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ABSTRACT

We give a polynomial-time algorithm for the following
problem of P61ya. Given an n x n O-1 matrix, either
find a matrix obtained from it by changing some of the
1’s to – 1‘s in such a way that the determinant of the
new matrix equals the permanent of the old one, or
determine that no such matrix exists. This is equivalent
to finding Pfafiian orientations of bipartite graphs and
to the even circuit problem for directed graphs. The

aigorithm is based on a structural characterization of
bipartite graphs that admit a Pfaffian orientation.-
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1. INTRODUCTION

Computing the permanent of a matrix seems to be of a

different computational complexity from computing the
determinant. While the determinant can be computed

using Gaussian elimination, no efficient algorithm for
computing the permanent is known, and, in fact, none
is believed to exist. More precisely, Valiant [14] has

shown that computing the permanent is #P-complete
even when restricted to O-1 matrices.

It is therefore reasonable to ask if perhaps comput-
ing the permanent can be somehow reduced to com-

puting the determinant of a related matrix. While no
such procedure is known in general (and probably does
not exist), the following question was asked by P61ya in

1913. If A is an n x n O-1 matrix A, under what con-
ditions does there exist a matrix B obtained from A by
changing some of the 1’s to –l’s in such a way that the
permanent of A equals the determinant of B? For the

purpose of this note let us say that B (when it exists)
is a Pdlya matrix for A. The complexity status of the

decision problem whether an input matrix has a P61ya
matrix remained open until the present. In this paper
we describe a solution of the problem. Specifically, we
first give a structural characterization of matrices that

have a P61ya matrix. Roughly speaking, they can all
be obtained by piecing together “planar” matrices and
one sporadic non-planar matrix. We then use the char-
acterization to design a polynomial-time algorithm that
given an input matrix A outputs either a P61ya matrix
for A, or a certain “obstruction” submatrix A whose
presence implies that A has no P61ya matrix. The al-

gorithm easily extends to matrices with non-negative
entries, as pointed out by Vazirani and Yannakakis [15].

Our results are best stated and proved in terms of bi-
partite graphs. By a graph we mean a simple undirected

graph, that is, one with no loops or parzdlel edges. Let

G be a graph, and let C be a circuit in G. (Paths and
a“rcujts have no “repeated” vertices. ) We say that C
is alternating if it has even length and G\V(C) has a
perfect matching. Let D be an orientation of G, and
let C be a circuit of G of even length. We say that C is

oddly oriented (in D) if C contains an odd number of

edges that are directed (in D) in the direction of each
orientation of C. We say that D is a Pfat?h.n on”entation
of G if every alternating circuit of G is oddly oriented
in D.

With every n x n O-1 matrix A we associate a bi-
partite graph G as follows. There is a vertex of G cor-
responding to every row and every column of A, and
two vertices of G are adjacent if and only if one repre-
sents a row, say r, and the other represents a column,
say c, such that the entry of A in row r and column c
is non-zero. Vazirani and Yannakakis [15] proved the

following.

(1.1) Let A bean n x n O-1 matrix, and let G be the
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associated bipartite graph. Then A has a P6Jya matrix
if and only if G has a Pf&an orientation.

In fact, there is a correspondence between P61ya matri-

ces for A and PfafFmn orientations of G.
To state our main result we need some definitions.

Let Go be a graph, let C be a circuit of Go of length
four, and let G1, G2 be two subgraphs of Go such that
GIUGZ =Go, GlnGz = C, V(G1) –V(GZ) #@ and
V (G2) – V(G1 ) # 0. (The intersection and union of
two subgraphs of a graph is defined in the natural way.)
Let G be obtained from GO by deleting some (possibly
none) of the edges of C. In these circumstances we

say that G is a sum of G1 and Gz (along C). The
Heawood graph is the bipartite graph associated with

the incidence matrix of the Fano plane. A graph G is k-
extendable, where k ~ O is an integer, if every matching
of size at most k can be extended to a perfect matching.
A 2-expendable connected bipartite graph is called a
brace. It is easy to see that the problem of finding
Pfaf%an orientations of bipartite graphs can be reduced

to braces. The following is our main result [7].

(1.2) A brace has a Pfa&ian orientation if and only if
it is either isomorphic to the Heawood graph, or can be

obta”ned by repeated application of the sum operation,
starting from planar braces.

By [15] this also solves the even circuit problem for

directed graphs (s= [9, 10, 12, 13]), by [8] it solves
the problem of determining which hypergraphs with n
vertices and n hyperedges are minimally non-bipartite,
and by [5] it solves the problem of determining which
real n x n matrices are sign non-singular. See also [1]

for variations of sign-singularity.

2. OUTLINE OF PROOF

We say that a graph G is a subdiw”sion of a graph H
if G is obtained from H by replacing the edges of H

by internally disjoint paths, each containing at least
one edge. We say that G is an even subdivision of H
if G is obtained from H by replacing the edges of H

by internally disjoint paths, each containing an even
number of vertices and at least one edge. We say that

a graph G contains a graph H and that H is cont~”ned
in G if some even subdivision of H is isomorphic to a

subgraph K of G, and G\V (K) has a perfect matching.
We first characterize containment-minimal non-planar
I-expendable bipartite graphs.

To state this characterization we need to define sev-
eral classes of graphs. Let k ~ 2 be an integer, and
let C be a circuit with vertices U1, W,. . . . U’Zklisted in

their order on C. Let G be the graph obtained from

C by adding k vertices V1, VZ,.. ., Uk, where, for k =
1,2 . . . . . k, v: is adjacent to u~ and ul+&. If k ~ 4 is even
we say that G is a stem. Let H be the graph obtained

from C by adding 2k + 2 vertices WI, W2,. . . . wzk, V1
andv2, anedgejoiningvl andv2, and fori= 1,2, .,. ,k

edges with ends VI and w2i-1, w2i–1 and uzi–l, V2and
W21, and w~i and U2i, respectively. We say that H is a
flower. Let ({al, a2, a3}, {61, 62, b3}) be the bipartition

of KS,S. The graph Uno is obtained from Ks,s by sub-
dividing every edge incident with al exactly once, and
adding a two-edge path joining az and a3. We define
Duo to be the graph obtained from K3,3 by adding a

two-edge path joining az and a3, and a two-edge path
joining bz and b3.

(2. 1) Let G be a non-planar l-expendable bipartite

graph. Then G contains one of the follom”ng graphs:

(i) K3,3,
(ii) a stem,

(iii) a flower,
(iv) Uno, or
(v) Duo.

As a next step we use (2.1) to find all conttinment-
minimal non-planar braces, as follows.

(2.2) Let G be a non-planar brace. Then G contains

one of the follom”ng graphs:
(i) K3,3,

(ii) the Heawood graph, or
(iii) Rotunda.

The graph Rotunda is defined as follows. Let C be

a circuit of length four, and let H be obtained from C
by adding four new vertices of degree one, each adja-
cent to a different vertex of C. Let the new vertices

be a, b, c, d listed in the order of their neighbors on C.
Let HI, H2, H3 be three isomorphic copies of H, and let

ai, bi, Q, di (i = 1,2,3) be the vertices corresponding to

a, b, c, d, respectively. Let G be obtained by identifying
al, az, a3 into ~, identifying bl, bz, b3 into b. and so on.
Then G is Rotunda.

Finally, we derive our main theorem (1.2) from (2.2)
as follows. It is easy to see that if G is the Heawood
graph, or can be obtained as a sum of two braces that
have Pfafiian orientations, then G has a Pfaffian orien-

tation. The difficulty is to prove the converse. Let G be
a brace with a Pfaf%an orientation. If G is planar, then
the theorem holds. We may therefore assume that G
is not planar. It follows that G does not contain K3,3,

because K3,3 does not have a PfafEan orientation, and
containment preserves that property. Thus, by (2.2),
G contains either the Heawood graph or Rotunda. We
show that if a brace contains the Heawood graph, then
it is either isomorphic to it, or it contains K3,3. Thus
if G contains the Heawood graph, then it is isomor-
phic to it, and the theorem holds. We may therefore

assume that G contains Rotunda. But then it can be
shown that the vertices corresponding to the center of
Rotunda form a cut of G, and then it is easy to see that
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G can be obtained as a sum of two smaller braces that
have Pfaffian orientations, and so the theorem follows

by induction.
Let us mention the following corollary of our main

theorem.

(2.3) Every brace wn”thn vertices and more than 2n –4

edges contains Kz,s, and hence does not have a Pfsf&n
on”entation.

3. AN ALGORITHM

(3.1) Algorithm.
Input. A bipartite graph G on n vertices.
Output. Either a Pftian orientation of G, or a sub-
graph of G isomorphic to an even subdivision K of K3,3

in such a way that G\V (K) has a perfect matching (in
which case G has no Pfa.t7ian orientation).
Running time. 0(n3).

Description (outline).

Step 1. We use the algorithm of Hopcroft and Karp [2]
to find a perfect matching A4 in G. If G has no perfect
matching, then every orientation of G is Pfaflian. In

that case we output an arbitrary orientation of G and
stop. Otherwise we go to step 2.
Step 2. We use ill to delete edges of G that belong to
no perfect matching of G, and then consider each com-
ponent of the resulting graph separately. Given M this
is equivalent to finding strongly connected components

of a directed graph (see [6]), and hence can be done in
time 0(n2).
Step 3. If G is a brace we go to step 4; otherwise we
decompose G into two smaller graphs, and call step 3 for
both of the smaller graphs. If both of these calls result
in Pfaffian orientations, then those can be combined to

give a Pfaf%an orientation of G. If one of the calls yields
a K3,3 containment, then that can be easily converted to
a Ka,z containment in G. Decomposing G is equiwdent
to testing strong 2-connectivity for digraphs, and hence

can be done in time 0(n3).
Step 4. lf G is planar we use Kasteleyn’s algorithm

[3, 4] (see also [6]) to output a PfafIian orientation of G

and return. Otherwise we go to step 5.
Step 5. We use the (algorithmic) proof of (2. 1) to find
one of the graphs of (2.1) contained in G. This can be

done in quadratic time.
Step 6. We use the proof method of (2.2) to find one
of the graphs of (2.2) contained in G. This is equiva-
lent to applying the network flow algorithm to find an
augmenting path (and repeating a bounded number of
times), and so can again be done in linear time.

Step 7. If step 6 produces a K3,3 contained in G,

we output the corresponding subgraph of G. If step 6

produces the Heawood graph, then if G is isomorphic to
it we output a Pfaflian orientation of G, and otherwise
we again apply the proof method of the main theorem

to find K3,3 contained in G. Finally, if step 6 gives
Rotunda contained in G, we again use the proof method

of the main theorem to either find KS,3 contained in G,
or to express G M a sum of two smaller braces. In the
former case we ouput the corresponding subgraph of G
and return. In the latter case we call step 4 for both of

the smaller braces. •1
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