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ABSTRACT
Many analytics tasks and machine learning problems can
be naturally expressed by iterative linear algebra programs.
In this paper, we study the incremental view maintenance
problem for such complex analytical queries. We develop a
framework, called Linview, for capturing deltas of linear al-
gebra programs and understanding their computational cost.
Linear algebra operations tend to cause an avalanche effect
where even very local changes to the input matrices spread
out and infect all of the intermediate results and the final
view, causing incremental view maintenance to lose its per-
formance benefit over re-evaluation. We develop techniques
based on matrix factorizations to contain such epidemics of
change. As a consequence, our techniques make incremen-
tal view maintenance of linear algebra practical and usually
substantially cheaper than re-evaluation. We show, both an-
alytically and experimentally, the usefulness of these tech-
niques when applied to standard analytics tasks. Our evalu-
ation demonstrates the efficiency of Linview in generating
parallel incremental programs that outperform re-evaluation
techniques by more than an order of magnitude.

1. INTRODUCTION
Linear algebra plays a major role in modern data analy-

sis. Many state-of-the-art data mining and machine learning
algorithms are essentially linear transformations of vectors
and matrices, often expressed in the form of iterative compu-
tation. Data practitioners, engineers, and scientists utilize
such algorithms to gain insights about the collected data.

Data processing has become increasingly expensive in the
era of big data. Computational problems in many applica-
tion domains, like social graph analysis, web analytics, and
scientific simulations, often have to process petabytes of mul-
tidimensional array data. Popular statistical environments,
like R and MATLAB, offer high-level abstractions that sim-
plify programming but lack the support for scalable full-
dataset analytics. Recently, many scalable frameworks for
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data analysis have emerged: MADlib [18] and Columbus [36]
for in-database scalable analytics, SciDB [32], SciQL [39],
and RasDaMan [4] for in-database array processing, Ma-
hout and MLbase [22] for machine learning and data mining
on Hadoop and Spark [35]. High-performance computing re-
lies on optimized libraries, like Intel MKL and ScaLAPACK,
to accelerate the performance of matrix operations in data-
intensive computations. All these solutions primarily focus
on efficiently processing large volumes of data.

Modern applications have to deal with not just big, but
also rapidly changing datasets. A broad range of examples
including clickstream analysis, algorithmic trading, network
monitoring, and recommendation systems compute realtime
analytics over streams of continuously arriving data. Online
and responsive analytics allow data miners, analysts, and
statisticians to promptly react to certain, potentially com-
plex, conditions in the data; or to gain preliminary insights
from approximate or incomplete results at very early stages
of the computation. Existing tools for large-scale data anal-
ysis often lack support for dynamic datasets. High data
velocity forces application developers to build ad hoc solu-
tions in order to deliver high performance. More than ever,
data analysis requires efficient and scalable solutions to cope
with the ever-increasing volume and velocity of data.

Most datasets evolve through changes that are small rela-
tive to the overall dataset size. For example, the Internet ac-
tivity of a single user, like a user’s purchase history or movie
ratings, represents only a tiny portion of the collected data.
Recomputing data analytics on every (moderate) dataset
change is far from efficient.

These observations motivate incremental data analysis.
Incremental processing combines the results of previous anal-
yses with incoming changes to provide a computationally
cheap method for updating the result. The underlying as-
sumption that these changes are relatively small allows us
to avoid re-evaluation of expensive operations. In the con-
text of databases, incremental processing – also known as
incremental view maintenance – reduces the cost of query
evaluation by simplifying or eliminating join processing for
changes in the base relations [17, 21]. However, simulating
multidimensional array computations on top of traditional
RDBMSs can result in poor performance [32]. Data stream
processing systems [27, 1] also rely on incremental compu-
tation to reduce the work over finite windows of input data.
Their usefulness is yet limited by their window semantics
and inability to handle long-lived data.

In this work we focus on incremental maintenance of ana-
lytical queries written as (iterative) linear algebra programs.

ar
X

iv
:1

40
3.

69
68

v2
  [

cs
.D

B
] 

 9
 M

ay
 2

01
4



A program consists of a sequence of statements performing
operations on vectors and matrices. For each matrix (vec-
tor) that dynamically changes over time, we define a trigger
program describing how an incremental update affects the
result of each statement (materialized view). A delta ex-
pression of one statement captures the difference between
the new and old result. This paper shows how to propa-
gate delta expressions through subsequent statements while
avoiding re-evaluation of computationally expensive opera-
tions, like matrix multiplication or inversion.

Example 1.1. Consider the program that computes the
fourth power of a given matrix A.

B := A A;

C := B B;

The goal is to maintain the result C on every update of A
by ∆A. We compare the time complexity of two computa-
tion strategies: re-evaluation and incremental maintenance.
The re-evaluation strategy first applies ∆A to A and then
performs two O(n3)1 matrix multiplications to update C.

The incremental approach exploits the associativity and
distributivity of matrix multiplication to compute a delta
expression for each statement of the program. The trigger
program for updates to A is:

ON UPDATE A BY ∆A:

∆B := (∆A)A + A(∆A) + (∆A)(∆A);

∆C := (∆B)B + B(∆B) + (∆B)(∆B);

A += ∆A; B += ∆B; C += ∆C;

Let us assume that ∆A represent a change of one cell
in A. Fig. 1 shows the effect of that change on ∆B and
∆C 2. The shaded regions represent entries with nonzero
values. The incremental approach capitalizes on the sparsity
of ∆A and ∆B to compute ∆B and ∆C in O(n) and O(n2)
operations, respectively. Together with the cost of updating
B and C, incremental evaluation of the program requires
O(n2) operations, clearly cheaper than re-execution. 2

The main challenge in incremental linear algebra is how
to represent and propagate delta expressions. Even a small
change in a matrix (e.g., a change of one entry) might have
an avalanche effect that updates every entry of the result
matrix. In Example 1.1, a single entry change in A causes
changes of one row and column in B, which in turn pollute
the entire matrix C. If we were to propagate ∆C to a sub-
sequent expression – for example, the expression D = C C
that computes A8 – then evaluating ∆D would require two
full O(n3) matrix multiplications, which is obviously more
expensive than recomputing D using the new value of C.

To confine the effect of such changes and allow efficient
evaluation, we represent delta expressions in a factored form,
as products of low-rank matrices. For instance, we could
represent ∆B as a vector outer product for single entry up-
dates in A. Due to the associativity and distributivity of
matrix multiplication, the factored form allows us to choose
the evaluation order that completely avoids expensive ma-
trix multiplications.

To the best of our knowledge, this is the first work done to-
wards efficient incremental computation for large scale linear
algebra data analysis programs. In brief, our contribution
can be summarized as follows:

1
This example assumes the traditional cubic-time bound for matrix

multiplication. Section 3 generalizes this cost for asymptotically more
efficient methods.
2
For brevity, we factor the last two monomials in ∆B and ∆C.

Figure 1: Evaluation of ∆B and ∆C for a single entry
change in A. Gray entries have nonzero values.

1. We present a framework for incremental maintenance
of linear algebra programs that: a) represents delta expres-
sions in compact factored forms that confine the avalanche
effect of input changes, as seen in Example 1.1, and thus
cost. b) utilizes a set of transformation rules that metamor-
phose linear algebra programs into their cheap functional-
equivalents that are optimized for dynamic datasets.

2. We demonstrate analytically and experimentally the
efficiency of incremental processing on various fundamen-
tal data analysis methods including ordinary least squares,
batch gradient descent, PageRank, and matrix powers.

3. We have built Linview, a compiler for incremental data
analysis that exploits these novel techniques to generate ef-
ficient update triggers optimized for dynamic datasets. The
compiler is easily extensible to couple with any underlying
system that supports matrix manipulation primitives. We
evaluate the performance of Linview’s generated code over
two different platforms: a) Octave programs running on a
single machine and b) parallel Spark programs running over
a large cluster of Amazon EC2 nodes. Our results show
that incremental evaluation provides an order of magnitude
performance benefit over traditional re-evaluation.

The paper is organized as follows: Section 2 reviews the
related work, Section 3 establishes the terminology and com-
putational models used in the paper, Section 4 describes how
to compute, represent, and propagate delta expressions, Sec-
tion 5 analyzes the efficiency of incremental maintenance on
common data analytics, Section 6 gives the system overview,
and Section 7 experimentally validates our analysis.

2. RELATED WORK
This section presents related work in different directions.

IVM and Stream Processing. Incremental View Main-
tenance techniques [7, 21, 17] support incremental updates
of database materialized views by employing differential al-
gorithms to re-evaluate the view expression. Chirkova et
al. [10] present a detailed survey on this direction. Data
stream processing engines [1, 27, 3] incrementally evaluate
continuous queries as windows advance over unbounded in-
put streams. In contrast to all the previous, this paper tar-
gets incremental maintenance of linear algebra programs as
opposed to classical database (SQL) queries. The linear al-
gebra domain has different semantics and primitives, thus
the challenges and optimization techniques differ widely.
Iterative Computation. Designing frameworks and com-
putation models for iterative and incremental computation
has received much attention lately. Differential dataflow [25]
represents a new model of incremental computation for it-
erative algorithms, which relies on differences (deltas) be-
ing smaller and computationally cheaper than the inputs.



This assumption does not hold for linear algebra programs
because of the avalanche effect of input changes. Many sys-
tems optimize the MapReduce framework for iterative appli-
cations using techniques that cache and index loop-invariant
data on local disks and persist materialized views between
iterations [8, 15, 37]. More general systems support iterative
computation and the DAG execution model, like Dryad [19]
and Spark [35]; Mahout, MLbase [22] and others [12, 33, 26]
provide scalable machine learning and data mining tools.
All these systems are orthogonal to our work. This paper
is concerned with the efficient re-evaluation of programs un-
der incremental changes. Our framework, however, can be
easily coupled with any of these underlying systems.
Scientific Databases. There are also database systems
specialized in array processing. RasDaMan [4] and AML [24]
provide support for expressing and optimizing queries over
multidimensional arrays, but are not geared towards scien-
tific and numerical computing. ASAP [31] supports scien-
tific computing primitives on a storage manager optimized
for storing multidimensional arrays. RIOT [38] also provides
an efficient out-of-core framework for scientific computing.
However, none of these systems support incremental view
maintenance for their workloads.
High Performance Computing. The advent of numer-
ical and scientific computing has fueled the demand for ef-
ficient matrix manipulation libraries. BLAS [14] provides
low-level routines representing common linear algebra prim-
itives to higher-level libraries, such as LINPACK, LAPACK,
and ScaLAPACK for parallel processing. Hardware ven-
dors such as Intel and AMD and code generators such as
ATLAS [34] provide highly optimized BLAS implementa-
tions. In contrast, we focus on incremental maintenance
of programs through efficient transformations and materi-
alized views. The Linview compiler translates expensive
BLAS routines to cheaper ones and thus further facilitates
adoption of the optimized implementations.
PageRank. There is a huge body of literature that is
focused on PageRank, including the Markov chain model,
solution methods, sensitivity and conditioning, and the up-
dating problem. Surveys can be found in [23, 6]. The up-
dating problem studies the effect of perturbations on the
Markov chain and PageRank models, including sensitivity
analysis, approximation, and exact evaluation methods. In
principle, these methods are particularly tailored for these
specific models. In contrast, this paper presents a novel
model and framework for efficient incremental evaluation
of general linear algebra programs through domain specific
compiler translations and efficient code generation.
Incremental Statistical Frameworks. Bayesian infer-
ence [5] uses Bayes’ rule to update the probability estimate
for a hypothesis as additional evidence is acquired. These
frameworks support a variety of applications such as pat-
tern recognition and classification. Our work focuses on in-
crementalizing applications that can be expressed as linear
algebra programs and generating efficient incremental pro-
grams for different runtime environments.
Programming Languages. The programming language
community has extensively studied incremental computation
and information flow [9]. It has developed languages and
compilation techniques for translating high-level programs
into executables that respond efficiently to dynamic changes.
Self-adjusting computation targets incremental computation
by exploiting dynamic dependency graphs and change prop-

agation algorithms [2, 9]. These approaches: a) serve for
general purpose programs as opposed to our domain specific
approach, b) require serious programmer involvement by an-
notating modifiable portions of the program, and c) fail to
efficiently capture the propagation of deltas among state-
ments as presented in this paper.

3. LINEAR ALGEBRA PROGRAMS
Linear algebra programs express computations using vec-

tors and matrices as high-level abstractions. The language
used to form such programs consists of the standard ma-
trix manipulation primitives: matrix addition, subtraction,
multiplication (including scalar, matrix-vector, and matrix-
matrix multiplication), transpose, and inverse. A program
expresses a computation as a sequence of statements, each
consisting of an expression and a variable (matrix) storing its
result. The program evaluates these expressions on a given
dataset of input matrices and produces the result in one or
more output matrices. The remaining matrices are auxiliary
program matrices; they can be manipulated (materialized
or removed) for performance reasons. For instance, the pro-
gram of Example 1.1 consists of two statements evaluating
the expressions over an input matrix A and an auxiliary ma-
trix B. The output matrix C stores the computation result.
Computational complexity. In this paper, we refer to
the cost of matrix multiplication as O(nγ) where 2 ≤ γ ≤
3. In practice, the complexity of matrix multiplication,
e.g., BLAS implementations [34], is bounded by cubic O(n3)
time. Better algorithms with an exponent of 2.37 + ε are
known (Coppersmith-Winograd and its successors); how-
ever, these algorithms are only relevant for astronomically
large matrices. Our incremental techniques remain relevant
as long as matrix multiplication stays asymptotically worse
than quadratic time (a bound that has been conjectured to
be achievable [11], but still seems far off). Note that the
asymptotic lower bound for matrix multiplication is Ω(n2)
operations because it needs to process at least 2n2 entries.

3.1 Iterative Programs
Many computational problems are iterative in nature. It-

erative programs start from an approximate answer. Each
iteration step improves the accuracy of the solution until
the estimated error drops below a specified threshold. It-
erative methods are often the only choice for problems for
which direct solutions are either unknown (e.g., nonlinear
equations) or prohibitively expensive to compute (e.g., due
to large problem dimensions).

In this work we study (iterative) linear algebra programs
from the viewpoint of incremental view maintenance (IVM).
The execution of an iterative program generates a sequence
of results, one for each iteration step. When the underlying
data changes, IVM updates these results rather than re-
evaluating them from scratch. We do so by propagating the
delta expression of one iteration to subsequent iterations.
With our incremental techniques, such delta expressions are
cheaper to evaluate than the original expressions.

We consider iterative programs that execute a fixed num-
ber of iteration steps. The reason for this decision is that
programs using convergence thresholds might yield a vary-
ing number of iteration steps after each update. Having
different numbers of outcomes per update would require in-
cremental maintenance to deal with outdated or missing old
results; we leave this topic for future work. By fixing the



number of iterations, we provide a fair comparison of the
incremental and re-evaluation strategies3.

3.2 Iterative Models
An iterative computation is governed by an iterative func-

tion that describes the computation at each step in terms
of the results of previous iterations (materialized views) and
a set of input matrices. Multiple iterative functions, or it-
erative models, might express the same computation but by
using different numbers of iteration steps. For instance, the
computation of the kth power of a matrix can be done in
k iterations or in log2 k iterations using the exponentiation
by squaring method. Each iterative model of computation
comes with its own complexity.

Our analysis of iterative programs considers three alterna-
tive models that require different numbers of iteration steps
to compute the final result. These models allow us to explore
trade-offs between computation time and memory consump-
tion for both re-evaluation and incremental maintenance.

Linear Model. The linear iterative model evaluates the
result of the current iteration based on the result of the
previous iteration and a set of input matrices I. It takes k
iteration steps to compute Tk.

Ti =

{
f(I) for i = 1
g(Ti−1, I) for i = 2, 3, . . .

Example Ak: T1 = A and Ti = Ti−1A for 2 ≤ i ≤ k.

Exponential Model. In the exponential model, the result
of the ith iteration depends on the result of the (i/2)th iter-
ation. The model makes progressively larger steps between
computed iterations, forming the sequence T1, T2, T4, . . . .
It takes O(log k) iteration steps to compute Tk.

Ti =

{
f(I) for i = 1
g(Ti/2, I) for i = 2, 4, 8 . . .

Example Ak: T1 = A and Ti = Ti/2 Ti/2 for i = 2, 4, 8, . . . , k.

Skip Model. Depending on the dimensions of input matri-
ces, incremental evaluation using the above models might be
suboptimal costwise. The skip-s model represents a sweet
spot between these two models. For a given skip size s, it
relies on the exponential model to compute Ts (generating
the sequence T2, T4, . . . , Ts) and then generalizes the lin-
ear model to compute every sth iteration (generating the
sequence T2s, T3s, . . . ).

Ti =

 f(I) for i = 1
g(Ti/2, I) for i = 2, 4, 8, . . . s
h(Ti−s, Ts, I) for i = 2s, 3s, . . .

Example Ak: For s = 8, we have T1 = A, then Ti = Ti/2 Ti/2

for i = 2, 4, 8, and Ti = Ti−8 T8 for i = 16, 24, 32, . . . , k.

The skip model reconciles the two extremes: it corresponds
to the linear model for s = 1 and to the exponential model
for s = k. In Section 5, we evaluate the time and space
complexity of these models for a set of iterative programs.

4. INCREMENTAL PROCESSING
In this section we develop techniques for converting linear

algebra programs into functionally equivalent incremental
programs suited for execution on dynamic datasets. An in-
cremental program consists of a set of triggers, one trigger

3
If the solution does not converge after a given number of iterations,

we can always re-evaluate additional steps.

for each input matrix that might change over time. Each
trigger has a list of update statements that maintain the re-
sult for updates to the associated input matrix. The total ex-
ecution cost of an incremental program is the sum of execu-
tion costs of its triggers. Incremental programs incur lower
computational complexity by converting the expensive op-
erations of non-incremental programs to work with smaller
datasets. Incremental programs combine precomputed re-
sults with low-rank updates to avoid costly operations, like
matrix-matrix multiplications or matrix inversions.

Definition 4.1. A matrix M of dimensions (n × n) is
said to have rank-k if the maximum number of linearly in-
dependent rows or columns in the matrix is k. M is called
a low-rank matrix if k � n.

4.1 Delta Derivation
The basic step in building incremental programs is the

derivation of delta expressions ∆A(E), which capture how
the result of an expression E changes as an input matrix A
is updated by ∆A. We consider the update ∆A, called a
delta matrix, to be constant and independent of any other
matrix. If we represent E as a function of A, then ∆A(E) =
E(A + ∆A) − E(A). For presentation clarity, we omit the
subscript in ∆A(E) when A is obvious from the context.

Most standard operations of linear algebra are amenable
to incremental processing. Using the distributive and asso-
ciative properties of common matrix operations, we derive
the following set of delta rules for updates to A.

∆A(E1E2) := (∆AE1)E2 + E1 (∆AE2) + (∆AE1)(∆AE2)

∆A(E1 ± E2) := (∆AE1)± (∆AE2)

∆A(λE) := λ (∆AE)

∆A(E T) := (∆AE)T

∆A(E−1) := (E + ∆AE)−1 − E−1

∆A(A) := ∆A

∆A(B) := 0 (A 6= B)

We observe that the delta rule for matrix inversion refer-
ences the original expression (twice), which implies that it
is more expensive to compute the delta expression than the
original expression. This claim is true for arbitrary updates
to A (e.g., random updates of all entries, all done at once).
Later on, we discuss a special form of updates that admits
efficient incremental maintenance of matrix inversions. Note
that if A does not appear in E, the delta expression for ma-
trix inversion is zero.

Example 4.2. This example shows the derivation pro-
cess. Consider the Ordinary Least Squares method for esti-
mating the unknown parameters in a linear regression model.
We want to find a statistical estimate of the parameter β∗

best satisfying Y = Xβ. The solution, written as a linear
algebra program, is β∗ = (XTX)−1XT Y . Here, we focus
on how to derive the delta expression for β∗ under updates
to X. We defer an in-depth cost analysis of the method to
Section 5. Let Z = XTX and W = Z−1. Then

∆Z = ∆(XTX)

= (∆(XT))X +XT (∆(X)) + (∆(XT)) (∆(X))

= (∆X)TX +XT (∆X) + (∆X)T (∆X)

∆W = (Z + ∆Z)−1 − Z−1

∆β∗ = (∆W )XT Y +W (∆X)T Y + (∆W ) (∆X)T Y 2



For random matrix updates, incrementally computing a
matrix inverse is prohibitively expensive. The Sherman-
Morrison formula [29] provides a numerically cheap way of
maintaining the inverse of an invertible matrix for rank-1
updates. Given a rank-1 update u vT, where u and v are
column vectors, if E and E + u vT are nonsingular, then

∆(E−1) := −E
−1 u vTE−1

1 + vTE−1 u

Note that ∆(E−1) is also a rank-1 matrix. For instance,
∆(E−1) = p qT, where p = λE−1u and q = (E−1)T v are
column vectors, and λ is a scalar (observe that the denomi-
nator is a scalar too). Thus, incrementally computing E−1

for rank-1 updates to E requires O(n2) operations; it avoids
any matrix-matrix multiplication and inversion operations.

Example 4.3. We apply the Sherman-Morrison formula
to Example 4.2. We start by considering rank-1 updates to
X. Let ∆X = u vT, then

∆Z =v uTX +XT u vT + v uT u vT

=v (uTX) + (XT u+ v uT u) vT

The parentheses denote the subexpressions that evaluate to
vectors. We observe that each of the monomials is a vector
outer product. Thus, we can write ∆Z = ∆Z1+∆Z2, where
∆Z1 = p1 q

T
1 and ∆Z2 = p2 q

T
2 . Now we can apply the

formula on each outer product in turn.

∆Z1(W ) =− W p1 q
T
1 W

1 + qT1 W p1

∆Z2(W ) =− (W + ∆Z1(W )) p2 q
T
2 (W + ∆Z1(W ))

1 + qT2 (W + ∆Z1(W )) p2

Finally, ∆Z(W ) = ∆Z1(W ) + ∆Z2(W ). The evaluation
cost of ∆Z(W ) is O(n2) operations, as discussed above. For
comparison, the evaluation cost of ∆W in Example 4.2 is
O(nγ) operations. 2

In the above OLS examples, ∆W is a matrix with poten-
tially all nonzero entries. If we store these entries in a single
delta matrix, we still need to perform O(nγ)-cost matrix
multiplications in order to compute ∆β∗. Next, we propose
an alternative way of representing delta expressions that al-
lows us to stay in the realm of O(n2) computations.

4.2 Delta Representation
In this section we discuss how to represent delta expres-

sions in a form that is amenable to incremental processing.
This form also dictates the structure of admissible updates
to input matrices. Incremental processing brings no benefit
if the whole input matrix changes arbitrarily at once.

Let us consider updates of the smallest granularity – single
entry changes of an input matrix. The delta matrix captur-
ing such an update contains exactly one nonzero entry be-
ing updated. The following example shows that even a mi-
nor change, when propagated näıvely, can cause incremental
processing to be more expensive than recomputation.

Example 4.4. Consider the program of Example 1.1 for
computing the fourth power of a given matrix A. Following
the delta rules we write ∆B = (∆A)A + (A + ∆A) (∆A).
Fig. 1 shows the effect of a single entry change in A on ∆B.
The single entry change has escalated to a change of one

row and one column in B. When we propagate this change
to the next statement, ∆C becomes a fully-perturbed delta
matrix, that is, all entries might have nonzero values.

Now suppose we want to evaluate A8, so we extend the
program with the statement D := C C. To evaluate ∆D,
which is expressed similarly as ∆B, we need to perform
two matrix-matrix multiplications and two matrix additions.
Clearly, in this case, it is more efficient to recompute D using
the new C than to incrementally maintain it with ∆D. 2

The above example shows that linear algebra programs
are, in general, sensitive to input changes. Even a single
entry change in the input can cause an avalanche effect of
perturbations, quickly escalating to its extreme after exe-
cuting merely two statements.

We propose a novel approach to deal with escalating up-
dates. So far, we have used a single matrix to store the result
of a delta expression. We observe that such representation is
highly redundant as delta matrices typically have low ranks.
Although a delta matrix might contain all nonzero entries,
the number of linearly independent rows or columns is rel-
atively small compared to the matrix size. In Example 4.4,
∆B has a rank of at most two.

We maintain a delta matrix in a factored form, represented
as a product of two low-rank matrices. The factored form
enables more efficient evaluation of subsequent delta expres-
sions. Due to the associativity and distributivity of matrix
multiplication, we can base the evaluation strategy for delta
expressions solely on matrix-vector products, and thus avoid
expensive matrix-matrix multiplications.

To achieve this goal, we also represent updates of input
matrices in the factored form. In this paper we consider
rank-k changes of input matrices as they can capture many
practical update patterns. For instance, the simplest rank-1
updates can express perturbations of one complete row or
column in a matrix, or even changes of the whole matrix
when the same vector is added to every row or column.

In Example 4.4, consider a rank-1 update ∆A = uAv
T
A,

where uA and vA are column vectors, then ∆B = uA (vTA A)+
(AuA) vTA + (uA v

T
A uA) vTA is a sum of three outer products.

The parentheses denote the factored subexpressions (vec-
tors). The evaluation order enforced by these parentheses
yields only matrix-vector and vector-vector multiplications.
Thus, the evaluation of ∆B requires only O(n2) operations.

Instead of representing delta expressions as sums of outer
products, we maintain them in a more compact vectorized
form for performance and presentation reasons. A sum of
k outer products is equivalent to a single product of two
matrices of sizes (n× k) and (k×n), which are obtained by
stacking the corresponding vectors together. For instance,

u1 v
T
1 + u2 v

T
2 + u3 v

T
3 =

[
u1 u2 u3

] vT1vT2
vT3

 = P QT

where P and Q are (n× 3) block matrices.
To summarize, we maintain a delta expression as a prod-

uct of two low-rank matrices with dimensions (n × k) and
(k × n), where k � n. This representation allows efficient
evaluation of subsequent delta expressions without involv-
ing expensive O(nγ) operations; instead, we perform only
O(kn2) operations. A similar analysis naturally follows for
rank-k updates with linearly increasing evaluation costs; the
benefit of incremental processing diminishes as k approaches
the dominant matrix dimension.



Considering low-rank updates of matrices also opens op-
portunities to benefit from previous work on incremental-
izing complex linear algebra operations. We have already
discussed the Sherman-Morrison method of incrementally
computing the inverse of a matrix for rank-1 updates. Other
work [13, 30] investigates rank-1 updates in different matrix
factorizations, like SVD and Cholesky decomposition. We
can further use these new primitives to enrich our language,
and, consequently, support more sophisticated programs.

4.3 Delta Propagation
When constructing incremental programs we propagate

delta expressions from one statement to another. For delta
expressions with multiple monomials, factored representa-
tions include increasingly more outer products. That raises
the cost of evaluating these expressions. In Example 4.4,
∆B consists of three outer products compacted as

∆B =
[
uA (AuA) (uA (vTA uA))

] vTA AvTA
vTA

 = UB V
T
B

Here, UB and VB are (n × 3) block matrices. Akin to ∆B,
∆C is also a sum of three products expressed using B, UB,
and VB, and compacted as a product of two (n × 9) block
matrices. Finally, we use C and the factored form of ∆C to
express ∆D as a product of two (n× 27) block matrices.

Observe that UB and VB have linearly dependent columns,
which suggests that we could have an even more compact
representation of these matrices. A less redundant form,
which reduces the size of UB and VB, guarantees less work in
evaluating subsequent delta expressions. To alleviate the re-
dundancy in representation, we reduce the number of mono-
mials in a delta expression by extracting common factors
among them. This syntactic approach does not guarantee
the most compact representation of a delta expression, which
is determined by the rank of the delta matrix. However,
computing the exact rank of the delta matrix requires in-
spection of the matrix values, which we deem too expensive.
The factored form of ∆B of Example 4.4 is

∆B =
[
uA (AuA + uA (vTA uA))

] [vTA A
vTA

]
= UB V

T
B

Here, UB and VB are (n × 2) matrices. ∆C is a product of
two (n×4) matrices and ∆D multiplies two (n×8) matrices.

4.4 Putting It All Together
So far we have discussed how to derive, represent, and

propagate delta expressions. In this section we put these
techniques together into an algorithm that compiles a given
program to its incremental version.

Alg. 1 shows the algorithm that transforms a program P
into a set of trigger functions T , each of them handling up-
dates to one input matrix. For updates arriving as vector
outer products, the matching trigger incrementally main-
tains the computation result by evaluating a sequence of
assignment statements (:=) and update statements (+=).

The algorithm takes as input two parameters: (1) a pro-
gram P expressed as a list of assignment statements, where
each statement is defined as a tuple 〈Ai, Ei〉 of an expression
Ei and a matrix Ai storing the result, and (2) a set of input
matrices I, and outputs a set of trigger functions T .

The ComputeDelta function follows the rules from Sec-
tion 4.1 to derive the delta for a given expression Ei and

Algorithm 1 Compile program P into a set of triggers T
1: function Compile(P, I)
2: T ← ∅
3: for each X ∈ I do
4: D ← list(〈X,u, v〉)
5: for each 〈Ai, Ei〉 ∈ P do
6: 〈Pi, Qi〉 ← ComputeDelta(Ei,D)
7: D ← D.append(〈Ai, Pi, Qi〉)
8: T ← T ∪ BuildTrigger(X,D)

9: return T

an update to X. The function returns two expressions that
together form the delta, ∆Ai = PiQ

T
i . As discussed in Sec-

tion 4.2, Pi and Qi are block matrices in which each block
has its defining expression.

The algorithm maintains a list of the generated delta ex-
pressions in D. Each entry in D corresponds to one update
statement of the trigger program. The entries respect the
order of statements in the original program.

Note that ComputeDelta takes D as input. The list
of matrices affected by a change in X – initially contain-
ing only X – expands throughout the execution of the al-
gorithm. One expression might reference more than one
such matrix, so we have to deal with multiple matrix up-
dates to derive the correct delta expression. The delta rules
presented in Section 4.1 consider only single matrix up-
dates, but we can easily extend them to handle multiple
matrix updates. Suppose D = {A,B, . . .} is a set of the af-
fected matrices that also appear in an expression E. Then,
∆D(E) := ∆A(E) + ∆(D\{A})(E + ∆A(E)). The delta rule
considers each matrix update in turn. The order of applying
the matrix updates is irrelevant.

Example 4.5. Consider the expression E = AB and the
updates ∆A and ∆B. Then,

∆{A,B}(E) =∆A(E) + ∆B(E + ∆A(E))

=(∆A)B + ∆B(AB + (∆A)B)

=(∆A)B +A (∆B) + (∆A) (∆B) 2

The BuildTrigger function converts the derived deltas
D for updates toX into a trigger program. The function first
generates the assignment statements that evaluate Pi andQi
for each delta expression, and then the update statements
for each of the affected matrices.

Example 4.6. Consider the program that computes the
fourth power of a given matrix A, discussed in Example 1.1
and Example 4.4. Algorithm 1 compiles the program and
produces the following trigger for updates to A.

ON UPDATE A BY (u A,v A):

U B := [ u A (A u A + u A (v A
T u A)) ];

V B := [ (A T v A) v A ];

U C := [ U B (B U B + U B (V B
T U B)) ];

V C := [ (B T V B) V B ];

A += u A v A
T; B += U B V B

T; C += U C V C
T;

Here, uA and vA are column vectors, UB , VB , UC , and VC
are block matrices. Each delta, including the input change,
is a product of two low-rank matrices. 2

5. INCREMENTAL ANALYTICS
In this section we analyze a set of programs that have

wide application across many domains from the perspective



Model Matrix Powers Sums of Matrix Powers General form: Ti+1 = ATi +B

Linear Pi =

{
A

APi−1
Si =

{
I

ASi−1 + I
Ti =

{
AT0 +B

ATi−1 +B

for i = 1

for i = 2, 3, . . . , k

Exponential Pi =

{
A

Pi/2 Pi/2
Si =

{
I

Pi/2 Si/2 + Si/2
Ti =

{
AT0 +B

Pi/2 Ti/2 + Si/2B

for i = 1

for i = 2, 4, 8, . . . , k

Skip-s Pi =


A

Pi/2 Pi/2
Ps Pi−s

Si =


I

Pi/2 Si/2 + Si/2
Ps Si−s + Ss

Ti =


AT0 +B

Pi/2 Ti/2 + Si/2B

Ps Ti−s + SsB

for i = 1

for i = 2, 4, 8, . . . , s

for i = 2s, 3s, . . . , k

Table 1: The computation of matrix powers, sums of matrix powers, and the general iterative computation expressed as
recurrence relations. For simplicity of the presentation, we assume that log2 k, log2 s, and k

s
are integers.

of incremental maintenance. We study the time and space
complexity of both re-evaluation and incremental evalua-
tion over dynamic datasets. We show analytically that, in
most of these examples, incremental maintenance exhibits
better asymptotic behavior than re-evaluation in terms of
execution time. In other cases, a combination of the two
strategies offers the lowest time complexity. Note that our
incremental techniques are general and apply to a broader
range of linear algebra programs than those presented here.

5.1 Ordinary Least Squares
Ordinary Least Squares (OLS) is a classical method for

fitting a curve to data. The method finds a statistical es-
timate of the parameter β∗ best satisfying Y = Xβ. Here,
X = (m × n) is a set of predictors, and Y = (m × p) is
a set of responses that we wish to model via a function
of X with parameters β. The best statistical estimate is
β∗ = (XTX)−1XTY . Data practitioners often build regres-
sion models from incomplete or inaccurate data to gain pre-
liminary insights about the data or to test their hypotheses.
As new data points arrive or measurements become more
accurate, incremental maintenance avoids expensive recon-
struction of the whole model, saving time and frustration.

First, consider the cost of incrementally computing the
matrix inverse for changes in X. Let Z = XTX, W = Z−1,
and ∆X = u vT. As derived in Example 4.2,

∆Z =
[
v (XT u+ v uT u)

] [uTX
vT

]
=
[
p1 p2

] [qT1
qT2

]
The cost of computing p2 and q1 is O(mn). The vectors p1,
q1, p2, and q2 have size (n× 1).

As shown in Example 4.3, we could represent the delta
expressions of W as a sum of two outer products, ∆Z1(W ) =
r1 s

T
1 and ∆Z2(W ) = r2 s

T
2 ; for instance, s1 = WT q1 and r1

is the remaining subexpression in ∆Z1(W ).
The computation of r1, q1, r2, and q2 involves only matrix-

vector O(n2) operations. Then the overall cost of incremen-
tal maintenance of W is O(n2 + mn). For comparison, re-
evaluation of W takes O(nγ +mn2) operations.

Finally, we compute ∆β∗ for updates ∆X = u vT and
∆W = RST, where R =

[
r1 r2

]
and S =

[
s1 s2

]
are

(n×2) block matrices and ∆β∗ = RSTXT Y +W v uT Y +
RST v uT Y . The optimum evaluation order for this ex-
pression depends on the size of X and Y . In general, the
cost of incremental maintenance of β∗ is O(n2 +mp+ np+
mn). For comparison, re-evaluation of β∗ takes O(mnp +
n2 min (m, p)) operations.

Overall, considering both phases, the incremental mainte-
nance of β∗ for updates to X has lower computation com-
plexity than re-evaluation. This holds even when Y is of
small dimension (e.g., vector); the matrix inversion cost still
dominates in the re-evaluation method. The space complex-
ity of both strategies is O(n2).

5.2 Matrix Powers
Our next analysis includes the computation of Ak of a

square matrix A for some fixed k > 0. Matrix powers
play an important role in many different domains including
computing the stochastic matrix of a Markov chain after k
steps, solving systems of linear differential equations using
matrix exponentials, answering graph reachability queries
where k represents the maximum path length, and comput-
ing PageRank using the power method.

Matrix powers also provide the basis for the incremental
analysis of programs having more general forms of iterative
computation. In such programs we often decide to evaluate
several iteration steps at once for performance reasons, and
matrix powers allow us to express these compound transfor-
mations between iterations, as shown later on.

5.2.1 Iterative Models
Table 1 expresses the matrix power computation using the

iterative models presented in Section 3. In all cases, A is an
input matrix that changes over time, and Pk contains the fi-
nal result Ak. The linear model computes the result of every
iteration, while the exponential model makes progressively
larger leaps between consecutive iterations evaluating only
log2 k results. The skip model precomputes As in Ps using
the exponential model and then reuses Ps to compute every
sth subsequent iteration.

Expressing the matrix power computation as an iterative
process eases the complexity analysis of both re-evaluation
and incremental maintenance, which we show next.

5.2.2 Cost Analysis
We analyze the time and space complexity of re-evaluation

and incremental maintenance of Pk for rank-1 updates to A,
denoted by ∆A = u vT. We assume that A is a dense square
matrix of size (n× n).
Re-evaluation. Table 2 shows the time complexity of re-
evaluating Pk in different iterative models. The re-evaluation
strategy first updates A by ∆A and then recomputes Pk us-
ing the new value of A. All three models perform one O(nγ)
matrix-matrix multiplication per iteration. The total exe-
cution cost thus depends on the number of iteration steps:



Model (Sums of) Matrix Powers General form: Ti+1 = ATi +B

Re-evaluation Incremental Re-evaluation Incremental Hybrid

T
im

e Linear nγk n2k2 pn2k (n2 + pn)k2 pn2k

Exponential nγ log k n2k (nγ + pn2) log k (n2 + pn)k pn2 log k + n2k

Skip-s nγ(log s+ k
s
) n2 k2

s
nγ log s+ pn2(log s+ k

s
) (n2 + np) k

2

s
pn2(log s+ k

s
) + n2s

S
p
a
ce

Linear n2 n2k n2 + np n2 + knp n2 + knp

Exponential n2 n2 log k n2 + np (n2 + np) log k (n2 + np) log k

Skip-s n2 n2(log s+ k
s
) n2 + np (n2 + np) log s+ np k

s
(n2 + np) log s+ np k

s

Table 2: The time and space complexity (expressed in big-O notation) of the different evaluation techniques for the various
computational models under rank-1 updates to matrix A where 2 ≤ γ ≤ 3 as described in Section 3.

The exponential method clearly requires the fewest itera-
tions log2 k, followed by (log2 s+ k

s
) and k iterations of the

skip and linear models.
Table 2 also shows the space complexity of re-evaluation

in the three iterative models. The memory consumption of
these models is independent of the number of iterations. At
each iteration step these models use at most two previously
computed values, but not the full history of Pi values.
Incremental Maintenance. This strategy captures the
change in the result of every iteration as a product of two
low-rank matrices ∆Pi = Ui V

T
i . The size of Ui and Vi and,

in general, the rank of ∆Pi grow linearly with every itera-
tion step. We consider the case when k � n in which we
can profit from the low-rank delta representation. This is
a realistic assumption as many practical computations con-
sider large matrices and relatively few iterations; for exam-
ple, 80.7% of the pages in a PageRank computation converge
in less than 15 iterations [20].

Table 2 shows the time complexity of incremental main-
tenance of Pk in the three iterative models. Incremental
maintenance exhibits better asymptotic behavior than re-
evaluation in all three models, with the exponential model
clearly dominating the others. Appendix A presents a de-
tailed cost analysis.

The performance improvement comes at the cost of in-
creased memory consumption, as incremental maintenance
requires storing the result of every iteration step. Table 2
also shows the space complexity of incremental maintenance
for the three iterative models.

5.2.3 Sums of Matrix Powers
A form of matrix powers that frequently occurs in iterative

computations is a sum of matrix powers. The goal is to
compute Sk = I + A+ . . . Ak−2 + Ak−1, for a given matrix
A and fixed k > 0. Here, I is the identity matrix.

In Table 1 we express this computation using the itera-
tive models discussed earlier. In the exponential and skip
models, the computation of Sk relies on the results of matrix
power computation, denoted by Pi and evaluated using the
exponential model discussed earlier.

For all three models, the time and space complexity of
computing sums of matrix powers is the same in terms of
big-O notation as that of computing matrix powers. The
intuition behind this result is that the complexity of each
iteration step has remained unchanged. Each iteration step
performs one matrix addition more, but the execution cost
is still dominated by the matrix multiplication. We omit the
detailed analysis due to space constraints.

5.3 General Form: Ti+1 = ATi + B
The two examples of matrix power computation provide

the basis for the discussion about a more general form of
iterative computation: Ti+1 = ATi + B, where A and B
are input matrices. In contrast to the previous analysis of
matrix powers, this iterative computation involves also non-
square matrices, T = (n × p), A = (n × n), and B = (n ×
p), making the choice of the optimum evaluation strategy
dependent on the values of n, p, k, and s.

Many iterative algorithms share this form of computation
including gradient descent, PageRank, iterative methods for
solving systems of linear equations, and the power iteration
method for eigenvalue computation. Here, we analyze the
complexity of the general form of iterative computation, and
the same conclusions hold in all these cases.

5.3.1 Iterative Models
The iterative models of the form Ti+1 = ATi + B, which

are presented in Table 1, rely on the computations of ma-
trix powers and sums of matrix powers. To understand the
relationship between these computations, consider the iter-
ative process Ti+1 = ATi+B that has been “unrolled” for k
iteration steps. The direct formula for computing Ti+k from
Ti is Ti+k = Ak Ti + (Ak−1 + . . .+A+ I)B.

We observe that Ak and
∑k−1
i=0 A

i correspond to Pk and
Sk in the earlier examples, for which we have already shown
efficient (incremental) evaluation strategies. Thus, to com-
pute Ti, we maintain two auxiliary views Pi and Si evalu-
ating matrix powers and sums of matrix powers using the
exponential model discussed before.

5.3.2 Cost Analysis
We analyze the time and space complexity of re-evaluation

and incremental maintenance of Tk for rank-1 updates to A,
denoted by ∆A = u vT. We assume thatA is an (n×n) dense
matrix and that Ti and B are (n× p) matrices. We omit a
similar analysis for changes in B due to space constraints.

We also analyze a combination of the two strategies, called
hybrid evaluation, which avoids the factorization of delta
expressions but instead represents them as single matrices.
We consider this strategy because the size (n × p) of the
delta matrix ∆Ti might be insufficient to justify the use of
the factored form. For instance, consider an extreme case
when Ti is a column vector (p = 1), then ∆Ti has rank
1, and further decomposition into a product of two matrices
would just increase the evaluation cost. In such cases, hybrid
evaluation expresses ∆Ti as a single matrix and propagates
it to the subsequent iterations.



Table 2 presents the time complexity of re-evaluation, in-
cremental and hybrid evaluation of the Ti+1 = ATi + B
computation expressed in different iterative models for rank-
1 updates to A. The same complexity results hold for the
special form of iterative computation where B = 0. We
discuss the results for each evaluation strategy next. Ap-
pendix B shows a detailed cost analysis.

Table 2 also shows the space complexity of the three itera-
tive models when executed using different evaluation strate-
gies. The re-evaluation strategy maintains the result of Ti,
and if needed Pi and Si, only for the current iteration; it
also stores the input matrices A and B. In contrast, the
incremental and hybrid evaluation strategies materialize the
result of every iteration, thus the memory consumption de-
pends on the number of performed iterations.
Re-evaluation. The choice of the iterative model with the
best asymptotic behavior depends on the value of param-
eters n, p, k, and s. The time complexities from Table 2
shows that the linear model incurs the lowest time complex-
ity when p� n, otherwise the exponential model dominates
the others in terms of the running time. We analyze the cost
of each iterative model next. Note that the re-evaluation
strategy first updates A by ∆A and then recomputes Ti,
and if needed Pi and Si, using the new value of A.

• Linear model. The computation performs k iterations,
where each one incurs the cost of O(pn2), and thus the total
cost is O(pn2k).

• Exponential model. Maintaining Pi and Si takes O(nγ)
operations as discussed before, while recomputing Ti re-
quires O(pn2) operations. Overall, the re-evaluation cost
is O((nγ + pn2)logk).

• Skip model. The skip model combines the above two
models. Maintaining Ps and Ss takes O(nγ log s) operations
as shown earlier, while recomputing Ti costs O(pn2) per
iteration. The total number of (log2 s+ k

s
) iterations yields

the total cost of O(nγ log s+ pn2(log s+ k
s
)).

Incremental Maintenance. Table 2 shows that incremen-
tal evaluation of Tk using the exponential model incurs the
lowest time complexity among the three iterative models. It
also outperforms complete re-evaluation when p > n, but the
performance benefit diminishes as p becomes smaller than n.
For the extreme case when p = 1, complete re-evaluation and
incremental maintenance have the same asymptotic behav-
ior, but in practice re-evaluation performs fewer operations
as it avoids the overhead of computing and propagating the
factored deltas. We show next how to combine the best of
both worlds to lower the execution time when p� n.

Hybrid evaluation. Hybrid evaluation departs from in-
cremental maintenance in that it represents the change in
the result of every iteration as a single matrix instead of an
outer product of two vectors. The benefit of hybrid eval-
uation arises when the rank of ∆Ti = (n × p) is not large
enough to justify the use of the factored form; that is, when
the dimension p or n is comparable with k.

Table 2 shows the time complexity of hybrid evaluation
of the Ti+1 = ATi + B computation expressed in different
iterative models for rank-1 updates to A. For the extreme
case when p = 1, the skip model performs O(log s+ k

s
+ s)

matrix-vector multiplications. In comparison, re-evaluation
and incremental maintenance perform O(k) such operations.
Thus, the skip model of hybrid evaluation bears the promise
of better performance for the given values of k and s.

Figure 2: The Linview system overview

6. SYSTEM OVERVIEW
We have built the Linview system that implements incre-

mental maintenance of analytical queries written as (itera-
tive) linear algebra programs. It is a compilation framework
that transforms a given program, based on the techniques
discussed above, into efficient update triggers optimized for
the execution on different runtime engines. Fig. 2 gives an
overview of the system.
Workflow. The Linview framework consists of several com-
pilation stages: the system transforms the code written in
APL-style languages (e.g., R, MATLAB, Octave) into an ab-
stract syntax tree (AST), performs incremental compilation,
optimizes produced update triggers, and generates efficient
code for execution on single-node (e.g., MATLAB) or par-
allel processing platforms (e.g., Spark, Mahout, Hadoop).
The generated code consists of trigger functions for changes
in each input matrix used in the original program.

The optimizer analyzes intra- and inter-statement depen-
dencies in the input program and performs transformations,
like common subexpression elimination and copy propaga-
tion [28], to reduce the overall maintenance cost. In this
process, the optimizer might define a number of auxiliary
materialized views that are maintained during runtime to
support efficient processing of the trigger functions.
Extensibility. The Linview framework is also extensible:
one may add new frontends to transform different input lan-
guages into AST or new backends that generate code for var-
ious execution environments. At the moment, Linview sup-
ports generation of Octave programs that are optimized for
execution in multiprocessor environments, as well as Spark
code for execution on large-scale cluster platforms. The ex-
perimental section presents results for both backends.
Distributed Execution. The competitive advantage of in-
cremental computation over re-evaluation – reduced compu-
tation time – is even more pronounced in distributed envi-
ronments. Generated incremental programs are amenable
to distributed execution as they are composed of the stan-
dard matrix operations, for which many specialized tools of-
fer scalable implementations, like ScaLAPACK, Intel MKL,
and Mahout. In addition, by transforming expensive ma-
trix operations to work with smaller datasets and represent-
ing changes in factored form, our incremental techniques
also minimize the communication cost as less data has to be
shipped over the network.
Data Partitioning. Linview analyzes data flow depen-
dencies and data access patterns in a generated incremental
program to decide on a partitioning scheme that minimizes
data movement. A frequently occurring expression in trigger
programs is a multiplication of a large matrix and a small
delta matrix, typically performed in both directions (e.g.,
A∆A and ∆AA in Example 1.1). To keep such computa-
tions strictly local, Linview partitions large matrices both
horizontally and vertically, that is, each node contains one
block of rows and one block of columns of a given matrix.
Although such a hybrid partitioning strategy doubles the
memory consumption, it allows the system to avoid expen-
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Figure 3: Performance Evaluation of Incremental Maintenance using Octave and Spark

sive reshuffling of large matrices, requiring only small delta
vectors or low-rank matrices to be communicated.

7. EXPERIMENTS
This section demonstrates the potential of Linview over

traditional re-evaluation techniques by comparing the av-
erage view refresh time for common data mining programs
under a continuous stream of updates. We have built an
APL-style frontend where users can provide their programs
and annotate dynamic matrices. The Linview backend con-
sists of two code generators capable of producing Octave and
Spark executable code, optimized for the execution in mul-
tiprocessor and distributed environments.

For both Spark and Octave backends, our results show
that: a) Incremental view maintenance outperforms tradi-
tional re-evaluation in almost all cases, validating the com-
plexity results of Section 5; b) The performance gap be-
tween re-evaluation and incremental computation increases
with higher dimensions; c) The hybrid evaluation strategy
from Section 5.3, which combines re-evaluation and incre-
mental computation, exhibits best performance when the
input matrices are not large enough to justify the factored
delta representation.
Experimental setup. To evaluate Linview’s performance
using Octave, we run experiments on a 2.66GHz Intel Xeon
with 2 × 6 cores, each with 2 hardware threads, 64GB of
DDR3 RAM, and Mac OS X Lion 10.7.5. We execute the
generated code using GNU Octave v3.6.4, an APL-style nu-
merical computation framework, which relies on the ATLAS
library for performing multi-threaded BLAS operations.

For large-scale experiments, we use an Amazon EC2 clus-
ter with 26 compute-optimized instances (c3.8xlarge). Each
instance has 32 virtual CPUs, each of them is a hardware
hyper-thread from a 2.8GHz Intel Xeon E5-2680v2 proces-
sor, 60GB of RAM, and 2× 320GB SSD. The instances are
placed inside a non-blocking 10 Gigabit Ethernet network.

We run our experiments on top of the Spark engine –
an in-memory parallel processing framework for large-scale
data analysis. We configure Spark to launch 4 workers on

one EC2 instance – 100 workers in total, each with 8 vir-
tual CPUs and 13.6GB of RAM – and one master node
on a separate EC2 instance. The generated Spark code re-
lies on Jblas for performing matrix operations in Java. The
Jblas library is essentially a wrapper around the BLAS and
LAPACK routines. For the purpose of our experiments,
we compiled Jblas with AMD Core Math Library v5.3.1
(ACML) – AMD’s BLAS implementation optimized for high
performance. Jblas uses the ACML native library only for
O(nγ) operations, like matrix multiplication.

We implement matrix multiplication on top of Spark us-
ing the simple parallel algorithm [16], and we partition in-
put matrices in a 10 × 10 grid. For the scalability test we
use square grids of smaller sizes. For incremental evaluation,
which involves multiplication with low-rank matrices, we use
the data partitioning scheme explained in Section 6; we split
the data horizontally among all available nodes, then broad-
cast the smaller relation to perform local computations, and
finally concatenate the result at the master node. The Spark
framework carries out the data shuffling among nodes.
Workload. Our experiments consider dense random matri-
ces up to (100K× 100K) in size, containing up to 10 billion
entries. All matrices have double precision and are precondi-
tioned appropriately for numerical stability. For incremental
evaluation, we also precompute the initial values of all auxil-
iary views and preload these values before the actual compu-
tation. We generate a continuous random stream of rank-1
updates where each update affects one row of an input ma-
trix. On every such change, we re-evaluate or incrementally
maintain the final result. The reported values show the av-
erage view refresh time over 3 runs; the standard deviation
was less than 5% in each experiment.
Notation. Throughout the evaluation discussion we use the
following notation: a) The prefixes Reeval, Incr, and Hy-
brid denote traditional re-evaluation, incremental process-
ing, and hybrid computation, respectively; b) The suffixes
Lin, Exp, and Skip-s represent the linear, exponential, and
skip-s models, respectively. These evaluation models are
described in detail in Section 5 and Table 2.



Ordinary Least Squares. We conduct a set of experi-
ments to evaluate the statistical estimator β∗ using OLS
as defined in Section 5.1. Exceptionally in this example, we
present only the Octave results as the current Spark backend
lacks the support for re-evaluation of matrix inversion. The
predictors matrix X has dimension (n×n) and the responses
matrix Y is of dimension (n×p). Given a continuous stream
of updates on X, Fig. 3e compares the average execution
time of re-evaluation Reeval and incremental maintenance
Incr of β∗ with different sizes of n. We set p = 1 because
this setting represents the lowest cost for Reeval, as the cost
is dominated by the matrix inversion re-evaluation O(nγ).
The graph illustrates the superiority of Incr over Reeval
in computing the OLS estimates. Notice the asymptotically
different behavior of these two graphs – the performance
gap between Reeval and Incr increases with matrix size,
from 3.56x for n = 4, 000 to 11.45x for n = 20, 000. This is
consistent with the complexity results from Section 5.1.
Matrix Powers. We analyze the performance of the ma-
trix powers Ak evaluation, where A has dimension (n× n),
by varying different parameters of the computational model.
First, we evaluate the performance of the evaluation strate-
gies presented in Section 5.2, for a fixed dimension size and
number of iterations k = 16. Fig. 3a illustrates the av-
erage view refresh time of Octave generated programs for
n = 10, 000 and Spark generated programs for n = 30, 000.
In both implementations, the results demonstrate the virtue
of Incr over Reeval and the efficiency of IncrExp over In-
crLin and IncrSkip-s.

Next, we explore various scalability aspects of the matrix
powers computation. Fig. 3b reports on the Octave perfor-
mance over larger dimension sizes n, given a fixed number of
iteration steps k = 16; Fig. 3b also illustrates the Spark per-
formance for even larger matrices. In both cases, IncrExp
outperforms ReevalExp with similar asymptotic behavior.
As in the OLS example, the performance gap increases with
higher dimensionality.

Fig. 3b shows the Spark re-evaluation results for matrices
up to size n = 50, 000. Beyond this limit, the running time of
re-evaluation exceeds one hour due to an increased commu-
nication cost and garbage collection time. The re-evaluation
strategy has a more dynamic model of memory usage due to
frequent allocation and deallocation of large memory chunks
as the data gets shuffled among nodes. In contrast, incre-
mental evaluation avoids expensive communication by send-
ing over the network only relatively small matrices. Up until
n = 90, 000, we see a linear increase in the IncrExp run-
ning time. However, as discussed in Section 5, we expect the
O(n2) complexity for incremental evaluation. The explana-
tion lies in that the generated Spark code distributes the
matrix-vector computation among many nodes and, inside
each node, over multiple available cores, effectively achieving
linear scalability. For n = 100, 000, incremental evaluation
hits the resource limit in this cluster configuration, causing
garbage collection to increase the average view refresh time.
Memory Requirements. Table 3 presents the memory
requirements and Spark single-update execution times of
ReevalExp and IncrExp for the A16 computation and var-
ious matrix dimensions. The last row represents the ratio
between the speedup achieved using incremental evaluation
and the memory overhead imposed by maintaining the re-
sults of intermediate iterations. We conclude that the bene-

Matrix Size 20K 30K 40K 50K

Memory ReevalExp 8.9 20.1 35.8 55.9

(GB) IncrExp 29.8 67.1 119.2 186.3

Time ReevalExp 95.0 203.4 667.3 1328.7

(sec) IncrExp 9.6 14.1 21.0 24.9

Speedup vs. Memory Cost 2.99 4.31 9.55 16.00

Table 3: The memory requirements and Spark view refresh
times of ReevalExp and IncrExp for A16 and different ma-
trix sizes. The last row is the ratio between the speedup and
memory overhead incurred by maintaining auxiliary views.

fit of investing more memory resources increases with higher
dimensionality of the computation.

Next, we evaluate the scalability of the matrix powers
computation for different numbers of Spark nodes. We eval-
uate various square grid configurations for re-evaluation of
A16, where n = 30, 0004. Fig. 3f shows that our Spark imple-
mentation of matrix multiplication scales with more nodes.
Also note that incremental evaluation is less susceptible to
the number of nodes than re-evaluation; the average time
per view refresh varies from 10 to 26 seconds.

Finally, in Fig. 3c, we vary the number of iteration steps
k given a fixed dimension, n = 10, 000 for Octave and n =
30, 000 for Spark. The Octave performance gap between In-
crExp and ReevalExp increases with more iterations up
to k = 256 when the size of the delta vectors (10, 000× 256)
becomes comparable with the matrix size. The Spark imple-
mentation broadcasts these delta vectors to each worker, so
the achieved speedups decrease with larger iteration num-
bers due to the increased communication costs. However, as
argued in Section 5.2, many iterative algorithms in practice
require only a few iterations to converge, and for those the
communication costs stay low.
Sums of Powers. We analyze the computation of sums
of matrix powers, as described in Section 5.2.3. Since it
shares the same complexity as the matrix powers compu-
tation, we present only the performance of the exponential
models. Fig. 3d compares IncrExp and ReevalExp on
various dimension sizes n using Octave and Spark, for a
given fixed number of iterations k = 16. Similarly to the
matrix powers results from Fig. 3b, IncrExp outperforms
traditional ReevalExp, and the achieved speedup increases
with n. Beyond n = 40, 000, the Spark re-evaluation exceeds
the one-hour time limit.
General Form. We evaluate the general iterative model
of computation Ti+1 = ATi + B, where Tn×p, An×n, and
Bn×p, using the following settings (due to space constraints
we show only important Spark results):

• B=0. The iterative computation degenerates to Ti+1 =
ATi, which represents matrix powers when p = n, and thus
we explore an alternative setting of 1 ≤ p < n. For small val-
ues of p, the Lin model has the lowest complexity as it avoids
expensive O(nγ) matrix multiplications. Fig. 3g shows the
results of different evaluation strategies, given a fixed di-
mension n = 30, 000 and iteration steps k = 16. For p = 1,
HybridLin outperforms ReevalLin by 16% and IncrLin
by 53%. However, the evaluation cost of both HybridLin
and ReevalLin increases linearly with p. IncrLin exhibits

4
To achieve perfect load balance with different grid configurations,

we choose the matrix size to be the closest number to 30, 000 that is
divisible by the total number of workers.



Zipf factor 5.0 4.0 3.0 2.0 1.0 0.0

Octave (10K) 6.3 6.8 7.5 10.9 68.4 236.5

Spark (30K) 28.1 41.5 67.3 186.1 508.9 1678.8

Table 4: The average Octave and Spark view refresh times
in seconds for IncrExp of A16 and a batch of 1, 000 updates.
The row update frequency is drawn from a Zipf distribution.

the best performance among them when p is large enough
to justify the factored delta representation.

• B6=0. We study an analytical query evaluating linear
regression using the gradient descent algorithm of the form
Θi+1 = Θi − XT (XΘi − Y ). We adapt this form to the
general iterative model by substituting A = I − XTX and
B = XTY , where I represents the identity matrix. Fig. 3h
shows the performance of different iterative models for both
re-evaluation and incremental computation, given fixed sizes
n = 30, 000 and p = 1, 000 and a fixed number of iterations
k = 16. Note the logarithmic scale on the y axis. The Lin
model exhibits the best re-evaluation performance; the Skip-
4 model has the lowest view refresh time for incremental
evaluation. Overall, incremental computation outperforms
traditional re-evaluation by a factor of 36.7x.
Batch updates. We analyze the performance of incremen-
tal matrix powers computation for batch updates. We sim-
ulate a use case in which certain regions of the input matrix
are changed more frequently than the others, and the fre-
quency of row updates is described using a Zipf distribution.
Table 4 shows the performance of incremental evaluation
for a batch of 1, 000 updates and different Zipf factors. As
the row update frequency becomes more uniform, that is,
more rows are affected by a given batch, IncrExp loses its
advantage over ReevalExp because the delta matrices be-
come larger and more expensive to compute and distribute.
To put these results in the context, a single update of a
n = 10, 000 matrix in Octave takes 99.1 and 6.3 seconds on
average for ReevalExp and IncrExp; For one update of
a n = 30, 000 matrix using Spark, ReevalExp and Incr-
Exp take 203.4 and 14.1 seconds on average. We observe
that the Spark implementation exhibits huge communica-
tion overhead, which significantly prolongs the running time.
We plan to investigate this issue in our future work.
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APPENDIX
A. MATRIX POWERS

We analyze the time complexity of incremental view main-
tenance and hybrid evaluation for the computation of ma-
trix powers discussed in Section 5 for rank-1 updates to A,
denoted by ∆A = u vT. The analysis considers the three
iterative models of computation from Section 3.

• In the linear model, ∆P1 = u vT, thus U1 = u and V1 = v.
For i > 1,

∆Pi =
[
U1 (AUi−1 + U1 (V T

1 Ui−1))
] [V T

1 Pi−1

V T
i−1

]
where Ui and Vi are (n× i) block matrices (provable by in-
duction), and A and Pi are (n×n) matrices. The evaluation
cost of Pi, when i > 1, is:

costLin(Pi) = cost(Ui) + cost(Vi) + cost(Ui V
T
i )

= 2n2i+ 3n(i− 1).

The evaluation cost of all iterations in program P is

costLin(P) = n2 +
k∑
i=2

(2n2i+ 3n(i− 1))

= n2(k2 + k − 1) +
3

2
nk(k − 1) = O(n2k2).

• In the exponential model, ∆P1 = u vT, thus U1 = u and
V1 = v. For i > 1,

∆Pi =
[
Ui/2 (Pi/2 Ui/2 + Ui/2 (V T

i/2 Ui/2))
] [V T

i/2 Pi/2
V T
i/2

]
where Ui and Vi are (n × i) block matrices, and Pi is an
(n× n) matrix. The evaluation cost of Pi, when i > 1, is

costExp(Pi) = cost(Ui) + cost(Vi) + cost(Ui V
T
i )

= 2n2i+ n

(
i2

2
+
i

2

)
.

The evaluation cost of all iterations in program P is:

costExp(P) = n2 +
∑

i=2,4,8,...k

(2n2i+ n
i2

2
+ n

i

2
)

= n2(4k − 3) + n
(k − 1)(2k + 5)

3
= O(n2k).

• In the skip model, we first evaluate Ts using the ex-
ponential model in O(n2s) time as discussed above. Then
∆Ps = Us V

T
s , where Us and Vs are (n× s) block matrices.

For i > s,

∆Pi =
[
Us (Ps Ui−s + Us (V T

s Ui−s))
] [V T

s Pi−s
V T
i−s

]
where Ui and Vi are (n × i) block matrices, and Pi is an
(n× n) matrix. The evaluation cost of Pi, when i > s, is

costSkip(Pi) = cost(Ui) + cost(Vi) + cost(Ui V
T
i )

= 2n2i+ n(2s+ 1)(i− s).

The evaluation cost of all iterations in program P is

costSkip(P) = O(n2s) +
∑

i=2s,3s,...k

(2n2i+ n(2s+ 1)(i− s))

= O(n2s) +O
(
n2 k

2

s

)
= O

(
n2 k

2

s

)
.

B. GENERAL FORM: TI+1 = ATI + B
We analyze the time complexity of incremental view main-

tenance for the computation of matrix powers discussed in
Section 5 for rank-1 updates to A, denoted by ∆A = u vT.
The analysis considers the three iterative models of compu-
tation from Section 3.

The incremental strategy maintains the result of Ti, and if
needed Pi and Si, for updates to A, denoted by ∆A = u vT.
The delta expressions are in the factored form as ∆Ti =
Ui Vi, ∆Pi = QiR

T
i , and ∆Si = ZiW

T
i .

• In the linear model, ∆A = u vT, thus U1 = u and V1 =
TT
0 v. For i > 1,

∆Ti =
[
u (AUi−1 + u (vT Ui−1))

] [vT Ti−1

V T
i−1

]
where Ui = (n× i) and Vi = (p× i) (provable by induction).
The evaluation cost of Ti, when i > 1, is

costLin(Ti) = cost(Ui) + cost(Vi) + cost(Ui V
T
i )

= n2(i− 1) + 3n(i− 1) + np(i+ 1).

The evaluation cost of all iterations in program P is

costLin(P) = 2np+

k∑
i=2

(n2(i− 1) + np(i+ 1) +O(ni))

= O((n2 + np)k2).

• In the exponential model, ∆A = u vT, thus U1 = u and
V1 = TT

0 v. Let ∆Pi = QiR
T
i and ∆Si = ZiW

T
i . For i > 1,

Ui =
[
Qi/2 (Pi/2 Ui/2 +Qi/2 (RT

i/2 Ui/2)) Zi/2
]

Vi =
[
TT
i/2Ri/2 Vi/2 BT dWi/2

]
where Ui = (n× (2i− 1)) and Vi = (p× (2i− 1)). The eval-
uation cost of Ti, when i > 1, disregarding the computation
of Pi and Si, is

costExp(Ti) = cost(Ui) + cost(Vi) + cost(Ui V
T
i )

= n2(i− 1) + np(3i− 1) + n(i+ 1)(i− 1).

The evaluation cost of all iterations in program P is

costExp(P) =O(kn2)+∑
i=2,4,...k

(n2(i− 1) + np(3i− 1) +O(ni2))

=O((n2 + np)k).

• In the skip model, we first evaluate Ts using the exponen-
tial model in O(s(n2 + np)) time as discussed above. Then
∆Ts = Us V

T
s , where Us and Vs are (n × (2s − 1)) block

matrices. For i > s,

∆Ti =
[
Qs (Ps Ui−s +Qs (RT

s Ui−s)) Zs
] RT

s Ti−s
V T
i−s

WT
s B


where Ui and Vi are (n× (2i− 1)) block matrices. The eval-
uation cost of Ti, when i > s, disregarding the computation
of Pi and Si, is

costSkip(Ti) = cost(Ui) + cost(Vi) + cost(Ui V
T
i )

= (2n2(i− s)− 1) + np(2i− 1) +O(n).



The evaluation cost of all iterations in program P is

costSkip(P) =O((n2 + np) log s)+∑
i=2s,3s,...k

(n2(2(i− s)− 1) + np(2i− 1) +O(n))

=O((n2 + np) log s) +O
(

(n2 + np)
k2

s

)
=O

(
(n2 + np)

k2

s

)
.

We analyze the cost of the hybrid evaluation strategy.

• In the linear model, ∆A = u vT and ∆T1 = ∆AT0. For
i > 1,

∆Ti = u vT Ti−1 +A∆Ti−1 + u vT ∆Ti−1.

The evaluation cost of Ti, when i > s, is

costLin(Ti) = cost(∆Ti) = pn2 + 6np.

The evaluation cost of all iterations in program P is

costLin(P) = n2 +

k∑
i=2

(pn2 + 6np) = O(pn2k).

• In the exponential model, ∆A = u vT and ∆T1 = ∆AT0.
Let ∆Pi = QiR

T
i and ∆Si = ZiW

T
i . For i > 1,

∆Ti =Qi/2R
T
i/2 Ti/2 + Pi/2 ∆Ti/2+

Qi/2R
T
i/2 ∆Ti/2 + Zi/2W

T
i/2B.

The evaluation cost of Ti, when i > 1, disregarding the
computation of Pi and Si, is

costExp(Ti) = cost(∆Ti) = pn2 + 3np(i+ 1).

The evaluation cost of all iterations in program P is

costExp(P) = O(n2k) +
∑

i=2,4,8,...k

(pn2 + 3np(i+ 1))

= O(pn2 log k + n2k).

• In the skip model, we first evaluate Ts using the expo-
nential model in O(pn2 log s+ sn2) time as discussed above.
For i > s,

∆Ti = QsR
T
s Ti−s + Ps ∆Ti−s +QsR

T
s ∆Ti−s + ZsW

T
s B.

The evaluation cost of Ti, when i > s, disregarding the
computation of Pi and Si, is

costSkip(Ti) = cost(∆Ti) = pn2 + 6nps+ 3np.

The evaluation cost of all iterations in program P is

costSkip(P) =O(pn2 log s+ n2s)+∑
i=2s,3s,...k

(pn2 + 6nps+ 3np)

=O(pn2 log s+ n2s) +O
(
pn2 k

s

)
=O

(
pn2

(
log s+

k

s

)
+ n2s

)
.
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