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Abstract: We present hierarchical occlusion maps (HOM) for
visibility culling on complex models with high depth complexity.
The culling algorithm uses an object space bounding volume hier-
archy and a hierarchy of image space occlusion maps. Occlusion
maps represent the aggregate of projections of the occluders onto
the image plane. For each frame, the algorithm selects a small set
of objects from the modelas occludersand renders them to form an
initial occlusion map, from which a hierarchy of occlusion maps
is built. The occlusion maps are used to cull away a portion of
the model not visible from the current viewpoint. The algorithm
is applicable to all models and makes no assumptions about the
size, shape, or type of occluders. It supports approximate culling
in which small holes in or among occluders can be ignored. The
algorithm has been implemented on current graphics systems and
has been applied to large models composed of hundreds of thou-
sands of polygons. In practice, it achieves significant speedup in
interactive walkthroughs of models with high depth complexity.
CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling
Key Words and Phrases: visibility culling, interactive display,
image pyramid, occlusion culling, hierarchical data structures

1 Introduction
Interactive display and walkthrough of large geometric models
currently pushes the limits of graphics technology. Environments
composed of millions of primitives (e.g. polygons) are not un-
common in applications such as simulation-based design of large
mechanical systems, architectural visualization, or walkthrough
of outdoor scenes. Although throughput of graphics systems has
increased considerably over the years, the size and complexity of
these environments have been growing even faster. In order to
display such models at interactive rates, the rendering algorithms
need to use techniques based on visibility culling, levels-of-detail,
texturing, etc. to limit the number of primitives rendered in each
frame. In this paper, we focus on visibility culling algorithms,
whose goal is to cull away large portions of the environment not
visible from the current viewpoint.

Our criteria for an effective visibility culling algorithm are gen-
erality, interactive performance, and significant culling. Addi-
tionally, in order for it to be practical, it should be implementable
on current graphics systems and work well on large real-world
models.

Main Contribution: In this paper, we present a new algorithm
for visibility culling in complex environments with high depth

Figure 1: Demonstration of our algorithm on the CAD model of
a submarine’s auxiliary machine room. The model has 632,252
polygons. The green lines outline the viewing frustum. Blue
indicates objects selected as occluders,gray the objects not culled
by our algorithm and transparent red the objects culled away. For
this particular view, 82.7% of the model is culled.

complexity. At each frame, the algorithm carefully selects a small
subset of the model as occluders and renders the occluders to
build hierarchical occlusion maps (HOM). The hierarchy is an
image pyramid and each map in the hierarchy is composed of
pixels corresponding to rectangular blocks in the screen space.
The pixel value records the opacity of the block. The algorithm
decomposes the visibility test for an object into a two-dimensional
overlap test, performed against the occlusion map hierarchy, and
a conservativeZ test to compare the depth. The overall approach
combines an object space bounding volume hierarchy (also useful
for view frustum culling) with the image space occlusion map
hierarchy to cull away a portion of the model not visible from the
current viewpoint. Some of the main features of the algorithm
are:

1. Generality: The algorithm requires no special structures in
the model and places no restriction on the types of occluders.
The occluders may be polygonal objects, curved surfaces, or
even not be geometrically defined (e.g. a billboard).

2. Occluder Fusion: A key characteristic of the algorithm is
the ability to combine a “forest” of small or disjoint occlud-
ers, rather than using only large occluders. In most cases,
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the union of a set of occluders can occlude much more than
what each of them can occlude taken separately. This is very
useful for large mechanical CAD and outdoor models.

3. Significant Culling: On high depth complexity models, the
algorithm is able to cull away a significant fraction (up to
95%) of the model from most viewpoints.

4. Portability: The algorithm can be implemented on most
current graphics systems. Its main requirement is the ability
to read back the frame-buffer. The construction of hierarchi-
cal occlusion maps can be accelerated by texture mapping
hardware. It is not susceptible to degeneracies in the input
and can be parallelized on multiprocessor systems.

5. Efficiency: The construction of occlusion maps takes a
few milliseconds per frame on current medium- to high-
end graphics systems. The culling algorithm achieves sig-
nificant speedup in interactive walkthroughs of models with
high depth complexity. The algorithm involves no significant
preprocessing and is applicable to dynamic environments.

6. Approximate Visibility Culling: Our approach can also
use the hierarchy of maps to perform approximate culling.
By varying an opacity threshold parameter the algorithm is
able to fill small transparent holes in the occlusion maps and
to cull away portions of the model which are visible through
small gaps in the occluders.

The resulting algorithm has been implemented on different
platforms (SGI Max Impact and Infinite Reality) and applied to
city models, CAD models, and dynamic environments. It ob-
tains considerable speedup in overall frame rate. In Figure 1 we
demonstrate its performance on a submarine’s Auxiliary Machine
Room.

Organization: The rest of the paper is organized as follows: . We
briefly survey related work in Section 2 and give an overview of
our approach in Section 3. Section 4 describes occlusion maps and
techniques for fast implementation on current graphics systems. In
Section 5 we describe the entire culling algorithm. We describe its
implementation and performance in Section 6. Section 7 analyses
our algorithm and compares it with other approaches. Finally, in
Section 8, we briefly describe some future directions.

2 Related Work
Visibility computation and hidden surface removal are classic
problems in computer graphics [FDHF90]. Some of the com-
monly used visibility algorithms are based on Z-buffer [Cat74]
and view-frustum culling [Cla76, GBW90]. Others include
Painter’s Algorithm [FDHF90] and area-subdivision algorithms
[War69, FDHF90].

There is significant literature on visible surface computa-
tion in computational geometry. Many asymptotically effi-
cient algorithms have been proposed for hidden surface removal
[Mul89, McK87] (see [Dor94] for a recent survey). However, the
practical utility of these algorithms is unclear at the moment.

Efficient algorithms for calculating the visibility relationship
among a static group of 3D polygons from arbitrary viewpoints
have been proposed based on the binary space-partitioning (BSP)
tree [FKN80]. The tree construction may involve considerable
pre-processing in terms of time and space requirements for large
models. In [Nay92], Naylor has given an output-sensitive visi-
bility algorithm using BSPs. It uses a 2D BSP tree to represent
images and presents an algorithm to project a 3D BSP tree, repre-
senting the model in object space, into a 2D BSP tree representing
its image.

Many algorithms structure the model database into cells or re-
gions, and use a combination of off-line and on-line algorithms
for cell-to-cell visibility and the conservative computation of the
potentially visible set (PVS) of primitives [ARB90, TS91, LG95].
Such approaches have been successfully used to visualize archi-
tectural models, where the division of a building into discrete
rooms lends itself to a natural division of the database into cells.
It is not apparent that cell-based approaches can be generalized to
an arbitrary model.

Other algorithms for densely-occluded but somewhat less-
structured models have been proposed by Yagel and Ray [YR96].
They used regular spatial subdivision to partition the model into
cells and describe a 2D implementation. However, the resulting
algorithm is very memory-intensive and does not scale well to
large models.

Object space algorithms for occlusion culling in general
polygonal models have been presented by Coorg and Teller
[CT96b, CT96a] and Hudson et al. [Hud96]. These algorithms
dynamically compute a subset of the objects as occluders and
use them to cull away portions of the model. In particular,
[CT96b, CT96a] compute an arrangement corresponding to a lin-
earized portion of an aspect graph and track the viewpoint within
it to check for occlusion. [Hud96] use shadow frusta and fast
interference tests for occlusion culling. All of them are object-
space algorithms and the choice of occluder is restricted to convex
objects or simple combination of convex objects (e.g. two convex
polytope sharing an edge). These algorithms are unable to com-
bine a “forest" of small non-convex or disjoint occluders to cull
away large portions of the model.

A hierarchical Z-buffer algorithm combining spatial and tem-
poral coherencehas been presented in [GKM93, GK94, Gre95]. It
uses two hierarchical data structures: an octree and a Z-pyramid.
The algorithm exploits coherence by performing visibility queries
on the Z-pyramid and is very effective in culling large portions of
high-depth complexity models. However, most current graphics
systems do not support the Z-pyramid capability in hardware, and
simulating it in software can be relatively expensive. In [GK94],
Greene and Kass used a quadtree data structure to test visibil-
ity throughout image-space regions for anti-aliased rendering.
[Geo95] describes an implementation of the Z-query operation
on a parallel graphics architecture (PixelPlanes 5) for obscuration
culling.

More recently, Greene [Gre96] has presented a hierarchical
tiling algorithm using coverage masks. It uses an image hierarchy
named a “coverage pyramid” for visibility culling. Traversing
polygons from front to back, it can process densely occluded
scenes efficiently and is well suited to anti-aliasing by oversam-
pling and filtering.

For dynamic environments, Sudarsky and Gotsman [SG96]
have presented an output-sensitive algorithm which minimizes
the time required to update the hierarchical data structure for a
dynamic object and minimize the number of dynamic objects for
which the structure has to be updated.

A number of techniques for interactive walkthrough of large
geometric databases have been proposed. Refer to [RB96] for
a recent survey. A number of commercial systems like Per-
former [RH94], used for high performance graphics, and Brush
[SBM+94], used for visualizing architectural and CAD models,
are available. They use techniques based on view-frustum culling,
levels-of-detail, etc., but have little support for occlusion culling
on arbitrary models.

There is substantial literature on the visibility problem from
the flight simulator community. An overview of flight simulator
architectures is given in [Mue95]. Most notably, the Singer Com-
pany’s Modular Digital Image Generator [Lat94] renders front to
back using a hierarchy of mask buffers to skip over already cov-



Occluder
Scene

Database

Viewing
Frustum
Culling

Rendering

Build Occlusion
Map Hierarchy

Real
Scene

Database

Viewing
Frustum
Culling HOM Culling

Occluder
Selection

Figure 2: Modified graphics pipeline showing our algorithm.
The shaded blocks indicate components unique to culling with
hierarchical occlusion map.

ered spans, segments or rows in the image. General Electric’s
COMPU-SCENE PT2000 [Bun89] uses a similar algorithm but
does not require the input polygons to be in front-to-back order
and the mask buffer is not hierarchical. The Loral GT200 [LORA]
first renders near objects and fills in a mask buffer, which is used
to cull away far objects. Sogitec’s APOGEE system uses the
Meta-Z-buffer, which is similar to hierarchical Z buffer [Chu94].

The structure of hierarchical occlusion maps is similar to some
of the hierarchies that have been proposed for images, such as im-
age pyramids [TP75], MIP maps [Wil83], Z-pyramids [GKM93],
coverage pyramids [Gre96], and two-dimensional wavelet trans-
forms like the non-standard decomposition [GBR91].

3 Overview

In this paper we present a novel solution to the visibility problem.
The heart of the algorithm is a hierarchy of occlusion maps, which
records the aggregate projection of occluders onto the image plane
at different resolutions. In other words, the maps capture the cu-
mulative occluding effects of the occluders. We use occlusion
maps because they can be built quickly and have several unique
properties (described later in the paper). The use of occlusion
maps reflects a decomposition of the visibility problem into two
sub-problems: a two-dimensional overlap test and a depth test.
The former decides whether the screen space projection of the po-
tential occludee lies completely within the screen space projection
of the union of all occluders. The latter determines whether or not
the potential occludee is behind the occluders. We use occlusion
maps for the overlap tests, and a depth estimation buffer for the
conservative depth test. In the conventional Z-buffer algorithm
(as well as in the hierarchical Z-buffer algorithm), the overlap test
is implicitly performed as a side effect of the depth comparison
by initializing the Z-buffer with large numbers.

The algorithm renders the occluders at each frame and builds a
hierarchy (pyramid) of occlusion maps. In addition to the model
database, the algorithm maintains a separate occluder database,
which is derived from the model database as a preprocessing step.
Both databases are represented as bounding volume hierarchies.
The rendering pipeline with our algorithm incorporated is illus-
trated in Figure 2. The shaded blocks indicate new stages intro-
duced due to our algorithm. For each frame, the pipeline executes
in two major phases:

1. Construction of the Occlusion Map Hierarchy: The
occluders are selected from the occluder database and rendered to
build the occlusion map hierarchy. This involves:

� View-frustum culling: The algorithm traverses the bound-
ing volume hierarchy of the occluder database to find oc-
cluders lying in the viewing frustum.

� Occluder selection: The algorithm selects a subset of the
occluders lying in the viewing frustum. It utilizes temporal
coherence between successive frames.

� Occluder rendering and depth estimation: The selected
occluders are rendered to form an image in the framebuffer
which is the highest resolution occlusion map. Objects are
rendered in pure white with no lighting or texturing. The
resulting image has only black and white pixels except for
antialiased edges. A depth estimation buffer is built to record
the depth of the occluders.

� Building the Hierarchical Occlusion Maps: After occlud-
ers are rendered, the algorithm recursively filters the ren-
dered image down by averaging blocks of pixels. This pro-
cess can be accelerated by texture mapping hardware on
many current graphics systems.

2. Visibility Culling with Hierarchical Occlusion Maps:
Given an occlusion map hierarchy, the algorithm traverses the
bounding volume hierarchy of the model database to perform
visibility culling. The main components of this stage are:

� View-frustum Culling: The algorithm applies standard
view-frustum culling to the model database.

� Depth Comparison: For each potential occludee, the algo-
rithm conservatively checks whether it is behind the occlud-
ers.

� Overlap test with Occlusion Maps: The algorithm tra-
verses the occlusion map hierarchy to conservatively decide
if each potential occludee’s screen space projection falls
completely within the opaque areas of the maps.

Only objects that fail one of the latter two tests (depth or over-
lap) are rendered.

4 Occlusion Maps
In this section, we present occlusion maps, algorithms using tex-
ture mapping hardware for fast construction of the hierarchy of
occlusion maps, and state a number of properties of occlusion
maps which are used by the visibility culling algorithm.

When an opaque object is projected to the screen, the area of its
projection is made opaque. The opacity of a block on the screen is
defined as the ratio of the sum of the opaque areas in the block to
the total area of the block. An occlusion map is a two-dimensional
array in which each pixel records the opacity of a rectangularblock
of screen space. Any rendered image can have an accompanying
occlusion map which has the same resolution and stores the opacity
for each pixel. In such a case, the occlusion map is essentially the
� channel [FDHF90] of the rendered image (assuming � values
for objects are set properly during rendering), though generally
speaking a pixel in the occlusion map can correspond to a block
of pixels in screen space.

4.1 Image Pyramid
Given the lowest level occlusion map, the algorithm constructs
from it a hierarchy of occlusion maps (HOM) by recursively ap-
plying the average operator to rectangular blocks of pixels. This
operation forms an image pyramid as shown in Figure 3. The
resulting hierarchy represents the occlusion map at multiple res-
olutions. It greatly accelerates the overlap test and is used for
approximate culling. In the rest of the paper, we follow the con-
vention that the highest resolution occlusion map of a hierarchy is
at level 0.



Figure 3: The hierarchy of occlusion maps. This particular
hierarchy is created by recursively averaging over 2 blocks of
pixels. The outlined square marks the correspondence of one
top-level pixel to pixels in the other levels. The image also shows
the rendering of the torus to which the hierarchy corresponds.

The algorithm first renders the occluders into an image, which
forms the lowest-level and highest resolution occlusion map. This
image represents an image-space fusion of all occluders in the
object space. The occlusion map hierarchy is built by recursively
filtering from the highest-resolution map down to some minimal
resolution (e.g. 4 � 4). The highest resolution need not match
that of the image of the model database. Using a lower image
resolution for rendering occluders may lead to inaccuracy for
occlusion culling near the edges of the objects, but it speeds up
the time for constructing the hierarchy. Furthermore, if hardware
multi-sampled anti-aliasing is available, the lowest-level occlusion
map has more accuracy. This is due to the fact that the anti-aliased
image in itself is already a filtered down version of a larger super-
sampled image on which the occluders were rendered.

4.2 Fast Construction of the Hierarchy
When filtering is performed on 2 � 2 blocks of pixels, hierarchy
construction can be accelerated by graphics hardware that supports
bilinear interpolation of texture maps. The averaging operator for
2 � 2 blocks is actually a special case of bilinear interpolation.
More precisely, the bilinear interpolation of four scalars or vectors
v0;v1;v2;v3 is:

(1� �)(1� �)v0 + �(1� �)v1 + ��v2 + (1� �)�v3;

where 0 � � � 1, 0 � � � 1 are the weights. In our case, we use
� = � = 0:5 and this formula produces the average of the four
values. By carefully setting the texture coordinates, we can filter a
2N�2N occlusion map toN�N by drawing a two dimensional
rectangle of sizeN�N , texturing it with the 2N�2N occlusion
map, and reading back the rendered image as theN�N occlusion
map. Figure 4 illustrates this process.

The graphics hardware typically needs some setup time for the
required operations. When the size of the map to be filtered is
relatively small, setup time may dominate the computation. In
such cases, the use of texture mapping hardware may slow down
the computation of occlusion maps rather than accelerate it, and
hierarchy building is faster on the host CPU. The break-even point
between hardware and software hierarchy construction varies with
different graphics systems.

[BM96] presents a technique for generating mipmaps by using
a hardware accumulation buffer. We did not use this method
because the accumulation buffer is less commonly supported in
current graphics systems than texture mapping.

4.3 Properties of Occlusion Maps
The hierarchical occlusion maps for an occluder set have sev-
eral desirable properties for accelerating visibility culling. The
visibility culling algorithm presented in Section 5 utilizes these
properties.

1. Occluder fusion: Occlusion maps represent the fusion of
small and possibly disjoint occluders. No assumptions are made
on the shape, size, or geometry of the occluders. Any object that
is renderable can serve as an occluder.

2. Hierarchical overlap test: The hierarchy allows us to
perform a fast overlap test in screen space for visibility culling.
This test is described in more detail in Section 5.1.

3. High-level opacity estimation: The opacity values in a low-
resolution occlusion map give an estimate of the opacity values
in higher-resolution maps. For instance, if a pixel in a higher
level map has a very low intensity value, it implies that almost
all of its descendant pixels have low opacities, i.e. there is a low
possibility of occlusion. This is due to the fact that occlusion
maps are based on the average operator rather than the minimum
or maximum operators. This property allows for a conservative
early termination of the overlap test.

The opacity hierarchy also provides a natural method for ag-
gressive early termination, or approximate occlusion culling. It
may be used to cull away portions of the model visible only through
small gaps in or among occluders. A high opacity value of a pixel
in a low resolution map implies that most of its descendant pixels
are opaque. The algorithm uses the opacity threshold parameter
to control the degree of approximation. More details are given in
Section 5.4.

5 Visibility Culling with Hierarchical
Occlusion Maps

An overview of the visibility culling algorithm has been presented
in Section 3. In this section, we present detailed algorithms for
overlap tests with occlusion maps, depth comparison, and approx-
imate culling.

5.1 Overlap Test with Occlusion Maps
The two-dimensional overlap test of a potential occludee against
the union of occluders is performed by checking the opacity of
the pixels it overlaps in the occlusion maps. An exact overlap test
would require a scan-conversion of the potential occludee to find
out which pixels it touches, which is relatively expensive to do in
software. Rather, we present a simple, efficient, and conservative
solution for the overlap test.

For each object in the viewing frustum, the algorithm conser-
vatively approximates its projection with a screen-spacebounding
rectangle of its bounding box. This rectangle covers a superset
of the pixels covered by the actual object. The extremal values
of the bounding rectangle are computed by projecting the corners
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of the bounding box. The main advantage of using the bounding
rectangle is the reduced cost of finding the pixels covered by a
rectangle compared to scan-converting general polygons.

The algorithm uses the occlusion map hierarchy to accelerate
the overlap test. It begins the test at the level of the hierarchy
where the size of a pixel in the occlusion map is approximately
the same size as the bounding rectangle. The algorithm examines
each pixel in this map that overlaps the bounding rectangle. If
any of the overlapping pixels is not completely opaque 1, the
algorithm recursively descends from that pixel to the next level of
the hierarchy and checks all of its sub-pixels that are covered by
the bounding rectangle. If all the pixels checked are completely
opaque, the algorithm concludes that the occludee’s projection
is completely inside that of the occluders. If not, the algorithm
conservatively concludes that the occludee may not be completely
obscured by the occluders, and it is rendered.

The algorithm supports conservative early termination in over-
lap tests. If the opacity of a pixel in a low-resolution map is too
low, there is small probability that we can find high opacity values
even if we descend into the sub-pixels. So the overlap test stops
and concludes that the object is not occluded. The transparency
thresholds are used to define these lower bounds on opacity below
which traversal of the hierarchy is terminated.

5.2 Depth Comparison
Occlusion maps do not contain depth information. They provide
a necessary condition for occlusion in terms of overlap tests in the
image plane, but do not detect whether an object is in front of or
behind the occluders. The algorithm manages depth information
separately to complete the visibility test. In this section, we
propose two algorithms for depth comparison.

5.2.1 A Single Z Plane

One of the simplest ways to manage depth is to use a single Z
plane. The Z plane is a plane parallel to and beyond the near plane.
This plane separates the occluders from the potential occludees
so that any object lying beyond the plane is farther away than any
occluder. As a result, an object which is contained within the
projection of the occluders and lies beyond the Z plane is com-
pletely occluded. This is an extremely simple and conservative
method which gives a rather coarse bound for the depth values of
all occluders.

5.2.2 Depth Estimation Buffer

The depth estimation buffer is a software buffer that provides a
more general solution for conservatively estimating the depth of
occluders. Rather than using a single plane to capture the depth

1By definition, a pixel is completely opaque if its value is above or
equal to the opacity threshold, which is defined in Section 5.4.

of the entire set of occluders, the algorithm partitions the screen-
space and uses a separate plane for each region of the partition.
By using a separate depth for each region of the partition, the
algorithm obtains a finer measure of the distances to the occlud-
ers. The depth estimation buffer is essentially a general-purpose
software Z buffer that records the farthest distances instead of the
nearest.

An alternative to using the depth estimation buffer might be
to read the accurate depth values back from a hardware Z buffer
after rendering the occluders. This approach was not taken mainly
because it involves further assumptions of hardware features (i.e.
there is a hardware Z-buffer, and we are able to read Z-values
reasonably fast in a easily-usable format).

Construction of the depth estimation buffer: The depth esti-
mation buffer is built at every frame, which requires determining
the pixels to which the occluders project on the image plane.
Scan-converting the occluders to do this would be unacceptably
expensive. As we did in constructing occlusion maps, we conser-
vatively estimate the projection and depth of an occluder by its
screen-space bounding rectangle and the Z value of its bounding
volume’s farthest vertex. The algorithm checks each buffer entry
covered by the rectangle for possible updates. If the rectangle’s
Z value is greater than the old entry, the entry is updated. This
process is repeated for all occluders.

Conservative Depth Test: To perform the conservative depth
test on a potential occludee, it is approximated by the screen space
bounding rectangle of its bounding box (in the same manner as in
overlap tests), which is assigned a depth value the same as that of
the nearest vertex on the bounding box. Each entry of the depth
estimation buffer covered by the rectangle is checked to see if any
entry is greater than the rectangle’s Z value. If this is the case
then the object is conservatively regarded as being partly in front
of the union of all occluders and thus must be rendered.

The cost of the conservative Z-buffer test and update, though
far cheaper than accurate operations, can still be expensive as the
resolution of the depth estimation buffer increases. Furthermore,
since we are performing a conservative estimation of the objects’
screen space extents, there is a point where increasing the reso-
lution of the depth estimation buffer does not help increase the
accuracy of depth information. Normally the algorithm uses only
a coarse resolution (e.g. 64� 64).

5.3 Occluder Selection
At each frame, the algorithm selects an occluder set. The optimal
set of occluders is exactly the visible portion of the model. Finding
this optimal set is the visible surface computation problem itself.
Another possibility is to pre-compute global visibility information
for computing the useful occluders at every viewpoint. The fastest
known algorithm for computing the effects on global visibility due
to a single polyhedron withm vertices can takeO(m6 logm) time
in the worst case [GCS91].

We present algorithms to estimate a set of occluders that are
used to cull a significant fraction of the model. We perform
preprocessing to derive an occluder database from the model. At
runtime the algorithm dynamically selects a set of occluders from
that database.

5.3.1 Building the Occluder Database

The goal of the pre-processing step is to discard objects which
do not serve as good occluders from most viewpoints. We use
the following criteria to select good occluders from the model
database:

� Size: Small objects will not serve as good occluders unless
the viewer is very close to them.
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� Redundancy: Some objects, e.g. a clock on the wall, pro-
vide redundant occlusion and should be removed from the
database.

� Rendering Complexity: Objects with a high polygon count
or rendering complexity are not preferred,as scan-converting
them may take considerable time and affect the overall frame
rate.

5.3.2 Dynamic Selection

At runtime, the algorithm selects a set of objects from the oc-
cluder database. The algorithm uses a distance criterion, size, and
temporal coherence to select occluders.

The singleZ-plane method for depth comparison, presented in
Section 5.2.1, is also an occluder selection method. All objects
not completely beyond the Z-plane are occluders.

When the algorithm uses the depth estimation buffer, it dynam-
ically selects occluders based on a distance criterion and a limit
(L) on the number of occluder polygons. These two variables may
vary between frames as a function of the overall frame rate and
percentage of model culled. Given L, the algorithm tries to find a
set of good occluders whose total polygon count is less than L.

The algorithm considers each object in the occluder database
lying in the viewing frustum. The distancebetween the viewer and
the center of an object’s bounding volume is used as an estimate
of the distance from the viewer to the object. The algorithm
sorts these distances, and selects the nearest objects as occluder
until their combined polygon count exceeds L. This works well
for most situations, except when a good occluder is relatively
far away. One such situation has been shown in Figure 5. The
distance criterion will select C , D, E, F , etc. as occluders, but L
will probably be exceeded beforeA andB are selected. Thus, we
lose occlusion that would have been contributed by A and B. In
other words, there is a hole in the occlusion map which decreases
the culling rate.

Dynamic occluder selection can be assisted by visibility pre-
processing of the occluder scene. The model space is subdivided
by a uniform grid. Visibility is sampled at each grid point by
surrounding the grid point with a cube and using an item buffer
algorithm similar to the hemi-cube algorithm used in radiosity.
Each grid point gets a lists of visible objects. At run-time, occlud-
ers can be chosen from visible object lists of grid points nearest
to the viewing point.

5.4 Approximate Visibility Culling
A unique feature of our algorithm is to perform approximate vis-
ibility culling, which ignores objects only visible through small
holes in or among the occluders. This ability is based on an
inherent property of HOM: it naturally represents the combined
occluder projections at different levels of detail.

In the process of filtering maps to build the hierarchy, a pixel in
a low resolution map can obtain a high opacity value even if a small
number of its descendant pixels have low opacity. Intuitively, a
small group of low-opacity pixels (a "hole") in a high-resolution
map can dissolve as the average operation (which involves high
opacity values from neighboring pixels) is recursively applied to
build lower-resolution maps.

The opacity value above which the pixel is considered com-
pletely opaque is called the opacity threshold, which is by default
1:0. The visibility culling algorithm varies the degree of approx-
imation by changing the opacity threshold. As the threshold is
lowered, the culling algorithm becomes more approximate. This
effect of the opacity threshold is based on the fact that if a pixel
is considered completely opaque, the culling algorithm does not
go into the descendant pixels for further opacity checking. If the
opacity of a pixel in a low-resolution map is not 1:0 (because some
of the pixel’s descendents have low opacities), but is still higher
than the opacity threshold assigned to that map, the culling algo-
rithm does not descend to the sub-pixels to find the low opacities.
In effect, some small holes in higher-resolution maps are ignored.
The opacity threshold specifies the size of the holes that can be
ignored; the higher the threshold, the smaller the ignorable holes.

The opacity thresholds for each level of the hierarchy are com-
puted by first deciding the maximum allowable size of a hole.
For example, if the final image is 1024 � 1024 and a map is
64 � 64, then a pixel in the map corresponds to 16 � 16 pixels
in the final image. If we consider 25 black pixels among 16� 16
total pixels an ignorable hole, then the opacity threshold for the
map is 1 � 25=(16 � 16) = 0:90. Note that we are considering
the worst case where the black pixels gather together to form the
biggest hole, which is roughly a 5 � 5 black block. One level up
the map hierarchy, where resolution is 32 � 32 and where a map
pixel corresponds to 32� 32 screen pixels, the threshold becomes
1� 25=(32 � 32) = 0:98.

Consider the k-th level of the hierarchy. Let n black pixels
among m total pixels form an ignorable hole, then the opacity
threshold is Ok = 1 � n

m
. Since at the k + 1-th level2 each map

pixel corresponds to four times as many pixels in the final image,
the opacity threshold is

Ok+1 = 1�
n

4m
= 1 �

1� Ok

4
=

3 + Ok

4
:

Let the opacity threshold in the highest resolution map beOmin.
If a pixel in a lower resolution map has opacity lower thanOmin ,
then it is not possible for all its descendant pixels have opacities
greater than Omin . This means that if a high-level pixel is com-
pletely covered by a bounding rectangle and its opacity is lower
than Omin , we can immediately conclude that the corresponding
object is potentially visible. For pixels not completely covered by
the rectangle (i.e. pixels intersecting the rectangle’s edges), the
algorithm always descends into sub-pixels.

To summarize the cases in the overlap test, a piece of pseudo-
code is provided in 5.4.

Approximate visibility is useful because in many cases we
don’t expect to see many meaningful parts of the model through
small holes in or among the occluders. Culling such portions
of the model usually does not create noticeable visual artifacts.

2Remember that highest resolution map is level 0. See Figure 3.



CheckPixel(HOM, Level, Pixel, BoundingRect)
{

Op = HOM[Level](Pixel.x, Pixel.y);
Omin = HOM[0].OpacityThreshold;

if (Op > HOM[Level].OpacityThreshold)
return TRUE;

else if (Level = 0)
return FALSE;

else if (Op < Omin AND
Pixel.CompletelyInRect = TRUE)

return FALSE;
else
{

Result = TRUE;
for each sub-pixel, Sp, that

overlaps BoundingRect
{

Result = Result AND CheckPixel(HOM,
Level-1, Sp, BoundingRect);

if Result = FALSE
return FALSE;
}

}
return TRUE;

}

OverlapTest(HOM, Level, BoundingRect)
{

for each pixel, P, in HOM[HOM.HighestLevel]
that intersects BoundingRect

{
if (CheckPixel(HOM, HOM.HighestLevel, P)

= FALSE)
return FALSE;

}
return TRUE

}

Figure 8: Pseudo-code for the overlap test between the occlu-
sion map hierarchy and a bounding rectangle. This code as-
sumes that necessary information is available as fields in the
HOM and Pixel structures. The meaning of the fields are easily
inferred from their names. The CheckPixel function check the
opacity of a pixel, descending into sub-pixels as necessary. The
OverlapTest function does the whole overlap test, which re-
turns TRUE if bounding rectangle falls within completely opaque
areas and FALSE otherwise.

Omitting such holes can significantly increase the culling rate if
many objects are potentially visible only through small holes. In
Figure 6 and Figure 7, we illustrate approximate culling on an
environment with trees as occluders.

It should be noted that in some situations approximate culling
may result in noticeable artifacts, even if the opacity threshold is
high. For example, if objects visible only through small holes are
very bright (e.g. the sun beaming through holes among leaves of
a tree), then strong popping can be observed as the viewer zooms
closer. In such cases approximate culling should not be applied.
Furthermore, approximate culling decreases accuracy of culling
around the edges of occluders, which can also result in visual
artifacts.

5.5 Dynamic Environments
The algorithm easily extends to dynamic environments. As no
static bounding volume hierarchy may be available, the algorithm
uses oriented bounding boxes around each object. The occluder
selection algorithm involves no pre-processing, so the occluder

database is exactly the model database. The oriented bounding
boxes are used to construct the depth estimation buffer as well as
to perform the overlap test with the occlusion map hierarchy.

6 Implementation and Performance
We have implemented the algorithm as part of a walkthrough
system, which is based on OpenGL and currently runs on SGI
platforms. Significant speed-ups in frame rates have been ob-
served on different models. In this section, we discuss several
implementation issues and discuss the system’s performance on
SGI Max Impacts and Infinite Reality platforms.

6.1 Implementation
As the first step in creating the occlusion map hierarchy, occluders
are rendered in a 256� 256 viewport in the back framebuffer, in
full white color, with lighting and texture mapping turned off. Any
one of the three color channels of the resulting image can serve
as the highest-resolution occlusion map on which the hierarchy is
based. An alternate method could be to render the occluders with
the original color and shading parameters and use the � channel
of the rendered image to construct the initial map. However, for
constructing occlusion maps we do not need a “realistic" rendering
of the occluders, which may be more expensive. In most cases the
resolution of 256�256 is smaller than that of the final rendering of
the model. As a result, it is possible to have artifacts in occlusion.
In practice, if the final image is rendered at a resolution of 1024�
1024, rendering occluders at 256�256 is a good trade-off between
accuracy and time required to filter down the image in building
the hierarchy.

To construct the occlusion map hierarchy, we recursively av-
erage 2 � 2 blocks of pixels using the texture mapping hardware
as well as the host CPU. The resolution of the lowest-resolution
map is typically 4 � 4. The break-even point between hardware
and software hierarchy construction (as described in Section 4.2)
varies with different graphics systems. For SGI Maximum Im-
pacts, we observed the shortest construction time when the algo-
rithm filters from 256� 256 to 128� 128 using texture-mapping
hardware, and from 128�128to 64�64 and finally down to 4�4
on the host CPU. For SGI InfiniteReality, which has faster pixel
transfer rates, the best performance is obtained by filtering from
256� 256 to 64� 64 using the hardware and using the host CPU
thereafter. Hierarchy construction time is about 9 milliseconds for
the Max Impacts and 4 milliseconds for the Infinite Reality, with
a small variance (around 0:5 milliseconds) between frames.

The implementation of the depth estimation buffer is optimized
for block-oriented query and updates. The hierarchical overlap
test is straight-forward to implement; It is relatively harder to
optimize, as it is recursive in nature.

6.2 Performance
We demonstrate the performance of the algorithm on three models.
These are:

� City Model: this is composed of models of London and has
312;524 polygons. A bird’s eye view of the model has been
shown in Figure 11.

� Dynamic Environment: It is composed of dinosaurs and
teapots, each undergoing independent random motion. The
total polygon count is 986;800. It is shown in Figure 12.

� Submarine Auxiliary Machine Room (AMR): It is a real-
world CAD model obtained from industrial sources. The
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(C) Submarine AMR Model

with HOM without HOM

Figure 9: The speed-up obtained due to HOM on different mod-
els. The left graphs show the improvement in frame rate and the
right graphs show the percentage of model culled. The statistics
were gathered over a path for each model.

model has 632; 252 polygons. Different views of the model
are shown in Figure 1 and Figure 13.

As mentioned earlier, our algorithm uses a bounding volume
hierarchy (i.e. a scene graph) for both the original model database
as well as the occluder database. Each model we used is originally
a collection of polygons with no structure information. We con-
struct an axis-aligned bounding box hierarchy for each database.

For the dynamic environment and the city model, we use the
model database itself as the occluder database, without any pre-
processing for static occluder selection. For the AMR model, the
pre-processing yields an occluder database of 217;636 polygons.
The algorithm removes many objects that have little potential of
being a good occluder (like the bolts on the diesel engine, thin
pipes etc.) from the original model. Further, most of these parts
are densely tessellated, making them to expensive to be directly
used as occluders. We use the simplified version of the parts
which are produced by algorithms in [Cohen96]. Although many

simplification algorithms give good error bounds on the simplified
model, they do not guarantee that the projection of the simplified
object lies within that of the original. Therefore, visibility artifacts
may be introduced by the simplified occluders. We use very tight
error bounds so that artifacts are rarely noticeable.

The performance of the algorithms has been highlighted in
Figure 9. The graphs on the left show the frame rate improvement,
while the graphs on the right highlight the percentage of the model
culled at every frame. The performance of the city model was
generated on a SGI Maximum Impact while the other two were
rendered on an SGI Infinite Reality. The actualperformance varies
due to two reasons:

1. Different models have varying depth complexities. Further-
more, the percentage of occlusion varies with the viewpoint.

2. The ability of the occluder selection algorithm to select the
“right" subset of occluders. The performance of the greedy
algorithm, e.g. distance based criterion, varies with the
model distribution and the viewpoint.

The occluder polygon count budget (L) per frame is important
for the performance of the overall algorithm. If too few occluders
are rendered, most of the pixels in the occlusion map have low
opacities and the algorithm is not able to cull much. On the other
hand, if too many occluder polygons are rendered, they may take
a significant percentage of the total frame time and slow down the
rendering algorithm. The algorithm starts with an initial guess
on the polygon count and adaptively modifies it based on the
percentage of the model culled and frame rate. If the percentage
of the model culled is low, it increases the count. If the percentage
is high and the frame rate is low, it decreases the count.

Average time spent in the different stages of the algorithm
(occluder selection and rendering, hierarchy generation, occlusion
culling and final rendering) has been shown in Figure 10. The
average time to render the model without occlusion culling is
normalized to 100%. In these cases, the average time in occluder
rendering varies between 10� 25%.

7 Analysis and Comparison
In this section we analyze some of the main features of our algo-
rithm and compare it with other approaches.

Our algorithm is generally applicable to all models and obtains
significant culling when there is high depth complexity. This is
mainly due to its use of occlusion maps to combine occluders in
image space. The extensive use of screen space bounding rectan-
gles as an approximation of the object’s screen space projection
makes the overlap tests and depth tests fast and cheap.

In terms of hardware assumptions, the algorithm requires only
the ability to read back the framebuffer. Texture mapping with
bilinear interpolation, when available, can be directly used to
accelerate the construction of the occlusion map hierarchy.

In general, if the algorithm is spending a certain percentage of
the total frame time in occluder rendering, HOM generation and
culling (depth test and overlap test), it should at least cull away
a similar percentage of the model so as to justify the overhead of
occlusion culling. If a model under some the viewing conditions
does not have sufficient occlusion, the overall frame rate may
decrease due to the overhead, in which case occlusion culling
should be turned off.

7.1 Comparison to Object Space Algorithms
Work on cells and portals[ARB90, TS91, LG95] addresses a spe-
cial class of denselyoccluded environments where there are plenty
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Figure 10: Average speed-up obtained due to HOM culling on
different models. The total time to render each model without
HOM culling is normalized to 100%. Each bar shows the per-
centage of time spent in different stages of our algorithm.

of cell and portal structures, as in an indoor architectural model.
[ARB90, TS91] pre-processes the model to identify potentially
visible set of primitives for each cell. [LG95] developed a dynamic
version which eliminates the visibility pre-processing. These
methods work very well for this particular type of environment,
but are not applicable to models without cell/portal structures.

Our algorithm works without modification for environments
with cells and portals, but occluder selection can be optimized
for these environments. The cell boundaries can be used to form
the occluder database. As an alternative, we can fill a viewport
with white pixels and then render the portals in black to form
the occlusion map. In general, however, we do not expect to
outperform the specialized algorithms in cell/portal environments.

Two different object space solutions for more general models
have been proposed by [CT96a, CT96b] and [Hud96]. They dy-
namically choose polygons and convex objects (or simple convex
combination of polygons) as occluders and use them to cull away
invisible portions of the model. However, many models do not
have single big convex occluders. In such cases, merging small,
irregular occluders is critical for significant culling, which is a
difficult task in object space. Our algorithm lies between object
space and image spaceand the occludermerging problem is solved
in image space.

7.2 Comparison with Hierarchical Z-buffer
Algorithm

In many ways, we present an alternative approach to hierarchical
Z-buffer visibility [GKM93]. The main algorithm presented in
[GKM93] performs updates of theZ-buffer hierarchy as geometry
is rendered. It assumes special-purpose hardware for fast depth
updating and querying to obtain interactive performance. It is
potentially a very powerful and effective algorithm for visibility
culling. However, we are not aware of any hardware implementa-
tion.

There is a possible variation of hierarchicalZ-buffer algorithm
which selects occluders, renders them, reads back the depth buffer
once per frame, builds the Z-pyramid, and use the screen-space
bounding rectangles for fast culling. The algorithm proposed in
[GKM93] uses the exact projection of octree nodes,which requires
software scan-conversion. In this case, the HOM approach and the
hierarchical Z-buffer are comparable, each with some advantages
over the other.

The HOM approach has the following advantages:

1. There is no need for a Z-buffer. Many low-end systems do

not support a Z-buffer and some image generators for flight
simulators do not have one. Tile-based architectures like
PixelFlow[MEP92] and Talisman[TK96] do not have a full-
screen Z-buffer, but instead have volatile Z-buffers the size
of a single tile. This makes getting Z values for the entire
screen rather difficult.

2. The construction of HOM has readily-available hardware
support (in the form of texture mapping with bilinear inter-
polation) on many graphics systems. Further, if filtering is
performed in software, the cost of the average operator is
smaller than the minimum/maximum operator (due to the
absence of branch instructions).

3. HOM supports conservative early termination in the hi-
erarchical test by using a transparency threshold (Section
5.1) and approximate occlusion culling by using an opacity
threshold (Section 5.4). These features result from using an
average operator.

On the other hand, the Hierarchical Z-buffer has depth values,
which the HOM algorithm has to manage separately in the depth
estimation buffer. This results in the following advantages of
Hierarchical Z-buffer:

1. Culling is less conservative.

2. It is easier to use temporal coherence for occluder selection
because nearest Z values for objects are available in the Z-
buffer. Updating the active occluder list is more difficult in
our algorithm since we only have estimated farthest Z values.

7.3 Comparison with Hierarchical Tiling
with Coverage Masks

Hierarchical polygon tiling [Gre96] tiles polygons in front-to-
back order and uses a “coverage” pyramid for visibility culling.
The coverage pyramid and hierarchical occlusion maps serve the
same purpose in that they both record the aggregate projections
of objects. (In this sense, our method has more resemblance to
hierarchical tiling than to the hierarchical Z-buffer.) However,
a pixel in a mask in the coverage pyramid has only three values
(covered, vacant or active), while a pixel in an occlusion map has
a continuous opacity value. This has lead to desirable features, as
discussed above. Like HOM, the coverage masks do not contain
depth information and the algorithm in [Gre96] uses a BSP-tree
for depth-ordering of polygons. Our algorithm is not restricted
to rendering the polygons front to back. Rather, it only needs
a conservatively estimated boundary between the occluders and
potential occludees, which is represented by the depth estimation
buffer. Hierarchical tiling is tightly coupled with polygon scan-
conversion and has to be significantly modified to deal with non-
polygonal objects, such as curved surfaces or textured billboards.
Our algorithm does not directly deal with low-level rendering but
utilizes existing graphics systems. Thus it is readily applicable to
different types of objects so long as the graphics system can render
them. Hierarchical tiling requires special-purpose hardware for
real-time performance.

8 Future Work and Conclusion
In this paper we have presented a visibility culling algorithm for
general models that achieves significant speedups for interactive
walkthroughs on current graphics systems. It is based on hierar-
chical occlusion maps, which represent an image space fusion of
all the occluders. The overall algorithm is relatively simple, robust
and easy to implement. We have demonstrated its performance
on a number of large models.



There are still several areas to be explored in this research. We
believe the most important of these to be occlusionpreserving sim-
plification algorithms, integration with levels-of-detail modeling,
and parallelization.

Occlusion Preserving Simplification: Many models are
densely tessellated. For fast generation of occlusion maps, we
do not want to spend considerable time in rendering the occlud-
ers. As a result, we are interested in simplifying objects under the
constraint of occlusion preservation. This implies that the screen
space projection of the simplified object should be a subset of that
of the original object. Current polygon simplification algorithms
can reduce the polygon count while giving tight error bounds, but
none of them guarantees an occlusion preserving simplification.

Integration with Level-of-Detail Modeling: To display large
models at interactive frame rates, our visibility culling algorithm
needs to be integrated with level-of-detail modeling. The latter
involves polygon simplification, texture-based simplification and
dynamic tessellation of higher order primitives.

Parallelization: Our algorithm can be easily parallelized on
multi-processor machines. Different processors can be used for
view frustum culling, overlap tests and depth tests.

Figure 11: City model with 312,524 polygons. Average speed-up
obtained by our visibility culling algorithm is about five times.
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Figure 6: These images show a view of an environment composed of trees and a house, with the trees as oclcuders. The green line in the
left image indicates the view-frustum. The right image highlights the holes among the leaves with a yellow background. The screen space
bounding rectangle of the house is shown in cyan. The occlusion map hierarchy is shown on the left.

Figure 7: Two images from the same view as in Figure 6. The left image is produced with no approximate culling. The right image uses
opacity threshold values from 0:7 for the highest resolution map up to 1:0 for the lowest resolution map.




