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1 Introduction

The aim of this paper is to give a survey of the wide range
of number theoretic applications of the computer algebra
system SIMATH [42]. * This system, focusing on algebraic
number theory, enables the user to attack a broad spectrum
of number theoretic problems. Special attention is paid to
the arithmetic of elliptic curves and its applications in cryp-
tography.

SIMATH is developed by the research group of the author at
the Universitat des Saarlandes in Saarbriicken. It is written
in the programming language C and will be soon extended to
the programming language C++. A list system serves as a
foundation for all SIMATH types such as integers, rationals,
polynomials, algebraic numbers, algebraic functions, matri-
ces and vectors. In addition to the libraries which contain all
SIMATH functions, the system is equipped with a calcula-
tor called simcak. In simcalc almost all SIMATH functions
are available and can be handled in an interactive mode.

SIMATH is running on 32 bit Unix systems. An interface
enables the user to apply other computer algebra systems
such as MAPLE, KANT, LiDIA or PARI while working with
SIMATH. This is accomplished by using a simple script lan-
guage to extract numerical data from text files. .4 compar-
ison of the performance of SIMATH with that of the other
sv.tems mentioned is not possible, since most of the algo-
rithms under consideration in this survey are missing in the
other systems.

Symboli< computation is one of the main ingredients of
the s,vstem. The technical tietails are contained in the
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SIMATH manual (the manual can be obtained via ftp from
ftp.math. uni-sb. de, the system itself from http: //emmy,
math. uni-sb.de). We confine ourselves here to giving a
mathematical table of contents. The most remarkable suc-
cess of applying the computer algebra system SIMATH to
number theory is the solution in integers of the famous dio-
phantine equation of Mordell

y2=x3+k

for integers k # O in the range

[kl ~ 100,000.

Until recently, it was only possible to solve this equation for
k in the order of magnitude of 100 and in some cases up to
1,000. This achievement distinguishes SIMATH from other
computer algebra systems. The contributions to the system
are made by the various members of the research group of
the author at Saarbriicken.

2 Number theoretic applications

The main applications of SIMATH concern

2.1 Algebraic, in particular abelian, number fields

We have developed or are going to develop algorithms for
computing

2.1.1 an integral basis and the decomposition law of primes
in arbitrary number fields,

2.1.2 unit groups in abelian, especially cyclotomic, number

2.1.3

2.1.4

fields,

class numbers of abelian number fields,

Stickelberger ideals in rvclotomic number fields
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2.2 Congruence function fields of one variable

The algorithms developed and implemented in SIMATH are
designed for computing resp. considering

2.2.1 an integral basis and the decomposition law of places
in general congruence function fields,

2.2.2 the regulator and the unit group in hyperelliptic con-
gruence function fields,

2.2.3 the divisor class group and the ideal class group in
hyperelliptic congruence function fields,

2.2.4 invariants which are important for cryptographic ap-
plications,

2.2.5 cryptographic applications, especially key exchange
protocols.

2.3 Elliptic curves over algebraic number fields

We have developed and implemented in SIMATH fundamen-
tal algorithms for computing resp. constructing

2.3.1 the torsion group,

2.3.2 the rank and a basis of the Mordell-Weil group,

2.3.3 elliptic curves of high rank over certain number fields,

2.3.4 all integral or, more generally, all S-integral points in
the Mordell-Weil group,

2.3.5 the 2-rank of cubic number fields by virtue of Selmer
groups.

2.4 Elliptic curves over finite fields

Our aim is to construct

2.4.1 elliptic curves of large order over large finite fields of
characteristic p # 2 or p = 2,

2.4.2 elliptic curves over large finite fields which are of cryp-
tographic relevance,

and to develop efficient procedures for

2.4.3 counting points on elliptic curves.

2.5 Modular curves

The task consists in constructing small models for certain
modular curves and to apply these models, e.g. to the prob-
lem of

2.5.1 counting points on elliptic curves over finite fields (cf.
2.4.3).

3 Number fields

3.1 Integral basis

A fundamental problem in algebraic number theory is the
determination of an integral basis. R. Boffgen [1] de-
veloped and implemented the Ford-Zassenhaus algorithm
ORDMAX-IV for computing the maximal order in a poly-
nomial algebra. It is based on local methods involving the
concept of the p-radical. The algorithm provides at the same
time also a tool for determining the decomposition of ratio-
nal primes p in an algebraic number field K (see [2]).

Let now K be an abelian number field. Two fundamental
problems consist in computing the unit group and the class
number of K.

3.2 Unit group

Let us consider the special case of the n-th cyclotomic field

K. = Q(<n),

where (. denotes a primitive n-th root of unity, One defines
the group of circular units in K. by

c(”) ,= {{*c:,I – <: I ~ G z}) nz[cn]”.

Theoretically, a basis of C(n) was given by Gold-Kim [14]
and Kutera [17]. M. Conrad [3] constructed an explicit basis
of C(n) in the special case, where n is the product of at most
three primes:

n = p~qPru (p, q,r G P, A)p, uE {0,1}).

This construction facilitates the explicit computation of a
basis of C(”). Such a basis, consists of ~p(n) -1 elements,
where p denotes Euler’s totient function.

Example (see [3]). n = 22 3.5, such that ~p(n) – 1 = 7.

A basis of C’(”) consists of the 7 elements

1 –(4-1(:, 1 –(;1(5, 1 –(4<; 1(;, 1 –<4(3-1!

1 – (3(;’, 1 – (3(;2, (1 – (;)(1 – (5)-1.

At present M. Conrad is workhg on a general module theory
which can be applied to the calculation of unit groups and
Stickelberger ideals. Wgarding the unit group, what one
does is to compute a basis of a suitable subgroup of C(n)
and to estimate the index of that subgroup in the full unit
group of K..

3.3 Class number

Let K: = Q((. + {~ 1) ~ Km = Q((n) be the maximaI real
subfield of the n-th cvclotomic field K.. and denote bv h~.
resp. hn the class number of K: resp. K., and by

the relative class number of K~.
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In the special case of an odd prime power

72=1’ (2 EP, 1#2, AE N),

W. Schwarz [35] used the Demjanenko matrix to characterize
the

2-divisibility of h$ and hi,

J. Sands and W. Schwarz [25] were then able to general-
ize the concept of Demjanenko matrix to obtain a charac-
terization of the 2-divisibility of h+ and h– for an imagi-
nary abelian number field K of odd prime power conductor
n = 1A. This characterization also leads to a new upper
hound for h-. The pdivisibility of the class number h of K
is investigated in [39]

It is interesting to observe that the Demjanenko matrix orig-
inally arose in connection with torsion groups of elliptic
curves (see [7]).

W, Schwarz [38] furthermore derived a relation between the
Stickelberger ideal and the signature of circular units.

All these theoretical findings have a computational impact
on the following tasks.

3.3.1 The computation of the relative class number h- for
imaginary abelian number fields K of odd prime power
conductor n = lx and the computation of h- (mod p)
for primes p + 1.

3.3.2 The programming of a necessary condition for the
divisibility relation plh+ of the plus class number h+
by a prime p # 2 in the case of an imaginary abelian
number field K of odd prime power conductor n = 1>
or, more generally, in the case of an imaginary abelian
number field h’ in which p does not ramify. This latter
case is a generalization of work of ,Jacubec [16].

3.3.3 The programming of the decision whether or not the
divisibility relation

21}t+

is satisfied for imaginary abelian fields K of odd degree
[h-: Q].

3.3.4 The attempt to compute the plus class number h+ of
certain abelian number fields K. This is also impor-
tant in view of the non-existence of integral solutions
of Catalan’s equation

x“ –vq=l

IV. Schwarz [36] simplified a criterion of Mignotte [21]
by showing that Catalan’s equation has no non-trivial
integral solution if

q +)l–(KP) and pq–l ~ 1 mod qz.

The simplification consists in the replacement of the
condition q i h(KP) by q { h– (KP) for the p-th cyclo-
tomic field KP = Q((P). In this way, the non-solvability
of Catalan’s equation could be shown for a much larger
range than before, namely for min(p, q) s 10, 500
rather than min(p, q) s 600.

As an example of an interesting SIMATH-assisted computa-
tion, we mention here some numerical experiments made by
W. Schwarz [37], [39]. Recall that an odd prime p is called
regular if p does not divide the Bernoulli numbers B“ for
v = ‘2, 4, . , p – 3. Schwarz [37], [39] defines a real abelian
field K to be p-regular, if its conductor is not divisible by
p and if all its characters x # 1 are p-regular in a certain

L
sense (see [37], [39 ). An odd prime p is then regular if and
only if the field KP — Q(<P)+ is p-regular.

Now let us fix an odd prime p and a positive integer n and
consider the subfields of K{+ = Q(</)+ of degree n over Q, as
1 ranges over all primes 1 satisfying the congruence relation

1 ~ 1 (mod 2n).

If p f n, one expects a proportion of

1 – H(1 – p-f’)~(d)f’~
dln
d#l

p-irregular fields, where id denotes the order of p (mod d),
W. Schwarz [37], [39] obtained the following numerical re-
sults (showing the expected proportion in the last column):

Table 1

4

[

Pn

32
32
35
52
52
53
72
73
73
75

11 2
11 10
31 30

101 100
199 198

1 I irregular
I < 5000] 999/2549 = 0.392

5000<1< 100000 920/2234 = 0.412
1<100000 33/2387 = 0,0138
1<50000 573/2549 = 0.225

50000<1<100000 528/2234 = 0.236
1<100000 209/4784 = 0.0437
1<100000 773/4783 = 0.162

1<50000 780/2556 = 0.305
50000<1<100000 655/2228 = 0.294

/<100000 2/2387=0.0008
! <100000 435/4783=0.0909
1<100000 727/1181 = 0.616
t <100000 360/585=0.615
1<100000 78/121=0.64<5
t < 100000j 45j72 = 0.625

Function fields

exp.
0.333
0.333
1.0123
0.200
0.200
0.040
0.143
0.265
0.26.5
).0004
1.0909
0.576
0.614
0,627
0.629

Algebraic function fields, especially those with finite field of
constants, i.e. congruence junction fields, can be treated in
complete analogy to afgebraic number fields. It is therefore
of interest to compute an integral basis, the unit group, the
class groups and class numbers of such fields. Applications
to cryptography arise here too.

4.1 Integral basis

The Ford- Zassenhaus algorithm ORDMAX-IIr can also be
used for computing an integral basis of an arbitrary congru-
ence function field K/k of one variable over a finite field of
constants k, i.e. an integral basis of the integral closure in
K of the polynomial ring k[z] in one variable z over the field
k. The algorithm provides at the same time also a way of
determining the decompositions in K of the places of the
rational subfield k(z) of K. The corresponding algorithms
have been implemented in SIMATH by J. Schmitt [30].
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4.2 Unit group and regulator

Here we restrict to the case of a real quadratic congruence
function field K/k of odd characteristic. Hence, K is gen-
erated over its rational subfield k(z) by adjunction of the
square-root of a square-free polynomial D c k[x] of even
degree having a square in k“ as its leading coefficient:

K = k(z)(~).

Then the place at infinity p- splits in K:

pm = P1P2,

and the unit group U = 0“, where 0 := k[z, m] is the
integral closure of k[z] in K, has the structure (see, e.g.
[46])

U=k’ x(e)

with a fundamental unit e. The regulator R is the normalized
additive p,-adic value of the fundamental unit c

Since the infinite place splits in K, this field K is embedded
in the field of Laurent series in ~ over k, viz.

K ~ KP, = k((+)) (z’= 1,2).

Therefore, we can bring in the continued fraction expan-
sion of the functions in K. A very efficient algorithm is D.
Shanks’ baby step - giant step method for computing the
regulator and a fundamental unit e E U. This algorithm
was developed and implemented in SIMATH by A, Stein
[44].

4.3 Class numbers and class groups

Let K = k(z)(m) be a real quadratic congruence function
field with ring of integers 0 = k[z, @] as before. Then the
ideal class number h’ with respect to the principal order O
and the divisor class number h of K/k, i.e. the order of the
group of divisor classes of degree zero of K/k, are related by
the equation

h= R.h’

involving the regulator R. An algorithm of Artin imple-
mented in SIMATH by B. Weis (see [46]) yields both class
numbers h and h’. Moreover, it is possible by the method of
Artin to compute the ideal class group as well as the divisor
class group of K/k (see [46]). By bringing in Shanks’ infras-
tructure ideas [43], the algorithm becomes much more effi-
cient as was shown by A. Stein ([44], [45]). A subexponen-
tial algorithm for computing regulators, class numbers and
class groups, and for solving the discrete logarithm problem
- analogous to the number field case - was developed by A.
Stein and coauthors ([23]). It is probabilistic and works in
function fields K/k of sufficiently large genus.

4.4 Cryptographic applications

In computing the regulator and a fundamental unit of a
real quadratic congruence function field K = k(z)(m) by
Shanks’ baby step - giant step method, one uses the concept
of a reduced ideal and applies repeated ideal multiplication
and ideal reduction. In this way one utilizes the set 77.of
reduced principal 0-ideals of K as the basic structure. As
in the number field case (see [27]), this set can be used in
designing a secret key distribution protocol. Compared to
the number field csse, thk key exchange protocol is easier
to handle in the function field case. We sketch the protocol,
refer to [28], [45] for more details, and give an example.

In a precomputation, two persons A and B generate an odd
prime power q and a square-free polynomial D E Fq[z] of
even degree deg D = n with leading coefficient a square in
F; so that

K = k(z)(fi) with k = Fq

is a real quadratic congruence function field. Then, by ap-
plying a few baby steps, A and B generate and publicize a
reduced ideal c E R of small “distance” J(c) to the identity
ideal O. Then,

A:

(i) secretly generates a positive integer a < q~

(ii) computes the reduced 0-ideal a = [c”] E %? “nearest”
to a b(c) and its distance A(a)

(iii) publicly transmits a to B

B:

(i) secretly generates a positive integer b < q~

(ii) computes the reduced C.Zideal b = [cbj E ~ “nearest”
to b d(c) and its distance J(b)

(iii) publicly transmits b to A

Finally,

A computes the reduced C?-ideal t = [bJ(”)] E ‘R
nearest to J(a)&(b),

B computes the reduced O-ideal ? = [ad(b)j c 1?
nearest to J(b) J(a).

This accomplishes the key exchange

The cardinality of the set %3of reduced principal 0-ideals

m=#R

turns out to be the quasi-period of the continued fraction
expansion of m. It is chosen to the order of magnitude

(or smaller).

In the table below, q = p is taken to be a prime and the size
of the exponents is fixed according to

a, b= 10100,
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We exhibit the running times for the key calculations on an
SGI challenge workstation as the degre;

n = dcg D

and the prime p vary.

Table 2
71

6(I
60
60
70
80
80
90
90

100
100
100

P
1000003

999999929
1000000000000000003

999999929
1000003

999999929
1000003

999999929
991

1000003
999999929

100 999999999999989
100 99999999999999999999889

#l? =.

10’””
10270

10540
~0315
~0240

10360
~0270
~0405

10150
~0300

10450
~0750

101150

Time

lm5s
lm47s
15m3s
2m25s
lm56s
3m10s
2m26s
3m58s
1m26s
2m57s
4m53s

42m10s
54m32s

5 Elliptic curves over number fields

T,(,t

he an elliptic curve in short Weierstras form defined over
au algebraic number field K with ring of integers OK, Then
E has discrimiuant

A=4a3+27b2# 0

and modular in~,ariant

By the Llordell-Weil Theorem, the group E(K) of rational
points on E over K, i.e. the Mordell-Weil group of E over
K: is finitely generated:

E(K) ~ E,,,,.,(K) X Z’,

where E~or~(K) is the torsion group, i.e. the (finite) group
of points of finite order in E(K), and r is the rank of E over
K.

The SIMATH system contains basic algorithms for comput-
ing the torsion group, the rank and a basis of E(K), More-
ovm, in SIhf ATH implemented are algorithms for determin-
ing all integral and S-integral points in E(K) if K = Q is
the field of rational numbers. A comprehensive report on
these algorithms is given in [48].

5.1 Torsion groups

By a recent theorem of Merel, the order of the torsion group
E,O,S(K) ishounded bya.onstant depending only on the
degree [K : Q] of the number field~. Moreover, for K=Q,
all possible torsion groups EtOr,(Q) are known by a theorem
of Mazur, and for quadratic fields K, the groups E~o..(K)

are equally known by results of Kamienny, Kenku and Mo-
mose.

On restricting the class of elliptic curves E over a number
field K byassuming integrality of their modular invariant:

j ~~K,

we used SIM,ATH to determine all possible torsion groups
EtO.~(K) for curves E over quadratic, cubic and totally real
as well as totally complex biquadratic fields K (see [22],
[47]). Someresults on E~o,, (K)were obtained alsoovergen-
eral quartic fields. Furthermore, aside from torsion groups
of small order, all curves E and number fields K of degree
[K : Q] < 4suchthat thegroup E,~,, (K) hasone of the
given structures corddbe determined,

A special result in this direction is the following

Theorem 5.1 Let E be an elliptic curve defined over a to-

tally real biquadraticjield K, and assume that E has modular
invariant j = OK. Then,

E,o,~ (K) s
{

Z/mZ jorl~m~8, m=14
z/2z x z/2@ for 1< p <3 1

We exhibit one example

K
integral
bases

discriminant

~

E:a

b

P

(J4 = ha”

D~ = 1600 = 26 52 (totally rea.1)

23365142116 – 43379067008ws

The method of proof relies on

● reduction theory

● parametrizations

● norm equations

the latter being solved by the techniques of

● Groebner bases

● Elimination theory

. Fibonacci- and Lucas sequences.

By means of reduction theory, we restrict the possible tor-
sion groups to a finite family. This reduction process
requires the assumption that j E OK, Then we find
parametrizations of elliptic curves with small torsion groups.
Finally, we transform the integrality condition on j into a
set of norm equations for a parameter a which at the same
time yields the elliptic curve E and the number field K such
that E over K has torsion group Et~,., (K) of one of the
predetermined structures.
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5.2 Rank and basis 5.3 High ranks over number fields

Once the torsion group Eto,. (K) of an elliptic curve E over
a number field K is known, the (much more difficult) task
remains of determining the rank r and a basis of the free part
of the Mordell-Weil group E(K). This goal can be reached
in various ways, e.g. via

● M anin’s “conditional” algorithm,

● 2-cfescent via 2-isogeny or general 2-descent,

● 3-descent.

The first method, taking the conjectures of

● Birch and Swinnerton-Dyer

. Shimura-Taniyama

. Hasse-Weil

for granted, was worked out and implemented over K = Q
by J. Gebel (see [12]). The algorithm works for curves E
over Q of rank r ~ 7, where the case of rank 7 already takes
some extra effort. We mention that in the cases of rank
r s 1 parts of the Birch and Swinnerton-Dyer conjecture
are a theorem by work of Coates- Wiles, Rubin, Kolyvagin,
Gross-Zagier and Diamond, and furthermore, the conjecture
of Shimura-Taniyama was shown to be true for semi-stable
elliptic curves by Taylor and Wiles, and the conjecture of
Hasse-Weil holds for modular curves by work of Deuring. In
any case, Manin’s algorithm can be made largely indepen-
dent of those conjectures by employing 2-descent resp. 3-
descent provided that the 2- resp. 3-Tate-Shafarevich group
of E over Q is trivial.

The basic idea behind Manin’s algorithm is to embed E(Q)
in the r-dimensional real space E(Q) @z R:

E(Q) + E(Q) @ZR

where the kernel IS the group EtOrS(Q), and to apply the
method of successive minima from geometry of numbers to
the space E(Q) @Z R. This space is Euclidean with respect
to the norm induced by the N6ron-Tate height ~ on E(Q).

Manin’s algorithm has not been worked out for number fields
K other than Q. However, first steps are taken already to
make a similar procedure available over quadratic fields K,
e,g. by performing height computations.

The first algorithm for computing the rank r and r indepen-
dent points of elliptic curves over quadratic fields K is based
on 2-descent and was developed by P. Serf ([40], [5]). It
arises from an algorithm sketched by Birch and Swinnerton-
Dyer and implemented by Cremona [4] over the rational
number field Q. The sophisticated generalization by P. Serf
functions over the real quadratic fields

K = Q(fi) for D = 5,8,12 and 13

of class number one. It will soon be available as part of the
SIMATH system.

A folklore conjecture asserts that the rank of elliptic curves
over Q is unbounded:

suprk@ = 00.
EfQ

However, to date only examples of curves E’ over Q of rel-
atively smafl ranks are known. Nagao and Kouya [24] con-
structed curves E over Q of rank r ~ 21 and Fermigier [6]
extended the construct ion to r ~ 22. It is therefore of some
interest to study the rank of elhptic curves E over number
fields K other than Q.

U. Schneider [33] investigated the behaviour of the rank of
curves E over Q upon transition to a quadratic extension
K of Q. She applied 2-descent via 2-isogeny to establish
conditions under which the rank grows at least by one upon
transition from Q to K.

On applying these conditions, M. Sens [29] was able to show,
e.g., that an elliptic curve E of rank 9 over Q attains rank
~ 28 over an explicitly given multiquadratic field K19 of
degree 219 = [Klg : Q]:

rkKlgE ~ 28.

However, one should be able to do better than that, since,
as mentioned above, Fermigier found already curves E over
Q of rank

rkQE ~ 22.

H. Graf [13] constructed elliptic curves E of high rank over
quadratic fields K of class number one. The method used
in this construction consists in 2-descent via 2-isogeny. He
obtained curves of rank

r=rkKE ~ 7,

The method of 2-decent via 2-isogeny (see [41]) works for
curves E with a non-trivial 2-torsion point over Q or, more
generafly, over a number field K. It was described by Tate
and applied by Penny and Pomerance, Kretschmer, Fer-
migier and others.

The 2-torsion point is usually assumed to be Z’O = (O,O) and
thus the curve E over K is defined by an equation of the
form

E: ~2=X(Z2+CX+d) (c, d~K).

The 2-isogenous curve is then

E’ : y’ = X(rz +C’Z+ d’) (C’, d’ E K)

with coefficients

C’= –2c, ~ = C2– 4d.

One defines the usual group homomorphism

a : E(K) + K*/K”z
O _ 1 mod K*2

PO + d mod K*2
0, Po#P=(z, y) + z mod K“z

and the corresponding homomorphism for the 2-isogenous
curve E’:

a’ : E’(K) --+ K“/K*2

and uses the rank formula for r = rk~ E:

2’+2 = #~E(K) . #a’E’(K).

The images aE(K), cr’E’ (K) are calculated by solving cer-
tain quartic diophantine equations (see, e.g. [40]).
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5.4 Integral points

.An interesting question concerns the size of coordinates of
integer points on an elliptic curve

E: y2=.r3+ax+b

over Q with integer coefficients o,b E Z. Lang [18] enunci-
ated the following

Conjecture 5.4.1 ’17wfirst coordinate of an integer point
P = (z. V) c E(Q) satisfies

Ix( < tnax{la13, lb~’})’

unth a fizcd postttue rml number h not depending on a, b.

On choosing a = O and b = k 6 Z \ {0}, one arrives at
Mordell’s elliptic curves

Ek : y~=za+k.

A collject,urr of M. Hall [1.5] states th~ following.

Conjecture 5.4.2 Any integral point P = (z, y) E Ek(Q)
ho,,sfirst coordinate of absolute value

Irl < CIklz

with a po.sattw real constant C not depending on k.

In [8] we developed and implemented in SIMATH a general
procedure for computing all integral points on elliptic curves
E over therationals Q. The procedure relies on a method of
Lang and Zagier and requires the knowledge of the rank and
ii Ixxsisof the hIordell-JVeil group E(Q). Since, by [12], the
group E(Q) can be regarded as known, the method of Lang
and Zagier is applicable. The crucial tools are the N&on-
Tate height jl on E(Q) and elliptic logarithms. For comput-
ing all integral points in E(Q), the classical complex elliptic
logarithms suffice, but if one wants to compute also all S-
integral points in E(Q) for a finite set S = {m, pl, ,p, } of
places of Q, padic elliptic logarithms come into play. The
problem with the padic elliptic logarithms is that, as op-
posed to the classical complex elliptic logarithms, no explicit
lower bound for linear forms in p-adic logarithms is known
in general.

JVCgi~,f,here an example of a curve of rank 3,2

We list S-int,cgral points for S, = {cm, p,,, ,p,} (0 < i <
8), wherep, = 2,pz = 3.ps = 5,pd = 7,ps = 11, pG = 13,
p? = 17, ps = 19, on the elliptic curve

E: fj~+y=x3–7z+6

of rank 3 with generating points PI = (1, O), P2 = (2, O),
P3 = (O,2). The representation of points in the table reads

P = (r.?/) = ()( 7)
~,p ,

where <, t],< E Z, ( > 0, gccl((, () = 1 = gcd(q, <) with
factorization F of<.

Table 4

S-integral points on E : y2 + y = X3 – 7X + 6

m-
-1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

m
19
20
21
22
23
24
25
26
27
28
29
30
31

z
33
34
35
36
37
38
39
40
41
42
43

-z
45
46
47
48
49
50
51
52
53
54—

c
-3
-3
-2
-1
0
1
2
3
4
8

11
14
21
37
52
93

342
406
816

-7
-7
1
9

25
9

17
33

-151
625
-47

1793
-2759

207331217
-26

4
7

25
31
58

172
6142
4537

-1343
-8159
6169

-69
-66
24
26
49

391
1219

-33304
13961

338776
19849

~
o
0
3
3
2
0
0
3
6

21
35
51
95

224
374
896

6324
8180

23309
25
25
13
7

111
69

-25
17

1333
14839
9191

68991
60819

2985362173625
28
35
17
64

116
559
350

480700
305425

36575
233461
109871

204
252

18
-24
-32

7564
-5797

562994
1648791

197180774
1058743

~
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

T
2
2
2
2
4
4

8
8

16
16
32
64

T
3
3
3
3
9
9
9
6

24
54
81

T
5
5
5
5
5

52
125
10
15
90—

F

2
2
2
2
2

22
22

22
23
23

24
24
25
26
3
3
3
3
3

Sz

32
32

23
23.3
2.33

34
5
5
5
5
5
5

52
53

25
35

2325

2’Fbe autt,or wis}les to thank J C;ebel for providing him with these

(Iata,
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55
56
57
58
59
60
61
62
63
64
m
66
67
68
69
70
71
%
73
74
75
76
77
78
79
m
81
82
83
84
85
86
87
88
m
90
91
92
93
94
95—

-68
-13
43

106
114
221

-1525
848961

1541761
-11948

-304
-164
113
247

8449
2875

5200101
-497
-139

66
329
575

3273
34953

12864601
-475
308
696

1436
9569

433
521763

-10391688
-1093232

-451
913

21543
-3143
-8501
19244
46498

1079
804
132
209
377

2624
321308

782099809
1822623039

-73513
3094
4179

301
244

610719
71299

11796727776
1503
6336
3056

-1045
9164

154071
-1832193

329797213955
15471
-2375
6549

45214
91633

232928
397727100

18763995251
692674750

21344
11477

3155489
155991

11871028
436722

-3933216

7
7
7
7
7
7

49
56

392
63
11
11
11
11
44
33

385
13
13
13
13
13
26

182
6084

17
17
17
17
68
51

833
2023

663
19
19
19
38

171
95

209

7
7
7
7
7
7

Tz

23.7
23.72

327
11
11
11
11

22.11
311

5.711
13
13
13
13
13

213
2.7.13

~z.3z.132

17
17
17
17

22.17
3.17

72.17
7 172

3.13.17
19
19
19

2.19
32.19
519

11 19

Other tables will be published in the SIGSAM Bulletin

S. Schmitt [31] used the algorithm of [8] and her procedure
[32] for computing the Mordell-Weil group E(Q) to calculate
all integer points on the elliptic curves -

Ek: y2=z3+54k2r+540k3 (o#k Ez,3/k)

and

Ek : yz = Z3 +6(;)2Z +20($)3 (0 # k E T,, 31k)

in the range
k <100.

She found that Lang’s conjecture 5,4.1 holds

h =0.38258353338323422422

in the case of 3 +k, and with

h =0.71590910795617837384

with

in the other case, where 3[k.

The most successful application of the algorithm [8] and
its modification [9] was made on Mordell’s elliptic curves
Ek. By the SIMATH system, we succeeded in computing
ali integral points on Mordell’s curves Ek in the range (see
[10], [11])

Ikl ~ 100,000.

It turns out that Hall’s conjecture holds in this range with
the constant

C=52.

Moreover, we were able to compute all S-integral points on
Ek for S = {m, 2,3, 5} in the range (see [9], [10])

Ikl ~ 10,000.

Initially, there were some open rank-one-cases in which we
could not findagenerating point, and we guessedthatthere
were no integer points on the corresponding Mordell curves,
This guess was recently shown to beafact by K, Wildanger
(unpublished).

5.5 Cubic fields and Selmer groups

The right hand polynomial j(z) of the equation

E: y2=z3+az+b= f(z) (a, b~Z)

defines a non-Galois cubic number field

K = Q(6)

generated by a root Oof~(z), provided that ~(z) ●Z[z]is
irreducible and has discriminant

O # Df = -A = –(4a3 + 27b2) #Q*2.

By relating the 2-rank of the class group of K to the 2-
Selmergroup of the elliptic curve Eover Q, U. Schneider
[34] was able to construct cubic fields K of 2-class rank ~ 7.
The method of construction generalizes to a great extent an
earlier procedure, G. Frey and others had applied to cer-
tain Mordell curves. Ontheother hand, a somewhat differ-
ent method involving the Jacobians of suitable hyperelliptic
curves enabled E. Schaefer [26] to construct cubic fields of
2-rank ~ 13. U. Schneider procedure is implemented in
SIMATH and can be made available.

6 Elliptic curves over finite fields

G. Lay [20] employed class field theory to construct ellip-
tic curves E of large group order over large finite fields FP,
where p is an odd prime, or !F2. (n < 1, 000), This construc-
tion solves the following tasks:

6.1 Given a positive integer m >3, find a prime p and an
elliptic curve E over FP of order

#E(l?P) = m.

6.2 Given two positive integers n and co, find an elliptic
curve E over Fzm of order

#E(F2. ) = c q,

where q is a large prime and c is a positive integer s co.
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6.3

6.4

Given an integer 7t> 1, decide whether or not there is
a prime p > 3 and an elliptic curve E over FP such that

E(F,,) % Z/nZ x Z/nZ.

Given a prime p > 3 and a positive integer m in the
Hasse interval
1P+ 1- ml ~ 2@, build an elliptic curve E over IFP
with group order

#E(!F,, ) = m

and endomorphism ring of small class number.

\v’ecomment briefly on 6.3. In general, elliptic curves E over
F,, have cyclic groups E(lFP). Hasse proved the following

Theorem 6.1 The structure of the group ~(~~) Offationa/
points of an cllzptic curves E over IF;,is

E(FP) % ZJnZ x Z/mZ

for positive tntegers n, m such that nlm and

71Igrd(#E(!FP), p – 1).

Lloreover, if we want to achieve n = m, then
phism ring End(E) is an order in K where

{

Q(=) and P= n’ + 1
K= or

Q(a) and P = n2 + n

..-

the endomor-

+1

Examples (see [19]). fW wish to find the smallest integer

7/ > 1050

such that there is a curve E over !FPwith group

E(FP) E Z/71Z x Z/nZ.

JVe find n = 1050 +4andp=n2+n+l. Hencep-
1 (mod 3), and p = u= splits in K. The elliptic curve is

E[, : y2=x3+b

with an integer b satisfying the congruence

(4b)~ E (~) (mod p)
6

with the sextl{ residue symbol on the right. The curve E6
is, of course, ii CA4-curve with invariant j = O.

If we want a Chl-curve of type

,,E: !/2=x3+ ax,

we take n = 1050 + 206 and p = n2 + 1. Here we have
p ~ 1 ( mod 4), and p = tiD splits in K. We ensure that the
integer a satisfies the congruence

with the quartic msidur symbol on the right. The curve ~E
is a CAf-curve with invariant j = 123.
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Tables 5- 7

Type b-:p=n2–n+l

n

127822
401566

1261597
3963435

12451503
39117555

122891451
386074917

b 1
7558712786

97599279706
1342884907217
6625165381497

61795763555622
949708068313938

1750163157126086
75435874918307051 ]

Type b+:p=n2+n+l

n
12421482
39023243

122595152
385144068

1209965882
3801220256

11941886670
37516546691

117861717497
370273537290

b

126497545733191
671003825169805

8804798066751686
116776394578684323

1294784153356827079
3463338849072647762

49367926766201606059
1383210512453568752380
5645314496679314056430

114750884080322688880294

Typen:p=n2+l

a
36;4960 1149851825852

11513830 60257224372045
36171794 1223140504722291

113637066 6492875736404902
357001420 115992465672407033

1121553136 242490182600179197
3523463404 7003561508250280060

11069287696 96350275535540968690
34775195870 989946416399172056564

109249509186 9926675123046205755561
343217484646 49282987066594407863946

Obviously, the general construction can be used to find el-
lipticcurves Eover!FP that areapplicable incryptosystems
basedon discrete logarithms. However, we refrain from go-
ing into any details here.

7 Modular curves

The problem under consideration is the construction of small
models for the modular curves Xo(N), whenN runs through
the primes up to 179. This problem is of relevance with re-
spect to the task of counting points on elliptic curves over
finite fields. Weierstrass points onthecurves .YO(N) are also
constructed. This is work in progress, and the correspond-
ing algorithms will be implementedin SIMATH. Weconfrne
ourselves here to making the announcement that a paper by
M. Pfeifermr this topic will appear lateron in this year.
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