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program, and a solution phase, during which MrSpidey 
solves the constraints. The solution conservatively ap 
proximates the set of values that may be returned by 
each program expression. 

In practice, MrSpidey has proven highly effective for 
pedagogic programming, which includes programs of 
several hundred to a couple of thousand lines of code. 
It becomes less useful, however, for debugging larger 
programs due to limitations in the underlying analy- 
sis, which has an O(n3) worst-case time bound. The 
constant on the cubic element is small, but it becomes 
dominant for programs of several thousand lines. 

The bottleneck is due to the excessive size of the con- 
straint systems that describe a program’s data flow rela- 
tionships. If we could simplify these constraint systems 
without affecting the data flow relationships that they 
denote, then we could reduce the analysis times. That 
is, by first simplifying the constraint system for each 
program component (e.g. module or package), we could 
solve the combined system of constraints in less time. 
Furthermore, if we saved each simplified constraint sys- 
tem in a constraint file, then we could exploit those 
saved constraints in future runs of the analysis to avoid 
reprocessing components that have not changed. 

The simplification of constraint systems raises both 
interesting theoretical and practical questions. On the 
theoretical side, we need to ensure that simplification 
preserves the observable behavior of a constraint sys- 
tem. In this paper, we provide a complete characteri- 
zation of observable behavior and, in the course of this 
development, establish a close connection between this 
observable equivalence of constraint systems and the 
equivalence of regular tree grammars (RTGs).’ Exploit- 
ing this connection, we develop a complete algorithm for 
deciding the equivalence of constraint systems. Unfor- 
tunately, the algorithm is PSPACEhard. 

Fortunately, a minimized constraint system is only 
optimal but not necessary for practical purposes. The 

‘A number of researchers, including Reynolds [la], Jones and 
Muchnick [14], Heintze (111, Aiken [2], and Cousot and Coueot [3] 

previously exploited the relationship between RTGa and the leasst so- 
lution of a constraint system. We present an additional result, namely 
a connection between RTGs and the observable behavior (i.e., the en- 
tire solution space) of constraint systems. 
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syntax: 

.I1 E A = x 1 1,’ ) (Af AI) 1 AZ’ (Expressions) 

1 (let (s .!I) AI) 

v E Value = b 1 (Xtx.M) (Valuee) 
x E Var.9 = {r,y,Z,...} (Variables) 

b E BConst (Basic constants) 

t E Tag (Function tags) 

I E Label (Expression labels) 

Evaluator: 

eval : A0 - Value U {I} 
eual(M) = V if M c* V 

Reduction Rules: 

&[ ((X’XM) V) ] ----) E[ af[x H V] ] (P”) 
EL (let (x VI JW 1 - E[ M[x H V] ] (Olet ) 

&IV’1 - E[ I’] (unlabd) 

Evaluation Contexts: 

E = [ 1 I (E W I (V f) I (let (x 8) J4 I E’ 

Figure 1: The source language A: syntax and semantics 

particular, the substitution operation M[z t V] re- 
places all free occurrences of z within M by V, and ho 
denotes the set of closed terms, also called programs. 

We specify the meaning of programs via the reduc- 
tion semantics based on the rules described in figure 1. 
The reduction rules 0” and /31et are conventional, and 
the unlabel rule removes the label from an expression 
once its value is needed. 

2 The Source Language 

For simplicity, we derive our analysis for a X-calculus- 
like language with constants and labeled expressions. It 
is straightforward to extend the analysis to a realistic 
language including assignments, recursive data struc- 
tures, objects and modules along the lines described in 
an earlier report [7]. 

Expressions in the language are either variables, val- 
ues, function applications, let-expressions, or labeled 
expressions: see figure 1. We use labels to identify those 
program expressions whose values we wish to predict. 
Values include basic constants and functions. Functions 
have identifying tags so that MrSpidey can reconstruct 
a call-graph from the results of the analysis. We use 
let-expressions to introduce polymorphic bindings, and 
hence restrict these bindings to syntactic values [23]. 
We work with the usual conventions and terminology 
of the X,-calculus when discussing syntactic issues. In 

2componential a. of or pertaining to components; spec. (Ling.) 
designating the analysis of distinctive sound units or grammatical 
elements into phonetic or semantics components (New Shorter Ozford 
Englrsh Drctionary, Clarendon Press, 1993) 

3 Set-Based Analysis 

Conceptually, set-based analysis consists of two phases: 
a specification phase and a solution phase.3 During 
the specification phase, the analysis tool derives con- 
straints on the sets of values that program expressions 
may assume. These constraints describe the data flow 
relationships of the analyzed program. During the solu- 
tion phase, the analysis produces finite descriptions of 
the potentially infinite sets of values that satisfy these 
constraints. The result provides an approximate set of 
values for each labeled expression in the program. 

3.1 The Constraint Language 

To simplify the derivation of the constraint simplifica- 
tion algorithms, we formulate our constraint language 
in terms of type selectors, instead of the more usual 

‘Cousot and Cousot showed that set-based analysis can alter- 
natively be formulated as an abstract interpretation computed by 
chaotic iteration [3]. 
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type constructors: 

T E SetExp = (Y 1 c 1 dam(T) 1 rng(T) 
a, p, 7 E Set Var > Label 

c E Const = BConst U Tag 

A set expression 7 is either a set variable; a constant; or 
one of the “selector” expressions dam(r) or rng(T). By 
using selector expressions, we can specify each “quan- 
tum” of the program’s data flow behavior independently; 
using constructors would combine several of these quanta 
into one constraint. The meta-variables a, /3,~ range 
over set variables, and we include program labels in the 
collection of set variables. Constants include both ba- 
sic constants and function tags. A constraint C is an 
inequality 71 5 ~2 relating two set expressions. 

Intuitively, each set expression denotes a set of run- 
time values, and a constraint [~1 5 74 indicates that 
the value set denoted by ~1 is contained in the value set 
denoted by 72. A constraint system S is a collection of 
constraints. A simple constraint system is a collection 
of simple constraints, which have the form: 

ClB I aSP 1 aSdom(B) 
I vda) 5P I dom(d ID I a <w(P) 

In some cases, we are interested in constraints that only 
mention certain set variables. The restriction of a con- 
straint system to a collection of set variables E is: 

S 1~ = {C E S I C only mentions set variables in E} 

3.2 Semantics of Constraints 

A set expression denotes a collection of values, which is 
represented as a triple X = (C,D, R). The first com- 
ponent C E P(Const)* is a set of basic constants and 
function tags, and represents a set of run-time values 
(relative to a given program) according to the relation 
V in C: 

binC iff bEC 
(Xtz.M) in C iff t E C 

The second and third components of X denote the pas- 
sible argument values (dom) and result values (rng) of 
functions in X, respectively. Since these two compo- 
nents also denote value sets, the appropriate model for 
set expressions is the solution of the equation? 

‘P denotes the power-set constructor. 
‘The set P is equivalent to the set of all infinite binary trees with 

each node labeled with an element of P( Coast). This set can be 
formally defined aa the 6e.t of total functions f : {dm,rng}* + 
P(Const), end the rest of the development can be adapted mutan- 

dis mutotis (161. For clarity, we present our results using the more 
intuitive notation instead. 

We use the functions const : D - P( Con&) and dom, 
wag : 2) - 2) to extract the respective components of 
an element of 2). 

We order the elements of D according to a relation 
that is contravariant in the argument component, since 
the information about argument values at an applica- 
tion needs to flow backwanl along data-flow paths to the 
formal parameter of the corresponding function defini- 
tions. Thus (Cl, D1, RI) L (C2, DI, Rz) if and only if 
Cl G CZ, DZ C DI, and RI E R2. The set 2, forms 
a complete lattice under this ordering, with top and 
bottom elements being the solutions to the equations 
T = (Co&, I, T) and I = (0, T, 1), respectively. 

The semantics of set expressions is defined with re- 
spect to a set environment p, which maps each set vaxi- 
able to an element of V. We extend the domain of set 
environments from set variables to set expressions in 
the natural manner: 

p : SetExp - ‘D 

P(C) = ((4, T, 4 
ddom(T)) = dam (~(4) 
Phd~)) = rtlg (P(T)) 

An environment p satisfies a constraint C = [TI 5 Q] 
(written p + C) if ~(7-1) 5 472). Similarly, p satisfies 
S, or p is a solution of S (written p j= S) if p /= C for 
each C E S. The solution space of a constraint system 
S is Soln(S) = {p 1 p b S}. A constraints set Sl 
entails S2 (written S1 + &) iff SoIn E SoZn(&), 
and Sl is observably equivalent to &, (written Sl Y &) 
iffS1 /=&and&k&. 

The restriction of a solution space to a collection of 
variables E is: 

Soln(S) 1~ = {p I 3p’ E SoZn(S). Va E E. p(a) = p’(a)} 

We extend the notion of restriction to entailment and 
observable equivalence of constraint systems: 

l If SoZn(&) 1~ G Soln(S2) IE, then SI entails SZ 
with respect to E (written Sl t=~ &). 

l If Sl +E S2 and S2 FE Sl then that Sl and & 
are observably equivalent with respect to E (written 

SIYE&). 

3.3 Deriving Constraints 

The specification phase of set-based analysis derives 
constraints on the sets of values that program expres- 
sions may assume. Following Aiken et al. and Palsberg 
and O’Keefe, we formulate this derivation as a subtype 
system [2, 161. 

The derivation proceeds in a syntax-directed manner 
according to the constraint derivation rules presented 
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ru{x:a}~z:a,0 (vaf) 

rl-b:a,{b~a} (mist) 

rI-M:a,S 

I’~M1:a,SU{a~I} 
(label) 

r k (X*s.M) : a,SU {t 5 a, do+) 5 al, a2 < q(a)} Cabs) 

rk Mi :pi,Si 

I‘ I- (Ml M2) : a,& US2 U {Pz I dom(Pl), q(A) 50) 
(aPP) 

rkv:a,sv 
A = Vars(Sv) \ (FV[rng(I’)] U Label) 

ru{5-vA.ia,S;))~M:p,S 
r I- (let (2 V) M) : P,S 

li, is a substitution of fresh vars for A 

r u (z : VA. (a,&)} I- z : $(a), $(Sv) 
(ind) 

Figure 2: Constraint derivation rules. 

in figure 2. Each rule infers a judgement of the form 
I’ I- M : cy,S, where the set variable context r maps the 
free variables of M either to set variables or constraint 
schemes (see below); a names the value set of M; and 
the constraint system S describes the data flow rela- 
tionships of M, using a. 

The rules (uar) and (con&) are straightforward. The 
rule (label) records the value set of a labeled expression 
in the appropriate label. The rule (abs) for functions 
records the function’s tag, and also propagates values 
from the function’s domain into its formal parameter 
and from the function’s body into its range. The rule 
(app) for applications propagates values from the argu- 
ment expression into the domain of the applied function 
and from the range of that function into the result of 
the application expression. 

The rule (let) produces a constraint schema 0 = 
VA. (a, S) for polymorphic, let-bound values [20,2,23]. 
The set variable a names the result of the expression, 
the constraint system S describes the data %ow rela- 
tionships of the expression, and the set A contains those 
internal set variables of the constraint system that must 
be duplicated at each reference to the let-bound vari- 
able via the rule (in&). We use FV[rng(I’)] to denote 
the free set variables in the range of F. The free set vari- 
ables of a schema u = VA. (a,S) are those in S but not 
in A, and the free variables of a set variable is simply 
the set variable itself. 

3.4 Set Based Analysis 

Every constraint system admits the trivial solution pT 
where pT(a) = T, and T, = (Con.&, T,, Td). Since T, 
represents the set of aIZ run-time values, this solution 
is highly approximate and utterly useless. Fortunately, 
constraint systems typically yield many additional so- 
lutions that more accurately characterize the value sets 
of program expressions. 

For example, consider the program P = (Xtz.z), 
which yields the constraint system: 

{t 5 a~, dam(w) i az, a2 I rng(ap)} 

In addition to the trivial solution described above, this 
constraint system admits a number of other solutions, 
including: 

Pl = {aP I+ ({q,-bQaz t-b 1) 

pz = {a~ c-) ({t)J,T),a, -T) 

The solution pr more accurately describes the program’s 
run-time value sets than pz. Yet these two solutions 
are incomparable under the ordering E (pointwise ex- 
tended to environments), since it models the flow of 
values through a program, but does not rank environ- 
ments according to their accuracy. 

Therefore we introduce a second ordering E, on 2) 
that properly ranks environments according to their ac- 
curacy. This ordering is covariant in the domain posi- 
tion, i.e., (Cl, DI, RI) C, (Cz, D2, R2) if and only if 
Cl EC2,Dl LsD2, mdR1 LR2. 

Under this ordering, a constraint system S has both 
a maximal solution (pT above) and a minimal solution. 
The minimal solution exists because the greatest lower 
bound tl, with respect to 5. of two solutions is also a 
solution [ll]. We use LeastSoln(S) to denote this least 
solution, and define set-based analysis as the function 
that extracts the basic constants and function tags for 
each labeled expression from LeastSoZn(S). 

Definition 3.1. (sba) If 0 I- P : o,S, then: 

sba(P)(l) = wnst(LeastSoZn(S)(Z)) 

The solution sba(P) conservatively approximates the 
value sets for each labeled expression. 

Theorem 3.2 (Correctness of &a) IfP++*E[ V’ ] 
then V in da(P)(Z). 

This result follows from a subject reduction proof 
along the lines of Wright and Felleisen [22] and Pals- 
berg [15] and is contained in a related report [S]. 

3.5 Computing the Least Solution 

To compute sba(P), we close the constraint system for 
P under the rules 8 described in figure 3. Intuitively, 

238 



Cl0 PlY 

Cl-Y 

Q 5 -3(B) 05-i 

a I mg(Y) 

don@) I Q Plr 

dam(r) 5 Q 

a I mpm mgw I Y 

(YlY 

Q I do@) dam(P) I Y 

aSr 

Figure 3: The inference rule system 8. 

(31) 

(92) 

(93) 

(s4) 

(55) 

these rules infer all the data flow paths in the pro- 
gram, and propagate values along those paths. Specif- 
ically, the rules (si), (ss), and (8s) propagate infor- 
mation about constants, function domains and func- 
tion ranges forward along the data flow paths of the 
program. These data flow paths are described by con- 
straints of the form ,# 5 -y. The rule (ad) constructs the 
data flow paths from actual to formal parameters for 
each function call, and the rule (ss) similarly constructs 
data flow paths from function bodies to corresponding 
call sites. We write S l-o C if S proves C via the rules 
0, and use Q(S) to denote the closure of S under 8, 
i.e., the set {C ] S l-o C}. 

MrSpidey uses a worklist algorithm to compute the 
closure of S under 8 efficiently. The worklist keeps 
track of all eligible inference rules whose antecedents 
are in S but whose consequent may not be in S. The 
algorithm repeatedly removes an inference rule from the 
worklist, adds its consequent to S, if necessary, and 
then adds to the worklist all inference rules that are 
made eligible by the addition of that consequent. The 
process iterates until the worklist is empty, at which 
point S is closed under 0. The complete algorithm can 
be found in an earlier technical report [7]. 

This closure process propagates all information con- 
cerning the possible constants for labeled expressions 
into constraints of the form c 5 1. Hence, we can infer 
sba(P) from 0(S) according to the following theorem. 

Theorem 3.3 If P E A” and 0 I- P : a, S then: 

sbu(P)(Z) = {c 1 [c 5 I] E Q(S)} 

4 Observable Equivalence of Constraints 

The traditional set-based analysis we have just described 
has proven highly effective for programs of up to a cou- 
ple of thousand lines of code. Unfortunately, it is useless 
for larger programs due to its nature as a whole program 
analysis and due to the size of the constraint systems 
it produces, which are quadratic in the size of (large) 
programs. Storing these constraint systems in memory 
is beyond the capabilities of most machines. 

To overcome this problem, we develop algorithms for 
simplifying constraints systems. Applying these simpli- 
fication algorithms to each program component signifi- 
cantly reduces both the time and space required by the 
overall analysis. 

The following subsection shows that constraint sim- 
plification does not affect the analysis results provided 
the simplified system is observably equivalent to the 
original system. Subsection 4.2 presents a complete 
proof-theoretic formulation of observable equivalence, 
and subsection 4.3 exploits this formulation to develop 
an algorithm for deciding the observable equivalence of 
constraint systems. The insights provided by this de- 
velopment lead to the practical constraint simplification 
algorithms of section 5. 

4.1 Conditions on Constraint Simplification 

Let us consider a program P containing a program com- 
ponent M. Suppose the constraint derivations for M 
concludes l? I- M : a,&, where Si is the constraint 
system for M. Our goal is to replace Si by a simpler 
constraint system without changing h(P). 

Since the constraint derivation process is composi- 
tional, the constraint derivation for the entire program 
concludes 0 l- P : /I, SC U&, where SC is the constraint 
system for the context surrounding M. The combined 
constraint system SC u SI describes the space of solu- 
tions for the entire program, which is the intersection 
of the two respective solution spaces: 

SoIn(Sc U SI) = SoZn(Sc) fl Soin 

and hence Soln(Si) describes at least all the properties 
of Si relevant to the analysis. However, SoZn(Si) may 
describe solutions for set variables that are not relevant 
to the analysis of P. In particular, 

l &a(P) only references the solutions for labels; and 

l the only interactions between SC and Si are due 
to the set variables {a} u FV[mg(l?)]. 

Thus the only properties of Si relevant to the analysis 
is the solution space for its external set variables 

E = LabeZ u {a} u FV[mg(r)] 
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For our original problem, this means that we want a 
constraint system SZ whose solution space restricted to 
E is equivalent to that of Sr restricted to E: 

SoZn(&) IE = SoZn(S2) IE; 

or, with the notation from section 3, Sr and SZ are 
observably equivalent on E: 

Sl YE s2 

We can translate this compaction idea into an addi- 
tional rule for the constraint derivation system: 

lT& M:a,Sl 
Sl YE Sz where E = Label U FV[mg(r)] U {a} 

r& M:a,S2 

(“) 

This rule is admissible in that any derivation (denoted 
using IX) in the extended constraint derivation system 
produces information that is equivalent to the informa- 
tion produced by the original analysis. 

Lemma 4.1 If 0 l-e P : a, S, then: 

ha(P)(Z) = const(LeastSoZn(S)(Z)) 

4.2 Proof-Theoretic Characterization 

Since the new derivation rule (2) involves the semantic 
notion of observably equivalent constraint systems, it 
cannot be used directly. To make this rule useful, we 
must first reformulate the observable equivalence rela- 
tion as a syntactic proof system. 

The key properties of the observational equivalence 
relation are reflections of the properties of the ordering 
relation (CI) and the functions dom and mg, respec- 
tively. We can reify these properties into a syntactic 
proof system via the following inference rules: 

a<a Cd=) 
71 I 7- 7- 5 72 (tmm,) 

71 L 72 

Kl 5 K2 

m&1) I W(E2) 

(compat) 

dom(K2) < dom(Kr) 

where we restrict K to non-constant set expressions to 
avoid inferring useless tautologies: 

K ::= a 1 dam(K) 1 mg(K) 

Many of the inferred constraints lie outside of the orig- 
inal language of simple constraints. The extended lan- 
guage of compound constraints is: 

C ::= C</clK</c 

While this proof system obviously captures the prop 
erties of E, it does not lend itself to an efficient imple 

Q 5 m3w Plc 

a 5 m5(K) 

a I dam(P) PLK 
a 2 dom(tc) 

a > dam(P) 0 5 K 
a 1 dam(K) 

(compo=3) 

(wmw=4) 

71 I c-t a I T2 

71 I 3 

61 SK2 

W(Q) I W(~2) 

dmh) I domh) 

Figure 4: The inference rule system Q. 

mentation. Specifically, checking if two potential an- 
tecedents of (trmv’) contain the same set expression 
T involves comparing two potentially large set expres- 
sions. Hence we use an alternative proof system that 
can easily be implemented, yet infers the same con- 
straints as the above. The alternative system consists 
of the inference rules !I! described in Figure 4, together 
with the rules 0 from Figure 3. The rules (composeI...l) 
replace a reference to a set variable by an upper or lower 
(non-constant) bound for that variable, as appropriate. 
The rule (trans) of @ provides a weaker characteriza- 
tion of transitivity than the previous rule (tmns’), but 
the additional rules compensate for this weakness. 

The proof system 8 U !J! is sound and complete in 
that it infers all true compound constraints. 

Lemma 4.2 (Soundness and Completeness of 0s) 
For a simple constraint system S and compound con- 
straint C, S l-oe C if and only ifs + C. 

This lemma implies that *‘o(S), which denotes the 
closure of S with respect to @Uq, contains exactly those 
(compound) constraints that hold in all environments 
in SoZn(S). For a collection of external set variables 
E, W(S) 1~ contains all (compound) constraints that 
hold in all environments in SoZn(S) 1~. 

Lemma 4.3 s EE @e(s) IE. 

We could use this result to define a proof-theoretic 
equivalent of restricted entailment as follows: 

sl I& s2 8 *e(&) IE > *e(&) IE 
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and then show that Si I-& Sz if and only if S1 FE 
S2. However, a variant of the above definition yields a 
relation that is easier to compute. Specifically, suppose 
W(Sr) ]E contains the constraint [mg(Tl) 5 mg(Q)] 
inferred by (compat). Then, since V~s(ri)U Vars(~2) E 
E, the corresponding antecedent [rr I 721 is also in 
W(S) ]E, and therefore: 

q@(s) IE \ {mg(Tl) 5 md72)) zE q@(s) IE 

Put because does eliminate 
variables, (compat)-consequent qQ(S) is 

by antecedent. we 

II QJ {compat} 

this implies W(S) ZE ]E. 
we the lemma. 

4.4 YE IE. 

lemmas and provide basis 
introduce equivalents restricted 
tailment observable 

. sl k& s2 iff I@ IE > n@(s2) (ET 

l =& iff l-go and I-& 

The relations characterize en- 
and equivalence. 

Theorem (Soundness Completeness) 

S1 S2 and if /=E 

2. =& if only Si Ss. 

4.3 Deciding Observable Equivalence 

The relation =& completely characterizes the model- 
theoretic observable equivalence relation %E, but for an 
implementation of the extended constraint derivation 
system we need a decision algorithm for =&. 

Given Si and Sz closed under 8, this algorithm 
needs to verify that \k(Si) ]E = g(S2) ]E. The naive 
approach to enumerate and to compare the two con- 
straint systems does not work, since they are infinite. 
For example, if S = {a 5 rng(a)}, then Q(S) is the 
infinite set {a 5 mg(a), a 5 rng(rng(a)), . . .}. 

Fortunately, the infinite constraint systems inferred 
by ‘k exhibit a regular structure, which we exploit to 
decide observable equivalence as follows. First, we gen- 
erate regular grammars describing the upper and lower 
bounds for each set variable. Second, we extend these 
grammars to regular tree grammars (RTGs) describ- 
ing oZZ constraints in II(&) ]E and II(&) ]E, excluding 
those constraints inferred via compat, which we cannot 

describe in this manner. Third, we use these RTGs to 
decide entailment by checking if 9(&) ]E 2 II(&) ]E 
via an adaptation of an RTG containment algorithm. 
To decide observable equivalence, we simply check en- 
tailment in both directions. These steps are described 
in more detail below. 

Regular Grammars: Our first step is to describe 
the lower and upper non-constant bounds for each set 
variable. Technically, we want to describe the following 
two languages of types: 

{K 1 [tc 5 a] E Q(S) and Vars(n) C E} 
{K ( [a 5 K] E rSr(S) and Vurs(n) c E} 

for each set variable a. Both languages are generated 
by a regular grammar G,(S,E). The grammar con- 
tains the non-terminals au and aL, for each a in S, 
which generate the above lower and upper bounds of a, 
respectively. 

The productions of the grammar are determined by 
S and +. To illustrate this idea, suppose S contains 

[a I mdP)l. Th en, for each upper bound n of p, the 
rule (compose,) infers the upper bound mg(K) of a. 
Since, by induction, j3’s upper bounds are generated by 
&, the production au H rng&) generates the corre- 
sponding upper bounds of a. More generally, the collec- 
tion of productions {au I-+ rng(Pu) ] [a 5 rng@)] E S} 
describes all bounds inferred via (compose,). Bounds 
inferred via the remaining (compose) rules can be de- 
scribed in a similar manner. 

Bounds inferred via the rule (r@ez) imply the pro- 
duction rules au I+ a, aL H a for a E E. The 
rule (compat) cannot generate constraints of the form 
[K 5 a] or [a 5 K]. Finally, consider the rule (tmna), 
and suppose this rule infers an upper bound r on a. 
This bound must be inferred from an upper bound r 
on /3, based on the antecedent [a 5 p]. Hence the pro- 
ductions {au I+ /3~ ] [a 2 /3] E S} generate all upper 
bounds inferred via (tmns). In a similar fashion, the 
productions (0~ w a~ ] [a 5 p] E S} generate all 
lower bounds inferred via (tmns). 

Definition 4.6. (Regular Grammar G,(S,E)) Let 
S be a simple constraint system and E a collection of 
set variables. The regular grammar G,(S, E) consists 
of the non-terminals {aL,au I a E Vara(S)} and the 
following productions: 

au ++ a, aL I-# a VacE 

w-Pu,P~++m V [a I PI E S 

au ++ dom(PL) V [a 5 dam(p)] E S 

au t+ rg(Pu) V [a L wdP)l E S 
PL cf dom(au) V [dam(a) < p] E S 
PL H 9daL) V k-x(a) 5 PI E S 

I 
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The grammar G,(S, E) describes two languages for 
each set variable: the upper and lower non-constant 
bounds. Specifically, if I+; denotes a derivation in the 
grammar G, and Cc(z) denotes the language (7 1 z I-+: 
7) generated by a non-terminal z, then the following 
lemma holds. 

Lemma 4.7 I’G = G,(S, E), then: 

LG(aL) = {K 1 [K 5 a] E 9(S) and Vurs(ti.) C E} 
&(aU) = {K 1 [a 5 K] E !k(S) and Vars(~) C E} 

Proof: We prove each containment relation by induc- 
tion on the appropriate derivation. I 

Regular Tree Grammars: The grammar G,(S,E) 
does not describe all constraints in II(S) 1~. In partic- 
ular, it does not describe constraints of the form [c 5 71 
and constraints inferred by (trans) or (corn@). To 
represent the constraint system n(S) IE, we extend the 
grammar G,(S, E) to a regular tree grammar Gt(S, E). 
It combines upper and lower bounds for set variables in 
the same fashion as the (trans) rule, and also generates 
constraints of the form [c 5 T] where appropriate. 

Definition 4.8. (Regular ‘Ike Grammar Gt (S, E)) 
The RTG Gt(S, E) extends the grammar G,(S, E) with 
the root non-terminal Rand the additional productions: 

RI-+ [a Iwl V a E h-s(S) 

R ++ [c I WI v [c I a] E s 

where (. 5 -1 is viewed as a binary constructor. I 

The grammar Gt(S,E) describes all constraints in 

nI(s) iE* 

Lemma 4.9 If G = Gt(S,E), then II(S) 1~ = &(R). 

Before we can exploit the grammar representation of 
II(S) IE, we must still prove that the closure under 8 U 
IIU (cornpot) can be performed in a sequential manner. 
The following lemma justifies this staging of the closure 
algorithm. 

Lemma 4.10 For any simple constraint system S: 

W(S) = XB(e(S)) = compat(II(0(S))) 

The Entailment Algorithm: We can check entail- 
ment based on lemmas 4.9 and 4.10 as follows. Given 
SI and &, we close them under 0 and then have: 

sz +Te Sl 
w QQ(S2) IE 2 l-w&) IE by defn I-& 
w !J!(Q(&)) IE 2 lI(0(&)) IE by lemma 4.10 

q(s2) (E 2 n(h) IE as sj = Q(Sj) 

z comput(II(S2) 1~) 2 II(&) 1~ by lemma 4.10 
e=s compat(&,(R)) 2 CG, (R) by kmma 4.9 

where Gi = Gt(&, E) 

The Entailment Algorithm 

In the following, Pn, denotes the finite power-set constructor. 

Let: G1 = G,(&,E) Li = {CXL 1 a E VCte(Si)} 

G2 = Gt(S2,E) Uj = {au 1 a E VOW(&)} 

Assume G’l and Gz are pre-processed to remove e-transitions. For 

C E Pfim(L2 x Cr2), define: 

L(C) = th 5 ml I (aL,PcJ) E c, QL -cJn CT,, Pv -cs TU) 

The relation 7&z, ,s2 [., ., +, ~1 is defined as the largest relation on 

Ll x Ul x PII.(Lz x U2) x Pfipr,.(L2 x U2) such that if: 

‘Rs, $1 bL 9 Pu 9 c, Dl aL ‘-‘GI x PrJ -0, y 

then one of the following cases hold: 

1. L([X 5 yl) c qc u D). 

2. X = mg(+), Y = m&‘;) and %l,~,[a’L,P;,C,D’l, 
where: 

D'={(ri,6;) I (TL,&)ECUD, 
-rL -cz mg(r;hb -CT2 mg(at)) 

3. X = dom(a;), Y = dam(q) and ‘R~,,s~[p~,c$,,C, D’], 
where: 

The computable entailment ndation S2 I-& Sl holds if and only 

if Vfx E Vars(S1): 

Figure 5: The computable entailment relation kie 

The containment question &G,(R) > t&(R) can be 
decided via an RTG containment algorithm. To decide 
the more difficult question: 

we adapt an RTG containment algorithm to allow for 
constraints inferred via (cornput) on L&(R). 

The extended algorithm is presented in Figure 5. 
It first computes the largest relation 7Es,,s2 such that 
72~~ ,sz [CEL, &J, C, D] holds if and only if: 

Nm 5 Pull G =wW(C)) U W) 

where a~, /3~ describe collections of types; C, D de- 
scribe collections of constraints; and L([a, 5 &J]) de- 
notes the language {[TL 2 7~1 I a~ H* TL, &J H* 7~). 
The first case in the definition of 72 uses an R!I’G con- 
tainment algorithm to detect if L&L 5 &J]) E L(C) U 

C(D). The two remaining cases handle constraints of 
the form [rng(ai) 5 mg(&)] or [dom(a;) < don@)], 
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and allow for inferences via (compat). The relation R 
can be computed by starting with a maximal relation 
(true at every point), and then iteratively setting en- 
tries to false as required by figure 5, until the largest 
relation satisfying the definition is reached. 

Based on this relation, the algorithm then defines a 
computable entailment relation l-5s on constraint sys- 

tems. This relation is equivalent to l-5. 

Theorem 4.11 & l-g 2% if and only if S-Z I-& SI. 

The entailment algorithm takes exponential time, 
since the size of R is exponential in the number of 
set variables in Ss. Although faster algorithms for the 
entailment may exist, these algorithms must all be in 
PSPACE, because the containment problem on NFA’s, 
which is PSPACEcomplete [l], can be polynomially re- 
duced to the entailment problem on constraint systems. 

By using the entailment algorithm in both direc- 
tions, we can now decide if two constraint systems are 
observable equivalent. Thus, given a constraint system, 
we can find a minimal, observably equivalent system 
by systematically generating a11 constraint systems in 
order of increasing size, until we find one observably 
equivalent to the original system. Of course, the pro- 
cess of computing the minimal equivalent system with 
this algorithm is far too expensive for use in practical 
program analysis systems. 

5 Practical Constraint Simplification 

Fortunately, to take advantage of the rule (Z) in a pro- 
gram analysis tool, we do not need a completely mini- 
mized constraint system. Any simplifications in a con- 
straint system produces corresponding reductions in the 
overall analysis time. 

For this purpose, we exploit the connection between 
constraint systems and RTGs. By Lemmas 4.4 and 4.9, 
any transformation on constraint systems that preserves 
the language: 

also preserves the observable behavior of S with respect 
to E. Based on this observation, we transform a vari- 
ety of existing algorithms for simplifying RTGs to al- 
gorithms for simplifying constraint systems. In the fol- 
lowing subsections, we present the four most promising 
algorithms found so far. We use G to denote Gt(S,E), 
and we let X range over non-terminals and p over paths, 
which are sequences of the constructors dom and rg. 
Each algorithm assumes that the constraint system S 
is closed under 0. Computing this closure corresponds 
to propagating data flow information locally within a 
program component. This step is relatively cheap, since 

program components are typically small (less than a few 
thousand lines of code). 

5.1 Empty Constraint Simplification 

A non-terminal X is empty if &(X) = 0. Similarly, a 
production is empty if it refers to empty non-terminals, 
and a constraint is empty if it only induces empty pro- 
ductions. Since empty productions have no effect on the 
language generated by G, an empty constraint in S can 
be deleted without changing S’s observable behavior. 

To illustrate this idea, consider the program compo- 
nent P = (Xgy.((Xfz.l) y)), where f and g are function 
tags. Although this example is unrealistic, it illustrates 
the behavior of our simplification algorithms. Analyz- 
ing P according to the constraint derivation rules yields 
a system S containing ten constraints. Closing S un- 
der 0 yields an additional three constraints. Figure 6 
displays the resulting constraint system O(S), together 
with the corresponding grammar Gt(S(S), {aP}). An 
inspection of this grammar shows that the set of non- 
empty non-terminals is: 

Five of the constraints in 0(S) are empty, and are re- 
moved by this simplification algorithm, yielding a sim- 
plified system of eight non-empty constraints. 

5.2 Unreachable Constraint Simplification 

A non-terminal X is unreachable if there is no pro- 
duction R H [y 5 Z] or R H [Z 5 Y] such that 
&(Y) # 0 and 2 -+z p(X). Similarly, a production 
is unreachable if it refers to unreachable non-terminals, 
and a constraint is unreachable if it only induces un- 
reachable productions. Unreachable productions have 
no effect on the language &(R), and hence unreach- 
able constraints in S can be deleted without changing 
the observable behavior of S. 

In the above example, the reachable non-terminals 
are al~, a”(~ and agr~. Three of the constraints are un- 
reachable, and are removed by this algorithm, yielding 
a simplified system with five reachable constraints. 

5.3 Removing +Constraints 

A constraint of the form [a 2 /3] E S is an c-cowhint. 
Suppose a fZ E and the only upper bound on a in S 
is the c-constraint [a 5 p], i.e., there are no other con- 
straints of the form a 5 7, rng(a) 5 7, or 7 5 dam(a) 
in S. Then, for any solution p of S, the set environment 
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Constraints Production Rules Non-empty Reachable 

f 5 Qf R w [f5a’ul 
dom(af) 2 az a=L H dom(ofu) 

1 5 or R - P~~‘Ul 1 5 or 1 5 al 

o1 5 mg(af) 0’~ - mg(ofu) 

mg(of) 5 aa @L - mg(~fL) 
au 5 or aru w ffvu dL H CYYL oy 5 0’ 
or < dom(af) a’~ I-+ dom(afn) 

9 I QP R - bI~pul 9 I op 9 I op 
dom(aP) 5 a* @L H dom(aP~) dom(aP) 5 au 

oa 5 mg(op) CPU ++ mg(oPu) aa 5 mg(aP) CP 5 mg(op) 

a’ < 02 

a1 5 aa 

1 5 00 

CPU H CPU CPL H O’L a’ < a2 

al” H aaU aaL H alL a1 5 o” a1 5 aa 
R w P<hl 1 5 aa 1 5 aa 

aPL H ap aPu H ffp 

Figure 6: The original constraint system, grammar and simplified constraint systems for P = (&‘v.((xfz.l) 9)) 

p’ defined by: 

PW = { 
p(6) if 6 f a 
p(p) if 6 =CY 

is also a solution of S. Therefore we can replace all 
occurrences of a in S by p while still preserving the ob- 
servable behavior S&r(S) 1~. This substitution trans- 
forms the constraint [CY 5 p] to the tautology [/3 5 /?I, 
which can be deleted. Dually, if [(Y 5 /3] E S with ,f3 $Z E 
and /3 having no other lower bounds, then we can re- 
place /3 by Q, again eliminating the constraint [o 5 /3]. 

To illustrate this idea, consider the remaining con- 
straints for P. In this system, the only upper bound 
for the set variable a’ is the e-constraint [o’ 5 a”]. 
Hence this algorithm replaces all occurrences of cxl by 
(Y’, which further simplifies this constraint system into: 

(15 (Y”,oo < mg(crP),g 5 aP} 

This system is the smallest simple constraint system 
observably equivalent to the original system O(S). 

5.4 Hopcroft’s Algorithm 

The previous algorithm merges set variables under cer- 
tain circumstances, and only when they are related by 
an e-constraint. We would like to identify more general 
circumstances under which set variables can be merged. 
To this end, we define a valid unifier for S to be an 
equivalence relation - on the set variables of S such 
that we can merge the set variables in each equivalence 
class of - without changing the observable behavior 
of S. Using a model-theoretic argument, we can show 
that an equivalence relation - is a valid unifier for S if 

1. Use a variant of Hopcroft’s algorithm [12] to compute an 

equivalence relation N on the set variables of S that satisfies 

the following conditions: 

(a) Each set variable in E is in an equivalence class by 

itself. 

(b) If [a 5 P] E S then Va m a’ 30 N @’ such that 

[a’ 5 P’] E S. 

(c) If [a < mg(/3)] E S then Va N a’ 3p N p’ such that 

[a’ I mg(P’)l E S. 
(d) If [rng(a) < S] E S then Va N a’ $3 N p’ such that 

[mda’) I P’l E S. 

(e) If [a 5 dom(/3)] E S then Va N a’ VP N 0’ such that 

[a’ < dam(@)] E S. 

2. Merge set variables according to their equivalence class. 

Figure 7: The Hopcroft algorithm 

for all solutions p E S&r(S) there exists another solu- 
tion p’ E Soln(S) such that p’ agrees with p on E and 
p’(a) = p’(p) for all (Y - p. 

A natural strategy for generating p’ from p is to map 
each set variable to the least upper bound of the set 
variables in its equivalence class: 

P’(4 = Ll Pb’) 
a’-0 

Figure 7 describes sufficient conditions to ensure that p’ 
is a solution of S, and hence that - is a valid unifier for 
S. To produce an equivalence relation satisfying these 
conditions, we use a variant of Hopcroft’s O(n lg n) time 
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algorithm [12] for computing an equivalence relation on 
states in a DFA and then merge set variables according 
to their equivalence class6 

5.5 Simplification Benchmarks 

To test the effectiveness of the simplification algorithms, 
we extended MrSpidey with the four algorithms that 
we have just described: empty, unreachable, e-removal, 
and Hopcroft. Each algorithm also implements the pre- 
ceding simplification strategies. The first three algo- 
rithms are linear in the number of non-empty constraints 
in the system, and Hopcroft is log-linear. 

We tested the algorithms on the constraint systems 
for nine program components on a 167MHz Spare Ul- 
tra 1 with 326M of memory, using the MzScheme byte 
code compiler [lo]. The results are described in fig- 
ure 8. The second column gives the number of lines in 
each program component, and the third column gives 
the number of constraints in the original (unsimplified) 
constraint system after closing it under the rules 0. The 
remaining columns describe the behavior of each simpli- 
fication algorithm, presenting the factor by which the 
number of constraints was reduced, and the time (in 
milliseconds) required for this simplification. 

The results demonstrate the effectiveness and effi- 
ciency of our simplification algorithms. The resulting 
constraint systems are typically at least an order of 
magnitude smaller than the original system. The cost 
of these algorithms is reasonable, particularly consid- 
ering that they were run on a byte code compiler. As 
expected, the more sophisticated algorithms are more 
effective, but are also more expensive. 

6 Componential Set-Based Analysis 

Equipped with the simplification algorithms, we return 
to our original problem of developing a componential 
set-based analysis. The new analysis tool processes pro 
grams in three steps. 

1. For each component in the program, the analy- 
sis derives and simplifies the constraint system for 
that component and saves the simplified system in 
a constraint file, for use in later runs of the analy- 
sis. The simplification is performed with respect to 
the external variables of the component, excluding 
expression labels, in order to minimize the size of 
the simplified system. Thus, the simplified system 

‘A similar development based on the definition p’(a) = 

W(a’) I 0 - 0’1 results in an alternative algorithm, which is less 
effective in practice. 

only needs to describe how the component inter- 
acts with the rest of the program, and the simpli- 
fication algorithm can discard constraints that are 
only necessary to infer local value set invariants. 
These discarded constraints are reconstructed later 
as needed. 

This step can be skipped for each program com- 
ponent that has not changed since the last run of 
the analysis, since its constraint file can be used 
instead. 

The analysis combines the simplified constraint 
systems of the entire program and closes the com- 
bined collection of constraints under 8, thus prop- 
agating data flow information between the con- 
straint systems for the various program compo 
nents. 

Finally, to reconstruct the full analysis results for 
the program component that the programmer is 
focusing on, the analysis tool combines the con- 
straint system from the second step with the un- 
simplified constraint system for that component. 
It closes the resulting system under 8, which yields 
appropriate value set invariants for each labeled 
expression in the component. 

The new analysis can easily process programs that 
consist of many components. For its first step, it elim- 
inates all those constraints that have only local rele- 
vance, thus producing a small combined constraint sys- 
tem for the entire program. As a result, the analysis 
tool can solve the combined system more quickly and 
using less space than traditional set-based analysis [ll]. 
Finally, it recreates as much precision as traditional set- 
based analysis as needed on a per-component basis. 

The new analysis performs extremely in an inter- 
active setting because it exploits the saved constraint 
files where possible and thus avoids reprocessing many 
program components unnecessarily. 

We implemented four variants of this analysis. Each 
analysis uses a particular simplification algorithm to 
simplify the constraint systems for the program com- 
ponents. 

6.1 Benchmarks 

We tested the componential analyses with five bench- 
mark programs, ranging from 1,200 to 17,000 lines. For 
comparison purposes, we also analyzed each benchmark 
with the standard set-based analysis that performs no 
simplification. The analyses handled library functions 
in a context-sensitive, polymorphic manner according to 
the constraint derivation rules (let) and (inst) to avoid 
merging information between unrelated calls to these 
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Figure 8: Behavior of the constraint simplification algorithms. 

functions. The remaining functions were analyzed in a 
context-insensitive, monomorphic manner. The results 
are documented in figure 9. 

The third column in the figure shows the maximum 
size of the constraint system generated by each analysis, 
and also shows this size as a percentage of the constraint 
system generated by the standard analysis. The analy- 
ses based on the simplification algorithms produce sig- 
nificantly smaller constraint systems, and can also an- 
alyze more programs, such as sba and poly, for which 
the standard analysis exhausted heap space. 

The fourth column shows the time required to ana- 
lyze each program from scratch, without using any ex- 
isting constraint files.’ The analyses that exploit con- 
straint simplification yield significant speed-ups over 
the standard analysis because they manipulate much 
smaller constraint systems. The results indicate that, 
for these benchmarks, the wemoval algorithm yields 
the best trade-off between efficiency and effectiveness 
of the simplification algorithms. The additional sim- 
plification performed by the more expensive Hopcrojt 
algorithm is out-weighed by the overhead of running 
the algorithm. The tradeoff may change as we analyze 
larger programs. 

To test the responsiveness of the componential anal- 
yses in an interactive setting based on an analyze-debug- 
edit cycle, we reanalyzed each benchmark after chang- 
ing a randomly chosen component in that benchmark. 
The re-analysis times are shown in the fifth column of 
figure 9. These times show an order-of-magnitude im- 
provement in analysis times over the original, standard 
analysis, since the saved constraint files are used to 
avoid reanalyzing all of the unchanged program com- 
ponents. For example, the analysis of zodiac, which 
used to take over two minutes, now completes in un- 
der four seconds. Since practical debugging sessions 
using MrSpidey typically involve repeatedly analyzing 
the project each time the source code of one module is 

‘These times exclude scanning and parsing time. 
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Figure 9: Behavior of the componential analyses. 

modified, e.g., when a bug is identified and eliminated, 
using separate analysis substantially improves the us- 
ability of MrSpidey. 

The disk-space required to store the constraint files 
is shown in column six. Even though these files use 
a straight-forward, text-based representation, their size 
is typically within a factor of two or three of the corre 
sponding source file. 

246 



Program 

browse 

splay 
check 

graphs 

boyer 

matrix 

maze 

nbody 

nucleic 

II WPY 

233 2.5s 

265 7.9s 

281 50.1s 

621 2.8s 

624 4.3s 

744 7.5s 

857 6.2s 

880 39.6s 
3335 * 

Relative time of smart oolvmorohic an~vses 

ewtv 
39% 

76% 

75% 

21% 

85% 

46% 

64% 

64% 

57% 

l 243s 

unreachable 

36% 

76% 

73% 

23% 

85% 

46% 

57% 

59% 

25% 

* 42s 

e-removal 

35% 

76% 

70% 

14% 

62% 

49% 

51% 

58% 

25% 

l 42s 

Hopcroft 
38% 

81% 

72% 

14% 

87% 

50% 

52% 

61% 

26% 

l 44s 

Mono. 

analysis 

42% 

75% 

83% 

23% 

82% 

40% 

45% 

54% 

28% 

l 36s 

* indicates the copy analysis exhausted heap space, 

and the table contains absolute times for the other analyses 

Figure 10: Times for the smart polymorphic analyses, relative to the copy analysis. 

7 Efficient Polymorphic Analysis 

The constraint simplification algorithms also enables an 
efficient polymorphic, or context-sensitive, analysis. To 
avoid merging information between unrelated calls to 
functions that are used in a polymorphic fashion, a poly- 
morphic analysis duplicates the function’s constraints 
at each call site. We extended MrSpidey with five poly- 
morphic analyses. The first analysis is copy, which 
duplicates the constraint system for each polymorphic 
reference via a straightforward implementation of the 
rules (let) and (in&).* The remaining four analyses are 
smaft analyses that simplify the constraint system for 
each polymorphic definition. 

We tested the analyses using a standard set of bench- 
marks (131. The results of the test runs are documented 
in figure 10. The second column shows the number of 
lines in each benchmark; the third column presents the 
time for the copy analysis; and columns four to seven 
show the times for each smart polymorphic analysis, as 
a percentage of the copy analysis time. For comparison 
purposes, the last column shows the relative time of the 
original, but less accurate, monomorphic analysis. 

The results again demonstrate the effectiveness of 
our constraint simplification algorithms. The smart 
analyses that exploit constraint simplification are al- 
ways significantly faster and can analyze more programs 
than the copy analysis. For example, while copy ex- 
hausts heap space on the nucleic benchmark, all smart 
analyses successfully analyzed this benchmark. 

Again, it appears that the c-removal analysis yields 
the best trade-off between efficiency and effectiveness 
of the simplification algorithms. This analysis provides 
the additional accuracy of polymorphism without much 

‘we 8h30 implemented a polymorphic analysis that re-analyzes 8 
definition 8t each reference, but found its performance to be compa- 
rable to, and sometimes worse than, the copy analysis. 

additional cost over the coarse, monomorphic analysis. 
With the exception of the benchmarks browse, splay 
and graphs, which do not re-use many functions in a 
polymorphic fashion, this analysis is a factor of 2 to 
4 times faster than the copy analysis, and it is also 
capable of analyzing larger programs. 

8 Competitive Work 

Fiihndrich and Aiken [S] examine constraint simplifi- 
cation for an analysis based on a more complex con- 
straint language. They develop a number of heuristic 
algorithms for constraint simplification, which they test 
on programs of up to 6000 lines. Their fastest approach 
yields a factor of 3 saving in both time and space, but 
is slow in absolute times compared to other analyses. 

Pottier [17] studies an ML-style language with a sub- 
type system based on constraints, and and presents an 
incomplete algorithm for deciding entailment on con- 
straint systems. He proposes some ad hoc algorithms 
for simplifying constraints, but does not present results 
on the cost or effectiveness of these algorithms. 

Eifrig, Smith and Trifonov [S, 211 describe a subtyp- 
ing relation between constrained types that are simi- 
lar to our constraint systems, and they present an in- 
complete decision algorithm for subtyping. They de- 
scribe three algorithms for simplifying constraint sys- 
tems, two of which which are similar to the empty and 
.+removal algorithms, and the third is a special case of 
the Hopcroft algorithm. They do not present results on 
the cost or effectiveness of these algorithms. 

Duesterwald et al [4] describe algorithms for simpli- 
fying data flow equations. These algorithms are similar 
to the e-removal and Hopcrojt algorithms. Their ap- 
proach only preserves the greatest solution of the equa- 
tion system and assumes that the control flow graph 
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first-class and methods. paper 

not results the or of 
algorithms. 

9 Future Work 

All our constraint simplification algorithms preserve the 
observable behavior of constraint systems, and thus do 
not affect the accuracy of the analysis. If we were willing 
to tolerate a less accurate analysis, we could choose a 
compressed constraint system that does not preserve 
the observable behavior of the original, but only entails 

that behavior. This approach allows the use of much 
smaller constraint systems, and hence yields a faster 
analysis. 

A promising approach for deriving such approximate 
constraint systems is to rely on a programmer-provided 
sign&we describing the behavior of each program com- 
ponent, and to derive the new constraint system from 
that signature. After checking the entailment condi- 
tion to verify that signature-based constraints correctly 
approximates the behavior of the module, we could use 
those constraints in the remainder of the analysis. Since 
the signature-based constraints are smaller than the 
derived ones, this approach could significantly reduce 
analysis times for large projects. We are investigating 
this approach for developing a typed module language 
on top of Scheme. 
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