
Componential Set-Based Analysis

Cormac Flanagan Matt hias Felleisen

cormacQcs.rice.edu matthias@cs.rice.edu

Rice University*

Abstract

analysis a whole
analysis is to and
oriented languages. the

is for programs, it
ates of flow that
quadratically the of program.

paper componential analysis,
is and larger without

loss accuracy set-based The of
analysis a of results

cerning systems, a re-
and decision concerning

equivalence constraint Experimental
validate practicality the

1 Effectiveness Set-Based

Rice’s program environment
vides static MrSpidey, analyzes
program using results this checks

soundness all primitives If
primitive may due a of
invariant, highlights program
so the can the
fault before the Using graph-

explanation of the
can whether fault really or

the correctness is
the capabilities.

program is constraint-based
similar Heintze’s analysis The

consists two phases: deriva-
phase, which derives

describing data relationships the

*This work was partially supported by NSF grants CCR-0633748
and CCR-0610758, and a Lodieska Stockbridge Vaughan Fellowship.

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice. the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

PLDI ‘97 Las Vegas, NV, USA

0 1997 ACM 0-89791-907-6197/0006...$3.50

program, and a solution phase, during which MrSpidey
solves the constraints. The solution conservatively ap
proximates the set of values that may be returned by
each program expression.

In practice, MrSpidey has proven highly effective for
pedagogic programming, which includes programs of
several hundred to a couple of thousand lines of code.
It becomes less useful, however, for debugging larger
programs due to limitations in the underlying analy-
sis, which has an O(n3) worst-case time bound. The
constant on the cubic element is small, but it becomes
dominant for programs of several thousand lines.

The bottleneck is due to the excessive size of the con-
straint systems that describe a program’s data flow rela-
tionships. If we could simplify these constraint systems
without affecting the data flow relationships that they
denote, then we could reduce the analysis times. That
is, by first simplifying the constraint system for each
program component (e.g. module or package), we could
solve the combined system of constraints in less time.
Furthermore, if we saved each simplified constraint sys-
tem in a constraint file, then we could exploit those
saved constraints in future runs of the analysis to avoid
reprocessing components that have not changed.

The simplification of constraint systems raises both
interesting theoretical and practical questions. On the
theoretical side, we need to ensure that simplification
preserves the observable behavior of a constraint sys-
tem. In this paper, we provide a complete characteri-
zation of observable behavior and, in the course of this
development, establish a close connection between this
observable equivalence of constraint systems and the
equivalence of regular tree grammars (RTGs).’ Exploit-
ing this connection, we develop a complete algorithm for
deciding the equivalence of constraint systems. Unfor-
tunately, the algorithm is PSPACEhard.

Fortunately, a minimized constraint system is only
optimal but not necessary for practical purposes. The

‘A number of researchers, including Reynolds [la], Jones and
Muchnick [14], Heintze (111, Aiken [2], and Cousot and Coueot [3]

previously exploited the relationship between RTGa and the leasst so-
lution of a constraint system. We present an additional result, namely
a connection between RTGs and the observable behavior (i.e., the en-
tire solution space) of constraint systems.

235

http://crossmark.crossref.org/dialog/?doi=10.1145%2F258915.258937&domain=pdf&date_stamp=1997-05-01

practical question finding algo-
for constraint that

make more To this
we the between minimiza-

problems RTGs constraint to
a of for RTGs the

of constraint Based
these algorithms, develop componen-

or variant set-based
Experimental verify effectiveness the
plification and corresponding of

analysis. simplified systems typ-
at an of smaller the

systems, these in result
significant in speed the

We that of theoretical practical
as as techniques carry to

constraint-based such the type
of et [2], et object-oriented

system or or et subtyping
algorithms 17,

The proceeds follows. 2
scribes idealized language. 3 4

the underpinnings the analy-
Section introduces constraint

tion and 6 7 how
algorithms in realistic analysis
tem. 8 related and 9

directions future

syntax:

.I1 E A = x 1 1,’) (Af AI) 1 AZ’ (Expressions)

1 (let (s .!I) AI)

v E Value = b 1 (Xtx.M) (Valuee)
x E Var.9 = {r,y,Z,...} (Variables)

b E BConst (Basic constants)

t E Tag (Function tags)

I E Label (Expression labels)

Evaluator:

eval : A0 - Value U {I}
eual(M) = V if M c* V

Reduction Rules:

&[((X’XM) V)] ----) E[af[x H V]] (P”)
EL (let (x VI JW 1 - E[M[x H V]] (Olet)

&IV’1 - E[I’] (unlabd)

Evaluation Contexts:

E = [1 I (E W I (V f) I (let (x 8) J4 I E’

Figure 1: The source language A: syntax and semantics

particular, the substitution operation M[z t V] re-
places all free occurrences of z within M by V, and ho
denotes the set of closed terms, also called programs.

We specify the meaning of programs via the reduc-
tion semantics based on the rules described in figure 1.
The reduction rules 0” and /31et are conventional, and
the unlabel rule removes the label from an expression
once its value is needed.

2 The Source Language

For simplicity, we derive our analysis for a X-calculus-
like language with constants and labeled expressions. It
is straightforward to extend the analysis to a realistic
language including assignments, recursive data struc-
tures, objects and modules along the lines described in
an earlier report [7].

Expressions in the language are either variables, val-
ues, function applications, let-expressions, or labeled
expressions: see figure 1. We use labels to identify those
program expressions whose values we wish to predict.
Values include basic constants and functions. Functions
have identifying tags so that MrSpidey can reconstruct
a call-graph from the results of the analysis. We use
let-expressions to introduce polymorphic bindings, and
hence restrict these bindings to syntactic values [23].
We work with the usual conventions and terminology
of the X,-calculus when discussing syntactic issues. In

2componential a. of or pertaining to components; spec. (Ling.)
designating the analysis of distinctive sound units or grammatical
elements into phonetic or semantics components (New Shorter Ozford
Englrsh Drctionary, Clarendon Press, 1993)

3 Set-Based Analysis

Conceptually, set-based analysis consists of two phases:
a specification phase and a solution phase.3 During
the specification phase, the analysis tool derives con-
straints on the sets of values that program expressions
may assume. These constraints describe the data flow
relationships of the analyzed program. During the solu-
tion phase, the analysis produces finite descriptions of
the potentially infinite sets of values that satisfy these
constraints. The result provides an approximate set of
values for each labeled expression in the program.

3.1 The Constraint Language

To simplify the derivation of the constraint simplifica-
tion algorithms, we formulate our constraint language
in terms of type selectors, instead of the more usual

‘Cousot and Cousot showed that set-based analysis can alter-
natively be formulated as an abstract interpretation computed by
chaotic iteration [3].

236

type constructors:

T E SetExp = (Y 1 c 1 dam(T) 1 rng(T)
a, p, 7 E Set Var > Label

c E Const = BConst U Tag

A set expression 7 is either a set variable; a constant; or
one of the “selector” expressions dam(r) or rng(T). By
using selector expressions, we can specify each “quan-
tum” of the program’s data flow behavior independently;
using constructors would combine several of these quanta
into one constraint. The meta-variables a, /3,~ range
over set variables, and we include program labels in the
collection of set variables. Constants include both ba-
sic constants and function tags. A constraint C is an
inequality 71 5 ~2 relating two set expressions.

Intuitively, each set expression denotes a set of run-
time values, and a constraint [~1 5 74 indicates that
the value set denoted by ~1 is contained in the value set
denoted by 72. A constraint system S is a collection of
constraints. A simple constraint system is a collection
of simple constraints, which have the form:

ClB I aSP 1 aSdom(B)
I vda) 5P I dom(d ID I a <w(P)

In some cases, we are interested in constraints that only
mention certain set variables. The restriction of a con-
straint system to a collection of set variables E is:

S 1~ = {C E S I C only mentions set variables in E}

3.2 Semantics of Constraints

A set expression denotes a collection of values, which is
represented as a triple X = (C,D, R). The first com-
ponent C E P(Const)* is a set of basic constants and
function tags, and represents a set of run-time values
(relative to a given program) according to the relation
V in C:

binC iff bEC
(Xtz.M) in C iff t E C

The second and third components of X denote the pas-
sible argument values (dom) and result values (rng) of
functions in X, respectively. Since these two compo-
nents also denote value sets, the appropriate model for
set expressions is the solution of the equation?

‘P denotes the power-set constructor.
‘The set P is equivalent to the set of all infinite binary trees with

each node labeled with an element of P(Coast). This set can be
formally defined aa the 6e.t of total functions f : {dm,rng}* +
P(Const), end the rest of the development can be adapted mutan-

dis mutotis (161. For clarity, we present our results using the more
intuitive notation instead.

We use the functions const : D - P(Con&) and dom,
wag : 2) - 2) to extract the respective components of
an element of 2).

We order the elements of D according to a relation
that is contravariant in the argument component, since
the information about argument values at an applica-
tion needs to flow backwanl along data-flow paths to the
formal parameter of the corresponding function defini-
tions. Thus (Cl, D1, RI) L (C2, DI, Rz) if and only if
Cl G CZ, DZ C DI, and RI E R2. The set 2, forms
a complete lattice under this ordering, with top and
bottom elements being the solutions to the equations
T = (Co&, I, T) and I = (0, T, 1), respectively.

The semantics of set expressions is defined with re-
spect to a set environment p, which maps each set vaxi-
able to an element of V. We extend the domain of set
environments from set variables to set expressions in
the natural manner:

p : SetExp - ‘D

P(C) = ((4, T, 4
ddom(T)) = dam (~(4)
Phd~)) = rtlg (P(T))

An environment p satisfies a constraint C = [TI 5 Q]
(written p + C) if ~(7-1) 5 472). Similarly, p satisfies
S, or p is a solution of S (written p j= S) if p /= C for
each C E S. The solution space of a constraint system
S is Soln(S) = {p 1 p b S}. A constraints set Sl
entails S2 (written S1 + &) iff SoIn E SoZn(&),
and Sl is observably equivalent to &, (written Sl Y &)
iffS1 /=&and&k&.

The restriction of a solution space to a collection of
variables E is:

Soln(S) 1~ = {p I 3p’ E SoZn(S). Va E E. p(a) = p’(a)}

We extend the notion of restriction to entailment and
observable equivalence of constraint systems:

l If SoZn(&) 1~ G Soln(S2) IE, then SI entails SZ
with respect to E (written Sl t=~ &).

l If Sl +E S2 and S2 FE Sl then that Sl and &
are observably equivalent with respect to E (written

SIYE&).

3.3 Deriving Constraints

The specification phase of set-based analysis derives
constraints on the sets of values that program expres-
sions may assume. Following Aiken et al. and Palsberg
and O’Keefe, we formulate this derivation as a subtype
system [2, 161.

The derivation proceeds in a syntax-directed manner
according to the constraint derivation rules presented

237

ru{x:a}~z:a,0 (vaf)

rl-b:a,{b~a} (mist)

rI-M:a,S

I’~M1:a,SU{a~I}
(label)

r k (X*s.M) : a,SU {t 5 a, do+) 5 al, a2 < q(a)} Cabs)

rk Mi :pi,Si

I‘ I- (Ml M2) : a,& US2 U {Pz I dom(Pl), q(A) 50)
(aPP)

rkv:a,sv
A = Vars(Sv) \ (FV[rng(I’)] U Label)

ru{5-vA.ia,S;))~M:p,S
r I- (let (2 V) M) : P,S

li, is a substitution of fresh vars for A

r u (z : VA. (a,&)} I- z : $(a), $(Sv)
(ind)

Figure 2: Constraint derivation rules.

in figure 2. Each rule infers a judgement of the form
I’ I- M : cy,S, where the set variable context r maps the
free variables of M either to set variables or constraint
schemes (see below); a names the value set of M; and
the constraint system S describes the data flow rela-
tionships of M, using a.

The rules (uar) and (con&) are straightforward. The
rule (label) records the value set of a labeled expression
in the appropriate label. The rule (abs) for functions
records the function’s tag, and also propagates values
from the function’s domain into its formal parameter
and from the function’s body into its range. The rule
(app) for applications propagates values from the argu-
ment expression into the domain of the applied function
and from the range of that function into the result of
the application expression.

The rule (let) produces a constraint schema 0 =
VA. (a, S) for polymorphic, let-bound values [20,2,23].
The set variable a names the result of the expression,
the constraint system S describes the data %ow rela-
tionships of the expression, and the set A contains those
internal set variables of the constraint system that must
be duplicated at each reference to the let-bound vari-
able via the rule (in&). We use FV[rng(I’)] to denote
the free set variables in the range of F. The free set vari-
ables of a schema u = VA. (a,S) are those in S but not
in A, and the free variables of a set variable is simply
the set variable itself.

3.4 Set Based Analysis

Every constraint system admits the trivial solution pT
where pT(a) = T, and T, = (Con.&, T,, Td). Since T,
represents the set of aIZ run-time values, this solution
is highly approximate and utterly useless. Fortunately,
constraint systems typically yield many additional so-
lutions that more accurately characterize the value sets
of program expressions.

For example, consider the program P = (Xtz.z),
which yields the constraint system:

{t 5 a~, dam(w) i az, a2 I rng(ap)}

In addition to the trivial solution described above, this
constraint system admits a number of other solutions,
including:

Pl = {aP I+ ({q,-bQaz t-b 1)

pz = {a~ c-) ({t)J,T),a, -T)

The solution pr more accurately describes the program’s
run-time value sets than pz. Yet these two solutions
are incomparable under the ordering E (pointwise ex-
tended to environments), since it models the flow of
values through a program, but does not rank environ-
ments according to their accuracy.

Therefore we introduce a second ordering E, on 2)
that properly ranks environments according to their ac-
curacy. This ordering is covariant in the domain posi-
tion, i.e., (Cl, DI, RI) C, (Cz, D2, R2) if and only if
Cl EC2,Dl LsD2, mdR1 LR2.

Under this ordering, a constraint system S has both
a maximal solution (pT above) and a minimal solution.
The minimal solution exists because the greatest lower
bound tl, with respect to 5. of two solutions is also a
solution [ll]. We use LeastSoln(S) to denote this least
solution, and define set-based analysis as the function
that extracts the basic constants and function tags for
each labeled expression from LeastSoZn(S).

Definition 3.1. (sba) If 0 I- P : o,S, then:

sba(P)(l) = wnst(LeastSoZn(S)(Z))

The solution sba(P) conservatively approximates the
value sets for each labeled expression.

Theorem 3.2 (Correctness of &a) IfP++*E[V’]
then V in da(P)(Z).

This result follows from a subject reduction proof
along the lines of Wright and Felleisen [22] and Pals-
berg [15] and is contained in a related report [S].

3.5 Computing the Least Solution

To compute sba(P), we close the constraint system for
P under the rules 8 described in figure 3. Intuitively,

238

Cl0 PlY

Cl-Y

Q 5 -3(B) 05-i

a I mg(Y)

don@) I Q Plr

dam(r) 5 Q

a I mpm mgw I Y

(YlY

Q I do@) dam(P) I Y

aSr

Figure 3: The inference rule system 8.

(31)

(92)

(93)

(s4)

(55)

these rules infer all the data flow paths in the pro-
gram, and propagate values along those paths. Specif-
ically, the rules (si), (ss), and (8s) propagate infor-
mation about constants, function domains and func-
tion ranges forward along the data flow paths of the
program. These data flow paths are described by con-
straints of the form ,# 5 -y. The rule (ad) constructs the
data flow paths from actual to formal parameters for
each function call, and the rule (ss) similarly constructs
data flow paths from function bodies to corresponding
call sites. We write S l-o C if S proves C via the rules
0, and use Q(S) to denote the closure of S under 8,
i.e., the set {C] S l-o C}.

MrSpidey uses a worklist algorithm to compute the
closure of S under 8 efficiently. The worklist keeps
track of all eligible inference rules whose antecedents
are in S but whose consequent may not be in S. The
algorithm repeatedly removes an inference rule from the
worklist, adds its consequent to S, if necessary, and
then adds to the worklist all inference rules that are
made eligible by the addition of that consequent. The
process iterates until the worklist is empty, at which
point S is closed under 0. The complete algorithm can
be found in an earlier technical report [7].

This closure process propagates all information con-
cerning the possible constants for labeled expressions
into constraints of the form c 5 1. Hence, we can infer
sba(P) from 0(S) according to the following theorem.

Theorem 3.3 If P E A” and 0 I- P : a, S then:

sbu(P)(Z) = {c 1 [c 5 I] E Q(S)}

4 Observable Equivalence of Constraints

The traditional set-based analysis we have just described
has proven highly effective for programs of up to a cou-
ple of thousand lines of code. Unfortunately, it is useless
for larger programs due to its nature as a whole program
analysis and due to the size of the constraint systems
it produces, which are quadratic in the size of (large)
programs. Storing these constraint systems in memory
is beyond the capabilities of most machines.

To overcome this problem, we develop algorithms for
simplifying constraints systems. Applying these simpli-
fication algorithms to each program component signifi-
cantly reduces both the time and space required by the
overall analysis.

The following subsection shows that constraint sim-
plification does not affect the analysis results provided
the simplified system is observably equivalent to the
original system. Subsection 4.2 presents a complete
proof-theoretic formulation of observable equivalence,
and subsection 4.3 exploits this formulation to develop
an algorithm for deciding the observable equivalence of
constraint systems. The insights provided by this de-
velopment lead to the practical constraint simplification
algorithms of section 5.

4.1 Conditions on Constraint Simplification

Let us consider a program P containing a program com-
ponent M. Suppose the constraint derivations for M
concludes l? I- M : a,&, where Si is the constraint
system for M. Our goal is to replace Si by a simpler
constraint system without changing h(P).

Since the constraint derivation process is composi-
tional, the constraint derivation for the entire program
concludes 0 l- P : /I, SC U&, where SC is the constraint
system for the context surrounding M. The combined
constraint system SC u SI describes the space of solu-
tions for the entire program, which is the intersection
of the two respective solution spaces:

SoIn(Sc U SI) = SoZn(Sc) fl Soin

and hence Soln(Si) describes at least all the properties
of Si relevant to the analysis. However, SoZn(Si) may
describe solutions for set variables that are not relevant
to the analysis of P. In particular,

l &a(P) only references the solutions for labels; and

l the only interactions between SC and Si are due
to the set variables {a} u FV[mg(l?)].

Thus the only properties of Si relevant to the analysis
is the solution space for its external set variables

E = LabeZ u {a} u FV[mg(r)]

239

For our original problem, this means that we want a
constraint system SZ whose solution space restricted to
E is equivalent to that of Sr restricted to E:

SoZn(&) IE = SoZn(S2) IE;

or, with the notation from section 3, Sr and SZ are
observably equivalent on E:

Sl YE s2

We can translate this compaction idea into an addi-
tional rule for the constraint derivation system:

lT& M:a,Sl
Sl YE Sz where E = Label U FV[mg(r)] U {a}

r& M:a,S2

(“)

This rule is admissible in that any derivation (denoted
using IX) in the extended constraint derivation system
produces information that is equivalent to the informa-
tion produced by the original analysis.

Lemma 4.1 If 0 l-e P : a, S, then:

ha(P)(Z) = const(LeastSoZn(S)(Z))

4.2 Proof-Theoretic Characterization

Since the new derivation rule (2) involves the semantic
notion of observably equivalent constraint systems, it
cannot be used directly. To make this rule useful, we
must first reformulate the observable equivalence rela-
tion as a syntactic proof system.

The key properties of the observational equivalence
relation are reflections of the properties of the ordering
relation (CI) and the functions dom and mg, respec-
tively. We can reify these properties into a syntactic
proof system via the following inference rules:

a<a Cd=)
71 I 7- 7- 5 72 (tmm,)

71 L 72

Kl 5 K2

m&1) I W(E2)

(compat)

dom(K2) < dom(Kr)

where we restrict K to non-constant set expressions to
avoid inferring useless tautologies:

K ::= a 1 dam(K) 1 mg(K)

Many of the inferred constraints lie outside of the orig-
inal language of simple constraints. The extended lan-
guage of compound constraints is:

C ::= C</clK</c

While this proof system obviously captures the prop
erties of E, it does not lend itself to an efficient imple

Q 5 m3w Plc

a 5 m5(K)

a I dam(P) PLK
a 2 dom(tc)

a > dam(P) 0 5 K
a 1 dam(K)

(compo=3)

(wmw=4)

71 I c-t a I T2

71 I 3

61 SK2

W(Q) I W(~2)

dmh) I domh)

Figure 4: The inference rule system Q.

mentation. Specifically, checking if two potential an-
tecedents of (trmv’) contain the same set expression
T involves comparing two potentially large set expres-
sions. Hence we use an alternative proof system that
can easily be implemented, yet infers the same con-
straints as the above. The alternative system consists
of the inference rules !I! described in Figure 4, together
with the rules 0 from Figure 3. The rules (composeI...l)
replace a reference to a set variable by an upper or lower
(non-constant) bound for that variable, as appropriate.
The rule (trans) of @ provides a weaker characteriza-
tion of transitivity than the previous rule (tmns’), but
the additional rules compensate for this weakness.

The proof system 8 U !J! is sound and complete in
that it infers all true compound constraints.

Lemma 4.2 (Soundness and Completeness of 0s)
For a simple constraint system S and compound con-
straint C, S l-oe C if and only ifs + C.

This lemma implies that *‘o(S), which denotes the
closure of S with respect to @Uq, contains exactly those
(compound) constraints that hold in all environments
in SoZn(S). For a collection of external set variables
E, W(S) 1~ contains all (compound) constraints that
hold in all environments in SoZn(S) 1~.

Lemma 4.3 s EE @e(s) IE.

We could use this result to define a proof-theoretic
equivalent of restricted entailment as follows:

sl I& s2 8 *e(&) IE > *e(&) IE

240

and then show that Si I-& Sz if and only if S1 FE
S2. However, a variant of the above definition yields a
relation that is easier to compute. Specifically, suppose
W(Sr)]E contains the constraint [mg(Tl) 5 mg(Q)]
inferred by (compat). Then, since V~s(ri)U Vars(~2) E
E, the corresponding antecedent [rr I 721 is also in
W(S)]E, and therefore:

q@(s) IE \ {mg(Tl) 5 md72)) zE q@(s) IE

Put because does eliminate
variables, (compat)-consequent qQ(S) is

by antecedent. we

II QJ {compat}

this implies W(S) ZE]E.
we the lemma.

4.4 YE IE.

lemmas and provide basis
introduce equivalents restricted
tailment observable

. sl k& s2 iff I@ IE > n@(s2) (ET

l =& iff l-go and I-&

The relations characterize en-
and equivalence.

Theorem (Soundness Completeness)

S1 S2 and if /=E

2. =& if only Si Ss.

4.3 Deciding Observable Equivalence

The relation =& completely characterizes the model-
theoretic observable equivalence relation %E, but for an
implementation of the extended constraint derivation
system we need a decision algorithm for =&.

Given Si and Sz closed under 8, this algorithm
needs to verify that \k(Si)]E = g(S2)]E. The naive
approach to enumerate and to compare the two con-
straint systems does not work, since they are infinite.
For example, if S = {a 5 rng(a)}, then Q(S) is the
infinite set {a 5 mg(a), a 5 rng(rng(a)), . . .}.

Fortunately, the infinite constraint systems inferred
by ‘k exhibit a regular structure, which we exploit to
decide observable equivalence as follows. First, we gen-
erate regular grammars describing the upper and lower
bounds for each set variable. Second, we extend these
grammars to regular tree grammars (RTGs) describ-
ing oZZ constraints in II(&)]E and II(&)]E, excluding
those constraints inferred via compat, which we cannot

describe in this manner. Third, we use these RTGs to
decide entailment by checking if 9(&)]E 2 II(&)]E
via an adaptation of an RTG containment algorithm.
To decide observable equivalence, we simply check en-
tailment in both directions. These steps are described
in more detail below.

Regular Grammars: Our first step is to describe
the lower and upper non-constant bounds for each set
variable. Technically, we want to describe the following
two languages of types:

{K 1 [tc 5 a] E Q(S) and Vars(n) C E}
{K ([a 5 K] E rSr(S) and Vurs(n) c E}

for each set variable a. Both languages are generated
by a regular grammar G,(S,E). The grammar con-
tains the non-terminals au and aL, for each a in S,
which generate the above lower and upper bounds of a,
respectively.

The productions of the grammar are determined by
S and +. To illustrate this idea, suppose S contains

[a I mdP)l. Th en, for each upper bound n of p, the
rule (compose,) infers the upper bound mg(K) of a.
Since, by induction, j3’s upper bounds are generated by
&, the production au H rng&) generates the corre-
sponding upper bounds of a. More generally, the collec-
tion of productions {au I-+ rng(Pu)] [a 5 rng@)] E S}
describes all bounds inferred via (compose,). Bounds
inferred via the remaining (compose) rules can be de-
scribed in a similar manner.

Bounds inferred via the rule (r@ez) imply the pro-
duction rules au I+ a, aL H a for a E E. The
rule (compat) cannot generate constraints of the form
[K 5 a] or [a 5 K]. Finally, consider the rule (tmna),
and suppose this rule infers an upper bound r on a.
This bound must be inferred from an upper bound r
on /3, based on the antecedent [a 5 p]. Hence the pro-
ductions {au I+ /3~] [a 2 /3] E S} generate all upper
bounds inferred via (tmns). In a similar fashion, the
productions (0~ w a~] [a 5 p] E S} generate all
lower bounds inferred via (tmns).

Definition 4.6. (Regular Grammar G,(S,E)) Let
S be a simple constraint system and E a collection of
set variables. The regular grammar G,(S, E) consists
of the non-terminals {aL,au I a E Vara(S)} and the
following productions:

au ++ a, aL I-# a VacE

w-Pu,P~++m V [a I PI E S

au ++ dom(PL) V [a 5 dam(p)] E S

au t+ rg(Pu) V [a L wdP)l E S
PL cf dom(au) V [dam(a) < p] E S
PL H 9daL) V k-x(a) 5 PI E S

I

241

The grammar G,(S, E) describes two languages for
each set variable: the upper and lower non-constant
bounds. Specifically, if I+; denotes a derivation in the
grammar G, and Cc(z) denotes the language (7 1 z I-+:
7) generated by a non-terminal z, then the following
lemma holds.

Lemma 4.7 I’G = G,(S, E), then:

LG(aL) = {K 1 [K 5 a] E 9(S) and Vurs(ti.) C E}
&(aU) = {K 1 [a 5 K] E !k(S) and Vars(~) C E}

Proof: We prove each containment relation by induc-
tion on the appropriate derivation. I

Regular Tree Grammars: The grammar G,(S,E)
does not describe all constraints in II(S) 1~. In partic-
ular, it does not describe constraints of the form [c 5 71
and constraints inferred by (trans) or (corn@). To
represent the constraint system n(S) IE, we extend the
grammar G,(S, E) to a regular tree grammar Gt(S, E).
It combines upper and lower bounds for set variables in
the same fashion as the (trans) rule, and also generates
constraints of the form [c 5 T] where appropriate.

Definition 4.8. (Regular ‘Ike Grammar Gt (S, E))
The RTG Gt(S, E) extends the grammar G,(S, E) with
the root non-terminal Rand the additional productions:

RI-+ [a Iwl V a E h-s(S)

R ++ [c I WI v [c I a] E s

where (. 5 -1 is viewed as a binary constructor. I

The grammar Gt(S,E) describes all constraints in

nI(s) iE*

Lemma 4.9 If G = Gt(S,E), then II(S) 1~ = &(R).

Before we can exploit the grammar representation of
II(S) IE, we must still prove that the closure under 8 U
IIU (cornpot) can be performed in a sequential manner.
The following lemma justifies this staging of the closure
algorithm.

Lemma 4.10 For any simple constraint system S:

W(S) = XB(e(S)) = compat(II(0(S)))

The Entailment Algorithm: We can check entail-
ment based on lemmas 4.9 and 4.10 as follows. Given
SI and &, we close them under 0 and then have:

sz +Te Sl
w QQ(S2) IE 2 l-w&) IE by defn I-&
w !J!(Q(&)) IE 2 lI(0(&)) IE by lemma 4.10

q(s2) (E 2 n(h) IE as sj = Q(Sj)

z comput(II(S2) 1~) 2 II(&) 1~ by lemma 4.10
e=s compat(&,(R)) 2 CG, (R) by kmma 4.9

where Gi = Gt(&, E)

The Entailment Algorithm

In the following, Pn, denotes the finite power-set constructor.

Let: G1 = G,(&,E) Li = {CXL 1 a E VCte(Si)}

G2 = Gt(S2,E) Uj = {au 1 a E VOW(&)}

Assume G’l and Gz are pre-processed to remove e-transitions. For

C E Pfim(L2 x Cr2), define:

L(C) = th 5 ml I (aL,PcJ) E c, QL -cJn CT,, Pv -cs TU)

The relation 7&z, ,s2 [., ., +, ~1 is defined as the largest relation on

Ll x Ul x PII.(Lz x U2) x Pfipr,.(L2 x U2) such that if:

‘Rs, $1 bL 9 Pu 9 c, Dl aL ‘-‘GI x PrJ -0, y

then one of the following cases hold:

1. L([X 5 yl) c qc u D).

2. X = mg(+), Y = m&‘;) and %l,~,[a’L,P;,C,D’l,
where:

D'={(ri,6;) I (TL,&)ECUD,
-rL -cz mg(r;hb -CT2 mg(at))

3. X = dom(a;), Y = dam(q) and ‘R~,,s~[p~,c$,,C, D’],
where:

The computable entailment ndation S2 I-& Sl holds if and only

if Vfx E Vars(S1):

Figure 5: The computable entailment relation kie

The containment question &G,(R) > t&(R) can be
decided via an RTG containment algorithm. To decide
the more difficult question:

we adapt an RTG containment algorithm to allow for
constraints inferred via (cornput) on L&(R).

The extended algorithm is presented in Figure 5.
It first computes the largest relation 7Es,,s2 such that
72~~ ,sz [CEL, &J, C, D] holds if and only if:

Nm 5 Pull G =wW(C)) U W)

where a~, /3~ describe collections of types; C, D de-
scribe collections of constraints; and L([a, 5 &J]) de-
notes the language {[TL 2 7~1 I a~ H* TL, &J H* 7~).
The first case in the definition of 72 uses an R!I’G con-
tainment algorithm to detect if L&L 5 &J]) E L(C) U

C(D). The two remaining cases handle constraints of
the form [rng(ai) 5 mg(&)] or [dom(a;) < don@)],

242

and allow for inferences via (compat). The relation R
can be computed by starting with a maximal relation
(true at every point), and then iteratively setting en-
tries to false as required by figure 5, until the largest
relation satisfying the definition is reached.

Based on this relation, the algorithm then defines a
computable entailment relation l-5s on constraint sys-

tems. This relation is equivalent to l-5.

Theorem 4.11 & l-g 2% if and only if S-Z I-& SI.

The entailment algorithm takes exponential time,
since the size of R is exponential in the number of
set variables in Ss. Although faster algorithms for the
entailment may exist, these algorithms must all be in
PSPACE, because the containment problem on NFA’s,
which is PSPACEcomplete [l], can be polynomially re-
duced to the entailment problem on constraint systems.

By using the entailment algorithm in both direc-
tions, we can now decide if two constraint systems are
observable equivalent. Thus, given a constraint system,
we can find a minimal, observably equivalent system
by systematically generating a11 constraint systems in
order of increasing size, until we find one observably
equivalent to the original system. Of course, the pro-
cess of computing the minimal equivalent system with
this algorithm is far too expensive for use in practical
program analysis systems.

5 Practical Constraint Simplification

Fortunately, to take advantage of the rule (Z) in a pro-
gram analysis tool, we do not need a completely mini-
mized constraint system. Any simplifications in a con-
straint system produces corresponding reductions in the
overall analysis time.

For this purpose, we exploit the connection between
constraint systems and RTGs. By Lemmas 4.4 and 4.9,
any transformation on constraint systems that preserves
the language:

also preserves the observable behavior of S with respect
to E. Based on this observation, we transform a vari-
ety of existing algorithms for simplifying RTGs to al-
gorithms for simplifying constraint systems. In the fol-
lowing subsections, we present the four most promising
algorithms found so far. We use G to denote Gt(S,E),
and we let X range over non-terminals and p over paths,
which are sequences of the constructors dom and rg.
Each algorithm assumes that the constraint system S
is closed under 0. Computing this closure corresponds
to propagating data flow information locally within a
program component. This step is relatively cheap, since

program components are typically small (less than a few
thousand lines of code).

5.1 Empty Constraint Simplification

A non-terminal X is empty if &(X) = 0. Similarly, a
production is empty if it refers to empty non-terminals,
and a constraint is empty if it only induces empty pro-
ductions. Since empty productions have no effect on the
language generated by G, an empty constraint in S can
be deleted without changing S’s observable behavior.

To illustrate this idea, consider the program compo-
nent P = (Xgy.((Xfz.l) y)), where f and g are function
tags. Although this example is unrealistic, it illustrates
the behavior of our simplification algorithms. Analyz-
ing P according to the constraint derivation rules yields
a system S containing ten constraints. Closing S un-
der 0 yields an additional three constraints. Figure 6
displays the resulting constraint system O(S), together
with the corresponding grammar Gt(S(S), {aP}). An
inspection of this grammar shows that the set of non-
empty non-terminals is:

Five of the constraints in 0(S) are empty, and are re-
moved by this simplification algorithm, yielding a sim-
plified system of eight non-empty constraints.

5.2 Unreachable Constraint Simplification

A non-terminal X is unreachable if there is no pro-
duction R H [y 5 Z] or R H [Z 5 Y] such that
&(Y) # 0 and 2 -+z p(X). Similarly, a production
is unreachable if it refers to unreachable non-terminals,
and a constraint is unreachable if it only induces un-
reachable productions. Unreachable productions have
no effect on the language &(R), and hence unreach-
able constraints in S can be deleted without changing
the observable behavior of S.

In the above example, the reachable non-terminals
are al~, a”(~ and agr~. Three of the constraints are un-
reachable, and are removed by this algorithm, yielding
a simplified system with five reachable constraints.

5.3 Removing +Constraints

A constraint of the form [a 2 /3] E S is an c-cowhint.
Suppose a fZ E and the only upper bound on a in S
is the c-constraint [a 5 p], i.e., there are no other con-
straints of the form a 5 7, rng(a) 5 7, or 7 5 dam(a)
in S. Then, for any solution p of S, the set environment

243

Constraints Production Rules Non-empty Reachable

f 5 Qf R w [f5a’ul
dom(af) 2 az a=L H dom(ofu)

1 5 or R - P~~‘Ul 1 5 or 1 5 al

o1 5 mg(af) 0’~ - mg(ofu)

mg(of) 5 aa @L - mg(~fL)
au 5 or aru w ffvu dL H CYYL oy 5 0’
or < dom(af) a’~ I-+ dom(afn)

9 I QP R - bI~pul 9 I op 9 I op
dom(aP) 5 a* @L H dom(aP~) dom(aP) 5 au

oa 5 mg(op) CPU ++ mg(oPu) aa 5 mg(aP) CP 5 mg(op)

a’ < 02

a1 5 aa

1 5 00

CPU H CPU CPL H O’L a’ < a2

al” H aaU aaL H alL a1 5 o” a1 5 aa
R w P<hl 1 5 aa 1 5 aa

aPL H ap aPu H ffp

Figure 6: The original constraint system, grammar and simplified constraint systems for P = (&‘v.((xfz.l) 9))

p’ defined by:

PW = {
p(6) if 6 f a
p(p) if 6 =CY

is also a solution of S. Therefore we can replace all
occurrences of a in S by p while still preserving the ob-
servable behavior S&r(S) 1~. This substitution trans-
forms the constraint [CY 5 p] to the tautology [/3 5 /?I,
which can be deleted. Dually, if [(Y 5 /3] E S with ,f3 $Z E
and /3 having no other lower bounds, then we can re-
place /3 by Q, again eliminating the constraint [o 5 /3].

To illustrate this idea, consider the remaining con-
straints for P. In this system, the only upper bound
for the set variable a’ is the e-constraint [o’ 5 a”].
Hence this algorithm replaces all occurrences of cxl by
(Y’, which further simplifies this constraint system into:

(15 (Y”,oo < mg(crP),g 5 aP}

This system is the smallest simple constraint system
observably equivalent to the original system O(S).

5.4 Hopcroft’s Algorithm

The previous algorithm merges set variables under cer-
tain circumstances, and only when they are related by
an e-constraint. We would like to identify more general
circumstances under which set variables can be merged.
To this end, we define a valid unifier for S to be an
equivalence relation - on the set variables of S such
that we can merge the set variables in each equivalence
class of - without changing the observable behavior
of S. Using a model-theoretic argument, we can show
that an equivalence relation - is a valid unifier for S if

1. Use a variant of Hopcroft’s algorithm [12] to compute an

equivalence relation N on the set variables of S that satisfies

the following conditions:

(a) Each set variable in E is in an equivalence class by

itself.

(b) If [a 5 P] E S then Va m a’ 30 N @’ such that

[a’ 5 P’] E S.

(c) If [a < mg(/3)] E S then Va N a’ 3p N p’ such that

[a’ I mg(P’)l E S.
(d) If [rng(a) < S] E S then Va N a’ $3 N p’ such that

[mda’) I P’l E S.

(e) If [a 5 dom(/3)] E S then Va N a’ VP N 0’ such that

[a’ < dam(@)] E S.

2. Merge set variables according to their equivalence class.

Figure 7: The Hopcroft algorithm

for all solutions p E S&r(S) there exists another solu-
tion p’ E Soln(S) such that p’ agrees with p on E and
p’(a) = p’(p) for all (Y - p.

A natural strategy for generating p’ from p is to map
each set variable to the least upper bound of the set
variables in its equivalence class:

P’(4 = Ll Pb’)
a’-0

Figure 7 describes sufficient conditions to ensure that p’
is a solution of S, and hence that - is a valid unifier for
S. To produce an equivalence relation satisfying these
conditions, we use a variant of Hopcroft’s O(n lg n) time

244

algorithm [12] for computing an equivalence relation on
states in a DFA and then merge set variables according
to their equivalence class6

5.5 Simplification Benchmarks

To test the effectiveness of the simplification algorithms,
we extended MrSpidey with the four algorithms that
we have just described: empty, unreachable, e-removal,
and Hopcroft. Each algorithm also implements the pre-
ceding simplification strategies. The first three algo-
rithms are linear in the number of non-empty constraints
in the system, and Hopcroft is log-linear.

We tested the algorithms on the constraint systems
for nine program components on a 167MHz Spare Ul-
tra 1 with 326M of memory, using the MzScheme byte
code compiler [lo]. The results are described in fig-
ure 8. The second column gives the number of lines in
each program component, and the third column gives
the number of constraints in the original (unsimplified)
constraint system after closing it under the rules 0. The
remaining columns describe the behavior of each simpli-
fication algorithm, presenting the factor by which the
number of constraints was reduced, and the time (in
milliseconds) required for this simplification.

The results demonstrate the effectiveness and effi-
ciency of our simplification algorithms. The resulting
constraint systems are typically at least an order of
magnitude smaller than the original system. The cost
of these algorithms is reasonable, particularly consid-
ering that they were run on a byte code compiler. As
expected, the more sophisticated algorithms are more
effective, but are also more expensive.

6 Componential Set-Based Analysis

Equipped with the simplification algorithms, we return
to our original problem of developing a componential
set-based analysis. The new analysis tool processes pro
grams in three steps.

1. For each component in the program, the analy-
sis derives and simplifies the constraint system for
that component and saves the simplified system in
a constraint file, for use in later runs of the analy-
sis. The simplification is performed with respect to
the external variables of the component, excluding
expression labels, in order to minimize the size of
the simplified system. Thus, the simplified system

‘A similar development based on the definition p’(a) =

W(a’) I 0 - 0’1 results in an alternative algorithm, which is less
effective in practice.

only needs to describe how the component inter-
acts with the rest of the program, and the simpli-
fication algorithm can discard constraints that are
only necessary to infer local value set invariants.
These discarded constraints are reconstructed later
as needed.

This step can be skipped for each program com-
ponent that has not changed since the last run of
the analysis, since its constraint file can be used
instead.

The analysis combines the simplified constraint
systems of the entire program and closes the com-
bined collection of constraints under 8, thus prop-
agating data flow information between the con-
straint systems for the various program compo
nents.

Finally, to reconstruct the full analysis results for
the program component that the programmer is
focusing on, the analysis tool combines the con-
straint system from the second step with the un-
simplified constraint system for that component.
It closes the resulting system under 8, which yields
appropriate value set invariants for each labeled
expression in the component.

The new analysis can easily process programs that
consist of many components. For its first step, it elim-
inates all those constraints that have only local rele-
vance, thus producing a small combined constraint sys-
tem for the entire program. As a result, the analysis
tool can solve the combined system more quickly and
using less space than traditional set-based analysis [ll].
Finally, it recreates as much precision as traditional set-
based analysis as needed on a per-component basis.

The new analysis performs extremely in an inter-
active setting because it exploits the saved constraint
files where possible and thus avoids reprocessing many
program components unnecessarily.

We implemented four variants of this analysis. Each
analysis uses a particular simplification algorithm to
simplify the constraint systems for the program com-
ponents.

6.1 Benchmarks

We tested the componential analyses with five bench-
mark programs, ranging from 1,200 to 17,000 lines. For
comparison purposes, we also analyzed each benchmark
with the standard set-based analysis that performs no
simplification. The analyses handled library functions
in a context-sensitive, polymorphic manner according to
the constraint derivation rules (let) and (inst) to avoid
merging information between unrelated calls to these

245

lines size

5 221

6 287

8 579

41 1387

89 2921

201 8429

237 21854

493 30509

1209 59215

-n em
Factor

3

4

12

15

10

25

4

187

3

Y
time

unren
factor

vol
time

HOP ,ft
+- factor time Definition

<lO 6

<IO a

10 64

<lO 15

10 11

10 42

50 4

10 678

180 17

30

10

10

50

120

100

370

40

2450

13 30

20 30

96 20

66 40

65 150

124 200

168 510

678 80

57 2120

mP
reverse

substring

qsort
unify

hopcroit

check

escher-iish

scanner

Figure 8: Behavior of the constraint simplification algorithms.

functions. The remaining functions were analyzed in a
context-insensitive, monomorphic manner. The results
are documented in figure 9.

The third column in the figure shows the maximum
size of the constraint system generated by each analysis,
and also shows this size as a percentage of the constraint
system generated by the standard analysis. The analy-
ses based on the simplification algorithms produce sig-
nificantly smaller constraint systems, and can also an-
alyze more programs, such as sba and poly, for which
the standard analysis exhausted heap space.

The fourth column shows the time required to ana-
lyze each program from scratch, without using any ex-
isting constraint files.’ The analyses that exploit con-
straint simplification yield significant speed-ups over
the standard analysis because they manipulate much
smaller constraint systems. The results indicate that,
for these benchmarks, the wemoval algorithm yields
the best trade-off between efficiency and effectiveness
of the simplification algorithms. The additional sim-
plification performed by the more expensive Hopcrojt
algorithm is out-weighed by the overhead of running
the algorithm. The tradeoff may change as we analyze
larger programs.

To test the responsiveness of the componential anal-
yses in an interactive setting based on an analyze-debug-
edit cycle, we reanalyzed each benchmark after chang-
ing a randomly chosen component in that benchmark.
The re-analysis times are shown in the fifth column of
figure 9. These times show an order-of-magnitude im-
provement in analysis times over the original, standard
analysis, since the saved constraint files are used to
avoid reanalyzing all of the unchanged program com-
ponents. For example, the analysis of zodiac, which
used to take over two minutes, now completes in un-
der four seconds. Since practical debugging sessions
using MrSpidey typically involve repeatedly analyzing
the project each time the source code of one module is

‘These times exclude scanning and parsing time.

File

size

@Y-)
572K

189K

39K

28K

25K

1634K

328K

169K

147K

136K

2882K

592K

386K

330K

328K

*

1351K

920K

770K

716K

Program

I# lines)

scauner

(1253)

Analvsis

stondanl

empty
unreachable
t-removal

Hopcroft
standard

empty
unreachable
e-removal

Hopcroft
standard

empty
unreachable
c-removal

Hopcroft
standard

ewtv
unreachable
e-removal

Hopcroft
standard

empty
unreachable
t-removal

Hopcroft

zodiac

(3419)

nucleic

(3432)

sba

(11560)

62K (9%) 34.1 8.1
21K (3%)

I

28.8
I

4.5

13K (2%) 28.8 3.8

90K (27%) 52.8 17.8

68K (20%) 48.4 14.6 -l---L 56K (1%) 48.3 13.1

56K (1%) 60.9 13.2

>5M l * l

65.5

43.3

42.2

41.1 ;;; (<;%ji 1781

PlY
(17661) >5M l l

201K (<4%) 259.6 Ll 68K (<l%) 239.6

38K (<l%) 254.1

l

l

26.9

13.3

10.9

I

l

1517K

1038K

907K

* indicates the analysis exhausted heap space

Figure 9: Behavior of the componential analyses.

modified, e.g., when a bug is identified and eliminated,
using separate analysis substantially improves the us-
ability of MrSpidey.

The disk-space required to store the constraint files
is shown in column six. Even though these files use
a straight-forward, text-based representation, their size
is typically within a factor of two or three of the corre
sponding source file.

246

Program

browse

splay
check

graphs

boyer

matrix

maze

nbody

nucleic

II WPY

233 2.5s

265 7.9s

281 50.1s

621 2.8s

624 4.3s

744 7.5s

857 6.2s

880 39.6s
3335 *

Relative time of smart oolvmorohic an~vses

ewtv
39%

76%

75%

21%

85%

46%

64%

64%

57%

l 243s

unreachable

36%

76%

73%

23%

85%

46%

57%

59%

25%

* 42s

e-removal

35%

76%

70%

14%

62%

49%

51%

58%

25%

l 42s

Hopcroft
38%

81%

72%

14%

87%

50%

52%

61%

26%

l 44s

Mono.

analysis

42%

75%

83%

23%

82%

40%

45%

54%

28%

l 36s

* indicates the copy analysis exhausted heap space,

and the table contains absolute times for the other analyses

Figure 10: Times for the smart polymorphic analyses, relative to the copy analysis.

7 Efficient Polymorphic Analysis

The constraint simplification algorithms also enables an
efficient polymorphic, or context-sensitive, analysis. To
avoid merging information between unrelated calls to
functions that are used in a polymorphic fashion, a poly-
morphic analysis duplicates the function’s constraints
at each call site. We extended MrSpidey with five poly-
morphic analyses. The first analysis is copy, which
duplicates the constraint system for each polymorphic
reference via a straightforward implementation of the
rules (let) and (in&).* The remaining four analyses are
smaft analyses that simplify the constraint system for
each polymorphic definition.

We tested the analyses using a standard set of bench-
marks (131. The results of the test runs are documented
in figure 10. The second column shows the number of
lines in each benchmark; the third column presents the
time for the copy analysis; and columns four to seven
show the times for each smart polymorphic analysis, as
a percentage of the copy analysis time. For comparison
purposes, the last column shows the relative time of the
original, but less accurate, monomorphic analysis.

The results again demonstrate the effectiveness of
our constraint simplification algorithms. The smart
analyses that exploit constraint simplification are al-
ways significantly faster and can analyze more programs
than the copy analysis. For example, while copy ex-
hausts heap space on the nucleic benchmark, all smart
analyses successfully analyzed this benchmark.

Again, it appears that the c-removal analysis yields
the best trade-off between efficiency and effectiveness
of the simplification algorithms. This analysis provides
the additional accuracy of polymorphism without much

‘we 8h30 implemented a polymorphic analysis that re-analyzes 8
definition 8t each reference, but found its performance to be compa-
rable to, and sometimes worse than, the copy analysis.

additional cost over the coarse, monomorphic analysis.
With the exception of the benchmarks browse, splay
and graphs, which do not re-use many functions in a
polymorphic fashion, this analysis is a factor of 2 to
4 times faster than the copy analysis, and it is also
capable of analyzing larger programs.

8 Competitive Work

Fiihndrich and Aiken [S] examine constraint simplifi-
cation for an analysis based on a more complex con-
straint language. They develop a number of heuristic
algorithms for constraint simplification, which they test
on programs of up to 6000 lines. Their fastest approach
yields a factor of 3 saving in both time and space, but
is slow in absolute times compared to other analyses.

Pottier [17] studies an ML-style language with a sub-
type system based on constraints, and and presents an
incomplete algorithm for deciding entailment on con-
straint systems. He proposes some ad hoc algorithms
for simplifying constraints, but does not present results
on the cost or effectiveness of these algorithms.

Eifrig, Smith and Trifonov [S, 211 describe a subtyp-
ing relation between constrained types that are simi-
lar to our constraint systems, and they present an in-
complete decision algorithm for subtyping. They de-
scribe three algorithms for simplifying constraint sys-
tems, two of which which are similar to the empty and
.+removal algorithms, and the third is a special case of
the Hopcroft algorithm. They do not present results on
the cost or effectiveness of these algorithms.

Duesterwald et al [4] describe algorithms for simpli-
fying data flow equations. These algorithms are similar
to the e-removal and Hopcrojt algorithms. Their ap-
proach only preserves the greatest solution of the equa-
tion system and assumes that the control flow graph

247

is known. it be to
programs a manner to pro-

with control-flow such
first-class and methods. paper

not results the or of
algorithms.

9 Future Work

All our constraint simplification algorithms preserve the
observable behavior of constraint systems, and thus do
not affect the accuracy of the analysis. If we were willing
to tolerate a less accurate analysis, we could choose a
compressed constraint system that does not preserve
the observable behavior of the original, but only entails

that behavior. This approach allows the use of much
smaller constraint systems, and hence yields a faster
analysis.

A promising approach for deriving such approximate
constraint systems is to rely on a programmer-provided
sign&we describing the behavior of each program com-
ponent, and to derive the new constraint system from
that signature. After checking the entailment condi-
tion to verify that signature-based constraints correctly
approximates the behavior of the module, we could use
those constraints in the remainder of the analysis. Since
the signature-based constraints are smaller than the
derived ones, this approach could significantly reduce
analysis times for large projects. We are investigating
this approach for developing a typed module language
on top of Scheme.

References

[I] AHO, A., 3. HOPCROFT AND J. ULLMAN. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Read-

ing, Mass., 1974.

[2] AIKEN, A., WIMMERS, E. L., AND LAKSHMAN, T. K. Soft

typing with conditional types. In Pmcecdings of the ACM
Sigplan Conference on Principle8 of Progmmming Lan-
guages (1994), pp. 163-173.

[3] COLJSOT, P., AND COUSOT, R. Formal language, grammar,

and set-constraint-based program analysis by abstract inter-

pretation. In Pmccedings of the 1995 Conference on Pnnc-

tional Prvgmmming and Computer Architecture (1995),

pp. 170-181.

[4] DUESTERWALD, E., GUPTA, R., AND SOFFA, M. L. Reducing
the cost of data flow analysis by congruence partitioning. In

International Conference on Compiler Construction (April

1994).

[5] EIFRIG, J., SMITH, S., AND TRIFONOV, V. Sound polymor-

phic type inference for objects. In Conference on Object-
Oriented Prvgmmming Systems, Languages, and Applicn-

tions (1995).

[6] F~HNDRICH, M., AND AIKEN, A. Making set-constraint based

program analyses scale. Technical Report UCB/CSD-96-917,

University of California at Berkeley, 1996.

[7] FLANAGAN, C., AND FELLEISEN, M. Set-based analysis for

full Scheme and its use in soft-typing. Technical Report

TR95-254, Rice University, 1995.

[S] FLANAGAN, C., AND FELLEISEN, M. Modular and polymor-

phic set-based analysis: Theory and practice. Technical Re-

port T&96-266, Rice University, 1996.

[9] FLANAGAN, C., FLATT, M., KRISHNAMURTHI, S., WEIRICH,

S., AND FELLEISEN, M. Finding bugs in the web of pro-

gram invariants. In Pmceedings of the ACM Conference on

Programming Language Design and Implementation (1996),
pp. 23-32.

(lo] FLATT, M. &Scheme Reference Manual. Rice University.

[ll] HEINTZE, N. Set-based analysis of ML programs. In Pru-
ceedings of the ACM Conference on Lisp and Jbnctional

Pmgmmming (1994), pp. 306317.

[12] HOPCROFT, J. E. An n log n algorithm for minimizing the

states of a finite automaton. The Theory of Machines and
Computations (1971), 189-196.

[13] JAGANNATHAN, S., AND WRIGHT, A. K. Effective flow analy-

sis for avoiding run-time checks. In Pmt. 2nd International

Static Analysis Symposium, LNCS 983 (September 1995),

Springer-Verlag, pp. 207-224.

[14] JONES, N., AND MUCHNICK, S. A flexible approach to inter-

procedural data flow analysis and programs with recursive

data structures. In Conference Reconl of the Ninth Annual
ACM Symposium on Principles of Prvgnamming Languages
(January 1982), pp. 66-74.

[15] PALSBERG, J. Closure analysis in constraint form. %nsoe-

tions on Programming Languages and Systems 17, 1 (1995),

47-62.
[16] PALSBERG, J., AND O’KEEFE, P. A type system equip

lent to flow analysis. In Proceedings of the ACM SIGPLAN
‘95 Conference on Principles of Pnqmmming Languages
(1995), pp. 367-378.

[17] POTTIER, F. Simplifying subtyping constraints. In Proaed-
inge of the 1996 ACM SIGPLAN International Conference
on finctional Pmgmmming (1996), pp. 122-133.

[18] REYNOLDS, J. Automatic computation of data set defintious.

Information Processing’68 (1969), 456-461.

[19] SHIVERS, 0. Control-flour Analysis of Higher-Order Lan-

guages, or Taming Lambda. PhD thesis, CarnegieMellon

University, 1991.

[20] TOFTE, M. Type inference for polymorphic references. In-

formation and Computation 89, 1 (November 1996), l-34.

[21] TRIFONOV, V., AND SMITH, S. Subtyping constrained types.

In Third International Static Andyrio Symposium (LNCS
11.15) (1996), pp. 349-365.

[22] WRIGHT, A., AND FELLEISEN, M. A syntactic approach

to type soundness. Information and Computation 115, 1

(1994), 38-94.

[23] WRIGHT, A. K. Simple imperative polymorphism. Lisp and

Synbotic Computation 8, 4 (Dec. 1995), 343-356.

248

