
On the Construction of Pseudo-Random Permutations:

Luby-Rackoff Revisited

(Extended Abstract)*

Moni Naor t Omer Reingold $

Abstract

Luby and Rackoff [21] showed a method for con-
structing a pseudo-random permutation from a pseudo-
random function. The method is based on composing
four (or three for weakened security) so called Feistel
permutations, each of which requires the evaluation of
a pseudo-random function. We reduce somewhat the
complexity of the construction and simplify its proof of
security by showing that two Feistel permutations are
sufficient together with initial and final pair-wise inde-
pendent permutations. The revised construction and

proof provide a framework in which similar construc-
tions may be brought up and their security can be easily
proved. We demonstrate this by presenting some addi-
tional adjustments of the construction that achieve the
following:

● Reduce the success probability of the adversary.

● Provide a construction of pseudo-random permu-

tations with large input size using pseudo-random
functions with small input size.

●A full version of this paper is available as Theory of C~yptog-
raphy Library: Record 96-11 at:
http: //theory.lcs .m.it. edul - tcryptol/homepage .html

f Incumbent of the Morris and Rose Goldman Career Develop-
ment Chair, Dept. of Applied Mathematics and Computer Science,
Weizmann Institute of Science, Rehovot 76100, Israel. Research
supported by grant no. 356/94 from the Israel Science Founda-
tion administered by the Israeli Academy of Sciences. E-mail:
naor@wisdom.weizmann .ac.iL

tDePt, of AppliedMathematics and Computer Science, Weiz-

mann Institute of Science, Rehovot 76100, Israel. Part of this
research was supported by a Clore Scholars award. E-mail:
reingold@wisdom .weiznmnn.ac.il.

Permission 10 make digil;llhml copies offlll or pall o~lhis nl:llcriitl Ibr
person:lIor Atssroom uw is grmlcli wilhwlt Fecprnvidcd th:ll Ihe copies
are nrrl made or dislrilwled Iiw prolil or Lwnmcrcin I adinnl:Ige. Ihe copy
ri@ notice. Ihc Ii[lc ol’lhc p(lhlicnli(m and ils dnlc nppc~l-.and noliw is
given Ilmt copyright IS by permission oflhc ;\CA1. [nc, T(I copv olhwwiw.

to rqwhlish. 10 posl (m scrww (Ir II) rcdwlril>lllc 10 Iisls. rcqllir.x yrwilic
permissim mxVor Lx
SW)(‘ 97 1;11’:1s0,‘1’cxwI is,\
Copyrighl I 997 .A(.’hl O-W791 -88 X-(197:(J5 S3 S(J

●

1

Provide a construction of a pseudo-random permu-

tation using a single pseud~random function.

Introduction

Pseud~random (p.r.) permutations, which were in-
troduced by Luby and Rackoff [21], formalize the
well established cryptographic notion of block ciphers.
Block ciphers are private-key encryption schemes such
that the encryption of every plaintext-block is a single
ciphertext-block of the same length. Therefore we can
think of the private key as determining a permutation
on strings of the length of the block. A highly influen-
tial example of a block cipher is the Data Encryption

Standard (DES) [27].
An important feature of block ciphers is that the

plaintext and ciphertext are of the same length. This

property saves on memory and prevents wasting com-
munication bandwidth. Furthermore, it enables the easy
incorporation of the encryption scheme into existing pro-
tocols or hardware components.

Luby and Rackoff defined the security of p.r. permu-
tations in analogy to the different attacks considered in

the context of block ciphers:

●

●

P.r. permutations can be interpreted as block ci-
phers that are secure against an adaptive chosen-

plaintezt attack. Informally, this means that an (ef-
ficient) adversary, with access to the encryptions
of messages of its choice, cannot tell apart those

encryptions from the values of a truly random per-
mutation.

Strong p.r. permutations can be interpreted as
block ciphers that are secure against an adaptive
chosen plaintext and cipher-text attack. Here, the
adversary haa the additional power to ask for the
decryption of ciphertexts of its choice.

P.r. permutations are closely related (both in def-

inition and in their construction) to the earlier con-
cept of p.r. functions which was defined by Goldreich,
Goldwasser and Micali [14]. These are efficiently sam-
plable and computable functions that are indistinguish-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F258533.258581&domain=pdf&date_stamp=1997-05-04

able from random fuuctious under all (efficient) black-
box attacks (see Section 2 for a formal definition). P.r.
functions play a major role in private-key cryptography

and have many additional applications (for some of these
applications, see [9, 15, 20]).

Luby and Rackoff [21] provided a construction of
strong p.r. permutations, (LR-Construction) which
was motivated by the structure of DES. The basic build-

ing block is the so called Feistel permutation (see Defi-

nition 2.1) based on a p.r. function defined by the key.
Their construction consists of four rounds of Feistel
permutations (or three rounds, for p.r. permutations)
each round involves an application of a (different) p.r.
function (see Figure l.a for an illustration). The LR-
Construction’s main source of attraction is, most prob-
ably, its elegance.

Goldreich, Goldwasser and Micali [14] showed a con-
struction of p.r. functions from p.r. generators [8, 34].
Thus, the construction of p.r. permutations reduces to
the construction of p.r. generators. Recently a different
construction of p.r. functions was introduced by Naor
and Reingold [25]; this is a parallel construction based
on a new primitive called a p.r. synthesizer that in par-
ticular can be constructed from any trapdoor permuta-
tion. This implies a parallel construction of p.r. per-
mutations. Nevertheless, all known constructions of p.r.

functions involve non-trivial (though of course polyno-
mial time) computation, so it makes sense to attempt
to minimize the number of invocations of p.r. functions.

Alongside cryptographic pseudo-randomness the last
two decades saw the development of the notion of lim-

ited independence in various setting and formulations
[2, 3, 10, 11, 19, 24, 33]. For a family of functions 7
to have some sort of (limited) independence means that
if we consider the value of a function f, chosen uni-
formly at random from F, at each point as a random
variable (in the probability space defined by choosing

f) then these random variables possess the promised in-
dependence property. Thus, a family of permutations
on {O, 1}n is pair-wise independent if for all z # y the
values of f(x) and f(y) are uniformly distributed over

strings (a, b) E {O, l}2n such that a # b. Functions of
limited independence are typically much simpler to con-
struct and easier to compute than (cryptographic) p.r.

functions.

1.1 New Results and Organization

The goal of this paper is to provide a better under-
standing of the LR-Construction and as a result improve
the construction in several respects. Our main observa-
tion is that the different rounds of the LR-Construction

serve significantly different roles. We show that the first

and last rounds can be replaced by pair-wise indepen-
dent permutations and use this in order to :

1

2

3

Achieve an improvement in the computational com-
plexity of the p.r. permutations – two applications
of a p.r. function on n bits suffice for computing
the value of a p.r. permutation on 2n bits at a
given point (vs. four applications in the original

LR-Construction).

Simplify the proof of security of the construction
(especially in the case of strong p.r. permutations)
and provide a framework for proving the security of
similar constructions.

Derive generalizations of the construction that are
of practical and theoretical interest. The proof of

security for each one of the constructions is practi-
cally “free of charge” given the proof of security of
the main construction.

The new construction is in fact a generalization of the
original LR-Construction. Thus, the proof of security

(Theorem 3.2) also applies to the original construction.
The paper is organized as follows: Section 2 reviews

notations and definitions. Section 3 presents the main
construction and proves its security. Section 4 provides
a framework that enables us to relax and generalize the
main construction. Section 5 provides a simple gener-
alization of the main construction that significantly re-

duces the success probability of the distinguisher. Sec-
tion 6 provides a second generalization of the main con-
struction. This is a construction of a strong p.r. per-
mutation on large blocks using p.r. functions on small
blocks. Section 7 suggests directions for further re-
search.

We omit in this version some of the proofs and dis-
cussions (see the full paper [26]). In particular, we omit
the different relaxations of the main construction (using
weaker and more efficient permutations instead of the

pair-wise independent permutations and using a single
p.r. function). A discussion on the connection of this
paper to the constructions of k-wise b-dependent per-
mutations is omitted as well.

1.2 Related Work

The LR-Construction inspired a considerable amount

of research. We try to refer to the more relevant (to this
paper) part of these directions.

Several alternative proofs of the LR-Construction
were presented over the years. Maurer [23] gives a proof
of the three-round construction. His proof concentrates
on the non-adaptive case, i.e., when the distinguisher

has to specify all its queries in advance. A point worth
noticing is that indistinguishability under non-adaptive
attacks does not necessarily imply indistinguishability

under adaptive attacks. For example, a random invo-
lution (an involution is a permutation which is the in-
verse of itself) and a random permutation are indistin-

190

guishable under non-adaptive attacks and can be distin-
guished using a very simple adaptive attack.A different
approach toward the proof was described by Patarin [28]
(this is the only published proof, we are aware of, for the

LR-Construction of strong p.r. permutations; another
proof was given by Koren [18]).

Other papers consider the security of possible vari-
ants of the construction. A significant portion of this

research deals with the construction of p .r. permutations
and strong p.r. permutations from a single p.r. function.

Apparently, this line of research originated in the work
of Schnorr [32]. This issue is explored in the full version
[26].

Lucks [22] shows that a hash function can replace the
p.r. function in the first round of the three-round LR-
Construction. His proof is based on [23] and is mo-
tivated by his suggestion to use the LR-Construction
when the input is divided into two unequal parts. Lucks
left open the question of the construction of strong p.r.
permutations.

Somewhat different questions were considered by
Even and Mansour [12] and by Kilian and Rogaway
[17]. Loosely speaking, the former construct several p.r.
permutations from a single one, while the latter show
how to make exhaustive key-search attacks more diffi-

cult. The background and related work concerning other
relevant issues are discussed in the appropriate sections.

2 Preliminaries

In this section, the concepts of p.r. functions and p.r.

permutations are briefly reviewed. A more thorough and
formal treatment can be found in [13, 20]. In addition,
some basic notations and definitions are introduced.

2.1 Notations

lfi denotes the set of all n-bit strings, {O, 1}n. Fn
denotes the set of all ln ~ In functions and Pn denotes
the set of all such permutations (Pn c F.). Let z and
y be two bit strings of equal length, then z (B y denotes

their bit-by-bit exclusive-or. For any ~, g E Fn denote
by fog their composition (i.e., ~og(z) = ~(g(z))). For

x c 12n, denote by xl ~ the first (left) n bits of z and by
XIR the last (right) n bits of z-

Definition 2.1 (Feistel Permutations)
For any function f E Fn, let Dj c P2n be the per-

mutation dejined by Dj(L, R) ‘~f (R, L @ f(l?)), where

ILI = [Rl = n.

Notice that Feistel permutations are as easy to invert aa

they are to compute. Therefore, the LR-Construction

(and its different variants which are introduced in Sec-
tions 5 & 6) are easy to invert.

2.2 Pseudo-Randomness

Pseudo-randomness is fundamental to cryptography
and, indeed, essential in order to perform such tasks as

encryption, authentication and identification. Loosely

speaking. p.r. distributions cannot be efficiently distin-
guished from the truly random distributions (usually,

random here means uniform). However, the p ,r. dis-
tributions have substantially smaller entropy than the
truly random distributions and are efficiently samplable.

In the case of p.r. (bit) generators, which were in-
troduced by Blum and Micali and Yao [8, 34], the p.r.

distribution is of bit-sequences. The distribution is effi-
ciently sampled using a, relatively small, truly random

bit-sequence (the seed). Hastad, Impagliazzo, Levin and
Luby [16] showed how to construct a p.r. generator from
any one-way function (informally, a function is one-way

if it is easy to compute its value but hard to invert it).
P.r. function ensembles (PFE), which were in-

troduced by Goldreich, Goldwasser and Micali [14], are

distributions of functions. These distributions are in-

distinguishable from the uniform distribution under all
(polynomially-bounded) black-box attacks (i.e. the dis-
tinguished can only access the function by specifying
inputs and getting the value of the function on these
inputs). Goldreich, Goldwasser and Micali provided a
construction of such functions based on the existence of
p.r. generators.

Luby and Rackoff [21] define p.r. permutation en-

sembles (PPE) to be distributions of permutations
that are indistinguishable from the uniform distribu-
tion to an efficient observer (that, again, haa access to
the value of the permutation at points of its choice).
In addition, they consider a stronger notion of pseudo-
randomness which they call super p. r. permutation gen-
erator-s. Here the distinguisher can also access the in-
verse permutation at points of its choice. Following [13]
we use the term strong p.r. permutation ensembles

(SPPE) instead.
Luby and Rackoff provided a simple construction of

PPE and SPPE (LR-Construction) which is the focus of
this work. Their construction is based on a basic com-
pound of the structure of DES [27], namely, the com-
positions of several Feistel-permutations. Their defini-
tion of the PPE (resp. SPPE) is Df, o Dj, o Dj, (resp.

D~4 o Dj. o Df. o Dfl) where all ~is are independent p.r.
functions and Dj, as in Definition 2.1 (see Figure 1.a for
an illustration).

2.2.1 Definitions

A function ensemble is a sequence H = {Hn}neN such

that Hn is a distribution over Fn, H is the uniform
function ensemble if Hn is uniformly distributed over Fn,
A permutation ensemble is a sequence H = {Hn }.EN

such that Hn is a distribution over Pn, H is the uniform

permutation ensemble if Hn is uniformly distributed over
Pn .

A function (or permutation) ensemble, H =
{Hn }nEN, is eficienthj computable if the distribution Hn
can be sampled efficiently (in probabilistic polynomial-

191

time) and the functions in H,l can be computed effi-

ciently.
We would like to consider efficiently computable func-

tion (or permutation) ensembles that cannot be eff-

iciently distinguished from the uniform ensemble. In our
setting, the distinguisher is an oracle machine that can
make queries to a length preserving function (or func-
tions) and outputs a single bit. We assume that on input

In the oracle machine makes only n-bit long queries, n
also serves as the security parameter. The discussion of

this paper is independent of whether we interpret an or-
acle machine as a Thring-machine with a special oracle-
tape or as a circuit-family with special oracle-gates.

Let M be an oracle machine, let j be a function in
Fn and H. a distribution over F.. Denote by Mf(ln)
the distribution of M‘s output when its queries are an-

swered by f and denote by MH” (in) the distribution

M~ (In), where f is distributed according to H.. We
would also like to consider oracle machines with access

both to a permutation and to its inverse. Let M be
such a machine, let ~ be a permutation in Pn and Hn a
distribution over P.. Denote by M~’~-’ (In) the distri-
bution of M‘s output when its queries are answered by
~ and f‘1 and denote by MH”YH~’ (in) the distribution

IkffIJ-’ (In), where j is distributed according to Hn.

Definition 2.2 (advantage) Let M be an oracie ma-
chine and let H = {Hn}n6N and fi = {fi~}~~~ be two

function (or permutation) ensembles. We call the func-
tion

I Pr[AfHn(ln) = 1] - Pr[Mfin(ln) = 1]1

the advantage M achieves in distinguishing between H

and H,
Let-M be-an oracle machine and let H = {Hn}nEN

and H = {Hn}n<N be two permutation ensembles. We
call the function

I Pr[M ‘“’H~’ (l”) = 1] - Pr[f’14R”’E~’(in) = 1]1

the advantage h4 achieves in distinguishing between
(H, H-’) and (fi, fi-’).

We say that M- di~tinguishes between H and H (resp.
(H, H-’) and (H, H-’)) with advantage c = ~(n) if

for infinitely many n‘s the ad~antage M achieves in

d~ti~guishing between H and H (resp. (H, H-l) and
(H, H-’}) is at least ~(n).

Definition 2.3 (negligible functions) A
function h : N * IN is negligible if for every cons-tant
c >0 and all sufficiently large n ‘s, h(n) <$

Definition 2.4 (PFE) Let H = {Hn}nEN be an ef-
ficiently computable function ensemble and let R =

{Rn}nEN be the uniform function ensemble. H is a p.r.
function ensemble if for every eficient oracle-machine
M, the advantage M has in distinguishing between H
and R is negligible.

Definition 2.5 (PPE) Let H = {H. }.cn be an e@-

ciently computable permutation ensemble and let R =

{&}~Eix be the unaform permutation ensemble. H is a
p.r. permutation ensemble if for every eflcient oracle-
machine M, the advantage M has in distinguishing be-

tween H and R is negligible.

Definition 2.6 (SPPE) Let H = {Hn}nEN be an ef-
jicientty computable permutation ensemble and let R =

{R”}nEN be the uniform permutation ensemble. H is a
strong p.r. permutation ensemble if for every ef/icient
oracle-machine M, the advantage M has in distinguish-
ing between (H, H–l) and (R, R–l) is negligible.

Remark 2.1 We use the phrase ‘f is a p.r. function”
as an abbreviation for “f is distributed according to a
p.r. function ensemble” and similarly jor ‘f is a p.r.

permutation” and ‘f is a strong p.r. permutation”

2.3 k-Wise Independent Functions and

Permutations

The notions of k-wise independent functions and k-
wise “almost” independent functions [2, 3, 10, 11, 19,
24, 33] (under several different formulations) play a ma-
jor role in contemporary computer science. These are

distributions of functions such that their value on any
given k inputs is uniformly or “almost” uniformly dis-
tributed. Several constructions of such functions and
a large variety of applications were suggested over the
years.

As shown in Section 3, pair-wise independent permu-
tations can replace the first and fourth rounds of the
LR-Construction. We briefly review the definitions of
pair-wise independent permutations and functions:

Definition 2.7 Let A and B be two sets and F a distri-
bution of A M B functions. F is pair-wise independent
if for every two members ZI # Z2 of A, (f(zI), f(r2))
is uniformly distributed over B2.

This definitions is naturally extended to permutations:

Definition 2.8 Let A be a set and F a distribution of
permutations over A. F is pair-wise independent if for

every two members cl # 22 of A, (f(z I), f(z2)) is uni-
formly distributed over pairs of different elements of A.

Let A be a finite field then the permutation fa,b(z) ‘~f
a x + b, where a # O, b E A are uniformly distributed,
is pair-wise independent. Thus, there are pair-wise in-

dependent permutations over 1. (the permutations fa,b
with operations over GF(2n)). In the full version, it is

shown that we can use even more efficient functions and

permutations in our construction.
There is another connection between this paper and

k-wise independence: In contrast with the case of pair-
wise independent permutations, we are not aware of any

192

I L, II R, 1

[L, I R, I

L, II R> I

Oh,

1
1 1

[L. II R. I

I L, II R,

L, I R.

I
I

Ldti I output 1

(a) (b)

Figure 1: Constructions of SPPE: (a) The original LR-
Construction (b) The revised Construction. In (a) and
(b): Vi ~ 1, Li = Ri-l and ~ = .Li-l @ ~i(~_l). In

(b): (Lo, Ro) = hl(lnput) and Output= h~’((L2, R2)).

“good” constructions of k-wise b-dependent permuta-
tions for general k and 6. The different variants of the

LR-Construction offer a partial solution to this problem
(“partial” because of the bounded values of 6 that can be
achieved). For example, using k-wise b’-dependent func-
tions on n bits instead of p.r. functions in the original
LR-Construction yields k-wise ti-dependent permutation

on 2n bits (for 6 = O(k2 /2n + 6’)). In [26], we analyze
the different constructions of this paper as constructions

of k-wise &dependent permutations.

3 Construction of PPE and SPPE

As mentioned in the introduction, a principle obser-
vation of this paper is that the different rounds of the

LR-Construction serve significantly different roles. To

illustrate this point, consider two rounds of the construc-
tion. Namely, E = Dj, o Dj,, where ~1, f2 E Fn are two
independently chosen p.r. functions. It is not hard to
verify that E is computationally indistinguishable from
a random permutation to any efficient algorithm that
has access to pairs {(Z1, ll(z~))]~1, where the sequence

{~i}~l is uniformly distributed. Nevertheless, as Luby
and Rackoff showed, E can be easily distinguished from
a random permutation by an algorithm that gets to see

the value of E or E-1 on inputs of its choice:

We think of the second and third rounds
LR-Construction as the two-round construction

of the

E, de-

193

scribed above and show that the role of the first and

fourth rounds is to prevent the distinguished from di-
rectly choosing the inputs of ,!3and E– 1. As we shall see,
this goal can also be achieved with “combinatorial” con-

structions (e.g., pair-wise independent permutations),
rather than “cryptographic” (i.e., p.r. functions). In
particular, the LR-Construction remains secure when
the first and fourth rounds are replaced with pair-wise
independent permutations

3.1 Construction and Main Result

Definition 3.1 For any fl, fz E F. and hl, hz E P2.,

define

w(hl, ~1, f2) ‘:f D~. O Dt, o hl

and

S(hl, fl, fz,hz) ‘:f h~l o D~, o Dj, o hl

Theorem 3.1 Let hl, h2 E P2n be pair-wise indepen-
dent permutations (similarly to Remark 2.1 this is an
abbreviation for ‘distw”buted according to a pair-wise in-
dependent permutation ensemble”) and let fl, f2 E Fn
be p.r. functions; hl, h2, fl and f2 are independently
chosen. Then, W = W’(hl, fl, f2) is a p.r. permutation
and S = S(hl, fl, f2, h2) is a strong p.r. permutation
(W and S as in Definition 3.1).

Furthermore, assume that no eficient oracle-machine
that makes at most m = m(n) queries, distinguishes
between the p.r. functions and random functions with
advantage ~ = c(n) (see Definition 2.2). Then, no ef-

Jicient oracle-machine that makes at most m queries to
W (resp. S and S-1) distinguishes W (resp. S) from a

random permutation with advantage 2C + $ + ~

Remark 3.1 The conditions of Theorem 3.1 are meant

to simplify the exposition of the theorem and of its proof.
These conditions can be relaxed, as discussed in [26].
The main points are the following:

1. A single p.r. function f can replace both fl and f2

2. hl and hz may obey weaker requirements than pair-
wise independence. For ezample, it is enough that

for every z # y both Pr[hl(z)ln = hl(y)l~] s 2-n

and pr[hz(z)l~ = hz(y)l~] s 2-n.

An important consequence of the second relaxation is
that the original LR- Construction is a special case of
the revised construction.

3.2 Proof of Security

We now prove the security of the SPPEconstruction;
the proof of security for the PPE-construction is very

similar (and, in fact, a bit simpler). As with the origi-
nal LR-Construction, the main task is to prove that the
permutations are p.r. when fl and f2 are truly random

(instead of p.r.).

Theorem 3.2 Let hl, h2 E P2. be pair-wzse indepen-

dent permutations and let fl, f2 E F. be random func-
tions. Dejine S = S(hl, fl, fz, hz) (as in Definition 3.1)

and let R E P2n be a random permutation. Then, for
any oracle machine M (not necessarily an eflcieni one)

that makes at most m queries:

I Pr[Ikl s, S-’(~2n) = l]_pr[~~,R-’(12n) = 1]1 < ~+~

Theorem 3.1 follows easily from Theorem 3.2. In or-

der to prove Theorem 3.2, we introduce some additional
notations. Let G denote the permutation that is acces-
sible to the machine M (G is either S or R.). There are

two types of queries M can make: either (+,x) which
denotes the query “what is G(z)?” or (–, y) which de-
notes the query “what is G-1(y)?”. For the ith query M
makes, define the query-answer pair (xi, yi) C 12n x 12n,

where either M’s query was (+, xi) and the answer it
got was ~i or M‘s query was (–, vi) and the answer it
got was xi. We assume that M makes exactly m queries
and refer to the sequence {(x1, I/l), (Zm, Ym)} of all

these pairs as the transcript (of M‘s computation).
Notice that no limitations were imposed on the com-

putational power of M. Therefore, M can be assumed to
be deterministic (we can always fix the random tape that
maximizes the advantage M achieves). This assumption
implies that for every 1 < i s m the ith query of M is
fully determined by the first i – 1 query-answer pairs.
Thus, for every z’it can be determined from the tran-
script whether the ith query was (+, xi) or (–, yi). We

also get that M‘s output is a (deterministic) function of
its transcript. Denote by CM[{ (x1, Y1), (xi-I, vi-l)}1
the ith query of M as a function of the previous query-
answer pairs and denote by CM[{(X1, VI), (~m, Ym)}]

the output of M as a function of its transcript.

Definition 3.2 Let u = {(zl, vi), (z~,y~)} be a se-
quence such that V1 ~ i < m, (~i, ~i) E 12n X12n. Then,
c is a possible M-transcript if for every 1 < i ~ m

C’~[{(~l, yl),(Zl. y$_l)}]}] E {(+, ~i), (–, yi)}

Let us consider yet another distribution on the an-
swers to M’s queries (which, in turn, induces another
distribution on the possible M-transcripts). Consider a

random process R that on every query of M answers
with a uniformly chosen 2n-bit string unless the answer

is implied by a previous query-answer pair (i.e., M’s

query is (+, z) or (–, y) and (z, y) is a previous query-
answer pair). It is possible that R provides answers
that are not consistent with any permutation; that is,
we can have two query-answer pairs of the form (xl, y)

and (Z2, y) for Z1 # Z2 or (z, yl) and (z, y2) for yl # y2.
In this case call the transcript inconsistent, otherwise,

the transcript is called consistent.
We first show (in Proposition 3.3) that the advantage

M might have in distinguishing between the process R

and the random permutation R is small. The reason is
that as long as R answers consistently (which happens
with good probability) it “behaves” exactly as a random

permutation. In order to formalize this, we consider the
different distributions on the transcript of M (induced

by the different distributions on the answers it gets).

Definition 3.3 Let Tsj TR and TR be the random vari-

ables such that Ts is the transcn”pt of M when its queries

are answered by S, TR is the transcript of M when its
queries are answered by R and TR is the transcript of

M when its queries are answered by R.

Notice that by these definitions (and by our assump-

tions) M s,s-’ (’z~) = C~(T5) (’are the same random

variables) and MRIR-’ (12”) = C~(TR).

Proposition 3.3

I ~[C~(TR) = 1] - ~[C~(TR) = 1]1

< Pr[TR is inconsistent]
R

m2
s 22.+1

It remains to bound the advantage M might have in
distinguishing between TR and TS. The intuition is that

for every possible and consistent M-transcript u unless
some “bad” and “rare” event on the choice of hl and h2

(as in the definition of S) happens, the probability that
Ts = u is exactly the same as the probability that TR =

a. We now formally define this event (Definition 3.4)
and bound its probability (Proposition 3.4).

We can assume that for any possible M-transcript,
u = {(cl, yl), (x~, vM)}, that is consistent we have
that for i # ~ both xi # xj and ~i + gj (this means that
M never asks a query if its answer is determined by a

previous query-answer pair).

Definition 3.4 For every specific choice of pair-wise
independent permutations hl, h2 E P2n (in the definition
of S) dejine BAD(hl, h2) to be the set of all possible and
consistent M-transcripts, u = {(cl, yl), (cm, ym) },

satisfying that 31 ~ i < j s m such that:

hl(zi)l~ = hl(xj)l~ or h2(yi)lL = h2(lJj)l.

Proposition 3.4 Let hl, h2 E P2n be pair-wise inde-
pendent permutations then for any possible and consis-
tent M-transcript u = {(zl, yl), (zm, yin)} we have

The key lemma for proving Theorem 3.2 is:

Lemma 3.5 Let u = {(xl, yl), (z~,y~)} be any
possible and consistent M-transcript, then

Pr[Ts = m I ~ @ BAD(hl, h2)] = ~[Tfi = U]

194

Proof Since a is a possible Mtranscript, we
have that TR = uiffforalll <i< m,

the ith answer R gives is yi in the case that
CM[{(Z1, yl),(~i-l. yi-l)}] = (+, ~i) and otherwise
its ith answer is ~i. By our assumptions and the defini-
tion of R, given that R answered “correctly” on each one

of the first i – 1 queries its ith answer is an independent
and uniform 2rz-bit string. Therefore,

Pr[TR = u] = 2-2”*
R

Since u is a possible M-transcript we have that TS =
c iff for all 1 ~ i ~ m, y; = S(ZI). Consider any

specific choice of permutations h 1 and h2 (for which

S = S(hl, /1, ~2, hz)) such that a $! BAD(hl, hz). Let

~~fi ~~~=w~~~)t~~: ‘L:’ ‘~) = ‘2(Yi). By the defini_!

Yi = s(~i) ~ .fl(R~) = ~~@~~ and~2(~~) = R~63R~

Forevery l~i<j~rnboth R~# R~andL~#L~
(otherwise a c BAD(hl, hz)). Therefore, since ~1 and ~z
are random, we have that for every choice of hl and hz
such that u @ BAD(hl, h2) the probability that Ts = u
is exactly 2- 2nm. We can conclude:

~[T~ = a I a @ BAD(hl, h2)] = 2-2”~

which complete the proof of the lemma. ❑

Proof. (of Theorem 3.2) Let r be the set of all possible
and consistent M-transcripts a such that M(u) = 1.

g[CM(TS) = 1] – Pr[Ciw(T~) = 1]

~(Pr[T~ = a] - Pr[Tfi = a])l
s

Uer R

+ Pr[TR is inconsistent]

~~~[Ts = UIU @ BAD(h~,hz)] - pr[T~ = u] I ~
oa R

~%,[u @ BAD(hl, hz)] (1)

I ~(Pr[Ts = ala E BAD(hl, h2)] - Pr[Tk = a]) ~
Ucr R

~%,[o c BAD(hl , ha)] (2)

Pr[T~ is inconsistent] (3)
R

By Proposition 3.3, we get that that (3) < ~ and
by Lemma 3.5 that (1) = O. Using Proposition 3.4, it is

not hard to show that (2) < ~. Thus, we conclude:

l~bd~s) = 11- ~[LW’R) = 1]1<: + ~

Using Proposition 3.3 we can complete the proof. ❑

4 The Framework

The construction of Section 3 can be relaxed and gen-
eralized in several ways. The different p .r. permutations
obtained share a similar structure and almost identical
proof of security, In this section we examine the proof

of Theorem 3.2 in a more abstract manner. Our goal
is to establish a framework for proving (almost) all the
constructions of this paper and to suggest a way for de-
signing and proving additional constructions.

Our framework deals with constructions of a p.r. per-
mutation S on -? bits which is the composition of three
permutations: S - h~l o E o hl. In general, hl and h;l

are “lightweight” and E is where most of the work is
done. E is constructed from p.r. functions and for the

purpose of the analysis we assume (as in Theorem 3.2)
that these functions are truly random. In Section 3, for
example, 1 = 2n, hl and h2 are chosen as pair-wise in-
dependent permutations and E s Df, o Df, for random

fl>fz CFn.
The framework starts with E which maybe easily dis-

tinguished from a truly random permutation and trans-
forms it via hl and hz into a p.r. permutation. The prop-
erty E should have is that for almost every sequence,

{(zl, yl), . . . . (zm, y~)}, the probability that Vi, yi =
E(zi) is “close” to what we have for a truly random

permutation: Call a sequence, {(z1, yl), . . . . (r~, yin)},
E-Good if PrE~i, ya = E(~i)] = 2–(’m. We assume

that apart from some “rare” sequences all others are
E-Good. Loosely speaking, the role of hl and h2 is to
ensure that under any (adaptive chosen plaintext and ci-
phertext) attack on S the inputs and outputs of E form

an E-Good sequence with a very high probability.
For the exact properties needed from the distributions

on hl, h2 and E, we shall try to follow the statement

and proof of Theorem 3.2. The goal is to show that S is
indistinguishable from a truly random permutation R on
/ bits. Specifically, that for some small c (whose choice
will be explained hereafter), for any oracle machine M

(not necessarily an efficient one) that makes at moat m
queries:

I Pr[M ‘s-’(lt) = 1] - Pr[14~’R-’ (11) = l]! ~ c + ~.

Let the notions of query-answer pair, a transcript,

the function CM, a possible M-transcript, the ran-
dom process R, a consistent transcript and the dif-
ferent random variables T5, TR and TR be as in the
proof of Theorem 3.2. Proposition 3.3 still holds. The
heart of applying the framework is in specifying the
“bad” M-transcripts for given hl and hz. This set
BADE(hl, h2) replaces BAD(hl, h2) in Definition 3.4

and in the rest of the proof. It contains possible and
consistent M-transcripts and should have the property
that any {(zl, yl), . . . . (z~, y~)} not in BADE(hl, h2)
satisfies that {(hl(zl), h2(y1)), . . . . (hl(zm), h2(ym))} is

195



E-Good. Note that Definition 3.4 is indeed a special
case of the above and also that, by this property,

This implies that Lemma 3.5 where BAD(hl, hz) is re-
placed with BADE(hl, hz) is true:

Lemma 4.1 Let a = {(zl, vi), . . . . (x~,y~)} be any
possible and consistent M-transcript, then

~[Ts = u I u @ BAD~(hl, hz)] = ~[TR = u].

For BADE(hl, h2) to be useful we must have that

Pr [a E BADE(hl, h2)] < ~
hl ,h2

(1)

and this substitutes Proposition 3.4. This is the only
place in the proofl where we use the definition of c and
the definition of the distributions of hl and h2. Applying
(1) and Lemma 4.1 as in the proof of Theorem 3.2 we
conclude:

Theorem 4.2 Let hl, h2, E be distributed over permu-
tations in Pt, let S z hjl o Eohl and let R E Pl be a
random permutation. Suppose that BADE(hl, h2) is as

above and c satisfies (l). Then, for any oracle machine
Al (’not necessarily an eficient onej that makes at most
m queries:

I Pr[h4 “s-’(ll) = 1] - Pr[A4 ~,~-’(l’) = 1]1 < ,+$

To summarize, the major point in proving the
security of the different constructions is to define
the set BADE(hl, h2) such that for any possible
and consistent M-transcript, cr, both Prs [Ts =
u I u $! BADE(hl, hz)] = 2-t”m and Pr~l,~z[u E

BAD~(hl, h2)] s e (for the specific e in the claim we are
proving). This suggests that the critical step for design-

ing a p .r. permutation, using the framework described
in this section, is to come up with a permutation E such

that the set of E-Good sequences is “large enough” and
“nice enough”. Note that to meet this end one can use
different or more general definitions of an E-Good se-
quence with only minor changes to the proof (as is the

case for the permutation S in Section 6).

5 Reducing the Distinguishing Proba-

bility

There are various circumst antes where it is desirable

to have a p.r. permutation on relatively few bits (say
128). This is especially true when we want to mini-
mize the size of the hardware-circuit that implements

] As demonstrated in [26], there is actually a tradeoff between
reducing the requirements from h1 and /22 and having a some what
larger value of c.

I I,,p”, I
I

$?3
F, F, F,

f,
........ .......
. ...... ........

F, F, L,

J

/
L L

I F, II L, II L, 11 1

/& a
[ L, II La II L, 1I I I

+=’L
[ O“zpw 1

Figure 2: Construction of strong p.r. permutations with
reduced distinguishing probability using t + 2 rounds
(here t = 3). Recall, fi : ~11-IitN * It/t(herefi :
121J3 w IlJ3).

the permutation or the communication bandwidth with
the (hardware or software) component that computes
the permutation.

Let F be a p.r. permutation on t bits (note that
n = 4/2 in Section 3) constructed from truly random
functions (on l/2 bits) using the LR-Construction. As
shown by Patarin [29], F can be distinguished (with
constant probability) from a random permutation using

0(22/4) queries (which means that the analysis of the
LR-Construction, where the distinguishing probability

for m queries is 0(~), is tight). Therefore, the LR-

Construction on 1 bits can only be used if 2t14 is large
enough to bound the number of queries in the attack on
the block cipher.

In this section, a simple generalization of the construc-
tion of Section 3 is presented. Using this construction,

the adversary’s probability of distinguishing between the
p.r. and random permutations can be reduced to roughly

~ . ~(l~,~t), for every integer 2 ~ t < f?(for t= 2 we get

the original construction). To achieve this security t+ 2
permutations are composed. The initial and final are
pair-wise independent permutations, the rest are (gener-
alized) Feistel permutations defined by I( 1- I/tp R Itlt

random (or p.r. ) functions.
Patarin [30] shows that if we take six rounds of

the LR-Construction (instead of three or four), then
the resulting permutation cannot be distinguished from

196



a random permutation with advantage better than

~ (improving [29]). This means that distinguishing
the six-round construction from a truly random per-

mutation (with constant probability) requires at least
f2(2tf3) queries. The bound we achieve in this section
(f@l-U~)W )) is better (for any t > 4). Note that
our construction uses p.r. functions with larger input
size, which might be a disadvantage for some applica-
tions. Aiello and Venkatesan [1] show a construction

of p.r. functions on 1 bits from p.r. functions on !/2
bits. When using truly random functions in their con-
struction, distinguishing the function they get from a

truly random function (with constant probability) re-
quires f2(2~f2) queries.

To describe our generalized constructions we first ex-

tend Feistel permutations to deal with the case where
the underlying functions have arbitrary input and out-
put lengths (instead of length preserving functions as in
Definition 2.1 ). Note that using such “unbalanced” Feis-
tel permutations was previously suggested in [4, 22, 31].

Definition 5.1 (Generalized Feistel Permutations)
For any integers O < s < t’ and any function f :
1[-, * I, let Dj E Pe be the permutation defined by

D~(L, R) ‘~f (R, L@ f(R)), where ILI = s and IR[ = /–s

We can now define the revised construction and con-
sider its security. These are simple generalizations of
the construction in Section 3 and of its proof of security.
For lack of space, we only describe the construction with
truly random functions.

Definition 5.2 (t+ 2-Round Construction) For
t = s t (see [26] for the general case where 1 = s t +r),

for any hl, hz E P! and fl, fz,..., fi : I!_, w I, define

W(hl, fl, fa. ... fJd:f Dj, oDj,_, o. ODj,Ohl

and

s(hl, fl, fz, . . .. ft. hz)d~f hilo Dj, oDj,_, o.. .oDj, ohl

Theorem 5.1 Let S be as in Definition 5.2, where
hl and hz are pair-wise independent permutations and

fl, fz,..., ft are random functions and let R E Pt be a
random permutation. Then, for any oracie machine M

(not necessarily an ef)icient one) that makes at most m
queries:

IPr[M ‘IS-l(l’) =1] - Pr[MR’R-’ (14)= 1]1

t mz mz
~ ~“-+y

The proof of Theorem 5.1 follows the framework de-

scribed in Section 4.

Remark 5.1 The construction of this section achieves
a substantial improvement in security over the construc-
tion in Section 3 even for a small constant t >2 (that is,

wzth a feu additional applications of the p. r. functions).

Keuertheless, at might be useful for some applacattons to

take a larger ualue oft. Choosing t = t reduces the ad-

ttantage the dastinguisher may achieve to roughly ~,

6 SPPE on Large Blocks Using PFE or

PPE on Small Blocks

Consider the application of p.r. permutations to en-
cryption, i e., using f(M) in order to encrypt a message
M, where f is a p.r. permutation. Assume also that we
want to use DES for this purpose. We now have the fol-

lowing problem: while DES works on fixed and relatively

small length strings, we need a permutation on IM l-bit
long strings, where the length of the message, IM[, may
be large and may vary between different messages.

This problem is not restricted to the usage of DES
(though the fact that DES was designed for hardware
implementation contributes to it). Usually, a direct con-
struction of p.r. permutations or p.r. functions (if we
want to employ the LR-Construction) with large input

size is expensive. Therefore, we would like a way to con-
struct p.r. permutations (or functions) on large blocks
from p.r. permutations (or functions) on small blocks.

Several such constructions were suggested in the con-
text of DES (see e.g. [9] for the different modes of op-
eration for DES). The simplest, known as the electronic
codebook mode (ECB-mode), is to divide the input into
sub-blocks and to apply the p.r. permutation on each
sub-block separately. This solution suffers from the ob-
vious drawback that every sub-block of output solely

depends on a single sub-block of input (and, in particu-
lar, the permutation on the complete input is not p.r.).
This may leak information about the message being en-
crypted (see further discussion in Section 6.1).

In this section we consider a generalization of the con-
struction of Section 3 that uses p.r. functions (or permu-
tations) on small blocks to construct strong p.r. permu-
tations on large blocks. The idea is as follows: apply a
pair-wise independent permutation on the entire input,
divide the value you get into sub-blocks and apply two
rounds of Feistel-permutations (or one round of a p.r.
permutation) on each sub-block separately, finally, ap-
ply a second pair-wise independent permutation on the

entire value you get (see Figure 3 for an illustration).
This solution resembles the electronic codebook mode

and is almost as simple. But here, the security we
achieve is relative to a random permutation applied on
the entire message and not on each sub-block separately.
As is the case with the electronic codebook mode, the
construction is highly suitable for parallel implementa-

tion.
For simplicity, we only describe the construction us-

ing truly random functions (or a truly random permuta-
tion). The analysis of the construction when p.r. func-
tions are used follows easily. In addition, we restrict

197



1 1 1 1 1 1
II I I

II II II II II I

r II II II II II I
I I I I II

1
I O“mu, 1

Figure 3: Construction of a strong p.r. permutation on
many (six in this case) blocks from a p.r. function on a

single block.

our attention to the construction of strong p.r. permu-
tat ions.

Definition 6.1 FOT any integers b and s, for any func-
tion g E F, let gxb c Fb., be the function defined by:

gxb(xl, zz,...,~b) ‘=f(g(~l),g(~z), . .,g(~~))

FOT any fl, fz E F. and hl, hz E PZnb, define:

For any p E P2n and hl, h2 E Pznb, define:

s(hl, p,hz) ‘=f h~l Opxb O hl

Theorem 6.1 Let h 1, hz E Pznb be pair-wise indepen-

dent permutations, let fl, fz G Fn be random func-
tions and p E P2n a mndom permutation. Dejine

S = S(hl, fl, fz, hz) and S = S(hl, p, hz) (as in Def-
inition 6.1) and let R E Pznb be a mndom permutation.
Then, for any oracle machine M (not necessarily an ef-
ficient one) that makes at most m queries:

\ Pr[kfs’s-’ (12nb) = 1] - Pr[A4R’R-’

rn2 b2 rnz
<——

2. + p2.b
and

I Pr[iMS’3-’ (lz”b) = 1] - Pr[MR’R-’

~z . #

< 22.-1

ly = 1]1

12’”) = 1]1

The proof of Theorem 6.1 for S follows the frame-
work described in Section 4 whereas the proof for S only
slightly deviates from this framework.

Remark 6.1 The requirements from the distr~buiions
of hl and h2 tn Theorem 6.1 can be relaxed. Thzs en-
ables us to significantly decrease the key size of the p, r.
permutations and to increase their eficiency. This issue
is discussed in the full version of the paper.

6.1 Related Work

The construction presented in this section is certainly
not the only solution to the problem at hand. We refer
in brief to some additional solutions:

As mentioned above, DES modes of operation were
suggested as a way of encrypting long messages. How-

ever, none of these modes constitutes a construction of
a p.r. permutation. For instance, when using the cipher
block chaining mode (CBC-mode), the encryptions of
two messages with identical prefix will also have an iden-
tical prefix. Note that when the encryption of a message

M is ~(kf), for a p.r. permutation f, then the only in-
formation that is leaked on M is whether or not M is
equal to previously encrypted messages. Bellare et. al.

[6] show that the CBC-mode does define a construction
of a p.r. function with small output length. They also
provide a formal setting for the analysis of the security of
p.r. functions with fixed input and output lengths. Bel-
lare et. al. [5] consider the so called cascade construction
of a p.r. function with small output length. Bellare and

Rogaway [7] show how to use the CBC-mode in order to
construct a p.r. permutation on large inputs (this is the
only work we are aware of that explicitly refers to the
problem). The work in their construction is comparable
to two applications of the CBC-mode (approximately
twice the work of our construction, assuming that hl
and hz are relatively efficient). The security of all these
constructions is of similar order to the security of our
construction.z In contrast to our construction, [5, 6, 7]

are all sequential in nature.
A different approach that may be attributed in part

to Carter and Wegman [33], is to define a length pre-
serving p.r. function F as G o F o h where, h is a pair-
wise independent hash function with short output, F
is a length preserving p.r. function on short inputs and

G a p.r. (bit) generator. It is now possible to use the

LR-Construction in order to get a p.r. permutation on

large inputs. Anderson and Biham [4] and Lucks [22]
show how to directly apply similar ideas into the LR-
Construction.

2Our construction (as well as the other constmctiom described
in this section) is vulnerable to a birthday-attack on the size of a
single block. However, our construction (as well ss the other con-
structions) reduces the problem of foiling birthday-attacks when
constmcting a p.r. permutation on many blocks to the problem
of foiling birthday-attacks when constructing a p.r. function (or
permutation) on two blocks. A solution to the latter is proposed
by Aiello and Venkatesan [1].

198



7 Conclusion and Further Work

The constructions described in Sections 3 k 6 are op-
timal in their cryptographic work in the sense that the
total number of bits on which the cryptographic func-

tions are applied on is exactly the number of bits in
the input. Therefore, it seems that in order to achieve
the goal of constructing efficient block-ciphers it is suffi-
cient to concentrate on the construction of efficient p.r.
functions. The depth of the constructions, on the other
hand, is twice the depth of the cryptographic functions.
It is an interesting question whether there can be a con-

struction of similar depth. The goal of reducing the
depth is even more significant in the case of the t+2-

round construction in Section 5. A different question
is finding a simple construction of k-wise i5-dependent
permutations for an arbitrarily small 6 and an arbitrary
k. This question is discussed in [26].

Acknowledgments

We thank Ran Canetti, Oded Goldreich, Kebbi Nis-
sim and Benny Pinkas for many helpful discussions and
for their diligent reading of the paper. It is difficult to
overestimate Oded’s contribution to the presentation of
this paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[23]

[9]

[10]

[11]

[12]

W. Aiello and R. Venkatesan, Foiling Birthday Attacks in
Length-Doubling Transformations, EUROCR~PT ’96, LNCS,
Springer-Verlag, 1996.

N. Alon, L. Babai and A. Itai, A fast and simple randomized
parallel algorithm for the maximal independent set problem, J.
Algorithms, vol. 7(4), 1986, pp. 567-583.

N. Alon, O. Goldreich, J. Hastad and R. Peralta, Simple con-
structions for almost k-wise independent random variables, Ran-
dom Structures and Algortthrns, vol. 3, 1992, pp. 289-304.

R. Anderson and E. Biham, Two practical and provably secure
block ciphers: BEAR and LION, Proc, F~E, LNCS, vol. 1039,
Springer-Verlag, 1996, pp. 113-120.

M. Beliare, R Canetti and H. Krawczyk, Pseudorandom func-
tions revisited: the cascade construction, Proc. 37th FOCS,
1996, pp. 514-523.

M. Bellare, J. Kilian and P. Rogaway, The security of cipher
block chaining, CRYPTO ’94, LNCS, vol. 839, Springer-Verlag,
1994, pp. 341-358.

M. Bellare and P. Rogaway, Block cipher mode of operat ion for
secure, length-preserving encryption, manuscript in preparation.

M. Blum and S. MicaIi, How to generate cryptographically
strong sequence of pseud~random bits, SIAM J, Corraput.,
VOi. 13, 1984, pp. 850-d64.

G. Brassard, Modern cryptology, LNCS, vol. 325, Springer-
Verlag, 1988.

L. Carter and M. Wegman, Universal hash functions, JCSS,
vol. 18, 1979, pp. 143-154.

B. Chor and O. Goldreich, On the power of twc-point based
sampling, J. Complemty, vol. 5, 1989, pp. 96-106.

S. Even and Y. Mansour, A construction of a cipher from a single
pseudorandom permutation, To appear in J. oj Cryptology. Pre-
liminary version in ASIA CRYPT ’91, LNCS, Springer-Verlag,
1991.

[13]

[14]

[15]

[16]

[lq

[1s]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

O Goldre!ch, Foundations of cryptography (fragments of
a book), 1995. Electronic publication http: //www. eccc. unl-
trier de/eccc/info/ECCC-Books/eccc-books.html (Electronic
COllOqulum on Computational Complexity).

O. Goldreich, S. Goldwasser and S. MicaIi, How to construct
random functions, J. of the ACM., vol. 33, 1986, pp. 792-?307

O. Goldreich, S. Goldwasser and S MicaIi, On the crypto-
graphic applications of random functions, CRYPTO ’84, LNCS,
vol 196, Springer-Verlag, 1985, pp. 276-288.

J. Hastsd, R. Impagliszzo, L. A. Levin and M. Luby, Construc-
tion of a pseuderandom generator from any one-way function,
To appear in SIAM J. Comput. Preliminary versions by Im-
pagliazzo et. al. in 21st S2’OC, 1989 and Hastad in 22nd STOC,
1990.

J. Kilian and P. Rogaway, How to protect DES against exhaus-
tive key search, CRYPTO ’96, 1996, pp. 252-267.

T. Km-en, On the construction of pseudorandom block cipher-s,
M.SC.Thesis (in Hebrew), CS Dept., Techmon, Israel, May 1989.

M. Luby, A simple parallel algorithm for the maximal indepen-
dent set problem, SIAM J. Comput., vol 15(4), 19S6, pp. 1036-
1053.

M. Luby, Pseudo-randomness and applications, Princeton
University Press, 1996.

M. Luby and C. RackotT, How to construct pseudorandom per-
mutations and pseudorandom functions, SIAM J. Comput.,
VO1.17, 1988, PP. 373-3*6.

S. Lucks, Faster Luby-Rackoff ciphers, Proc. FSE, LNCS,
vol. 1039, Springer-Verlag, 1996, pp. 1?39-203.

U. M. Maurer, A simplified and generalized treatment of Luby-
Rackoff pseudorandom permutation generators, EURO CRYPT
’92, LNCS, Springer-Verlag, 1992, pp. 239-255.

J. Naor and M. Naor, Small-bias probability spaces: efficient
constructions and applications, SIAM J. Cornput., vol. 22(4),
1993, pp. 83a-a56.

M. Naor and O. Reingold, Synthesizers and their application
to the parallel construction of pseud~random functions, Proc.
36th FOCS, 1995, pp. 170-181.

M. Naor and O. Reingold, On the construction of pseud-
random permut ations: Luby-Rackoff revisited, Theory of Cryp-
tography Lgbrary: Record 96-11 at:
http: //theory.lcs.mit .edu/-tcryptol/homepage. html.

National Bureau of Standards, Data encryption standard, Fed-
era~ Information Processing Standard, U.S. Department of
Commerce, FIPS PUB 46, Washington, DC, 1977.

J. Patarin, Pseudorandom permutations based on the DES
scheme, Proc. of EUROCODE ’90, LNCS, Springer-Verlag,
1991, pp. 193-204.

J. Patarin, New results on pseudorandom permutation genera-
tors based on the DES scheme, CRYPTO ’91, LNCS, Springer-
Verlag, 1991. pp. 301-312

J. Pat arin, Improved security bounds for pseudorandom permu-
tations, To appear in: lth ACM Conference on Computer and
Communtcattons Security, 1997.

B. Schneier and J. Kelsey, Unbalanced Feistel networks and
block cipher design, Proc. FSE, LNCS, vol. 1039, Springer-
Verlag, 1996, pp. 121-144.

C. P. Schnorr, On the construction of random number generators
and random function generators, .EfJJ?OCRYPT ’88, LNCS,
vol. 330, Springer-Verlag, 1988, pp. 225-232.

M. Wegman and L. Carter, New hash functions and their use in
authentication and set equality, JCSS, vol. 22, 1981, pp. 265-
279.

A. C. Yso, Theory and applications of trapdoor functions, Proc.
23rd FOCS, 1982, pp. 80-91.

199


