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Abstract

After giving a proposition which reduces the problem of
computing the integral closure of a general noetherian ring
to the three problems:

. Compute a universal denominator d (element in the
conductor).

. Compute radical of the ideal generated by d.

. Compute ideal quotients

we show that for the common case of affine domains, i.e.
domains which are finitely generated over fields, of charac-
teristic zero, we can use an effective localization in order to
perform most of the computation in one dimensional rings
where it can be done with linear algebra.

1 Introduction

The problem of computing the integral closure of a ring is
a very basic construction in commutative algebra. It is a
canonical way of removing singularities in codimension one.
In the case of one dimensional rings, this gives a complete
desingularization. This problem was addressed by Stolzen-
berg and Seidenberg in a series of papers in the case where
the base ring was an affie domain, ([S], [S2], [ST]). Stolzen-
berg gave a construction that assumes the base ring sep-
arably generated while Seidenberg generalized it to rings
which are finitely generated over fields satisfying KIS ‘cond-
ition P“. Their constructions freely made use of algebraic
extensions of the ground field and adjunctions of new in-
determinate yielding algorithms which were not practical.
The problem was revisited by Tkaverso, ([T]) and Vascon-
celos, ([V]). They gave more effective algorithms using con-
structions baaed on Grobner bases. On the other hand this
problem had also been addressed in the context of one di-
mensional rings by Ford, ([F]), and ‘lkager, ([Tr]) where the
problem was reduced performing linear algebra over princi-
pal ideal domains, i.e. a sequence of hermite normti form
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computations. The one dimensional case was also revisited
by Cohen, ([CO]), who added some computational improve
ments.

We first give a very generaI proposition which shows that
one can compute the integral closure of any noetherian ring
where one can solve the following three problems:

●

●

●

Compute a universal denominator d (element in the
conductor).

Compute radical of the ideal generated by d.

Compute ideal quotients

We then return to the problem of computing the integral
closure of an atline domain and show that by an effective use
of localization we can reduce the majority of the calculation
to the efficient one dimensional algorithm presented by Ford,
Trager, and Cohen.

2 Notations and preliminary results

All rings are commutative, with unit and noetherian.

Definition 1 Let S be a ring.

An element x ● S is a regular element ifl xy = O ~
y=o.

An ideal in S is a regular ideal if it contains at least
one regular element

1/T = {z E S I z is regular} then the total quotient
ring oj S, Q(S) is dejined as Q(S) = ‘2’-1 S.

Definition 2 Let S be a ring and S C S’ be an extension
of S. An element o E S’ is integral over S if there ezists a
monic polynomial f(z) E S[z] such that f(a) = O.

Definition 3 We dejine the integral closure of S as the set

~ = {~ E Q(S) I y is integral over S}

We remark that, in generaf, the integral closure is not
finitely generated over the original ring. In this paper we
will present an algorithm to compute the integral closure of
a noetherian ring S, under the assumption that it is finitely
generated.

The construction we present relies on the following defi-
nitions and results:
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Definition 4 Let I C S be a regular ideal then the idealizer
of~ is the rm,g Idl(I) = [1 :~(s) 1] = {y ● Q(S)lyZ C 1}.

Proposition 1 Let I C S be a regular ideal then the ide-
alizer of I is integral over S.

Proof. Let al, . . . . a~ be a set of generators of I. If d C I
then ua, = ~, r,j a, with rlj E S. Let M be the matrix

c,,] – d,, u where d,l is the Kronecker index, Then after mul-
tiplying by its adjoint we see that det(lkf) annihilates I. Since
I contains a regular element det(kf) = O and this gives an
integral relation for u over S.

Proposition 2 S is Integrally closed if and only af Idl(I)
– S for every rrgular tdeal 1.—

Proof. Let T = ~ E Q(5) be integral over S. Consider
the integral relation for z, ~“ = ~ .,x’, where ., c S. By
multiplying it by d“ we get y“ = ~ ctdn-;g’. Now consider
the the ideal L = (dn)ydn- l,. ... yicl)l). Because of the
properties of the generators, we have rL c L and hence
.r E S. Since the othm implication is trivial the proof is
accomplished.

Proposition 3 If~xsfinitely generat~das S module there
exists t ● S regular element such that tS C S. We will refer
to such t as a universal denominator.

We will discuss later how to compute such elements.

Proposition 4 Letd~S be ane~ement such that [Z:Q[s)

~] C $S, then IdI(Z) = j[dl : 1], where the lust quotient is
thr u,sual quotient.

Proof. Idl(I) = [I :~(.s) I] = ;{x E S I jI ~ Z} = ;{z E

s/ TIgdI} = ;[dI: 1]

Proposition 5 Let v E I be a regular element, then
[z :Q(s) 1] c :s,

proof. For anv z E [I Q(s) Z], z?) E ~ so z E ~~ C ~S.

Thus given a universal denominator or a regular element
of 1, the problem of computing idealizers is reduced to the
usual computation of ideal quotients over S.

Proposition 6 If S t.s not integrally closed and t is an
universal denominator then:

s c Id[(m) g 3

Proof. By proposition 1, it is enough to prove that if
S is not integrally closed then S is properly contained in
Zdl(m)

Consider the non-zero quotient module ~/S, and let p
be one of its iwsociated primes. Thus there exists c E ~ \ S
such that p = {s ~ S I sc E S}. Since tc E S, t E p and
therefore @ c p. c is integral so satisfies c“ = ~, r,c’.

If y ~ V@ c II, then uc E S. By multiplying the integral
relation for c by yn we get (yc)n = v(x, ~l(Yc)’Yn-’-’)l
this implies yc E @ and hence c E ldl(~).

This proposition furnishes an algorithm to compute the
integral closure. it is rmough to be able to construct the
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universal denominator and compute quotients and radicals
of ideals. We iterate replacing S by ldf(@) until reaching
stability. The existence of the universal denominator along
with the fact that S is noetherian guarantees that this pro-
cess terminates,

This algorithm though is not very efficient. There exists
an efficient afgorithm for rings which are integral over prin-
cipal ideal domains, ([Tr]). The aim of the rest of the paper
is to be able to arrive at a more efficient algorithm doing the
majority of the work with one dimensional rings. For this
purpose we will restrict ourselves to consider affine domains
of characteristic zero.

We will assume for the rest of this paper that the ring
S is presented using Noether normalization, e.g. as done in
[LO].

n= K[zl, . . ..zm]

S=qs,, ..,.9 t]= R[yl). ,., y,]/I

where 1 is a prime ideal and K is a field characteristic zero,
R is a polynomial ring over K and S is integral over R.

We recall that in this hypothesis, the integral closure can
be characterized by the following criterion (Serre’s criterion)
([E], [M]):

Theorem 1 An integral domain S zs integrally closed If
and only if the following condttton hold :

[Rl] For each prime p of codtmensaon 1, S, is a discrete
valuation domain.

[S2] Every ideal I of cod~menszon two contains a regular
ieq;lence on S with- two elements

3 Computation of a universal denominator

given S the first problem to solve , in order to construct
S, is to find a universal drmominator, i.e. anti element d
such that d~ C S. The ideal of such elements is called the
conductor of ~ into S. The conductor is non-zero if and only
if S is finitely generated over S. We will in fact requirf:
a non-zero element from the base ring R which lies in the
conductor,

The standard approaches to this construction use dis-
criminants,

●

●

Since Q(R) C Q(S) is a separable algebraic extension,
compute a primitive element a 6 S, such that Q(S) ~
Q(R)(o). If fa denotes the minimum polynomial of
a, then the discriminant of f= = Resultant(jm, f,,’) =
Norm( f~’), belongs to the conductor, ([ST]).

If we wish to avoid mimitive element constructions we
can choose a basis ~~1,. . . . n., of Q(S) over Q(R) such
that a, E ,5’. Define the trace matrix M = (m,, ) ,
m,, = tr(ola,). Then the determinant of ,$f is an
element of the conductor which belongs to R, ([S]).

An alternative approach is based on jacobian ideals.
Since the singular locus includes the non-normal locus, it
is easy to see that some power of the jacobian ideal lies
in the conductor. In our particular case, Theorem 2 from
([L]) implies that the relative jacobian of S over R is in fact
contained in the conductor ideal.



● Compute the relative jacobian ideal of S over R, i.e.
given a set of generators {gl,. . . . g~} for the defin-
ing ideal 1, construct the n x t matrix M = (rn~j),
mij = (Ogi/~yj ). The relative jacobian ideal J is gen-
erated by the set of t x t determinants of M. If we let
dO be one of these determinants which is non-zero, then
NormQ(s)J~(R)do belongs to R and lies in the conduc-
tor. Alternatively we could directly compute J n R and
take a generator with a small number of prime factors.

We use the element d in order to reduce ourselves to the
one dimensional case. Since R is a polynomial ring over a
field, it is an abstract Unique Factorization Domain. Let
d = Hi die’ be a factorization of d into irreducible so that
(di) are prime ideals of R. Then the set D = R\ Ua(di) is a
multiplicative set and localizing by this set we have that RD
is a semilocal one dimensional domain. Since S is integral
over R, SD is integral over RD and this implies that SD is
also a one dimensional semilocal ring.

Proposition 7 Let ~ be the integral closure of S, and d be
as p~eviously defined, then:

● (i) sd is integr’a~~yclosed

Proof. (i) Since E ~ Sd, ~d = sd and thus Sd is inte-
grally closed since localization of integrally closed rings are
integrally closed.

(ii) Let P be the set of height one primes in ~. Since ~ is
integrally closed, ~ can be expressed as ~ = n ~~p ~w ([E])
[M]). Let P= PLu PZ={p~P ld~p}U{p~F’ld$?p}.
We notice that sd = sd = n ~, Sp. Since we have also

SD = nP, 3P the thesis holds.

In this way in order to compute ~ we have to compute
the integral closure of a semilocal one dimensional ring SD.

4 Integral Closure of SD

Proposition 8 RD is an eflective pn”ncipai ideal domain.

Proof. Let a, b E RD and let g = gcd(a, b). Considering
al=: and b1 = ~, we are reduced to finding a linear
combination of al and bl which is relatively prime to d and
thus contained in D. In practice since our ground field
is infinite, a random linear combination would do, but we
can also give a deterministic construction. In RD there are
only a finite number of maximal ideals (dl ), . . . . (dt) and al
and bl belong to disjoint sets of (di)’s} let g = ~~ dr where

Q = {PIP irreducible plal and pl’h }, (q= 1 if Q is empty)
Then al +q131 = s E D i.e. gcd(al +qbl, d) = 1.

SD is integral over RD and torsion free so is a free module
of rank [Q(S) : Q(R)]. Relative to a chosen basis elements
of SD can be represented as vectors of elements of RD, and
fractional ideals in SD can have an arbitrary set of gener-
ators constructively reduced to a free basis using Hermite
normal form computations for matrices over R~. Thus we
can effectively compute in SD even though the multiplicative
set D is only implicitly defined.

To compute the integral closure of SD, we now give suit-
ably specialized algorithms for computing ~ and its ide-
alizer. Since our ground field has characteristic zero, one can
show that the problem of computing radicals can be reduced
to the so-called trace radical which can be computed using
linear algebra.

Proposition 9 ([~]) If p is an imeducibie element in RD,
(i.e. - equal to a pr&e”factor of d), then

~= {~ ~ SD IP]t~(~~) VW E SD}

Corollary 1 Let dd be the product of the distinct

factors of d then

@= {U ● SD I ddltrf~~) VW● SD}

prime

Relative to fixed basis al,.. ., an for SD over RD, we
can represent elements in SZI as ~ ~i~i with r~ E RD. To
guarantee that dd I tr(uw) Vw E SD, it is enough that
dd I xi r,t~(~i~j) for 1 s j ~ n. If we construct the
matrix M = (tr(cri~j)),then we need to solve the matrix
equation Mu c dd R;. As shown in [Tk] this can be done
by forming the 2n x n matrix with the matrix M in the first
n rows and dd times the n x n identity matrix in the next
n rows. Since RD is a constructive P.I.D., we can use the
Hermite row reduction algorithm to reduce the matrix to an
upper triangular matrix. The columns of the inverse of this
triangulw matrix form a basis for the solutions to the linear
system, and thus give us our free module generators for the
trace radical.

The computation of the idealizer can also be reduced to
a linear system. We form the n multiplication matrices asso-
ciated with the basis for our ideaI, then we perform Hermite
row reduction on the nz x n matrix composed of a vertical
stacking of these multiplication matrices. After again per-
forming Hermite row reduction, we get a triangular matrix
whose inverse yield a basis for the idealizer.

As in the fist section we continue replacing our ring SD
with the idealizer of the radical of the ideal (dsD ) until the
ring doesn’t change. Since we are always working with free
RD modules it is easy to check when_the process stabilizes.
At the end of the process we have SD presented as a free
R~ module. We can assume the generators are of the form
s/d where s E S, since any factor of the denominator which
is relatively prime to d is a unit in SD and thus can be
dkcarded.

Remark 1 The algorithm described does not depend on the
ability to factor d. Howeuer if we know the factorization of
d, we are able to improve the performance of the Hermite
reduction process.

Let d = ~~ die’ , and let Di = R \ (di ). We can con-
sider RD = RD1 n.. . n RDA. In thk caseRDi is a dkcrete
valuation ring. Thus given any two elements of RDi, one
must divide the other. The algorithm of Hermite row re-
duction for matrices over discrete valuation rings becomes
essentially equivalent to simple gaussian elimination. There
is always one element in each column which divides all the
others and thus can be used to zero out the column.

214



To ~se this improved version of Hermite row reduction
we let SD = ~Dl n. (l~~t, so we have now to compute the

intersection We can assume ~Di ~ RDi [~, . . . . ~] and

then SD = RD[&, . . . . ~] is simply the ring obtained
by adjoining all these generators since each denominator dj
is a unit in all the other rings RD, At the end we should re-
duce our set of generators to a free basis in order to minimize
the number of module generators. This can be done by an-
other application of hermitian row red~ction over RD. This
process finds sl, . . ..sn ~ Ssuch that SD % RD[~,. ... ~].

By construction each ~ is integral over RD, but a stronger
statement is true:

Proposition 10 With notation as above, each ~ is inte-
gral over S,

Proof. We have seen that ~ = SD n Sd. Thus since each
~ is Contained in both ~D and Sd, it is contained In ~.

For simplicity of notation we put :

T=s[; ,. ..,;]

Remark 2 T nonsingular m codimension one and satisfies
Serre’s condtton R1.

5 Construction of 3

In order to csmplete the algorithm and construct ~ we have
to compute Sf~ rl Sd = TD n Td. Three algorithms are possi-
ble. The first is due to Vasconcelos [V] who shows that if T
satisfies $ierre’s condition RI then HOmR(HOmR(~, R), R) is
integrally closed since it also satisfies Serre’s condition S2.
In addition he gives an algorithm for computing this double
dual.

Seidenberg and Stolzenberg require computing the iso-
lated components of a primary decomposition for the ideal
dT and then dividing the generators by d.

We propose a third way which is in fact a more effi-
cient way to do the computation proposed by Seidenberg and
Stolzenberg. In the notation introduced at the end of the
previous section we need to compute TD I_ITd, since Td = sd.
We will do this using the following observation:

Proposition 11 Tn fl T~ = ~(dTD fl T).

Proof. As we already remarked, the integral closure of T is
contained in ~T, so TD rl Td = TD (l ~T = ~(dTD fl T).

(dTD n T) is exactly the extension of the ideal d to TD
and followed by its contraction to T. This can be easily done
via Grobner basses,but first we need a presentation of T as
a polynomial ring modulo an ideal, i.e. we need to find the
ideal of relations among the generators of T. We already
have S presented as

s= R[!h,...,t]tI/I

and we have T presented as

T= S[~,..., ~]

where St E S, d c R. To get the ideal of relations for T, we
can select new variables Z1, . . . Zn and one addition variable
u to represent, the inverse of d. We form the ideal

I+(ud–l, zl–slu, . . ..zsnu)u)

in
I’qzl, . . ..zm. yl)yt, zl,, ,1, ..., Zn, u].

Then we can compute a groebner basis with an elimination
ordering for u, ie. we choose an ordering which is some
refinement of the ordering by degree in u, The subideal
generated by the groebner basis generators which are free of
~ glveS a presentation of T as a polynomial ring modulo an
ideal.

To compute (dT~ (1 T), we use the following straight-
forward generalization of Proposition 3.7 in [GTZ]. We use
R[z] to denote a polynomial ring in several variables over R.

Proposition 12 Let (di) c R be a collection of principal
prime ideals. Let D = R \ U, (d, ) a multiplicative set. For
any given ideal I C R[z], we can find a s E D such that

IRLI [z] (l R[z] = ZR~[z] n R[z].

Essentially one computes a relative Grobner basis, computes
the product of the leadlng coefficients of the generators with
all factors of d removed. If we let s be this element, then
(dTD II T) = (dT, n T). The latter can be computed by
adding a generator of the form us – 1 where u is a new
variable and then contracting back to the original ring,

6 Algorithm summary

●

●

●

●

●

Compute a noether normal presentation of the ring
R = K[zj, . . ..z~]. S = R[yl, . . ..ytI/I where R is
a polynomial ring over a field and S is integral over R.

C~mpute a universal denominator d E R such that
dS ~ S by one of the algorithms in section 3.

Let D be the set of polynomials in R which are rela-
tively prime to d. RD is an effective PID and we com-
pute a basis for SD over RD. Note that we only use D
implicitly in the sense that any denominator relatively
prime to d is automatically a unit.

Remark 3 If we use the factorization of d to amprovc
the performance of the herrnite normal form construc-
tion, then we need to add an outer iteration over the
factors of d here replacing D with Di the set of polyno-
mials in R which aTe not diviszble by d,.

perform the next 2 steps until the ring stabilizes:

compute the ideal m using the trace radical
construction in section 4.

compute an RD basis for the idealizer of this ideal,
discarding factors of the denomi~ators which are rela-
tively prime to d. If this ring properly contains SD,

then consider this as the new SD and repeat.

Let T = S[s1 /d, . . . . sn/~ be the ring we have com-
puted so fa~. This ring is non-singular in codimension
one. To complete the construction we find a presenta-
tion of T aa a polynomial ring modulo an ideal. Then
we compute dT~ (1 T. The resulting ideal generators
divided by d generate the integral closure of S.

Remark 4 One of the referees made us aware of a paper
by Beukers and Couueignes [BC), which takes an essentially
similar approach to computing normalizations. They also
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use locahzations to reduce the probiem to several integral clo-
sure computations in one-dimensional rings. They compute
the jinal normalization by directly computing the intersec-
tion of this collection of locally integmlly closed rings, using
the fact that they are ail free R-modules.
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