
Event-based Modularization
How Emergent Behavioral Patterns Must Be Modularized?

Somayeh Malakuti ∗

Software Technology group
Technical University of Dresden, Germany

somayeh.malakuti@tu-dresden.de

Mehmet Aksit
Software Technology group

University of Twente, the Netherlands
m.aksit@utwente.nl

Abstract
Nowadays, detecting emergent behavioral patterns in the environ-
ment, representing and manipulating them become the main fo-
cus of many software systems such as traffic monitoring systems,
runtime verification techniques and self-adaptive systems. In this
paper, we discuss the need for dedicated linguistic constructs to
modularly represent emergent behavioral patterns and their life-
time semantics. We explain the shortcomings of current languages
with this regard. Inspired from the evolution of procedural lan-
guages to object-oriented and aspect-oriented languages, we ex-
plain the concept of event-based modularization, which can be
regarded as the successor of the aspect-oriented modularization for
representing emergent behavioral patterns and their lifetime seman-
tics. We report on our work on event modules and their successor
gummy modules, which facilitate representing behavioral patterns
as a holistic module that encapsulates its lifetime semantics.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Modules, packages

General Terms Languages, Design

Keywords event modules; gummy modules; emergent behavior

1. Introduction
There are various kinds of software systems that deal with detecting
emergent behavioral patterns (in short behavioral patterns) in envi-
ronment, representing them in the system and facilitating the ma-
nipulation of the behavior. Among others, behavioral patterns and
their lifetime semantics can be regarded as the concerns of inter-
est, which must be represented as first-class entities in the system.
To this aim, one has to deal with the following questions: a) are
current programming languages, modularization and composition
mechanisms suitable enough to represent behavioral patterns and
their lifetime semantics, as desired? b) how can we discover and

∗ The author is supported by the German Research Foundation (DFG) in
the Collaborative Research Center 912 ”Highly Adaptive Energy-Efficient
Computing”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FOAL ’14, April 22, 2014, Lugano, Switzerland.
Copyright c© 2014 ACM 978-1-4503-2798-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2588548.2588549

introduce new language mechanisms that may offer better software
qualities?

This paper summarizes our study on the shortcomings of the
current languages for modular implementation of behavioral pat-
terns. We explain the concept of event-based modularization,
which has been inspired from the evolution of procedural modular-
ization to object-oriented (OO) and aspect-oriented (AO) modular-
ization mechanisms. This concept can be regarded as the successor
of AO for effectively modularizing behavioral patterns and their
lifetime semantics. As an implementation of this concept, we ex-
plain event modules and their successor gummy modules, which
facilitate representing behavioral patterns as a holistic module that
encapsulates its lifetime semantics.

This paper is organized as follows. Section 2 outlines a set of re-
quirements to modularize behavioral patterns and their lifetime se-
mantics; Section 3 evaluates a representative set of languages; Sec-
tion 4 discusses the concept of event-based modularization along
with event modules and gummy modules. Finally, section 5 out-
lines our future work.

2. Representing Emergent Behavioral Patterns
There are various kinds of software systems that deal with detecting
the emergence of certain behavioral patterns in environment, repre-
senting them in the system and facilitating the manipulation of the
behavior. Runtime verification techniques, self-adaptive software
systems, traffic monitoring software systems, stock market analy-
sis systems, and flight control systems are examples.

Figure 1 shows an example traffic monitoring system, which
consists of a physical and a cyber part. The road segments and
the sensors embedded in the road segments form the physical
part. In the cyber part, traffic congestion in a road segment is
regarded as a behavioral pattern of interest. There are software
entities, which receive information from the sensors, reason about
the density of the traffic flow in the corresponding road segments,
and if the density is above a certain threshold, they infer that
there is traffic congestion in the corresponding road segments.
The traffic congestion is represented as a runtime entity (e.g. an
object) in the system, which maintains the information of interest,
such as average speed and density of the traffic congestion. This
entity can be accessed by other application objects, for example
to display and/or analyze the information. Somewhere during the
execution of the system, traffic congestion may disappear in a road
segment; implying that the corresponding entity must be destroyed
accordingly.

Software systems that deal with behavioral patterns are in gen-
eral complex, exhibit dynamic structure, and due to high develop-
ment costs, they must be implemented to be long-lived. Therefore,
it is necessary to properly implement and modularize the relevant

7

Physical

Cyber

Segment 1 Segment 2 Segment 3

Reasoner Reasoner Reasoner

Traffic

Congestion

Traffic

Congestion

Traffic

Congestion

Traffic

Manager

Figure 1. An example traffic management system

concerns. To this aim, we claim that a language must fulfill the fol-
lowing requirements:

• Acquisition of data: First of all, the language must provide
means to select the relevant data from the environment for the
purpose of determining the appearance and disappearance of
the behavioral patterns of interest. The kinds of data cannot
be fixed in general, and is application specific. For example, in
the traffic management system, the data that is provided by the
sensors can be traffic flow information, pollution information,
etc. This implies that the language must be open-ended with
respect to the set of supported data.

• Detection of the appearance and disappearance of behavioral
patterns: The language must provide suitable constructs to ex-
press the semantics for appearance and disappearance of be-
havioral patterns. Such semantics usually express a correlation
among the selected data. For example, one may define the fol-
lowing rules for traffic management systems: if the density of
traffic in a road segment goes beyond the threshold D in the
time duration of T, it is inferred that traffic congestion has ap-
peared in the road segment. Likewise, if the density drops below
this threshold, it is inferred that the traffic congestion has dis-
appeared.
As it has extensively being studied in the runtime verification
community [10, 11], different formalisms may be adopted to
express appearance and disappearance semantics. This implies
that to increase the usability of the language, it must be also
open-ended with respect to the set of supported formalisms.

• Modular representation of behavioral patterns: Software sys-
tems dealing with behavioral patterns possibly consist of many
different concerns. To have better software qualities, it is gen-
erally assumed that concerns must be modularized. A well-
established definition of a module is: it offers an interface and
its implementation is encapsulated. A behavioral pattern itself
may be regarded as a concern of interest, which must be modu-
larized. For example traffic congestion may be modularized as
an object, which encapsulates information about the density and
length of the traffic congestion, and provides various methods
such as display, log and regulate to access and manipulate this
information.
In the modularization of a behavioral pattern, its lifetime se-
mantics, which consists of the following four sub-concerns,
must also be taken into account: a) appearance semantics, b)
disappearance semantics, c) utilization semantics, and d) the
synchronization semantics among these. As it is explained be-
fore, the appearance and disappearance semantics express the
condition under which a behavioral pattern is regarded as ap-
peared and disappeared in the environment, respectively. The
utilization semantics express the set of state information and op-
erations that are defined for the behavioral pattern. The rules to
synchronize these must also be defined; for example, an object

representing a behavioral pattern can only be utilized between
the time interval that the behavioral pattern has appeared and
has not disappeared. Likewise, the object can only be destroyed
after it is concluded that the behavioral pattern has disappeared.
We claim that the module abstractions of a language must be
expressive enough to modularize these sub-concerns if needed,
and must be expressive enough to integrate them with each
other so that a modular representation of the corresponding
behavioral pattern can be achieved.

3. Implementation Mechanisms
There are several alternative programming languages and imple-
mentation mechanisms that can be adopted to express behavioral
patterns and their related sub-concerns. We have extensively stud-
ied the shortcomings of the current languages for this matter [7–
10]. In this section, we summarize our observations.

3.1 Object-Oriented (OO) Languages
A straightforward approach is to adopt objects to represent the
behavioral patterns of interest and their lifetime semantics. To
improve the modularity of implementations, various design pat-
terns [3] can be adopted for this matter.

For example, the Observer pattern can be adopted to implement
the functionality for selecting the data of interest from environment.
Here, the environmental entities that provide the data get the role of
subject, which through invoking the method notify provide the data
to the objects with the role of observer. Individual observers may
be provided to gather individual kinds of data. The functionality to
reason about the correlation of data, which is possibly gathered by
individual observers, can be defined in separate objects interacting
with the observers. The Factory pattern can be adopted to construct
an object representing a behavioral pattern. The State pattern can
be adopted to maintain the current state of the behavioral pattern;
i.e. appeared, disappeared, or being utilized.

There are several well-known problems associated with the OO
languages and design patterns. First of all, programmers must have
extensive knowledge of each design pattern and its constraints.
Second, the implementations can easily become complex and hard
to comprehend, because each pattern requires its own classes, its
class hierarchies with specific methods, and its constraints. One
may need to sacrifice the constraints of patterns and/or has to
introduce new patterns to combine existing patterns such that the
constraints of the patterns are respected [5].

Advanced OO languages usually offer an event-delegate mech-
anism, such as the one offered by C#, to facilitate implement-
ing event-based applications. Such event-delegate mechanisms are,
however, ad-hoc patches to OO languages, which come with the
same shortcomings discussed for the Observer-based implemen-
tation. Due to the space, we refer the interested readers to [7, 9]
for a detailed discussion over these shortcomings. There are more
advanced language extensions, such as the ones provided by Es-
per [2]; it offers dedicates means to define complex event process-
ing semantics as an extension to SQL. The SQL-like language may
not be expressive enough to define various appearance and disap-
pearance semantics of behavioral patterns as it is extensively stud-
ied in the runtime verification community [10, 11].

3.2 Aspect-Oriented (AO) Languages
AO languages offer certain features that can reduce and/or elim-
inate the need for adopting design patterns in modularizing be-
havioral patterns. In an AO implementation of behavioral patterns,
join points can be regarded as means to represent state changes of
interest in the environment; the data of interest can be provided
through join point contexts. Base objects in which join points are

8

activated can be regarded as environmental entities. Pointcut des-
ignators are means to query the join points of interest; advice code
provide the functionality to react to the activated joint points. In
most AO languages, aspects are means to modularize a set of cor-
related pointcuts and advice, as well as local variables and methods.
Therefore, one may consider modularizing a behavioral pattern as
an aspect. However, the limitations of the current AO languages
prevent achieving a proper modularization as explained in the fol-
lowing.

The set of supported joint points and contextual data are defined
by the join point model of the adopted AO language. Most AO lan-
guages such as AspectJ, CaesarJ [12], and Compose* [1] support
a fixed join point model. There are various proposals such as [4]
to support programmable join point models, which are mainly lim-
ited to Java as the base language. As we studied in [8, 10], sup-
porting a single base language reduces the modularity of imple-
mentations when data is provided by various sources, for example
multi-language base software.

In the AO languages that support pointcut-based instantiation
of aspects (e.g. AspectJ-like languages), the appearance semantics
of behavioral patterns can be expressed through pointcut designa-
tors and the instantiation strategy of aspects, if they are expressive
enough for this matter. Otherwise, workarounds must be provided
via advice code and helper methods and objects, which complicate
the implementations. Several proposals exist to offer more expres-
sion power via stateful pointcuts [14]. These proposals fix the lan-
guage in which pointcuts can be expressed. However, as it is studied
in the runtime verification community [10, 11], usually a diverse set
of languages, such as regular expression, state machines, and tem-
poral logics are necessary to define the appearance semantics of
behavioral patterns.

In the AO languages that support pointcut-based instantiation of
aspects, the disappearance semantics of behavioral patterns cannot
be directly expressed because the lifetime of aspects usually de-
pends on the lifetime of the corresponding base objects. Therefore,
workarounds must be provided to mark an aspect as destroyed to
emulate the disappearance of behavioral patterns. In the languages
that support explicit construction and deployment of aspects, such
as CaesarJ [12], the same problems as the ones in the OO languages
can be observed; multiple design patterns must be adopted to imple-
ment the appearance, disappearance and synchronization semantics
of behavioral patterns.

There are various languages/extensions, such as Ptolemy [13]
and EventCJ [6], that adopt features of AO languages to facili-
tate implementing event-based applications. Although each of these
languages have their own advantages, they inherit many shortcom-
ings of AO languages. The previously discussed limitations of AO
languages representing diverse kinds of data that must be selected
from objects implemented in different languages, expressing com-
plex event selection semantics via pointcut designators, express-
ing complex appearance and disappearance semantics also exist in
these languages.

4. Event-based Modularization
Since existing languages significantly fall short in implementing
event processing applications we face the question: how can we dis-
cover and introduce new language mechanisms that may offer bet-
ter software qualities than the constructs of the current languages?

To answer this question, we try to learn from the evolution of
procedural languages to OO and AO languages, which is shown in
Figure 2. Basically, a procedural language is based on a calling pro-
cedure, an explicit call with zero or more call parameters, a callee
procedure with an implementation code. The callee procedure exe-
cutes the call, and it may invoke on other procedures; this form of
communication is known as the client/server communication.

Procedural

languages

Procedure/

Function

Input/

Output

parameters

Procedure/

Function

call

Client/

Server like

First-class

abstraction

Sub-

abstraction
Languages Interaction Composition

Object-

oriented

languages

Object/ClassMethod

Polymorphic

call/

Event calls

Inheritance/

Aggregation

Aspect-

oriented

languages

Aspect
Base

Object/Class

Pointcut/

join point

Inheritance/

Aggregation

evolution

evolution

Event

Composition

Model

Event/

Event module/

Gummy module

Event

producer

Required/

Published

events

Inheritance/

Aggregation

evolution

Figure 2. Evolution of modularization mechanisms

The OO paradigm has been introduced by grouping a set of
procedures (methods) together under the concept of object. These
methods can be explicitly invoked, or if the language offer an
event-delegate mechanism, they can be invoked implicitly via event
announcement. It has been claimed that object abstraction reduces
complexity and enhance reuse since they may better correspond to
the reusable ’real-world entities’ in the problem domain. Further,
objects and calls can be typed, and reused using the class and
class inheritance concepts and calls can be made polymorphic.
These features are claimed to reduce complexity and increased
reuse and evolvability, because tightly coupled procedures are now
grouped under the same linguistic abstraction and loosely coupled
procedures are related through polymorphic calls and inheritance.

Current AO programing languages extend the OO model through
implicit call mechanisms; objects do not need to refer themselves
through explicit names but through quantification predicates. This
provides a more reusable and flexible coupling among the caller
and callee procedures, since the bindings are more associative than
direct.

Current programming languages lack abstraction and reuse
mechanisms for implementing and modularizing behavioral pat-
terns as desired; they seem to be defined more at a procedural level.
Inspired from the evolution history of procedural, OO and AO pro-
gramming languages, we introduced the concept of event-based
modularization via Event Composition Model [10]. Event Compo-
sition Model offers events, event modules and gummy modules
as the successor of aspects to effectively modularize behavioral
patterns.

At a high level of abstraction, Event Composition Model con-
siders the environment as a set of events, which may be published
by the objects and aspects that exist in an application, and/or by ex-
ternal entities such as OS and hardware derivers. Events are typed
entities; an event type defines a set of attributes for the events. To
overcome the problems of fixed join point models, new kinds of
event types, attributes and events can be defined according to ap-
plications demands.

In [10], we introduced event modules, which is implemented by
the EventReactor language, as a means to modularize a group of re-
lated events and the reactions to them. As Figure 3 shows, an event
module has a required interface, an implementation that is termed
as reactor, and a provided interface. The required interface of an
event module, which is analogous to pointcut designators, queries
the set of events of interest to which the event module must react;
the language in which the queries can be expressed is not fixed.

Reactors, which are analogous to advice code, provide the func-
tionality to process the events specified in the required interface of
the event module, and to publish the so-called reactor events to the
environment. These events form the provided interface of the event

9

Provided

Interface

Reactor

Required

Interface

Event module
Provided

Interface

Reactor

Required

Interface

Event module

Event streams

Provided

Interface

Reactor

Required

Interface

Event module

event selectionevent selection

event

provision

Figure 3. Event modules

module, which is analogous to the set of joint points that can be des-
ignated in an aspect module. As for other elements, the language for
expressing reactors is not fixed, and various general-purpose and/or
domain-specific languages can be adopted for this matter.

The events published by an event module can be selected further
by other event modules. This facilitates the composition of event
modules with each other, and modularly expressing composition
constraints as event modules in their desired language.

Although event modules significantly improve upon current OO
and AO modularization mechanisms to implement event processing
applications [8–10], they come with some shortcomings. First, the
instantiation and destruction strategies of event modules are largely
similar to the ones offered by the AO languages with pointcut-
based instantiation strategy. Consequently, workarounds must be
provided to express complex appearance disappearance semantics
of behavioral patterns with the price of reduced modularity. More-
over, event module instances cannot be accessed by other objects
and be utilized as first-class entities. This limits the possibility to
define operations and invoke them on event module instances.

To improve the modular representation of behavioral patterns,
we are investigating gummy modules as the successor of event
modules. As Figure 4 shows, a gummy module is also defined
in terms of required interface, reactor and provided interface,
which are bound to each other. These elements can be either prim-
itive or composite. A primitive required interface and provided in-
terface represents an event or data that is selected and provided
by a gummy module, respectively. The primitive reactor is an ex-
ecutable program to process these events. The composite special-
izations of required interface and provided interface are gummy
modules too; this facilitates defining gummy modules with nested
structures. Gummy modules have two special composite required
interfaces termed as appearance and disappearance, which en-
capsulate the appearance and disappearance semantics of behav-
ioral patterns, respectively. Adopted from event modules, the lan-
guage in which these semantics can be expressed is not fixed; vari-
ous DSLs and/or GPLs can be adopted.

Event reactor Event

<<appearance>>

Gummy Module

Primitive elements

Composite elements

Event reactor Event

<<disappearance>>

Event reactor Event

<<required interface>>

Event reactor Event

<<reactor>>

Event reactor Event

<<provided interface>>

….

….

Figure 4. Gummy modules

A behavioral pattern can be represented as one holistic gummy
module, which encloses sub-gummy modules that express its ap-

pearance, disappearance and utilization semantics. The enclosing
gummy module may define local variables that can be accessed by
its sub-gummy modules.

The synchronization semantics is currently fixed by the lan-
guage. At runtime before an instance of a gummy module is con-
structed, its appearance interface is the only active interface. This
interface selects the events of interest from the environment, rea-
sons about the runtime condition, and concludes whether an in-
stance of the gummy module must be constructed. If so, it pub-
lishes a specific event to the runtime environment of the language
to construct an instance of the gummy module. After instantiation,
the disappearance interface as well as other required interfaces of
that instance become active. Likewise, the disappearance interface
concludes whether the instance must be destroyed. While an in-
stance of a gummy module is alive, the other required interfaces se-
lect the events of interest from the environment, and forward them
inside the gummy module to the corresponding reactors to process
them. As a result of the processing, new events may be published to
the environment. The semantics for publishing these events are de-
fined within the provided interfaces of the gummy modules, which
are bound to the reactors.

Listing 1 shows a simplified gummy module for representing
traffic congestion. Here, we assume that road segments publish
events of the type SegmentEvent, which carry information about
the density of traffic flow. The details of defining and publishing
events can be found in [10].

Lines 1 to 13 define the gummy module TFAppearance, which
encapsulates the semantics for the appearance of traffic congestion
in a road segment. This module receives an event of the type
SegmentEvent and a list of accepted publishers for the event via
the required interfaces event and publishers, respectively. The
module publishes an event of the predefined type Construct via its
provided interface instantiate. As its implementation in line 5,
the local variable densities is defined to accumulate information
about the density of traffic flow in the road segment.

Lines 6–13 define the program checkAppearance, which
first checks whether the publisher of the input event exists in
publishers; then it accumulates information about the density
of the traffic flow for T seconds in the local variable densities.
After this time is passed, it computes the average density of the
traffic flow, and if it is above the threshold D, it publishes the event
instantiate to inform the runtime environment that an instance
of the enclosing gummy module must be constructed to represent
the traffic congestion in the program. Afterwards, it updates the
local variable density in its enclosing gummy module.

The variables proceeded with the character ? are pseudo vari-
ables with special meanings. The predefined variable ?input refers
to the event whose occurrence causes the program be executed. The
predefined variable ?self refers to the current gummy module or
any of its enclosing ones. Within the implementation, it is possible
to refer to the variables defined in the required and/or provided in-
terface of the module, providing that their name is proceeded with
the character ?. TMSTimer and TMSMath are helper Java classes
that implement the functionality to compute the elapsed time and
average density, respectively.

The binding expression in line 14 specifies that whenever there
is an event bound to the required interface event, the program
checkAppearance must be executed.

Lines 16–24 likewise define TFDisappearance, which encap-
sulates the semantics for inferring the disappearance of traffic con-
gestion, and publishes the event destroy of the predefined type
Destruct to inform the runtime environment that the gummy mod-
ule representing the corresponding traffic congestion be destroyed.

Lines 25–30 define the gummy module TFUtilization, which
defines the functionality to log traffic congestion information. To

10

this aim, it receives an event of the type LogEvent, which trig-
gers the program log. This program prints the value of the variable
density defined in the gummy module enclosing TFUtilization.

Lines 31–39 define the gummy module TrafficCongestion,
which modularly represent traffic congestion and its lifetime
semantics. This module is composed of the sub-gummy mod-
ules appearance, disappearance and utilization as its
required interfaces. The gummy module publishes the events
construction and destruction to inform the runtime envi-
ronment that its instances must be constructed and destructed, re-
spectively. Within the part reactors, the variables that are shared
among the sub-gummy modules are defined. In lines 37–38, the
provided interface of the sub-gummy modules appearance and
disappearance are bound to the corresponding provided inter-
face of TrafficCongestion, so that the events can become visi-
ble outside the sub-gummy modules.

1 gummymodule TFAppearance is Appearance{
2 required interfaces{SegmentEvent event; List<Long> publishers;}
3 provided interfaces{Construct instantiate;}
4 reactors{
5 variables {ArrayList<Long> densities = new ArrayList<Long>();}
6 program checkAppearance{
7 if (TMSList.contains(?publishers, ?input.publisher)){
8 if (TMSTimer.computeElapsedTime() < ?self.T)
9 densities.add (?input.getAttribute(”density”));

10 else { Long avg = TMSMath.computeAverage(densities);
11 if (avg > ?self.D) { publish(?instantiate); ?self.density = avg; }
12 }
13 } }}
14 bindings{bind(event, checkAppearance);}
15 }
16 gummymodule TFDisappearance is Disappearance {
17 required interfaces{SegmentEvent event; List<Long> publishers;}
18 provided interfaces{Destruct destroy;}
19 reactors{
20 variables {ArrayList<Long> densities = new ArrayList<Long>();}
21 program checkDisappearance{ ... }
22 }
23 bindings{bind(event, checkDisappearance);}
24 }
25 gummymodule TFUtilization{
26 required interfaces{LogEvent event;}
27 provided interfaces{}
28 reactors{ program log(){ System.out.println(?self.density); }}
29 bindings { bind (event, log);}
30 }
31 gummymodule TrafficCongestion {
32 required interfaces{
33 TFAppearance appearance; TFDisappearance disappearance;TFUtilization utilization;}
34 provided interfaces{Construct construction; Destruct destruction;}
35 reactors{ variables{Long density; Long T = 10; Long D = 30;}}
36 bindings{
37 bind(appearance.instantiate, construction);
38 bind(disappearance.destroy, destruction);
39 }}

Listing 1. Modularizing traffic congestion

To be able to utilize gummy modules, it is necessary to initial-
ize their required interfaces, and the possible constraints among
them. We provide a configuration language to express these; List-
ing 2 shows an example. Here, we assume that there are two
road segments, for which the emergent behavior traffic conges-
tion must be represented via instances of the gummy module
TrafficCongestion. The variables cong1 and cong2 in line 3
are defined for this matter.

1 configurations{
2 initializations{
3 TrafficCongestion cong1, cong2;
4 cong1.appearance.publishers = [1]; cong1.disappearance.publishers = [1];
5 cong2.appearance.publishers = [2]; cong2.disappearance.publishers = [2];
6 }
7 constraints { precede (cong1, cong2); }
8 }

Listing 2. A configuration of gummy modules

Line 4 initializes the required interface of appearance of
cong1, such that it filters the events of the type SegmentEvent
published by the segment with the identifier 1. The interface event
of appearance is left unbound; therefore, runtime environment
makes use of type matching to bind the interface to the events that
are published to the environment.

Likewise, the required interface of other sub-gummy modules
are initialized. The request to display or log traffic congestion data
can be issued from Java objects by means of events. Whenever an
event of the type LogEvent is published, the runtime environment
bounds it to the required interface event of cong1.utilization
and cong2.utilization. Since both gummy modules cong1 and
cong2 select events of type SegmentType and LogEvent, line 7
defines the order in which these events must be processed by these
modules; i.e. cong1 must process them first.

5. Conclusion and Future Work
In this paper, we discussed the need for dedicated linguistic con-
structs to modularly represent behavioral patterns and their lifetime
semantics in software systems. We explained that lack of such con-
structs obliges software engineers to adopt various design patterns
and/or to provide workaround code, which complicates the imple-
mentations. We explains the concept of event-based modularization
and our recent work termed as gummy modules, which facilitate
representing a behavioral pattern as one holistic module that en-
capsulates its lifetime semantics. As future work, we would like
to apply gummy modules to represent various kinds of behavioral
patterns in different domains such as self-energy-adaptive systems.
We would like to develop advanced composition mechanisms, such
as inheritance and aggregation, for gummy modules.

References
[1] Compose*. http://composestar.sourceforge.net/.
[2] Esper. http://esper.codehaus.org/.
[3] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[4] K. Hoffman and P. Eugster. Cooperative Aspect-Oriented Program-
ming. Sci. Comput. Program., 74:333–354, March 2009.

[5] H. Hüni, R. Johnson, and R. Engel. A Framework for Network
Protocol Software. In OOPSLA ’95. ACM, 1995.

[6] T. Kamina, T. Aotani, and H. Masuhara. EventCJ: a Context-oriented
Programming Language with Declarative Event-based Context Tran-
sition. In AOSD ’11. ACM.

[7] S. Malakuti. Complex Event Processing with Event Modules. In Re-
activity, Events and Modularity workshop, co-located with SPLASH.
2013.

[8] S. Malakuti and M. Aksit. Evolution of Composition Filters to Event
Composition. In SAC’ 12. ACM Press.

[9] S. Malakuti and M. Aksit. Event-based Modularization of Reactive
Systems. In Concurrent Objects and Beyond (to appear), LNCS. 2013.

[10] S. Malakuti and M. Aksit. Event Modules: Modularizing Domain-
Specific Crosscutting RV Concerns. In TAOSD (to appear), LNCS.
2013.

[11] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An Overview
of the MOP Runtime Verification Framework. International Jour-
nal on Software Techniques for Technology Transfer, pages 249–289,
2011.

[12] M. Mezini and K. Ostermann. Conquering Aspects with Caesar. In
AOSD’ 03. ACM Press.

[13] H. Rajan and G. Leavens. Ptolemy: A Language with Quantified,
Typed Events. In ECOOP ’08, LNCS.

[14] W. Vanderperren, D. Suvée, M. A. Cibrán, and B. De Fraine. Stateful
Aspects in JAsCo. In Software Composition. LNCS, 2005.

11

