shared copy of A, then the expected cost of a read oper-

ation is O(f(/(A))c(x, y)).

When a node x tries to read an object A which has
currently no shared copy in the network, then the ex-
pected cost of the associated operation is 0(6’).

Theorem 2 The expected cost of an insert operation is

O(C), and that of a delete operation is O(Clog n).

Theorem 3 Let q be the number of objects that can be
stored in the main memory of each node. The size of

the auxiliary memory at each node is O(q logz n) words

whp.

Theorem 4 The adaptability of our scheme is O(log n)

expected and 0(log2 n) whp.
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Action of xi on receiwng a message Read(x, k, y):

If i >0 and ~i[i-l] # .~[i-1], or i = (logn)/b – 1 (that

is, xi is the root for A) then:

Q Node ~i sends a message Satisfy(x) to node v such

that (A, v, .) is in l’tr(~i), requesting it to send a copy
of A to z, If Ptr(Xi) has no such entry, then there are
no shared copies of A.

Otherwise:

o Let U be the set of secondary (i, A[i])-neighbors of xi.

Node xi requests a copy of A with associated upper
bound at most k from each node in U U {~i+l }.

D Each node u in U U {~i+l } responds to the request
message received from ~i as follows: if there exists an

entry (A, v, go) in Ptr(u) and if q: = q. + c(~i, U) +

~~~~ c(xj, Xj+l) k at most k, then u sends a success
message Success (v, q:) to Xi.

o Let U’ be the set of nodes u from which xi receives a

response message Success (u, kti ). If U’ is not empty,
then Zi updates (k, g’] to be (k=, z), where z is a node
with minimum ku over all u in U’.

● If k = o(~$~~ c(~j, ~j+l)) then ~~ sends a message

Satisfy(x) to node y, requesting y to send a copy of A
to z. Otherwise, xi forwards a message Read(z, k, y)

tO X;+l .

Actton of yi on receiving a message Delete(y):

If (A, y, ) is in Ptfiyi),then:

. Let U be the set of reverse (i–l, A[i–1])-neighbors
of yi. Node yi removes (A, y, .) from Ptflyi), and
requests a copy of A from each u in U.

● Each u in U responds to the request message from

yi by sending a message Success (v, q. + c(yi, u)) to

vi iff (A, v,q”) is in Ptr(u).
● Let U’ be the set of nodes u such that yi receives

a message Success (u, k.) in response to the request
message it sent. If IU’ I >0 then yi inserts (A, w, kW)
into Ptr(yi), where w is the node in U! such that
kW ~ kU, for all u in U’.

● If yi [i–l] = A[i–1] then yi sends a message Delete(y)
tO y~+l .

Action of yi on receiving a message Insert (y, k):

If (A,.,.) is not in Ptflyi), or (A, ,k’) is in Ptr(yi)
and k’ > k, then:

. Node yi accordingly creates or replaces the entry
associated with A in Ptflyi ) by inserting (A, y, k)

into this list,
● If yi [i–l] = A[i–1] then yi sends a message

Insert(y, k + c(yi, yi+l)) to Yi+l

Figure 1: Actions on receiving messages Read, Insert, and Delete for object A.

5 Analysis

In this section, we analyze the access scheme described
in Section 3, and establish the main results described in
Section 4. Section 5.1 presents some useful properties
of balls. Section 5.2 presents properties of primary and
secondary neighbors. Section Ei.3 presents the proofs of
Theorems 1 and 2. Sections 5.4 and 5.5 present the
proofs of Theorems 3 and 4, respectively. Due to space
constraints, we omit most of the proofs in this abstract.
We refer the reader to the full version of the paper [13]
for complete proofs of the results stated in Section 4.

Several constants appear in the model, the algorithms,
and the analysis: d and A appear in the model, b and
d appear in the algorithms, y and c appear in the anal-
ysis. We set b, d, -y, and E such that: d, y << 2b,

E < 1/(10 . 2b10gJ2), and b sufficiently large to obtain
the desired results. We refer the reader to the full ver-
sion of the paper [13] for the precise relationships among
the constants.

5.1 Properties of Balls

Given any u in V and any integer k in [1, n], let IV(U, k)
denote the unique set of k nodes such that for any u
in N(u, k) and w not in N(u, k), C(U, V) is less than

C(U, w). (For integers a and b, we let [a, b] denote the

set {k E Z : a ~ k ~ b}. ) We refer to N(u, k) as the ball

of size k around u. For convenience, if k is greater than
n, we let N(u, k) be V.

Lemma 5.1 Let u, v, and w be in V and let k. and

kl be positive integers. if v is in N(M, ko) and w is in
N(u, kl), then w is in N(u, Ako+ A2kl). ■

Given any subset S of V and some node u in S, let
q(u, S) (resp., T-(u, S)) denote the largest (resp., small-
est ) integer k such that N(u, k) is a subset (resp., super-

set) of S. Let Q(u, S) and R(u, S) denote N(u, q(u, S))

and N(u, r(u, S)), respectively.

Lemma 5.2 Let u be in V, let S be a subset of V, and

let k be in [1, n]. Then N(u, k) is a subset (resp., su-
Wrset) of S ifl N(u, k) is a subset of Q(u, S) (resp.,

superset of R(v, S)). ■

Lemma 5.3 Let u belong to V, and let k. and kl
denote positive integers such that kl ~ A2 k.. For
any v in N(u, ko), q(v, N(u, kl)) is at least kl/A and

R(v, N(u, kl)) is a subset of N(u, Akl). ■

We refer to any predicate on V that only depends on
the label of v as a label predicate. Given any node u

in V and a label predicate ‘P on V, let p(u, P) denote
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the node v such that: (i) T(v) holds, and (ii) for any
node w such that P(u) holds, C(U, V) isat most c(u, w).
(Weletp(u,7) benullif such avis not defined.) Let
P(u, T) be M(u, c(u, p(u, T))), ifp(u, ~) isnot null, and

V, otherwise.

For u in V and i in [(log n)/b], let A>:(u) denote the
string of (log n– ib) bits given by u[(log~)/b– 1] . . ~u[i+
l]u[i]. For convenience, we let A>i (u) denote A2i+l (u).
For all i and all u in V, let ‘Pi(u) hold iff u[i] = A[i]. For
all i and all u in V, let ‘P<i(u) denote AjEI;]7j(U). Let
‘F’~i(~)l P>i(u), and P2i(u) be defined similarly. (We
note that for u and v in V and nonnegative integers i
and j, if (u # v) V ((u = v) A (i # j)), then Pi(~) and

Pj (v) are independent random variables. Also, each of
the predicates defined above is a label predicate.)

Lemma 5.4 Let S and S’ be subsets of V and let u
belong to S. Let P be a label predicate on V and for
each v in S’, let A>. (v I be chosen independently and

uniformly at mndom-.

1.

2.

3.

Given that P(u, P) ~ S1 we have: (i) for each
node v in S’ \ P(u, ‘P), A20(v) is independently

and uniformly random, and (ii) for each node u in
P(u, P) \ {p(u, ?)}, ?(v) is false.

Given that P(u, P) ~ S, we have: (i) for each node
v in S’ \ Q(u, S), ~:, o(v) is independently and uni-

formly random, and-(’ii) for each node v in Q(u, S),

P(v) is false.

Given that P(u, P) ~ S, we have: (i) for each
node v in S’ \ R(u, S), A20(v) is independently

and uniformly random, and (ii) for each node v in
R(u, S) \ {P(u, P)}, P(v) is false.

The following claim follows from repeated application
of Part 1 of Lemma 5.4.

Corollary 5.4.1 Let S be an arbitrary subset of V, let i

be in [(log n)/b – 1], and let S’ be a subset of V such that
A20(u) is independently and uniformly random for each

u in S’. Given a sequence of nodes UO, u1, . . . . ui such
that for all j in [i], ~j+l = p(uj, P<j) and p(uj,p~j) G

S, we have:

1.

2.

5.2

For each node u in S’ \ Uj~[i]P(u, P~j), ~~o(u) is
independently and uniformly mndom.

The random variable A>i (ui) is independently
and uniformly mndom and for each node u in

Uj~[i]P(tJj, P<j) \ {Ui}, P<i(u) is false; ■

Properties of Neighbors

In this section, we establish certain claims concerning
the different types of neighbors that are defined in Sec-
tion 3. We differentiate between root and nonroot pri-
mary (i, j)-neighbors. A root primary (i, j)-neighbor w

of v is a primary (i, j)-neighbor w of v such that w[i] # j

or i = (log n) /b — 1. A primary neighbor that is not a

root primary neighbor is a nonroot primary neighbor.

Lemma 5.5 Let u and v be in V, and let k denote

IM(u, C(U, v))[. For any j in [2b], we have: (i) for any

i in [(log n)/b — 1], the probability that u is a primary

(i, j)-neighbor of v is at most e-[(klAj-2)/2(’+’)b, and (ii)

for any i in [(log n)/b], the probability that u is a root

primary (i, j)-neighbor of v is at most e-niz(’+’)b. ■

Corollary 5.5.1 Let u and v be in V, let i be in
[(log rz)/b], and iet j be in [2b]. If u is a primary (i, j)-
neighbar of v, then v is in ll(u, 0(2iblog n)) whp. ■

For any u in V, let au denote the total number of
triples (i, j, v) such that i belongs to [(log n)/b], j be-
longs to [2b], v belongs to V, and u is a primary or
secondary (i, j)-neighbor of v. Lemma 5,6 is used in the
proof of Theorem 4, while Corollary 5.6.1 is used in the
proofs of Theorems 2 and 3.

Lemma 5.6 Let u be in V and Jet i be in [(log n)/b].
Then, the number of nodes of which u is an ith level pri-

mary neighbor is O(log n) whp. Also, E[aU] = O(log n)

and au is 0(log2 n) whp. ■

Corollary 5.6.1 For any u in V, the total number of
reverse neighbors of u is 0(log2 n) whp, and ezpected

O(log?z). ■

For any u and v in V and i in [(log n)/b], v is
said to be an i-leaf of u if there exists a sequence

v = vo)vl, . . ..vl. vivi = U, such that for all j in [i],
Vj+l is a primary (j, vj+l ~])-neighbor of vj. Lemma 5.7

is used in the proof of Theorem 3.

Lemma 5.7 Let u belong to V, and let i be in

[(log n)/b]. Then the number of i-leaves of u is

0(2ib log n) whp. ■

5.3 Cost of operations

Consider a read request originating at node x for an
object A. Let y denote a node that haa a copy of A. In
the following, we show that the expected cost of a read
operation is 0( f (l(A) )c(z, y)). Letting y to be the node
with minimum C(Z, y) among the set of nodes that have
a copy of A, this bound implies that the expected cost
is asymptotically optimal.

Let (z) and (y) be the primary neighbor sequences

for A with Z. = z and y. = y, respectively. For any
nonnegative integer i, let Ai (resp., Di ) denote the ball
of smallest radius around ~i (resp., yi ) that contains
X;+l (resp., ~:+1). Let Bi (resp., Ei ) denote the set
UO<j<iAj (resp,, Uo<j<illj). Let Ci denote the ball of-- --
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smallest radius around ~i that contains all of the sec-
ondary (i, A[i] )-neighbors of xi. For convenience, we

define B-l = E-l = 0.

It is useful to consider an alternative view of zi, Y:, Ai,
and D;. For any nonnegative i, if ~i+l (resp,, ~i+l ) is not
the root node for A, then Z;+l (resp., Yi+l ) is P(zi, ~<i)

(resp., p(yl, P<~)) and A, (resp., ~i) is P(~i,~<i) (rew.,

P(~i,’P<i)).

Let ~ be an integer constant that is chosen later ap-
propriately. For any nonnegative integer i and any inte-

ger j, let X: (resp., Y:) denote the ball N(z, 7~2ti+lJb)
(resp., IV(Y, -y~2(i+11b)). Let i* denote the least integer
such that the radius of X:. is at least C(Z, y). Let ai
(resp., bi) denote the radius of X: (resp., %1).

Lemma 5.8 For all i such that i z i*, X: is a superset
■Of Yll

Lemma 5.9 For all i in [(log n)/b – 2], we have

‘2b10gA2a; < (11+1 ~ 2blog62ai and 2b10%A2bi < bi+l <

zb log, Zbi For i = (logn)/b – 2, we have ai+l <

‘i?b’oga‘ai and bi+l s 2h10g’2b~. AIso, ai. and biq are

both ~(C(C, y)). 9

We define two sequences (si ) and (ti) of nonnegative
integers as follows:

Lemma 5.10 If Si is in {O, 1,2}, then c(~i,~i+l) is
o(ai). Ifti is O, then c(~l, y~+l) is O(bi). ■

We now determine an upper bound on the cost of
read for A as follows. Let r be the smallest integer
i ~ i* such that (si, ti) = (O, O). By Lemma 5.8, C7 is

a superset of DT, implying that a copy of A is located
within r forwarding steps along (z). By the definition
of the primary and secondary neighbors, the cost of any
request (resp., forward) message sent by node ~i is at
most d ~c(~i, ~i+l) (resp., c(~i, ~i+l)). Since a COpy of
A is located within r forwarding steps, by the defini-
tion of the algorithm, the cost of all messages needed
in locating the particular copy of A that is read is at

most WCo<j<T(d24~j,zi+l) + c(Yj, Yj+l))). The cost

of reading the copy is at most f(t?(A)) times the preced-
ing cost. Since d is a constant, the cost of reading A is
at most:

~ o(f(l(.4))(c(:cj,zj+I) + c(Yj, Yj+I)) (2)
og<T

The remainder of the proof concerns the task of

showing that E[~o<j<,(c(~j, xj+l) + c(~j, Yj+I))] is

O(c(z, y)). A key idea is to establish that the sequence
(si, ti) corresponds to a two-dimensional random walk
that is biased towards (O, O). Lemmas 5.11 and 5.12
provide the important first step towards formalizing this
notion.

Lemma 5.11 Let i be in [(log n)/b– 1]. Given arbitrary
well defined values for sj and tj for all j in [i] such that

si–l is at least 3, the probability that si is less than si-l

is at least 1 – ~2. Given arbitrary values for Sj and tj

for all j in [i] such that ti- ~ is at least 1, the probability

that ti is less than ti-l is at least 1 – E2. ■

Lemma 5.12 Let i be in [(log n)/b–1]. Given arbitrary
well defined values for sj and tj for all j in [i] such that

si–l is at most 3, the probability that si is O is at least
1 – E. Given arbitrary values for sj and tj for all j in
[i] such that ti-l is at most 1, the probability that ti is
O is at least 1 – E. 9

By the definitions of si and ti,it follows that O ~
si+l ~ 3 if si ~ 2, and O ~ si+l ~ si + 1 otherwise. In
addition, O ~ ti+l< ti+ 1, for all i. Let s; equal O if
si = O, equal 1 if si c {1, 2, 3}, and equal si—2 otherwise.

Hence O s max{sj+l,ti+l}< max{s~,ti}+ 1,for all i.
We now analyze the random walk corresponding to the
sequence (max{s’, t}).

Random Walks. Let W(U, F) be a directed graph in
which U is the set of nodes and F is the set of edges.
For all u in U, let D. be a probability distribution over
the set {(u, v) c F} (let Prnu[(u, v) : (u, v) @ F] = O,

for convenience). A random walk on W starting at V.
and according to {’D. : u E U } is a random sequence
(v) such that: (i) vi is in U and (vi, vi+l) is in F,

for all i, and (ii) given any fixed (not necessarily sim-
ple) path Uo, . . . . ui in W and any fixed U:+l in U,

Pr[~i+l = Ui+l I (Vi), . . .,V; ) = (~0, . . . . Ui)] = Pr[~i+~ =
~i+l I vi = ~i] = I%., [(~i, Ui+l)].

Let H be the directed graph with node set N and
edge set {(i, j) :i E N,O s j < i+ 1}. Let H’ be the

subgraph of H induced by the edges {(i + 1, i), (i, i +

l):i EN} U{(O, O), (l,l)}.

Let p and q be reals in (O, 1]. We now define two
random walks, wP,~ and w~,~, on graphs H and H’, re-
spectively. The walk wP,~ = (w) is characterized by: (i)

Pr[uli+~ ~ j – 1 I Wi = j] > p, for any integer j >1, (ii)
Pr[wi+l = O I ~i = j] ~ q, for j equal O or 1, and (iii)
Pr[~i+l = 2 I~i = 1] s 1 – p. The walk ~~,g = (w’) is

characterized by: (i) Pr[w~+l = j–l I w; = j] = p, for all
integer j > 1, (ii) Pr[w~+l = O I w: = j] = q, for j equal

O or 1, and (iii) Pr[w~+l = 2 I w: = 1] = 1 – p. We note
that the sequence (max{s’, t}) represents the random
walk wP,~ with appropriate values for p and q, as deter-

mined by Lemmas 5.11 and 5.12. We analyze random
walk WP,~ by first showing that wP,~ “dominates” w~,~
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with respect to the properties of interest. The random

walk w~,q is easier to analyze as it is exactly character-

ized by p and q. Lemmas 5.13 and 5.14 show that the
bias of w~,q towards O is more than that ofw~,q.

Lemma 5.13 For all i and k in N, for random walks
wP,q and w~,q, we have Pr[uq ~ k] ~ Pr[w~ ~ k]. ■

Let zi (w) be the random variable denoting the number
of steps taken to reach node O starting from node i, for a
random walk w. An excursion of length t! in a graph W
with node set N is a walk that starts at node O and first
returns to the start node at time t, for all t in N. For
all i such that ~i = O, let /i (w) be the random variable
that gives the length of the excursion in w starting at
time i. We note that for all i, Yi(u) equals Z.(u).

Lemma 5.14 For all i and 1 in N, we have

Pr[Zi(LJp,q)< f-l> Pr[zi(w;,q) S 11 ■

We now formalize the notion of the domination of

~P,q over u’, P,’J”
For any i, let ~i (resp., r;) denote the

smallest J ~ O such that Wi+j = O (resp., 10~+j = 0).
We note that by letting (w) represent (max{s’, t}),the
terminating step ~ is given by i“ + Ti. .

Lemma 5.15 For any i and j ~ i, we have Pr[ri ~

j] 2 Pdd < j]. ■

The following claim is proved using Raney’s lemma [6,
15].

Lemma 5.16 For all i and f in N, we have

pr[~i(w~,q) = t + 1 I u: = 01 S max{l – q,5(p –

9)} pr[~i(~j,q) = ~ I 4 = 01

We now let u and w’ denote the random walks Up,g

and w~,~, respectively, where p = 1 – Z&= and q =

1 – 2c. Lemmas 5.12 and 5.11 imply that w charac-
terizes the random walk corresponding to the sequence

(max{s’, t}). Consider the random walk w’. Assume
that at each step we only reveal whether w: = O or not.
We can define a sequence (u) associated with (w’) aa
follows: Vj = G’ iff w: = O, and vj = B otherwise.

Lemma 5.17 Let i be in [(log n/b)– 1]. Given any jized

sequence (v)i– 1 of B, G values, the probability that w: is

O is at least 1 – 10.s. ■

Our main claim about the random walk w follows from
Lemmas 5.15 and 5.17.

Lemma 5.18 For any i in [(log n)/b – 1] and any non-
negative integer j, the probability that Ti is at least j is

at most (lO&)~.

Using Lemma 5.18, we derive an upper bound on
13[c(zi, ~i+l)] and E[c(yi , Yi+l )] for all i.

Lemma 5.19 For any i in [(log n)/b– 1], E[c(~i, Zi+l)]
and E[c(yi, gi+l)] are both O(ai). ■

We now use Lemmaa 5.9, 5.18, and 5.19 to establish
Theorem 1.

Proof of Theorem 1: By Equation 2, the expected
cost of the read operation is bounded by the expected
valueof f(l(A)) ~o<i<, O(c(~i, ~i+l)+C(yi,Yi+l)).we
separately place bounds on ~[~o<i<i. (C(Zi, Z:+l) +

c(yi, yi+l))] and E[Zi*<i<7(c(~i, ~i+l) + c(yi, yi+l))].
By Lemmaa 5.9 and 5.1% the first term is O(ai. + hi.).

We place a bound on E[~i. <i<, (c(~i J~i+l) +

c(Yi, Yi+l))] ~ fOllOWS. Since r is i’ + Ti* , by

Lemma 5,18, we obtain that for any j ~ O, the prob-

ability that ~ > i* + j is at most (10&)~. Therefore,
E[~i.<i<~(c(~i, ~i+l) + c(yi, yi+l))] is at most:

~j(lo~)’(ai.+j + bi*+j)
j>O

< ~j(loE)j2jb’”g‘‘(a;.+ hi. )
j~O

= O(ai. + b~”),

since 10e2b10g~2 < 1. By Lemma 5.9, the claim of the
theorem follows. ■

Proof of Theorem 2: Consider an insert operation
executed by x for any object. The expected cost of
the operation is bounded by E[~o$i<lOg ~lb C(Zi, Xi+l)]j

which by Lemmaa 5.9 and 5.19 1s O(atioK~ji~-l) =

o(c).
We now consider the cost of the delete operation.

By Lemma 5.6, for each i, the number of reverse
(i, j)-neighbors of xi for any j is O(log n) whp, where
xi is the ith node in the primary neighbor sequence
of x. Therefore, the expected cost of the delete
operation executed by x is bounded by the prod-

uct of E[~O<i<logn/b c(~i, ~i+l)] and O(log n). By
Lemma 5.19, ii follows that the expected cost of a delete

operation is O(C’ log n). ■

5.4 Auxiliary Memory

Proof of Theorem 3: We firstplace an upper bound
on the size of the neighbor table of any u in V. By defi-
nition, the number of primary and secondary neighbors

of u is at most (d+ l)2b(log n)/b, which is O(log n). By
Corollary 5.6.1, the number of reverse neighbors of u is
O(log2 n) whp.

We next place an upper bound on the size of the
pointer list of any u in V. The size of Ptr(u) is at most
the number of triples of the form (A, v, ), where A is in

A and v is in V suchthat: (i) thereexists i in [(log n)/b]
such that v is an i-leaf of u, (ii) A[j] = u[j] for all j in

[i], and (iii) A is in the main memory of v.

By Lemma 5.7, the number of i-leaves of u is

0(2ib log n) whp. The probability that A[j] = u[j], for
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all j in [i], is at most l/2i~. Since the number of objects
in the main memory of any node is at most t, it fol-
lows that whp, l~tr(u)l is at most ~;6[10~n/b] ~(~ log’)

which is 0(1 logz n).

Combining the bounds on the sizes of the

neighbor table and pointer list, we obtain that the size
of the auxiliary memor~” of u is 0(1 logz n) whp. ■

5.5 Adaptability

Proof of Theorem 4: By Lemma 5.6, for any node u,

the number of nodes of which u is a primaryor secondary
neighboris O(log n) expected and 0(log2 n) whp. More-
over, u is a reverse neighbor of O(log n) nodes since u

has C)(log n) primary neighbors. Therefore, the adapt-

ability of our scheme is O(log n) expected and 0(log2 n)
whp ■

6 Future Work
We would like to extend our study to more general
classes of cost functions and determine tradeoffs among
the various complexity measures. It would also be inter-
esting to consider models that allow faults in the net-
work. We believe that our access scheme can be ex-
tended to perform well in the presence of faults, aa the

distribution of control information in our scheme is bal-
anced among the nodes of the network.
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