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ABSTRACT
The goal of multi-objective query optimization (MOQO) is
to find query plans that realize a good compromise between
conflicting objectives such as minimizing execution time and
minimizing monetary fees in a Cloud scenario. A previously
proposed exhaustive MOQO algorithm needs hours to op-
timize even simple TPC-H queries. This is why we pro-
pose several approximation schemes for MOQO that gener-
ate guaranteed near-optimal plans in seconds where exhaus-
tive optimization takes hours.

We integrated all MOQO algorithms into the Postgres op-
timizer and present experimental results for TPC-H queries;
we extended the Postgres cost model and optimize for up
to nine conflicting objectives in our experiments. The pro-
posed algorithms are based on a formal analysis of typical
cost functions that occur in the context of MOQO. We iden-
tify properties that hold for a broad range of objectives and
can be exploited for the design of future MOQO algorithms.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing

Keywords
Query optimization; multi-objective optimization

1. INTRODUCTION
Minimizing execution time is the only objective in clas-

sical query optimization [23]. Nowadays, there are however
many scenarios in which additional objectives are of interest
that should be considered during query optimization. This
leads to the problem of multi-objective query optimization
(MOQO) in which the goal is to find a query plan that re-
alizes the best compromise between conflicting objectives.
Consider the following example scenarios.
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Scenario 1. A Cloud provider lets users submit queries on
data that resides in the Cloud. Queries are processed in the
Cloud and users are billed according to the accumulated pro-
cessing time over all nodes that participated in processing
a certain query. The processing time of aggregation queries
can be reduced by using sampling but this has a negative
impact on result quality. From the perspective of the users,
this leads to the three conflicting objectives of minimizing
execution time, minimizing monetary costs, and minimiz-
ing the loss in result quality. Users specify preferences in
their profiles by setting weights on different objectives, rep-
resenting relative importance, and by optionally specifying
constraints (e.g., an upper bound on execution time). Upon
reception of a query, the Cloud provider needs to find a
query plan that meets all constraints while minimizing the
weighted sum over different cost metrics.

Scenario 2. A powerful server processes queries of mul-
tiple users concurrently. Minimizing the amount of system
resources (such as buffer space, hard disk space, I/O band-
width, and number of cores) that are dedicated for process-
ing one specific query and minimizing that query’s execution
time are conflicting objectives (each specific system resource
would correspond to an objective on its own). Upon recep-
tion of a query, the system must find a query plan that repre-
sents the best compromise between all conflicting objectives,
considering weights and bounds defined by an administrator.

The main contribution in this paper are several MOQO
algorithms that are generic enough to be applicable in a vari-
ety of scenarios (including the two scenarios outlined above)
and are much more efficient than prior approaches while they
formally guarantee to generate near-optimal query plans.

1.1 State of the Art
The goal of MOQO, according to our problem model, is to

find query plans that minimize a weighted sum over different
cost metrics while respecting all cost bounds. This means
that multiple cost metrics are finally combined into a single
metric (the weighted sum); it is still not possible to reduce
MOQO to single-objective query optimization and use clas-
sic optimization algorithms such as the one by Selinger [23].
Ganguly et al. have thoroughly justified why this is not pos-
sible [11]; we quickly outline the reasons in the following. Al-
gorithms that prune plans based on a single cost metric must
rely on the single-objective principle of optimality: replac-
ing subplans (e.g., plans generating join operands) within
a query plan by subplans that are better according to that
cost metric cannot worsen the entire query plan according
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to that metric. This principle breaks when the cost metric
of interest is a weighted sum over multiple metrics that are
calculated according to diverse cost formulas.

Example 1. Assume that each query plan is associated
with a two-dimensional cost vector of the form (t, e) where t
represents execution time in seconds and e represents energy
consumption in Joule. Assume one wants to minimize the
weighted sum over time and energy with weight 1 for time
and weight 2 for energy, i.e. the sum t + 2e. Let p be a
plan that executes two subplans p1 with cost vector (7, 1)
and p2 with cost vector (6, 2) in parallel. The cost vector
of p is (7, 3) since its execution time is the maximum over
the execution times of its subplans (7 = max(7, 6)) while its
energy consumption is the sum of the energy consumptions
of its subplans (3 = 1+2). Replacing p1 within p by another
plan p′1 with cost vector (1, 3) changes the cost vector of p
from (7, 3) to (6, 5). This means that the weighted cost of
p becomes worse (it increases from 13 to 16) even if the
weighted cost of p′1 (7) is better than the one of p1 (9).

The example shows that the single-objective principle of
optimality can break when optimizing a weighted sum of
multiple cost metrics. Based on that insight, Ganguly et
al. proposed a MOQO algorithm that uses a multi-objective
version of the principle of optimality [11]. This algorithm
guarantees to generate optimal query plans; it is however too
computationally expensive for practical use as we will show
in our experiments. The algorithm by Ganguly et al. is the
only MOQO algorithm that we are aware of which is generic
enough to handle all objectives that were mentioned in the
example scenarios before. Most existing MOQO algorithms
are specific to certain combinations of objectives where the
single-objective principle of optimality holds [2, 28, 16].

1.2 Contributions and Outline
We summarize our contributions before we provide details:

• Our primary contribution are two approximation
schemes for MOQO that scale to many objectives.
They formally guarantee to return near-optimal query
plans while speeding up optimization by several orders
of magnitude in comparison with exact algorithms.

• We formally analyze cost formulas of many rele-
vant objectives in query optimization and derive sev-
eral common properties. We exploit these properties
to design efficient approximation schemes and believe
that our observations can serve as starting point for
the design of future MOQO algorithms.

• We integrated the exact MOQO algorithm by Ganguly
et al. [11] and our own MOQO approximation algo-
rithms into the Postgres optimizer and experimen-
tally compare their performance on TPC-H queries.

Our approximation schemes formally guarantee to gener-
ate query plans whose cost is within a multiplicative fac-
tor α of the optimum in each objective. Parameter α can
be tuned seamlessly to trade near-optimality guarantees for
lower computational optimization cost. The near-optimality
guarantees distinguish our approximation schemes from pure
heuristics, since heuristics can produce arbitrarily poor plans
in the worst case. We show in our experimental evaluation
that our approximation schemes reduce query optimization

time from hours to seconds, comparing with an existing ex-
act MOQO algorithm proposed by Ganguly et al. that is
referred to as EXA in the following.

We discuss related work in Section 2 and introduce the
formal model in Section 3. Our experimental evaluation is
based on an extended version of Postgres that we describe
in Section 4. Note that our algorithms for MOQO are not
specific to Postgres and can be used within any database
system. We present the first experimental evaluation of the
formerly proposed EXA in Section 5. Our experiments re-
late the poor scalability of EXA to the high number of Pareto
plans (i.e., plans representing an optimal tradeoff between
different cost objectives) that it needs to generate. The
representative-tradeoffs algorithm (RTA), that we present
in Section 6, generates only one representative for multi-
ple Pareto plans with similar cost tradeoffs and is therefore
much more efficient than EXA. We show that most common
objectives in MOQO allow to construct near-optimal plans
for joining a set of tables out of near-optimal plans for join-
ing subsets. Due to that property, RTA formally guarantees
to generate near-optimal query plans if user preferences are
expressed by associating objectives with weights (represent-
ing relative importance). If users can specify cost bounds
in addition to weights (representing for instance a mone-
tary budget or a deadline), RTA cannot guarantee to gener-
ate near-optimal plans anymore and needs to be extended.
We present the iterative-refinement algorithm (IRA) in Sec-
tion 7. IRA uses RTA to generate a representative plan set in
every iteration. The approximation precision is refined from
one iteration to the next such that the representative plan
set resembles more and more the Pareto plan set. IRA stops
once it can guarantee that the generated plan set contains a
near-optimal plan. A carefully selected precision refinement
policy guarantees that the amount of redundant work (by re-
peatedly generating the same plans in different iterations) is
negligible. We analyze the complexity of all presented algo-
rithms and experimentally compare our two approximation
schemes (RTA and IRA) against EXA in Section 8.

2. RELATED WORK
Algorithms for Single-Objective Query Optimization

(SOQO) are not applicable to MOQO or cannot offer any
guarantees on result quality. Selinger et al. [23] presented
one of the first exact algorithms for SOQO which is based
on dynamic programming. Multi-Objective Query Op-
timization is the focus of this paper. The algorithm by
Ganguly et al. [11] is a generalization of the SOQO algo-
rithm by Selinger et al. This algorithm is able to generate
optimal query plans considering a multitude of objectives
with diverse cost formulas. We describe it in more detail
later, as we use it as baseline for our experiments.

Algorithms for MOQO have not been experimentally eval-
uated for more than three objectives. They are usually tai-
lored to very specific combinations of objectives. Neither the
proposed algorithms nor the underlying algorithmic ideas
can be used for many-objective QO with diverse cost for-
mulas. Allowing only additive cost formulas (and user pref-
erence functions) [28, 16] excludes for instance run time as
objective in parallel execution scenarios (where time is cal-
culated as maximum over parallel branches). The approach
by Aggarwal et al. [2] is specific to the two objectives run
time and confidence. Multiple objectives are only consid-
ered by selecting an optimal set of table samples prior to
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join ordering which does not generalize to different objec-
tives. Optimizing different objectives separately misses op-
timal tradeoffs between conflicting objectives [1]. Separat-
ing join ordering and multi-objective optimization (e.g., by
generating a time-optimal join tree first, and mapping join
operators to sites considering multiple objectives later [12,
21]) assumes that the same join tree is optimal for all ob-
jectives. This is only valid in special cases. Papadimitriou
and Yannakakis [21] present multi-objective approximation
algorithms for mapping operators to sites. Their algorithms
do not optimize join order and the underlying approach does
not generalize to more than one bounded objective. Algo-
rithms for multi-objective optimization of data processing
workflows [24, 25, 17] are not directly applicable to MOQO.
Furthermore, the proposed approaches can be classified into
heuristics that do not offer near-optimality guarantees [25,
17], and exact algorithms that do not scale [24].

Parametric Query Optimization (PQO) assumes that
cost formulas depend on parameters with uncertain values.
The goal is for instance to find robust plans [4, 3] or plans
that optimize expected cost [7]. PQO and MOQO share
certain problem properties while subtle differences prevent
us from applying PQO algorithms to MOQO problems in
general. Several approaches to PQO split for instance the
PQO problem into several SOQO problems [10, 15, 5] by fix-
ing parameter values. This is not possible for MOQO since
cost values, unlike parameter values, are only known once
a query plan is complete and cannot be fixed in advance.
Other PQO algorithms [15] directly work with cost functions
instead of scalar values during bottom-up plan construction.
This assumes that all parameter values can be selected out of
a connected interval which is typically not the case for cost
objectives such as time or disc footprint. Our work connects
to Iterative Query Optimization since we propose itera-
tive algorithms. Kossmann and Stocker [19] propose several
iterative algorithms that break the optimization of a large
table set into multiple optimization runs for smaller table
sets, thereby increasing efficiency. Their algorithm is only
applicable to SOQO and does not offer formal guarantees
on result quality. Work on Skyline Queries [18] and Op-
timization Queries [13] focuses on query processing while
we focus on query optimization. Our work is situated in
the broader area of Approximation Algorithms. We use
generic techniques such as coarsening that have been applied
to other optimization problems [8, 20]; the corresponding al-
gorithms are however not applicable to query optimization
and the specific coarsening methods differ.

3. FORMAL MODEL
We represent queries as set of tables Q that need to be

joined. This model abstracts away details such as join predi-
cates (that are however considered in the implementations of
the presented algorithms). Query plans are characterized
by the join order and the applied join and scan operators,
chosen out of a set J of available operators. The two plans
generating the inputs for the final join in a query plan p are
the sub-plans of p. The set O contains all cost objectives
(e.g., O = {buffer space, execution time}); we assume that
a cost model is available for every objective that allows to
estimate the cost of a plan. The function c(p) denotes the
multi-dimensional cost of a plan p (bold font distinguishes
vectors from scalar values). Cost values are real-valued and
non-negative. Let o ∈ O an objective, then co denotes the
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Figure 1: The two MOQO problem variants

cost for o within vector c. Let W a vector of non-negative
weights, then the function CW(c) =

∑
o∈O coWo denotes

the weighted cost of c. Let B a vector of non-negative
bounds (setting Bo = ∞ means no bounds), then cost vec-
tor c exceeds the bounds if there is at least one objective
o with co > Bo. Vector c respects the bounds otherwise.
The following two variants of the MOQO problem differ by
the expressiveness of the user preference model.

Definition 1. Weighted MOQO Problem. A weighted
MOQO problem instance is defined by a tuple I = 〈Q,W〉
where Q is a query and W a weight vector. A solution is a
query plan for Q. An optimal plan minimizes the weighted
cost CW over all plans for Q.

Definition 2. Bounded-Weighted MOQO Problem.
A bounded-weighted MOQO problem instance is defined by
a tuple I = 〈Q,W,B〉 and extends the weighted MOQO
problem by a bounds vector B. Let P the set of plans for Q
and PB ⊆ P the set of plans that respect B. If PB is non-
empty, an optimal plan minimizes CW among the plans in
PB. If PB is empty, an optimal plan minimizes CW among
the plans in P .

Figure 1(a) illustrates weighted MOQO. It shows cost vec-
tors of possible query plans (considering time and buffer
space as objectives) and the user-specified weights (as vector
from the origin). The line orthogonal to the weight vector
represents cost vectors of equal weighted cost. The optimal
plan is found by shifting this line to the top until it touches
the first plan cost vector. Figure 1(b) illustrates bounded-
weighted MOQO. Additional cost bounds are specified and
a different plan is optimal since the formerly optimal plan
exceeds the bounds. We will use the set of cost vectors de-
picted in Figure 1 as running example throughout the
paper. The relative cost function ρ measures the cost of a
plan relative to an optimal plan.

Definition 3. Relative Cost. The relative cost function
ρI of a weighted MOQO instance I = 〈Q,W〉 judges a query
plan p by comparing its weighted cost to the one of an op-
timal plan p∗: ρI(p) = CW(c(p))/CW(c(p∗)). The rela-
tive cost function of a bounded-weighted MOQO instance
I = 〈Q,W,B〉 is defined in the same way if no plan exists
that respects B. Otherwise, set ρI(p) = ∞ for any plan p
that does not respect B and ρI(p) = CW(c(p))/CW(c(p∗))
if p respects B.

Let α ≥ 1, then an α-approximate solution to a weighted
MOQO or bounded-weighted MOQO instance I is a plan p
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Figure 2: Pareto frontier and dominated area

whose relative cost is bounded by α: ρI(p) ≤ α. The fol-
lowing classification of MOQO algorithms is based on the
formal near-optimality guarantees that they offer.

Definition 4. MOQO Approximation Scheme. An
approximation scheme for MOQO is tuned via a user-specified
precision parameter αU and guarantees to generate an αU -
approximate solution for any MOQO problem instance.

Definition 5. Exact MOQO Algorithm. An exact al-
gorithm for MOQO guarantees to generate a 1-approximate
(hence optimal) solution for any MOQO problem instance.

The following definitions express relationships between
cost vectors. A vector c1 dominates vector c2, denoted
by c1 � c2, if c1 has lower or equivalent cost than c2 in
every objective. Vector c1 strictly dominates c2, denoted
by c1 ≺ c2, if c1 � c2 and the vectors are not equivalent
(c1 6= c2). Vector c1 approximately dominates c2 with
precision α, denoted by c1 �α c2, if the cost of c1 is higher
at most by factor α in every objective, i.e. ∀o : co1 ≤ co2 · α.
A plan p and its cost vector are Pareto-optimal for query
Q (short: Pareto plan and Pareto vector) if no alter-
native plan for Q strictly dominates p. A Pareto set for
Q contains at least one cost-equivalent plan for each Pareto
plan. The Pareto frontier is the set of all Pareto vec-
tors. Figure 2 shows the Pareto frontier of the running
example and the area that each Pareto vector dominates.
An α-approximate Pareto set for Q contains for every
Pareto plan p∗ a plan p such that c(p) �α c(p∗). An α-
approximate Pareto frontier contains the cost vectors of
all plans in an α-approximate Pareto set. During complexity
analysis, j = |J| denotes the number of operators, l = |O| the
number of objectives, n = |Q| the number of tables to join,
and m the maximal cardinality over all base tables in the
database. Users formulate queries and have direct influence
on table cardinalities. Therefore, n and m (and also j) are
treated as variables during asymptotic analysis. Introducing
new objectives (that cannot be derived from existing ones)
requires changes to the code base and detailed experimental
analysis to provide realistic cost formulas. This is typically
not done by users, therefore l is treated as a constant (the
number of objectives is often treated as a constant when
analyzing multi-objective approximation schemes [21, 8]).

4. PROTOTYPICAL IMPLEMENTATION
We extended the Postgres system (version 9.2.4) to ob-

tain an experimental platform for comparing MOQO algo-
rithms. We extended the cost model, the query optimizer,
and the user interface. The extended cost model supports
nine objectives. The cost formulas used in the cost model
are taken from prior work and are not part of our contribu-
tion. Evaluating their accuracy is beyond the scope of this

L=Lineitem; O=Orders; C=Customers; HashJ=Hash Join;
SMJ=Sort-Merge Join; IdxNL=Index-Nested-Loop Join

O C

L

HashJ
1

HashJ
1
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1
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L O

C

IdxNL
1

IdxNL
1

(c) Additional
Bound on Startup
Time Requires Using
Nested-Loop Joins

Figure 3: Evolution of optimal plan for TPC-H
Query 3 when changing user preferences

paper. We quickly describe the nine implemented cost ob-
jectives. Total execution time (i.e., time until all result
tuples have been produced) and startup time (i.e., time
until first result tuple is produced) are estimated according
to the cost formulas already included in Postgres. Minimiz-
ing IO load, CPU load, number of used cores, hard
disc footprint, and buffer footprint is important since
it allows to increase the number of concurrent users. The
five aforementioned objectives often conflict with run time
since using more system resources can often speed up query
processing. Energy consumption is not always correlated
with time [28, 9]. Dedicating more cores to a query plan can
for instance decrease execution time by parallelization while
it introduces coordination overhead that results in higher to-
tal energy consumption. Energy consumption is calculated
according to the cost formulas by Flach [9]. Sampling al-
lows to trade result completeness for efficiency [14]. The
tuple loss ratio is the expected fraction of lost result tuples
due to sampling and serves as ninth objective. Joining two
operands with tuple loss a, b ∈ [0, 1], the tuple loss of the
result is estimated by the formula 1− (1− a)(1− b).

We extended the plan space of the Postgres optimizer by
introducing new operators and parameterizing existing ones
(we did not implement those operators in the execution en-
gine). The extended plan space includes a parameterized
sampling operator that scans between 1% and 5% of a base
table. Join and sort operators are parameterized by the de-
gree of parallelism (DOP). The DOP represents the number
of cores that process the corresponding operation (up to 4
cores can be used per operation). The Postgres optimizer
uses several heuristics to restrict the search space: in par-
ticular, i) it considers Cartesian products only in situations
in which no other join is applicable, and ii) it optimizes
different subqueries of the same query separately. We left
both heuristics in place since removing them might have sig-
nificant impact on performance. Not using those heuristics
would make it difficult to decide whether high computational
costs observed during MOQO are due to the use of multiple
objectives or to the removal of the heuristics.

The original Postgres optimizer is single-objective and op-
timizes total execution time. We implemented all three
MOQO algorithms that are discussed in this paper: EXA,
RTA, and IRA. The implementation uses the original Post-
gres data structures and routines wherever possible. Users
can switch between the optimization algorithms and can
choose the approximation precision α for the two approx-
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(a) Coarse-Grained Approximation (α = 2)
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(b) Fine-Grained Approximation (α = 1.25)

Pareto Surface Interpolation Single Plan Cost

Figure 4: Three-dimensional Pareto frontier approx-
imations for TPC-H Query 5

imation schemes. Users can specify weights and bounds on
the different objectives. The higher the weight on some ob-
jective, the higher its relative importance. Bounds allow to
specify cost limits for specific objectives (e.g., time limits or
energy budgets). When optimizing a query, the optimizer
tries to find a plan that minimizes the weighted cost among
all plans that respect the bounds. Figure 3 shows how the
optimal query plan for TPC-H query 3 changes when user
preferences vary. Initially, the tuple loss is upper-bounded
by zero (i.e., all result tuples must be retrieved) and all
weights except the one for total execution time are set to
zero. So the optimizer searches for the plan with minimal
execution time among all plans that do not use sampling.
Figure 3(a) shows the resulting plan. Increasing the weight
on buffer footprint leads to a plan that replaces the memory-
intensive Hash joins by Sort-Merge and Index-Nested-Loop
(IdxNL) joins (see Figure 3(b)). Setting an additional upper
bound on startup time leads to a plan that only uses IdxNL
joins (see Figure 3(c)).

Users cannot make optimal choices for bounds and weights
if they are not aware of the possible tradeoffs between dif-
ferent objectives. A user might for instance want to re-
lax the bound on one objective, knowing that this allows
significant savings in another objective. All implemented
MOQO algorithms produce an (approximate) Pareto fron-
tier as byproduct of optimization. Our prototype allows to
visualize two and three dimensional projections of the Pareto
frontier. Figure 4 shows the cost vectors of the approximate
Pareto frontier for TPC-H query 5 (and an interpolation of
the surface defined by those vectors), considering objectives
tuple loss, buffer footprint, and total execution time. Fig-
ure 4(a) shows a coarse-grained approximation of the real
Pareto frontier (with α = 2) and Figure 4(b) a more fine-
grained approximation for the same query (α = 1.25).

1: // Find best plan for query Q, weights W, bounds B
2: function ExactMOQO(Q,W,B)
3: // Find Pareto plan set for Q
4: P ← FindParetoPlans(Q)
5: // Return best plan out of Pareto plans
6: return SelectBest(P,W,B)

7: // Find Pareto plan set for query Q
8: function FindParetoPlans(Q)
9: // Calculate plans for singleton sets

10: for all q ∈ Q do
11: Pq ← ∅
12: for all pN access path for q do
13: Prune(Pq , pN )

14: // Consider table sets of increasing cardinality
15: for all k ∈ 2..|Q| do
16: for all q ⊆ Q : |q| = k do
17: Pq ← ∅
18: // For all possible splits of set q
19: for all q1, q2 ⊂ q : q1∪̇q2 = q do
20: // For all sub-plans and operators
21: for all p1 ∈ Pq1 , p2 ∈ Pq2 , j ∈ J do
22: // Construct new plan out of sub-plans
23: pN ← Combine(j, p1, p2)
24: // Prune with new plan
25: Prune(Pq , pN )

26: return PQ

27: // Prune plan set P with new plan pN
28: procedure Prune(P, pN )
29: // Check whether new plan useful
30: if ¬∃p ∈ P : c(p) � c(pN ) then
31: // Delete dominated plans
32: P ← {p ∈ P | ¬(c(pN ) � c(p))}
33: // Insert new plan
34: P ← P ∪ {pN}

35: // Select best plan in P for weights W and bounds B
36: function SelectBest(P,W,B)
37: PB ← {p ∈ P | c(p) � B}
38: if PB 6= ∅ then
39: return argmin[p ∈ PB]CW(c(p))
40: else
41: return argmin[p ∈ P ]CW(c(p))

Algorithm 1: Exact algorithm for MOQO

5. ANALYSIS OF EXACT ALGORITHM
Ganguly et al. [11] proposed an exact algorithm (EXA)

for MOQO. This algorithm is not part of our contribution
but we provide a first experimental evaluation in a many-
objective scenario and a formal analysis under less optimistic
assumptions than in the original publication. Algorithm 1
shows the pseudo-code of EXA (compared with the origi-
nal publication, the code was slightly extended to generate
bushy plans in addition to left-deep plans). EXA first cal-
culates a Pareto plan set for query Q and finally selects
the optimal plan out of that set (considering weights and
bounds). EXA uses dynamic programming and constructs
Pareto plans for a table set out of the Pareto plans of its
subsets. It is a generalization of the seminal algorithm by
Selinger et al. [23], generalizing the pruning metric from one
to multiple cost objectives. EXA starts by calculating Pareto
plans for single tables. Plans generating the same result are
compared and pruned, meaning that dominated plans are
discarded. EXA constructs Pareto plans for table sets of in-
creasing cardinality. To generate plans for a specific table
set, EXA considers i) all possible splits of that set into two
non-empty subsets (every split corresponds to one choice of
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Figure 5: Performance of exact algorithm on
TPC-H: Prohibitive computational cost due to high
number of Pareto plans (timeout at 2 hours)

operands for the last join), ii) all available join operators,
and iii) all combinations of Pareto plans for generating the
two inputs to the last join.

5.1 Experimental Analysis
We implemented EXA within the system described in Sec-

tion 4. The implementation allows to specify timeouts (the
corresponding code is not shown in Algorithm 1). If the
optimization time exceeds two hours, the modified EXA fin-
ishes quickly by only generating one plan for all table sets
that have not been treated so far. We experimentally evalu-
ated EXA using the TPC-H [26] benchmark. We generated
several test cases for each TPC-H query by randomly select-
ing subsets of objectives with a fixed cardinality out of the
total set of nine objectives. All experiments were executed
on a server equipped with two six core Intel Xeon processors
with 2 GhZ and 128 GB of DDR3 RAM running Linux 2.6
(64 bit version). We ran five optimizer threads in parallel.

The goal of the evaluation was to answer three questions:
i) Is the performance of EXA good enough for use in prac-
tice? ii) If not, how can the performance be improved?
iii) What assumptions are realistic for the formal complexity
analysis of MOQO algorithms? Figure 5 shows experimen-
tal results for the three metrics optimization time, allocated
memory during optimization, and number of Pareto plans
for the last table set that was treated completely (before a
timeout occurred or before the optimization was completed).
Every marker represents the arithmetic average value over
20 test cases for one specific TPC-H query and a specific
number of objectives. The TPC-H queries are ordered ac-
cording to the maximal number of tables that appears in any
of their from-clauses. This number correlates (with several
caveats1) with the search space size. Gray markers indicate
that some test cases incurred a timeout. If a timeout oc-
curred, then the reported values are lower bounds on the
values of a completed computation.

Optimizing for one objective never requires more than
100 milliseconds per query and never consumes more than
1.7 MB of main memory. For multiple objectives, the com-
putational cost of EXA becomes however quickly prohibitive

1The Postgres optimizer may for instance convert EXISTS
predicates into joins which leads to many alternative plans
even for queries with only one table in the from-clause.

with growing number of tables (referring to Question i)).
EXA often reaches the timeout of two hours and allocates
gigabytes of main memory during optimization. This hap-
pens already for queries joining only three tables; while the
number of possible join orders is small in this case, the total
search space size is already significant as over 10 different
configurations are considered for the scan and for the join
operator respectively (considering for instance different sam-
ple densities and different degrees of parallelism).

Figure 5 explains the significant difference in time and
space requirements between SOQO and MOQO: The num-
ber of Pareto plans per table set is always one for SOQO
but grows quickly in the number of tables (and objectives)
for MOQO. The space consumption of EXA directly relates
to the number of Pareto plans. The run time relates to the
total number of considered plans which is much higher than
the number of Pareto plans but directly correlated with it2.
Discarding Pareto plans seems therefore the most natural
way to increase efficiency (referring to Question ii)).

Ganguly et al. [11] used an upper bound of 2l (l designates
the number of objectives) on the number of Pareto plans per
table set for their complexity analysis of EXA. This bound
derives from the optimistic assumption that different objec-
tives are not correlated. Figure 5 shows that this bound
is unrealistic (8, 64, and 512 are the theoretical bounds for
3, 6, and 9 objectives). The bound is a mismatch from the
quantitative perspective (as the bound is exceeded by orders
of magnitude3) and from the qualitative perspective (as the
number of Pareto plans seems to correlate with the search
space size while the postulated bound only depends on the
number of objectives). Therefore, this bound is not used in
the following complexity analysis (referring to Question iii)).

5.2 Formal Complexity Analysis
All query plans can be Pareto-optimal in the worst case

(when considering at least two objectives). The following
analysis remains unchanged under the assumption that a
constant fraction of all possible plans is Pareto-optimal. If
only one join operator is available, then the number of bushy
plans for joining n tables is given by (2(n−1))!/(n−1)! [11].
If j scan and join operators are available, then the number
of possible plans is given by

Nbushy(j, n) = j2n−1(2(n− 1))!/(n− 1)!.

Theorem 1. EXA has space complexity

O(Nbushy(j, n)).

Proof. Plan sets are the variables with dominant space
requirements. A scan plan is represented by an operator
ID and a table ID. All other plans are represented by the
operator ID of the last join and pointers to the two sub-plans
generating its operands. Therefore, each stored plan needs
only O(1) space. Each stored cost vector needs O(1) space
as well, since l is a constant (see Section 3).

Let Q the set of tables to join. EXA stores a set of Pareto
plans for each non-empty subset of Q. The total number
of stored plans is the sum of Pareto plans over all subsets.

2All plans considered for joining a set of tables are combi-
nations of two Pareto plans; the number of considered plans
therefore grows quadratically in the number of Pareto plans.
3We generate up to 443 Pareto plans on average when con-
sidering three objectives and up to 3157 plans when consid-
ering six objectives.
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Let k ∈ {1, . . . , |Q|} and denote by xk the total number of
Pareto plans, summing over all subsets of Q with cardinality
k. Each plan is Pareto-optimal in the worst case, therefore
xk =

(
n
k

)
Nbushy(j, k). It is xk ≤ 2xk+1 for k > 1. Therefore,

the term xn = Nbushy(j, n) dominates. The analysis is tight
since all possible plans are stored in the worst case.

Theorem 2. EXA has time complexity

O(N 2
bushy(j, n)).

Proof. Every plan is compared with all other plans that
generate the same result. So the time complexity grows
quadratically in the number of Pareto plans and a similar
reasoning as in the proof of Theorem 1 can be applied.

The main advantage of the single-objective Selinger algo-
rithm [23] over a naive plan enumeration approach is that its
complexity only depends on the number of table sets but not
on the number of possible query plans. The preceding anal-
ysis shows that this advantage vanishes when generalizing
the Selinger algorithm to multiple cost objectives (leading
to EXA). The complexity of EXA is even worse than that
of an approach that successively generates all possible plans
while keeping only the best plan generated so far.

6. APPROXIMATING WEIGHTED MOQO
EXA is computationally expensive since it generates all

Pareto plans for each table set. We present a more efficient
algorithm: the representative-tradeoffs algorithm (RTA). The
new algorithm generates an approximate Pareto plan set for
each table set. The cardinality of the approximate Pareto
set is much smaller than the cardinality of the Pareto set.
Therefore, RTA has lower computational cost than EXA while
it formally guarantees to return a near-optimal plan. RTA
exploits a property of the cost objectives that we call the
principle of near-optimality. We provide a formal defini-
tion in Section 6.1 and show that most relevant objectives
in query optimization possess that property. We describe
RTA in Section 6.2 and prove that it produces near-optimal
plans. In Section 6.3, we analyze its time and space com-
plexity. We prove that its complexity is more similar to the
complexity of SOQO algorithms than to the one of EXA.

6.1 Principle of Near-Optimality
The principle of optimality states the following in the con-

text of MOQO [11]: If the cost of the sub-plans within a
query plan decreases, then the cost of the query plan cannot
increase. A formal definition follows.

Definition 6. Principle of Optimality (POO). Let P
a query plan with sub-plans pL and pR. Derive P ∗ from P
by replacing pL by p∗L and pR by p∗R. Then c(p∗L) � c(pL)
and c(p∗R) � c(pR) together imply c(P ∗) � c(P ).

The POO holds for all common cost objectives. EXA gen-
erates optimal plans as long as the POO holds. We intro-
duce a new property in analogy to the POO. The principle
of near-optimality intuitively states the following: If the cost
of the sub-plans within a query plan increases by a certain
percentage, then the cost of the query plan cannot increase
by more than that percentage.

Definition 7. Principle of Near-Optimality (PONO).
Let P a query plan with sub-plans pL and pR and pick an
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Figure 6: Dominated versus approximately domi-
nated area (with α = 1.5) in cost space

arbitrary α ≥ 1. Derive P ∗ from P by replacing pL by p∗L
and pR by p∗R. Then c(p∗L) �α c(pL) and c(p∗R) �α c(pR)
together imply c(P ∗) �α c(P ).

We will see that the PONO holds for the nine objectives
described in Section 4 as well as for other common objec-
tives. Cost formulas in query optimization are usually recur-
sive and calculate the (estimated) cost of a plan out of the
cost of its sub-plans. Different formulas apply for different
objectives and for different operators. Most cost formulas
only use the functions sum, maximum, minimum, and mul-
tiplication by a constant. The formula max(tL, tR) + tM
estimates for instance execution time of a plan whose fi-
nal operation is a Sort-Merge join whose inputs are gen-
erated in parallel; the terms tL and tR represent the time
for generating and sorting the left and right input operand
and tM is the time for the final merge. Let F any of the
three binary functions sum, maximum, and minimum. Then
F (αa, αb) ≤ αF (a, b) for arbitrary positive operands a, b and
α ≥ 1. Let F (a) the function that multiplies its input by
a constant. Then trivially F (αa) ≤ αF (a). Therefore, the
PONO holds as long as cost formulas are combined out of
the four aforementioned functions (this can be proven via
structural induction). The formula for tuple loss is an ex-
ception since it multiplies two factors that depend on the
tuple loss in the sub-plans: The tuple loss of a plan is esti-
mated out of the tuple loss values a and b of its sub plans
according to the formula F (a, b) = 1 − (1 − a)(1 − b). It is
F (αa, αb) = α(a + b) − α2ab. This term is upper-bounded
by α(a + b − ab) = αF (a, b) since 0 ≤ a, b ≤ 1 and α ≥ 1.
Note that failure probability is calculated according to the
same formula as tuple loss (if the probabilities that single
operations fail are modeled as independent Bernoulli vari-
ables). Objectives such as monetary cost are calculated
according to similar formulas as energy consumption.

6.2 Pseudo-Code and Near-Optimality Proof
We exploit the PONO to transform EXA into an approxi-

mation scheme for weighted MOQO. Algorithm 2 shows the
parts of Algorithm 1 that need to be changed. RTA is the
resulting approximation scheme. RTA takes a user-defined
precision parameter αU as input. It generates a plan whose
weighted cost is not higher than the optimum by more than
factor αU . We formally prove this statement later. RTA uses
a different pruning function than EXA: New plans are still
compared with all plans that generate the same result. But
new plans are only inserted if no other plan approximately
dominates the new one. This means that RTA tends to in-
sert less plans than EXA. Figure 6 helps to illustrate this
statement: EXA inserts new plans if their cost vector does
not fall within the dominated area, RTA inserts new plans
if their cost vector does neither fall into the dominated nor
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1: // Find αU -approximate plan for query Q, weights W
2: function RTA(Q,W, αU )
3: // Find αU -approximate Pareto plan set
4: P ← FindParetoPlans(Q,αU )
5: // Return best plan in P for infinite bounds
6: return SelectBest(P,W,∞)

7: // Find αU -approximate Pareto plan set
8: function FindParetoPlans(Q,αU )

// Derive internal precision from αU
αi ← |Q|

√
αU

...
13: // Prune access paths for single tables

Prune(Pq, pN , αi)
...

25: // Prune plans for non-singleton table sets
Prune(Pq, pN , αi)
...

26: // Prune set P with plan pN using precision αi
27: procedure Prune(P, pN , αi)
28: // Check whether new plan useful
29: if ¬∃p ∈ P : c(p) �αi c(pN ) then

...
Algorithm 2: The Representative-Tradeoffs Algorithm: An
approximation scheme for Weighted MOQO. The code
shows only the differences to Algorithm 1.

into the approximately dominated area. The following the-
orems exploit the PONO to show that RTA guarantees to
generate near-optimal plans. They will implicitly justify the
choice of the internal precision that is used during pruning.

Theorem 3. RTA generates an α
|Q|
i -approximate Pareto

set.

Proof. The proof uses induction over the number of ta-
bles n = |Q|. RTA examines all available access paths
for single tables and generates an αi-approximate Pareto
set. Assume RTA generates αni -approximate Pareto sets
for joining n < N tables (inductional assumption). Let
p∗ an arbitrary plan for joining n = N tables and p∗L,
p∗R the two sub-plans generating the operands for the fi-
nal join in p∗. Due to the inductional assumption, RTA
generates a plan pL producing the same result as p∗L with
c(pL) �

αN−1
i

c(p∗L), and a plan pR producing the same re-

sult as p∗R with c(pR) �
αN−1
i

c(p∗R). The plans pL and pR

can be combined into a plan p that generates the same result
as p∗ and with c(p) �

αN−1
i

c(p∗), due to the PONO. RTA

might discard p during the final pruning step but it keeps
a plan p̃ with c(p̃) �αi c(p), therefore c(p̃) �αNi c(p∗) and

RTA produces an αNi -approximate Pareto set.

Corollary 1. RTA is an approximation scheme for
weighted MOQO.

Proof. RTA generates an αU -approximate Pareto set ac-

cording to Theorem 3 (since α
|Q|
i = αU ). This set contains

a plan p with c(p) �αU c(p∗) for any optimal plan p∗. It is
CW(c(p)) ≤ αU ·CW(c(p∗)) for arbitrary weights W and p
is therefore an αU -approximate solution.

The pruning procedure is sensitive to changes. It seems
for instance tempting to reduce the number of stored plans

further by discarding all plans that a newly inserted plan ap-
proximately dominates. Then the cost vectors of the stored
plans can however depart more and more from the real
Pareto frontier with every inserted plan. Therefore, the ad-
ditional change would destroy near-optimality guarantees.

6.3 Complexity Analysis
We analyze space and time complexity. The analysis is

based on the following observations.

Observation 1. The cost of a plan that operates on a
single table with t tuples grows at most quadratically in t.

Observation 2. Let F (tL, tR, cL, cL) the recursive for-
mula calculating—for a specific objective and operator—the
cost of a plan whose final join has inputs with cardinalities
tL and tR and generation costs cL and cR. Then F is in

O(tLcR + cL + (tLtR)2).

Observation 3. There is an intrinsic constant for every
objective such that the cost of all query plans for that objec-
tive is either zero or lower-bounded by that constant.

Observations 1 and 2 trivially hold for objectives whose
cost values are taken from an a-priori bounded domain such
as reliability, coverage, or tuple loss (domain [0, 1]). They
clearly hold for objectives whose cost are proportional to in-
put and output sizes4 such as buffer or disc footprint (the
maximal output cardinality of a join is tLtR which is domi-
nated by the term (tLtR)2). Quicksort has quadratic worst-
case complexity in the number of input tuples. It is the
most expensive unary operation in our scenario, according
to objectives such as time, energy, number of CPU cycles,
and number of I/O operations. The (startup and total) time
of a plan containing join operations can be decomposed into
i) the time for generating the inputs to the final join, ii) the
time for the join itself, iii) and the time for post-processing
of the join result (e.g., sorting, hashing, materialization).
The upper bound in Observation 2 contains corresponding
terms, taking into account that the right (inner) operand
might have to be generated several times. It does not in-
clude terms representing costs for pre-processing join inputs
(e.g., hashing) as this is counted as post-processing cost of
the plan generating the corresponding operand. Observa-
tion 2 can be justified similarly for objectives such as energy,
number of CPU cycles, and number of I/O operations.

Observation 3 clearly holds for objectives with integer cost
domains such as buffer and disc footprint (bytes), CPU cy-
cles, time (in milliseconds), and number of used cores. It
also covers objectives with non-discrete value domains such
as tuple loss. Tuple loss has a non-discrete value domain
since—given enough tables in which we can vary the sam-
pling rate—the tuple loss values of different plans can get
arbitrarily close to each other (e.g., compare tuple loss ratio
of one plan sampling 1% of every table with one that sam-
ples 2% in one table and 1% of the others, the values get
closer the more tables we have). Assuming that the scan op-
erators are parameterized by a discrete sampling rate (e.g.,
a percentage), there is still a gap between 0 and the minimal

4Using size and cardinality as synonyms is a simplification
since tuple (byte) size may vary. It is however realistic to
assume a constant upper bound for tuple sizes (e.g., the
buffer page size). Also, the analysis can be generalized.
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tuple loss ratio greater than zero. This gap does not depend
on the number of tables (sampling at least one table with
99% creates a tuple loss of at least 1%). We derive a non-
recursive upper bound on plan costs from our observations.

Lemma 1. The cost of a plan joining n tables of cardi-
nality m is bounded by O(m2n) for every objective.

Proof. Use induction over n. The lemma holds for n = 1
due to Observation 1. Assume the lemma has been proven
for n < N (inductional assumption). Consider a join of N
tables. Cost is monotone in the number of processed tuples
for any objective with non-bounded domain (not for tuple
loss). So every join is a Cartesian product in the worst case
and that implies (tLtR)2 = m2N . The inductional assump-
tion implies cL + tLcR ∈ O(m2N−1) so (tLtR)2 remains the
dominant term.

The cost bounds allow to define an upper bound on the
number of plans that RTA stores per table set.

Lemma 2. RTA stores O((n logαi m)l−1) plans per table
set.

Proof. Function δ maps continuous cost vectors to dis-
crete vectors such that δo(c) = xlogαi(c

o)y for each objec-
tive o and internal precision αi. If δ(c1) = δ(c2) for two cost
vectors c1 and c2, then c1 �αi c2 and also c2 �αi c1. This
means that the cost vectors mutually approximately domi-
nate each other. Therefore, RTA can never store two plans
whose cost vectors are mapped to the same vector by δ. The
number of plans that have cost value zero for at least one ob-
jective is (asymptotically) dominated by the number of plans
with non-zero cost values for every objective. Considering
only the latter plans, their cost is lower-bounded by a con-
stant (assume 1 without restriction of generality) and upper-
bounded by a function in O(m2n). The cardinality of the im-
age of δ is therefore upper-bounded by O((n logαi m)l). As
RTA discards strictly dominated plans, the bound tightens
to O(l(n logαi m)l−1) which equals O((n logαi m)l−1) since
l is constant (see Section 3).

The function Nstored(m,n) = (n logαi m)l−1 denotes in
the following the asymptotic bound on plan set cardinalities.

Theorem 4. RTA has space complexity

O(2nNstored(m,n)).

Proof. Plan sets are the variables with dominant space
consumption. Each stored plan needs only O(1) space as
justified in the proof of Theorem 1. Summing over all subsets
of Q yields the total complexity.

Theorem 5. RTA has time complexity

O(j3nN 3
stored(m,n)).

Proof. There are O(2k) possibilities of splitting a set of
k tables into two subsets. Every split allows to construct
O(jN 2

stored(m, k − 1)) plans. Each newly generated plan
is compared against all O(Nstored(m, k − 1)) plans in the
set5. Summing time complexity over all table sets yields∑
k=1..n

(
n
k

)
2kjN 3

stored(m, k) ≤ j3nN 3
stored(m,n).

5This analysis assumes that plans are compared pairwise
to identify Pareto plans. Alternatively, spatial data struc-
tures [22] can be used to verify quickly if a plan’s cost lie
within an approximately dominated cost space area.
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The time complexity is exponential in the number of ta-
bles n. This cannot be avoided unless P = NP since finding
near-optimal query plans is already NP-hard for the single-
objective case [6]. The time complexity of RTA differs how-
ever only by factor N 3

stored(m,n) from the single-objective
Selinger algorithm for bushy plans [27] (which has complex-
ity O(j3n)). This factor is a polynomial in number of join
tables and table cardinalities. Unlike EXA, the complexity
of RTA does not depend on the total number of possible
plans. This lets expect significantly better scalability (see
Figure 7 for a visual comparison).

7. APPROXIMATING BOUNDED MOQO
RTA finally selects an αU -approximate plan out of an αU -

approximate Pareto set. This is always possible since sim-
ilar cost vectors have similar weighted cost. This princi-
ple breaks when considering bounds in addition to weights.
Even if two cost vectors are extremely similar, one of them
can exceed the bounds while the other one does not. Fig-
ure 8 illustrates this problem. There is no α ≤ αU except
α = 1 that guarantees a-priori that an α-approximate Pareto
set contains an αU -approximate plan. Choosing α = 1 leads
however to high computational cost and should be avoided
(RTA corresponds to EXA if α = 1).

Assuming that the pathological case depicted in Figure 8
occurs always for α > 1 is however overly pessimistic. An
αU -approximate Pareto set may very well contain an αU -
approximate solution. We present an iterative algorithm
that exploits this fact: The iterative-refinement algorithm
(IRA) generates an approximate Pareto set in every itera-
tion, starting optimistically with a coarse-grained approx-
imation precision and refining the precision until a near-
optimal plan is generated. This requires a stopping con-
dition that detects whether an approximate Pareto set con-
tains a near-optimal plan (without knowing the optimal plan
or its cost). We present IRA and a corresponding stopping
condition in Section 7.1. A potential drawback of an itera-
tive approach is redundant work in different iterations. We
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1: // Find αU -approximate plan for query Q,
2: // weights W, bounds B
3: function IRA(Q,W,B, αU )
4: i← 0 // Initialize iteration counter
5: repeat
6: i← i+ 1
7: // Choose precision for this iteration

8: α← α2−i/(3l − 3)
U

9: // Find α-approximate Pareto plan set
10: P ← FindParetoPlans(Q,α)
11: // Select best plan in P
12: popt ←SelectBest(P,W,B)

13: until @p ∈ P : c(p) � αB ∧ CW(c(p))
α

<
CW(c(popt))

αU
14: return popt
Algorithm 3: The Iterative-Refinement Algorithm: An Ap-
proximation Scheme for Bounded-Weighted MOQO. The
Code Uses Sub-Functions From Algorithm 2.

analyze the complexity of IRA in Section 7.2 and show how
a carefully selected precision refinement policy makes sure
that the amount of redundant work is negligible. We also
prove that IRA always terminates.

7.1 Pseudo-Code and Near-Optimality Proof
Algorithm 3 shows pseudo-code of IRA. IRA uses the func-

tions FindParetoPlans and SelectBest which were already de-
fined in Algorithm 2. IRA chooses in every iteration an ap-
proximation precision α and calculates an α-approximate
Pareto set. The precision gets refined from one iteration to
the next. We will discuss the particular choice of precision
formula in the next subsection. At the end of every itera-
tion, IRA selects the best plan popt in the current approxi-
mate Pareto set. It terminates, once that plan is guaranteed
to be αU -optimal. The stopping condition of IRA compares
popt with the best plan that can be found if the bounds are
slightly relaxed (i.e., multiplied by a factor). This termi-
nation condition makes sure that IRA does not terminate
before it finds an αU -approximate plan. This implies that
IRA is an approximation scheme.

Theorem 6. IRA is an approximation scheme for bounded-
weighted MOQO.

Proof. Denote by P the set of plans generated in the last
iteration, by α the precision used in the last iteration, and by
popt the best plan in P. The termination condition was met
in the last iteration so there is no plan p ∈ P respecting the
relaxed bounds αB with CW(c(p))/α < CW(c(popt))/αU .
Let p∗ be an optimal plan for the input query (not neces-
sarily contained in P). Assume first that p∗ respects the
bounds B. Plan set P contains a plan pR whose cost vector
is similar to the one of p∗: c(pR) �α c(p∗). The weighted
cost of pR is near-optimal: CW(c(pR)) ≤ αCW(c(p∗)). Plan
pR can violate the bounds B by factor α but respects the re-
laxed bounds: c(pR) � αB. Let p be the best plan in P that
respects the relaxed bounds αB, the weighted cost of p is
smaller or equal to the one of pR. Therefore, CW(c(p))/α is
a lower bound on CW(p∗). If the weighted cost of popt is not
higher than that by more than factor αU , then popt is an αU -
approximate solution. Assume now that p∗ does not respect
the bounds B. Then no possible plan respects the bounds
and weighted cost is the only criterion. Since α ≤ αU , the
set P must contain an αU -approximate solution (popt).

7.2 Analysis of Refinement Policy
The formula for calculating the approximation precision

α should satisfy several requirements. First, the formula
needs to be strictly monotonically decreasing in i (the num-
ber of iterations) since IRA otherwise executes unnecessary
iterations that do not generate new plans. Second, it should
decrease quickly enough in i such that the time required by
the new iteration is higher or at least comparable to the
time required in all previous iterations6. This ensures that
the amount of redundant work is small compared with the
total amount of work, as IRA can generate the same plans in
several iterations. Third, it should decrease as slowly as the
other requirements allow; choosing a lower α than necessary
should be avoided, since the complexity of the Pareto set
approximation grows quickly in the inverse of α. The for-

mula α = α2−i/(3l−3)

U is strictly monotonically decreasing in
i. It also satisfies the second and third requirement as we see
next. The following theorem concerns space and time com-
plexity of the i-th iteration of IRA. The proof is analogous
to the proofs in Section 6.3.

Theorem 7. The i-th iteration of IRA has
space complexity O(2n2i/3(n2 logm/ logαU )l−1),
and time complexity O(j3n2i(n2 logm/ logαU )3l−3).

Assume that the time per iteration is proportional to the
worst-case complexity, or within a factor that does not de-
pend on i (but possibly on n, m, or l). Then the required
time doubles from one iteration to the next, so the time
of the last iteration is dominant. So the precision formula
satisfies the second requirement and (approximately) the
third, since decreasing iteration precision significantly slower
would violate the second requirement.

Theorem 8. IRA always terminates.

Proof. For a fixed bounded-weighted MOQO instance
I = 〈Q,W,B〉 and plan space, there is only a finite num-
ber of possible query plans. Therefore, there is an α > 1
such that no plan p exists which satisfies c(p) � αB but
not c(p) � B. The precision refinement formula is strictly
monotonically decreasing in i (iteration counter). So the
aforementioned α is reached after a finite number of itera-
tions. Then the best plan that respects the strict bounds is
equivalent to the best plan that respects the relaxed bounds,
so the termination condition is satisfied.

8. EXPERIMENTAL EVALUATION
We experimentally compare the approximation schemes

against EXA. The algorithms were implemented within the
system described in Section 4. A timeout of two hours was
specified, using the technique outlined in Section 5.1. The
experiments were executed on the hardware platform de-
scribed in Section 5.1. We generated 20 test cases for each
TPC-H query and three, six, and nine objectives respec-
tively. Every test case is characterized by a set of considered
objectives (selected randomly out of the nine implemented
objectives), by weights on the selected objectives (chosen
randomly from [0, 1] with uniform distribution), and (only
for bounded MOQO) by bounds on a subset of the selected
objectives. Bounds for objectives with a-priori bounded

6Memory space can be reused in the new iteration so we
only consider run time in the choice of α.
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Figure 9: Optimizer performance comparison for
weighted MOQO using timeout of two hours

value domain (e.g., tuple loss) are chosen with uniform dis-
tribution from that domain. Bounds for other objectives are
chosen by multiplying the minimal possible value for a given
objective and query by a factor chosen uniformly from [1, 2].

Figure 9 compares the performance of EXA and RTA with
α ∈ {1.15, 1.5, 2}. Figure 9 shows for each TPC-H query and
each number of objectives i) the percentage of test cases that
resulted in a timeout, and arithmetic average values for the
metrics ii) optimization time (in milliseconds), iii) allocated
memory during optimization (in kilobytes), iv) number of
Pareto plans for the last table set that was treated com-
pletely (before a timeout or before optimization finished),
and v) weighted cost of the generated plan (as percentage
of the optimal value over the plans generated by all algo-
rithms for the same test case). Queries are ordered on the
x-axis according to the maximal number of tables joined in
any of their from-clauses as this relates to the search space
size (with the caveats mentioned in Section 5.1). The time
limit is marked by a dotted line in the subfigure showing
optimization times. The fill pattern of the bars represent-
ing results for EXA varies depending on whether EXA had
at least one timeout for the corresponding query and the
corresponding number of objectives (RTA did not incur any

timeouts). If EXA had timeouts, then the reported values
for time and memory consumption are lower bounds on the
corresponding values for a completed optimizer run.

The search space size correlates with the number of tables
to join, and the number of objectives influences how many
plans can be pruned during optimization. Therefore, the
percentage of timeouts (for EXA), the optimization time, and
the memory consumption all tend to increase in the number
of objectives and the number of joined tables, as long as no
timeouts distort the results. EXA occasionally has timeouts
already when considering only three objectives. For nine
objectives, EXA is not able to solve a single test case within
the limit of two hours for queries that join more than three
tables. Choices related to join order, operator selection, ta-
ble sample density, and parallelization create a search space
of considerable size, even for only four join tables. We have
seen in Section 5 that exact optimization takes less than
0.1 seconds despite the size of the search space, as long as
only one objective is considered. Considering multiple ob-
jectives makes exact pruning however ineffective and leads
to the high computational overhead of EXA. RTA is orders of
magnitude faster than EXA; increasing α reduces optimiza-
tion time and memory footprint. For nine objectives, RTA
with α = 1.15 generates for instance near-optimal plans for
TPC-H query 2 within less than 1.5 seconds average time.
EXA reaches the timeout of two hours for all 20 test cases.

The average quality of the plans produced by RTA is often
significantly better than the worst case guarantees. Even for
α = 2, RTA generates plans with an average cost overhead of
below 1% (100 times better than the theoretical bound) for
19 out of the 22 TPC-H queries. The Postgres optimizer se-
lects locally optimal plans for the subqueries within a query.
We left this mechanism in place as justified in Section 4,
even if it weakens the formal approximation guarantees for
queries that contain subqueries (TPC-H queries 2, 4, 7, 8,
9, 11, 13, 15, 16, 17, 18, 20, 21, 22). In practice, the approx-
imation guarantees were only violated in one case (TPC-H
query 7) and only for specific choices of α (α = 1.15).

Figure 10 shows the results for bounded MOQO. EXA is
compared against IRA (instead of RTA) since only IRA guar-
antees to generate query plans that respect all hard bounds if
such plans exist. Optimization always considers all nine ob-
jectives while the number of bounds varies between three and
nine. Figure 10 reports the number of iterations (instead of
the number of Pareto plans), the reported numbers for mem-
ory consumption refer to the memory reserved in the last
iteration (memory that was allocated before can be reused).
The performance of EXA is insensitive to the number of
bounds. The performance of IRA varies with the number of
bounds: Time and memory consumption tend to be higher
when hard bounds are specified. This can be seen by com-
paring Figure 10 with Figure 9, as IRA behaves exactly like
RTA if no bounds are specified. The reason is that IRA may
have to choose a much smaller internal approximation factor
than RTA, in order to verify if the best generated query plan
is near-optimal among all plans respecting the bounds. The
performance gap between approximate and exact MOQO is
still significant: Summing over all test cases for bounded
MOQO, EXA had 464 timeouts while each IRA instance had
at most 4 timeouts. The total optimization time was more
than 1200 hours for EXA and less than 15 hours for IRA with
α = 1.15. The number of iterations of IRA increases some-
times with the user-defined approximation factor. If hard
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Figure 10: Optimizer performance comparison for
bounded MOQO using timeout of two hours

bounds are set then the internal approximation precision re-
quired to guarantee a near-optimal plan does not necessarily
correlate with the user-defined precision. However, even if
the number of iterations increases, the total optimization
time is not influenced significantly (except for queries with
very low total optimization time where overhead by repeated
query preprocessing is non-negligible). This was the goal of
our precision refinement policy.

9. CONCLUSION
Our MOQO approximation schemes find guaranteed near-

optimal plans within seconds where exhaustive optimization
takes hours. We analyzed the cost formulas of typical cost
metrics in MOQO and identified common properties. We
believe that our findings can be exploited for design and
analysis of future MOQO algorithms.
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