Compositional References
for Stateful Functional Programming

Koji Kagawa
Department of Information Science
Kagawa University
2-1 Saiwai-cho Takamatsu 760, Japan
E-mail: kagawa@ec.kagawa-u.ac.jp

Abstract

We introduce the notion of compositional references into the
framework of monadic functional programming and propose
a set of new primitives based on this notion. They enable
us to use a wide range of mutable data structures. There,
references may be passed around explicitly, or mutable data
structures such as arrays and tuples may be passed implicitly
as hidden state. The former style is called the ezplicit style
and is usually more expressive, while the latter is called the
implicit style and has simpler semantics. We investigate the
relation between the two styles and discus implementation
issues.

1 Introduction

Many proposals have been made toward a safe integration of
a purely, lazy functional language with in-place updatable
state [3, 1, etc.]. In a series of proposals [16, 11}, the notion
of monads [7] provides a basis for such an integration.

Based on monads, Launchbury and Peyton Jones [5] pro-
posed a way to express computations which deal with multi-
ple mutable objects by providing primitives for ML-like ref-
erences, and at the same time to securely encapsulate such
computations by using rank-2 polymorphism. Such refer-
snces are passed explicitly in stateful' programs.

On the other hand, in Wadler’s former proposal [16],
data structures such as arrays are used directly as state and
passed implicitly. No explicit reference is passed around. We
will refer to, in what follows, Wadler’s style, implicit style
and Launchbury and Peyton Jones's style, explicit style.
Each style has its merits and demerits:

e The implicit style has a simpler functional account.
We do not need the notion of “global states” in order
to explain the behaviour of programs.

o The explicit style enables us to write stateful programs
in a traditional imperative fashion. In addition, it is,
in general, more expressive.

!Foliowing [5], we use the term stateful to refer to computations
in which we would like to dea! with state destructively.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or 10

redistribute to lists, requires prior specific permission and/or a fee.

ICFP ‘97 Amsterdam, ND
© 1997 ACM 0-89791-918-1/97/0006...$3.50

Having simpler types is sometimes advantageous in expres-
siveness. As we will see later, Launchbury and Peyton Jones’s
approach requires all state transformers to be polymorphic
with respect to the state parameter in order to confine ref-
erences. This prevents state transformers from being used
as function parameters in languages based on the Damas-
Milner type system. In general, however, the implicit style
is less expressive. First of all, it is impossible to deal with
multiple mutable objects in Wadler’s original proposal. And
even if it is possible, it seems at least difficult to express
mutable graph structures without introducing a mechanism
equivalent to references. Therefore, it would be desirable to
enjoy merits of both styles in a single program. So far, how-
ever, there has been no proposal which makes such mixed
style possible.

In this paper, we will propose a set of new primitives
into the monadic style of functional programming in order
to extend both styles and to make it possible for us to enjoy
merits of the two styles. As a result, we will be able to
write state transformers more concisely and to use a wide
range of mutable data structures. We introduce the notion
of compositional references® as a key mechanism.

The idea of compositional references is as follows. In-
stead of introducing mutable data types as new data types
independent of existing immutable ones, we introduce a “mu-
tability wrapper” Mutable as a type constructor so that
when Array a is the type of ordinary (immutable) arrays,
Mutable s (Array a) is the type of mutable arrays with
state parameter 8. We will call such mutable data’struc-
tures compositional references. We also provide some asso-
ciated operators to combine such compositional references
with state transformers.

Instead of introducing compositional references as an ad-
hoc extension, we will give functional account of the type
constructor and associated operators. Compositional Refer-
ences are essentially erpansion morphisms in the category
of state shapes [13, 9], which were introduced in order to
explain block structures of Algol-like languages. Pierce and
Turner {12] and Hofmann and Pierce [2] also used the same
mechanism in order to explain inheritance and subtyping in
object-oriented programs. Using functional account, we can
reason about the behaviour of stateful programs as ordinary
functions.

The rest of the paper is organized as follows. In Sec-
tion 2, we explain monadic functional programming and its
two styles more in depth. Then, in Section 3, we introduce

*In the earlier version which appeared in SIPL’95 [4], they were
called composable references and Hatable below was written as CR.

217

http://crossmark.crossref.org/dialog/?doi=10.1145%2F258949.258969&domain=pdf&date_stamp=1997-08-01

some new primitives and the notion of compositional refer-
ences. In Section 4, we formulate the relation hetween the
two styles. Then, Section ! discusses implementation issues.
Section 6 concludes. We will use the syntax of Haskell [10]
m the following.

2 Previous Work

In this section, we explain previous work on monadic func-
tional programming and describe the difference between
Wadler's style and Launchbury and Peyton Jones’s style.

2.1 Implicit style

It has been shown that monads provide a uniform frame-
work for various forms of sequential computations (i.e. those
with side-effects). And they have been popularized in the
functional programming community. For motivations and
=xamples, see {7, 15, 16].

When we would like to deal with “state,” we use the
following data type:

type ST s a = s -> (a, s)
with monadic constructs such as:

returnST :: a -> ST s a
returnST a = \ s -> (a, s)

a->(a->8Tsb) ->8Tsb
\ 80 -> let (a, si) = m 80
in k a si

thenST :: ST s
m ‘thenST* k =

Values of type ST s a (called state transformers) represent
computations which modify state of type s and produce re-
sults of type a. The operator returnST does not change
state and simply returns a value which is supplied as the
argument. The operator thenST® is used to sequentialize
two state transformers. The monad of state transformers
is considered to be a suitable abstraction in order to hide
state from programmers, and to sequentialize accesses to
state. We hide the implementation of state transformers
from programmers and carefully provide read/write primi-
tives so that they do not destroy single-threadedness of state.
Then, it becomes possible to design primitives so that they
update data structures in place.

In order to deal with mutable arrays, Wadler [15] pro-
posed using the following array primitives®:

readArr
writeArr ::

Int -> ST (Array a) a
Int -> a -> ST (Array a) ()

which read and overwrite an array in the index given as the
first argument, and:

initST 18 >8Ts x ->«x
initST = \ s st -> fst (st s)

which gives an initial state to state transformers. Note that
the type parameter s is instantiated to specific types such
as Array Int here. This contrasts with Launchbury and
Peyton Jones’s proposal explained next.

*We will use thenST as an infix operator in the following using
-he Haskell notation ¢_¢ for infix operators. In Haskell 1.3, thenST is
written as >>=.

1The names and the types of primitives differ in an inessential way
‘rom the original ones.

2.2 Explicit style

Launchbury and Peyton Jones’s proposal also uses the monadic
framework explained above. However, in their proposal, the
state type parameter of ST is used for a rather technical rea-
son. They proposed a “primitive” operator named newVar

which creates a new ML-like reference (of type MutVar s a):
newVar :: a -> ST s (MutVar s a)

and associated operators readVar and writeVar which re-
spectively read and update a reference.

: MutVar s a -> ST s a
MutVar s a -> a => ST s ()

readVar
writeVar ::

Here, the type of references (MutVar s a) is parameterized
over the type of the state (s) as well as the type of the object
being referred to (a). Though s is intuitively the type of the
global state, it is used in a special typing rule explained next
which prevents references from escaping their scopes.

In order to execute state transformers, we use a built-in
construct (it is not an ordinary function) named runST of
the following special type:

runST :: Va. (Vs. ST s a) -> a

When runST is applied to a state transformer, it passes an
“empty” initial state to the state transformer and then ex-
tracts its final result. In this way, runST extracts a pure
value from a stateful computation. The special typing above
is necessary for the following reason. If a reference created in
one state transformer could be used in another transformer,
the result of the program would depend on the evaluation
order. Detecting errors caused by such cross pointers at run-
time would be expensive. By requiring state transformers
to be polymorphic with respect to the state parameter, they
proved, using parametricity, that values within one state
transformer cannot depend on references generated by other
state transformers and therefore that it is safe to interleave
evaluation of such state transformers.

They also gave primitive operators for mutable arrays
(MutArr s a). A simplified version of the array operators is
shown below, where arrays are indexed by integers.

newArr Int -> a => ST s (MutArr s a)
readArr :: MutArr s a -> Int -> ST s a
writeArr : MutArr s a -> Int -> a -> ST s ()

The first argument of newArr is the size of the newly cre-
ated array. This operator creates a new mutable array. The
other two operators are used to read and overwrite the array
given as the first argument in the index given as the second
argument. The type of mutable arrays (MutArr s a) is also
parameterized over the type of the state (s), and its second
parameter (a} is the type of array elements. In their pro-
posal, programs which deal with mutable arrays have type
MutArr s a -> -> 8T s x.

Mutable arrays (MutArr s a) are different from arrays of
references (Array (MutVar s a))—they have different rep-
resentations [5, Section 3]. MutArr s ais more space-efficient
since it is directly mutable and does not require indirection
cells. On the other hand, Array (MutVar s a) needs in-
direction cells, however, it is more expressive since it can
represent shared mutable cells. (For example, the second
and the third elements can be the same reference. In such a
case, if we modify the second element, the third element is
modified simultaneously due to sharing.)

218

3 Extensions

[n the implicit style, we were not able to deal with more
than one piece of state. This is why Launchbury and Peyton
Jones introduced new primitives and an encapsulation mech-
anism for them. However, when we deal with only one mu-
table array, the implicit style seems to have an advantage—
programs have simpler accounts and types.

In this section, we will introduce some new primitives so
that we can write stateful programs enjoying advantages of
both stvles.

3.1 Compositional References

For the moment, we introduce the following primitive data
type:

type Mutable s t

as a suple generalization of MutArr to general data struc-
tures other than arrays. It stands for the mutable version of
type t with a state parameter s. Then, MutArr s ais atype
synonym of Mutable s (Array a). For example, Mutable s
(a, b, ¢) is the type of mutable triples. We will call values
of type Mutable s t compositional references from s to t.
The reason for this name will be explained later.

Mutable s (a, b, c¢) and (MutVar s a, MutVar s b,
MutVar s c) are different in the same way as MutArr s a
and Array (MutVar s a) are different. That is, the former
is the type of directly mutable triples, while the latter is the
type of triples of references. Needless to say, Mutable s (a,
b, ¢) and MutVar s (a, b, ¢) (more generally, Mutable s
t and MutVar s t) are diflerent types. The former is the
type of mutable triples, while the latter 1s the type of refer-
ences to immutable triples. Actually, MutVar s a is a spe-
cial case of MutArr s a where the size of the array is exactly
one. Therefore, we define the following data type as a record
tyvpe with only one field.

data Atom a = MkAtom a
Then, MutVar can be explained as follows.
type MutVar s a = Mutable s (Atom a)

Our intention here is that Mutable s _ makes only toplevel
fields of data structures mutable. For example, Mutable s
(a, (b, <)) is the type of mutable pairs whose second com-
ponents are tmmutable pairs, while Mutable s (a, b, ¢) is
the tvpe of mutable triples. Therefore, they are not equiv-
alent. The reason for this design decision will be discussed
later in Section 5.

Note that there is a correspondence between implicit
style state transformers and explicit style ones as follows:

. => 8Tt x
. => Mutable s t -> ST 8 x

Implicit style:
Explicit style:

For example, the array updating operation has type Int ->
a —> (Array a) () in the former, while it has type Int ->
a -> Mutable s (Array a) -> ST s () in the latter (ig-
noring the order of parameters). This correspondence will
play an important role in the following development.

219

3.2 Composing References and State Trans-
formers

Next, we introduce some operators associated with compo-
sitional references.

We would like to combine an array reference ar (of type
Mutable s (Array a)) with a state transformer of the im-
plicit style st (of type ST (Array a) x) so that they can
produce a state transformer of type ST s x. For this pur-
pose, we introduce the following operator:

appR :: Mutable s t -> ST t x -> ST s x

When t is the type of arrays, it takes an array reference
ar and a state transformer for arrays st and produces a
state transformer for the global state (s) in which the ref-
erenced array resides. That is, ar ‘appR¢ st® has type
ST s x and is a global state transformer which only affects
the referenced array and has no effect on the rest of the
state. Though appR deals with references, we will still call
this style implicit, if state transformers use only appR and
the operators introduced in the next subsection, since muta-
ble data structures are finally passed to state transformers
as their hidden parameters.

From the implementation point of view, Mutable s t
should be a primitive data type since we would like its val-
ues to be represented as efficiently as possible. Intuitively,
they should be direct pointers to mutable data structures.
Still, we can consider a functional account of compositional
references, like that of state transformers. We introduce two
auxiliary functions for this purpose:

rd : Mutablest = s >t
wr : Mutablest—>s—>t—>s
which read and overwrite the substructure of type ¢ in the

structure of type s. (In other words, we can view Mutable
as the following data type:

type Mutable st = (st s>t —s)

when we explain their behaviour.})

We require that these two functions satisfy some natural
equations taken from [2],

rdr{wrrst) = t (1

wrrs(rdrs) = s (2)

wrr(wrrsty)tz = wrrst. (3)

Then appR can be defined using these two functions.

As—= lett=rdrs; (a,t')=stt (4)
in (a,wrrst)

r‘appR st o

Intuitively, appR extracts the data structure of type t from
the state (of type s), and applies the state transformer for
type t to the extracted substructure. In other words, com-
positional references of type Mutable s t can “extend” the
state parameter of state transformers from a smaller one (t)
to a larger one (s).

Global states “conjured up™ by runST can be considered
as very large data structures such as:

def

S0 = (01,1,--~.01,m1,~~',Gn—1,mn_,,
An,1y-+ 18 omp,
An41,1y+0 s aN,lv-"xaN.mN)

®We assume ‘appR‘ binds tighter than ‘thenST*.

If a state transformer st :: ST (Array a) () transforms
{an1, - Gnmy) to (Gn 1, ... Gh,,,) and cr :: Mutable
s (Array a) is a compositional reference which points to

Gn.)y.--yGnm, 1N So:
rdcrso = (@nie-..,8nm,)
) !
wr cr $o(Gp,1y-e -y 8nm,) =
(01.1,.--,01‘m1. oy Bn—lmp_
! i
a’rz,lv---van,rn,I 9
gl de-.-y aN,ly”-!aN,mN)

their composition cr ‘appR‘ st transforms sg to

} ’
(al.lv"~1an—l,7n,.,_lq Grtil, ... ’aN’mN).

As mentioned in the introduction, compositional refer-
ences are known in semantics of imperative programs as ez-
pansion morphisms in the category of state shapes [13, 9].
They are used in order to explain block structures of imper-
ative languages. What we do in this paper is to use them as
first-class objects in order to deal with various data types
as state in monadic functional programs—rather than as a
concept in semantics.

Pierce and Turner [12} used pairs of functions for extract-
ing (get : s — t) and overwriting (put : s — ¢ —» s) sub-
structures in order to explain inheritance in object-oriented
programs. Hofmann and Pierce [2] directly associated such
pairs to subtyping. Our use of compositional references is
similar to theirs of such pairs of functions. However, their
main interest is to give a type-theoretic foundation of object-
oriented programming. In contrast, we use compositional
references as a generalization of references and hence, as
first-class values.

An advantage of the implicit style state transformers is
that they have simple monomorphic types. As we mentioned
in the introduction, Launchbury and Peyton Jones’s method
requires state transformers to be polymorphic with respect
to the state, which sometimes prevents state transformers
from being passed as function parameters. For example, it
is impossible to type-check the following function.

{-
useArr ::
(Y s, MutArr s Int -> ST s ()) -> Int
useArr ast = runST
(newArr 10 0 ‘thenST‘ \ ar ->
ast ar ‘thenST‘ \ _ ->

readArr ar 0)

-}

This is because runST requires the state parameter to be
polymorphic while ast is used as a function parameter and
must be monomorphic. On the other hand, if we define a
state transformer (ast’) of type ST (Array Int) (), it is
possible to pass them as a parameter of a function such as
above and then to use it as ar ‘appR‘ ast’ in the function.

Another possible solution to this problem would be to
extend the type checker as described in [8] and to use rank-
2 types in type signatures. We will return to this point
later.

Once we introduce appR, we have to slightly modify the
type of primitives such as newVar and newArr which create
new mutable data structures . They can no longer be given
unrestricted polymorphic types, since specific data types

220

such as arrays are used as the state parameter of state trans-
formers. Here, we introduce a but-in (primitive) type class
Global s in order to show that s is the type of global states
“conjured up” by runST and that it has an ability to return
any number of and any type of fresh locations for mutable
data structures®.

newVar ::
newArr ::
Global s => Int -> a => ST s (MutArr s a)

Global s => a ~> ST s (MutVar s a)

When global state transformers are applied to runST, the
type constraint Global s is eliminated. Therefore, the type
of runST should be:

runST :: Va. (Vs. Global s => ST s a) -> a

In general, such type constraints are considered as hidden
parameters. In the case of Global s, it would be a function
which returns a fresh location when applied to the global
state.

Instead of introeducing new primitives for each data type
such as newPair and newTriple, we introduce the following
primitive which creates a mutable version of its argument
by creating the copy of its toplevel fields.

nevMutable :: Global s => a -> ST s (Mutable s a)

For example, newMutable (1,2) creates a new mutable pair
in the global state. Of course, it would be possible to avoid
copying when the argument of newMutable is a constructor
application like (1,2). Since its behaviour depends on the
size and therefore on the type of its argument, it might be
better to constrain its type with say, Copyable a as well’.

3.3 Intermediate References

In the implicit style, we will need primitives corresponding
to readVar and writeVar in order to define state transform-
ers for each data type. In the design of such primitives, we
can use the correspondence of types between implicit and
explicit styles explained in Section 3.1.

. => 8Tt x
. => Mutable s t -> ST s x

Implicit style:
Explicit style:
Then, the primitive read/write operators in the explicit style

readVar :: MutVar s a -> ST s a
vwriteVar :: MutVar s a -=> a => ST s ()

correspond to the following new primitives in the hnplicit
style respectively:

ST (Atom a) a
a => ST (Atom a) ()

fetch ::
assign ::

Their behaviour can be explained as follows:

fetch = \ (MkAtom a) -> (a, MkAtom a)
assign a’ = \ (MkAtom a) -> ((), MkAtom a’)

(For the moment, we ignore the issue of in-place updating.)
For example, the following state transformer increments
Aton cells.

® Another possible way would be to include the constraint in the
type of the state as follows.

newVar :: a -> ST (Global s) (MutVar (Global s) a)

7If we could use multi-parameter type classes, type constraint of
the form Global2 s a might be better.

ST (Atom Int) ()
‘thenST‘ \ n ->

incrST ::
incrST = fetch
assign (n+1)

In order to apply them to. say, the first field of triples, we
need a function of type:

ST (Atom a) x => ST (a, b, ¢) x

However, we notice that this is exactly what a composi-
tional reference of type Mutable (a, b, c¢) (Atom a) and
appR can generate. Therefore, we provide the following com-
positional references as primitives for triples:

fst3R :: Mutable (a, b, ¢) (Atom a)
snd3R :: Mutable (a, b, ¢) (Atom b)
thd3R :: Mutable (a, b, ¢} (Atom c)

In practice, such compositional references should be pro-
vided automatically, when new data types are defined. One
possible way is to extend the Haskell declaration of labeled
fields [10, Section 4.2.1] so that the following declaration:

data C = F {f1,f2 :: Int, £f3 :: Bool}

generates three compositional references f1, £2 and £3 of
type Mutable C (Atom Int), Mutable C (Atom Int) and
Mutable C (Atom Bool) respectively.

Such compositional references stand for relative locations
of fields with respect to the base structure. For example, the
functional account of £3t3R is given as follows:

rd fst3R = A{a,b,c}) = (MkAtom a)
wr fst3R = Xa,b,c) = A(MkAtoma') = (a’,b,¢)

The expression fst3R ‘appR¢ incrST has type ST (Int,
b, ¢} (3 and it changes the state from {n,b,c) to (n +
1,b,¢).

In practice, £st3R would have a representation quite dif-
ferent from those references which are created by operators
such as newArr and newMutable. In order to distinguish the
two kinds of references explicitly, we use the term global ref-
erences for those which are created by newMutable and so
on and intermediate references for £st3R, snd3R and so on.

We can also think of compositional references which stand
for the location of substructures more general than fields.

For example, we can think of a compositional reference £stSnd3R

which stands for the location of the first and the second fields
of triples. It has type Mutable (a, b, ¢) (a, b) and its
behaviour can be explained by the following equations.

rd fstSnd3R = A(a.b,c) — (a,b)
wr fstSnd3R Ma.b,c) =2 Aa' b} = (a',b,¢)

When the Haskell data type declaration is extended to sup-
port some form of inheritance, it is probable that such com-
positional references are provided when new data types are
defined by tnheriting existing ones. Then, compositional ref-
erences such as Mutable (a,b,c) (a,c) where the mutable
piece is not contiguous cannot be introduced. In this paper,
we do not discuss particular syntax for inheritance, though.

For example, let

fstR ::
sndR ::

Mutable (a, b) (Atom a)
Mutable (a, b) (Atom b)

221

be two compositional references for the two fields of pairs
and let rotST t be a state transformer for pairs which trans-
forms {z,y) to (rcost — ysint, rsint + ycost):

:: Double ~> ST (Double, Double) ()
rotST t = fstR ‘appR‘ fetch ‘thenST* \ x ->
sndR ‘appR‘ fetch ‘thenST‘ \ y ->
fstR ‘appR‘ assign (x*cos t - y*sin t)
‘thenST‘ \ _ ->
sndR ‘appR¢ assign (x#sin t + y*cos t)

rotST

we can reuse rotST in the definition of spiralST, a state
transformer for triples which transforms (z, y, z) to (z cost—
ysint,zsint +ycost, z + t).

spiralST
Double -> ST (Double, Double, Double) ()
spiralST t = fstSnd3R ‘appR‘ rotST
‘thenST* \ _ ->
(fetch ‘thenST‘ \ z ->
assign (z+t))

thd3R

Note that though they are written imperatively, their func-
tional accounts can be given as follows:

rotSTt = A (z,y) =
((),{z cost —ysint, zsint + ycost))
spiralSTt = X (z,y,2) >

{(),(zcost —ysint, zsint + ycost,z + t))

If they are written in the explicit style, such accounts would
involve the global state, even though its most part is not
relevant.

3.4 An Example

Here, we give a small example in the implicit style which
uses primitives introduced so far. For arrays, we assume
that arrIdx is a primitive such that the expression arrIdx
i stands for the location of the i* element.

arrldx :: Int -> Mutable (Array a) (Atom a)

Then applyST applies the given state transformer according
to the given list.

applyST ::
[Int] -> ST (Atom a) () -> ST (Array a) ()
applyST [] st = returnST ()

applyST (i:is) st =
arrldx i ‘appR‘ st ‘thenST‘ \ _ ->
applyST is st

If the supplied list is [1,2,...,n] where n is the number of
elements, applyST behaves as the “apply to all” function.
Suppose that anArr :: MutArr s Int is a mutable array
of size three with all elements initialized to 0, then the ex-
pression anArr ‘appR¢ (applysT [1, 2, 2, 2, 2, 1, 3]
incrST) counts the frequency of the elements of the given
list—the array is modified so that its first, second and third
elements are 2, 4 and 1 respectively. Of course, an equivalent
program can be written in the explicit style. The advantage
of the implicit style here is that it is obvious from the type
that applyST only affects the array and does not interfere
with the rest of the state. Another advantage is that if we
provide a variant of initST as follows,

initST’ :: s -> ST s x -> (x,s)
initST’ = \ s st -> (st s)

it becomes possible to use the modified state in the rest of
the program.

3.5 Compositional References in the Ex-
plicit Style
In the explicit style, the following primitive operator:

cmpR ::
Mutable s t -> Mutable t u -> Mutable s u

which composes two compositional references of appropri-
ate types will be useful. The name compositional reference
comes from this operator. Intuitively, it simply returns the
sum of two relative locations. Its behaviour is characterized
by the equations below:

{(rdg)o(rdr) (5)
wrrs(wrg{rdrs)u) (6)

rd (r‘empR'q) =
wr (r‘cmpR' g)su =
p'cmpR (q‘cmpR‘'r) = (p‘empR‘q)‘cmpR'r (7)
Then, \ x -> x ‘cmpR‘ fst3R gives the reference to the
first field of the mutable triple x.
For example, if we write rotST in the explicit style, it
becomes as follows:

rotST’ :: Double ->
Mutable s (Double, Double)} -> ST s ()
rotST> t = \ r ->
readVar (r ‘cmpR‘ fstR)
readVar (r ‘cmpR‘ sndR)
writeVar (r ‘cmpR‘ fstR)
(x*cos t - y#sin t) ‘thenST‘ \ _ ->
writeVar (r ‘cmpR‘ sndR)
(x#sin t + y%cos t) ‘thenST‘ \ _ ->

‘thenST‘ \ x ->
‘thenST‘ \

In the (extended) explicit style. we use cmpR instead of
appR. All operations are carried out with respect to refer-
ences, instead of the state. Only readVar and writeVar
operates upon the state.

With cmpR, compositional references such as fstSnd3R
can behave as cast operators of references by hiding some
part of mutable data structures. Suppose we have pt ::
Mutable s (Int, Int) andcpt :: Mutable s (Int, Int,
Color), then pts = [pt, cpt ‘cmpR‘ fstSnd3R] has type
[Mutable s (Int, Int)]. Borrowing from object-oriented
terminology, cmpR is used for subtyping, while appR is used
for inheriting methods.

In a sense, appR (or more precisely, f1ip appR where
flip £ x y = f y x} can be thought of as a transformation
from the implicit style to the explicit style. In the other
direction, it becomes also possible to convert {polymorphic)
explicit style state transformers into implicit style ones, if
we provide a built-in construct of type:

extendST ::
(V s. Global s => Mutable s t -> ST s a) -> STt a

In the explicit style, we can freely use operators such as
newVar and can extend the state temporarily. In this way,
we can go between the two styles and enjoy merits of both
styles.

We can use extendST also when the state of type t is cre-
ated by runST or another extendST. In that case, extendST

222

can be viewed as a generalization of runST ®and as an oper-
ator which extends the global state temporarily. It creates
a new global state which is empty except that it contains
the existing state of type t. Then, it passes the new state to
the given state transformer with a compositional reference
designating the location of the existing state. After execu-
tion, it throws away the newly created part of the state and
behaves a state transformer for the state of type t. Without
the compositional reference of type Mutable s t, two states
of type s and t would be irrelevant—it would be impossi-
ble to access the existing state (of type t} from the state
transformer for the extended state (of type s).

4 Relation between the Two Styles

At first, programs which are written in the implicit style
and which use appR may seem inefficient since the functional
account of appR given in Section 3.2 conceptually requires
copying substructures before passing them to state trans-
formers. For example, the expression fstSnd3R ‘appR‘ rotST
t requires, at least conceptually, copying of the first and the
second fields of triples. On the other hand, if we write pro-
grams entirely in the explicit style, we would not need such
copying. For example, if trR :: Matable s (a, b, ¢,
the expression trR ‘cmpR‘ fstSnd3R :: Mutable s (a, b)
can probably be implemented only by simple pointer arith-
metic on references. States are not touched in the meantime
and are accessed only via readVar and writeVar. They are
single-threaded, and state transformers can be destructive
in the explicit style.

Even in the implicit style, it seems possible to implement
appR so that it takes as an argument a pointer to a triple,
simply adds the offset corresponding to £stSnd3R and then
passes the result pointer to state transformers, since state
transformers should be designed so that they update states
destructively. However, we have not discussed in-place up-
dating in the implicit style, so far.

The purpose of this section is to show that there is a
certain relation between the two styles and therefore that
the implicit style programs can be implemented as the cor-
responding explicit style ones. The relation itself can be
shown irrespective of in-place updating. Then it will be
shown that in-place updating is also possible in the implicit
style.

The key is the equations derived from the ones given in
Section 3.

p‘appR‘ (m ‘thenST k) =
(p‘appR* m) ‘thenST Aa = p‘appR‘'ka (8)

p'appR' (returnSTa) = returnSTa 9)

p‘appR' (q‘appR‘'m) =
(p‘cmpR‘q) ‘appR'm (10)

Equations (8) and (9) state that (p ‘appR‘) behaves as a
monad morphism. For the exact definition and examples
of monad morphisms, please refer to [15]. The equation (8)
states that ‘appR‘ can distribute over ‘thenST‘ and (10) says
that ‘appR‘ can be substituted by ‘cmpR‘ in some cases.
We will make use of these facts in order to give efficient
implementation of implicit style state transformers.

®And it is a generalization of the operator (of type (V 8. ST s
a) -> ST t a) which Peyton Jones proposed in his invited talk at
SIPL’95.

For this purpose. in addition to the standard interpreta-
tion of state transformers:

type STpsa = s —(a,s)

we consider an alternative interpretation of state transform-
ers:

type SThc sa = Mutable G s > G — (a,G)

where (7 is some fixed data type for global state and there-
fore Mutable G s is the type of global references. (So far, the
type of global state is abstract in order to make encapsula-
tion of references possible. Therefore, we can think of the
type above as the following rank-2 type.

type ST,c.sa = Vg. Mutablegs - g — (a,g)

Here, however, it is considered as a fixed and universal data
type in order to concentrate on the essential issue.) We dis-
tinguish the two semantics by subscripting their components
by c¢p (for copy) or nc (for no copy). Then we give mean-
ings of the primitives in these two semantics so that they
are properly related and that we obtain the same results for
values of observable types. The point is that primitives are
defined in the non-copying semantics so that, roughly speak-
ing, the following relation holds between the two semantics
of state transformers:

sthe = Ap— p'appR,, sty (11)

Here st.. and st, are the meanings of some term of type
ST sa in the copying and the non-copying semantics respec-
tively.

The meanings of primitive state transformers including
fetch and assign are given so that they satisfy the relation.

feteh,, = Ap = pappRy, fetch, (12)
assign,. a &t Ap — p‘appR,, assign, a (13)

Note that in the non-copying semantics they are almost the
same as newVar and writeVar except the order of argu-
ments.
The other primitives are defined as:
; def '
q‘eppR,,m = Ap— m (p‘cmpRq) (14)

m' ‘thenSThe k' &

Ap — m' p‘thenSTp Aa — k' ap (15)
returnST,. a def A= returnST, a (16)

Note that we use the convention in the definitions above
and the equations below that p and ¢ are compositional
references of appropriate types and:

m s (a,s)

m' Mutable Gs - G — (a,G)

k a—s—(bs)

K a — Mutable G s - G — (b,G).

The definition of eppkK,. (14) is the key step to avoid
copying since appR,, requires copying of substructures while
cmpR, and hence appR,_ require only simple pointer calcu-
lation. These definitions are justified by the following equa-
tions (8), (9) and (10). Then from these equations, we can

show that if we define primitives as in (14), (15) and (16),
the following equations hold between the meanings of app R,
thenST and returnST in the two semantics, where we write
m* for Ap — p*appR,, m.

(q‘appR., m)* = gq‘appR, m"
(m ‘thenST¢p k)" m* ‘thenST4. (Aa = (ka)")

(returnSTcpa)' = returnST,.c a

From these equations and the design of the other constants,
state transformers constructed from them satisfy the rela-
tion (11).

More precisely, we need to define a type-indexed family
of logical relations [6, Chapter 8] between the copying and
the non-copying semantics. The relations are defined by
induction on types as follows:

c~pC (b : base type)

s def s
€~r a4, e = for anye ~qr e,

[N
eel ~r, € €
def
{e1,€2) ~(ry .73 (eh,e) = e ~r, e; and ez ~r, €}
And the relation for the type constructor ST is defined as
follows.

1 def
st ~sToa st = for anys,g,gq,

if s ~; rd g g then
st § ~(a,0) (@, rd g g1} and

wrqgi(rdqg)=g
where (a,1) = st'qg

Then we can show:

Lemma: All the constants (returnST, thenST, appR, fetch,
and assign) satisfy the logical relations.
Proof: (See Appendix A.)

Then from the basic lemma of logical relations, terms
built from such constants all satisfy the relations. Espe-
cially, for a closed program with an observable type such as
Int, its meanings in the two representations are the same.
This result shows that implicit style programs can be im-
plemented efficiently as explicit style ones that do not need
copying of substructures.

As for safety of in-place updating, the discussion in [5]
can be applied to our set of primitives. That is, in-place
updating is safe if primitives are designed so that the state
is used only in a single-threaded manner and if all read / write
primitives are strict in the state. Of course, our read/write
primitives (fetch and assign) can be implemented so that
they satisfy these requirements. Note that all read/write
primitives operate on fields and that the contents of fields
themselves are not mutable. Therefore, there is no operator
that duplicates state.

5 Discussion

In this section, we give some remarks on implementation
issues.

From the result of the previous section, we can draw the
following implementation strategy.

First, state transformers should take a reference as an
argument and then modify the state destructively. For uni-
formity, even global state transformers should take a dummy

223

parameter. Second. compositional references are divided
into three kinds— “ordinary”™ global references created by
newMutable, intermediate references such as fstR and sndR,
and global references produced by composing references of
the first and the second kinds. Ordinary global references
are represented as before (i.e. as pointers). Interior pointers
{i.e. pointers into the middle of data structures) may be nec-
essary for references of the third kind, which may complicate
garbage collectors. In that case, they can be represented as
a pair of a pointer and an offset with a special tag. Note
that this difficulty always arises when we would like to deal
with pointers into the middle with garbage collection, and
therefore is not specific to our framework.

Intermediate references are represented as a function from
global references to global references also with a special tag
in order to be distinguished from ordinary global references.
Then, cmpR just applies this function to the global reference
given as the first argument. If we do not need to deal with
variant types, intermediate references may be represented
stply as an offset.

In the rest of this section, we explain why Mutable s
. makes only toplevel fields of data structures mutable as
we mentioned in Section 3.1. For example, in Mutable x
(a, b, c), all the three fields of triple are independently
mutable, while in Mutable x (a, (b, ¢)) only two fields
of type a and (b, ¢) are mutable—two fields of type b and
¢ are not in toplevel and cannot be updated destructively.
If we would like to make such updates possible, we would
need rather complicated copying operations to keep further
in-place updating safe. Suppose that state transformers of
type ST (a, (b, c}) _ could update all fields of type b,
c and (b, c) respectively. This would be the case, if we
provided both compositional references:

sndR’ :: Mutable (x, y) y
sndR :: Mutable (x, y) (Atom y)

Then we could update the field of type (b, ¢) with an im-
mutable pair say, (1, 2) using sndR. Since fields b and ¢
would be also updatable by using sndR’ ‘cmpR‘ fstR and
sndR’ ‘cmpR‘ sndR, we would have to make a fresh copy
of (1, 2) in order to make further updating safe. Other-
wise, the data structure which should be immutable would
be updated and this is, of course, wrong. However, if such
copying is necessary, we can use Mutable s (a, b, ¢) in-
stead. There is little reason to use Mutable s (a, (b, c)).
On the other hand, we can use references in data structures
{i.e. Mutable s (a, Mutable s (b, c))) in order to deal
with deeply mutable data structures. Therefore, at least in
most cases, it is sufficient to make only toplevel fields muta-
ble and is reasonable not to provide compositional references
of type Mutable (a, b) b.

Note that the framework of compositional references it-
self does not prohibit such compositional references. When
in-place updating is not required, it is possible to provide
both compositional references sndR :: Mutable (a, b) (Atom
b) and sndR’ :: Mutable (a, b) b, the latter of which
makes (functional) update of deep fields without using ref-
erences in data structures.

For recursive data types such as lists, the restriction
above seems more problematic. We can not provide a com-
positional reference of type Mutable [a] [a]. Instead, we
can provide only two compositional references of type Mutable
[a] (Atom a) and Mutable [a] (Atom [al) for updating
the head (car) and the tail (cdr) fields. Therefore, we can

224

make only the first cons cell mutable. In order to make all
the cons cells mutable, we must define the following new
data type:

data MutList s a
= MutCons a (Mutable s (MutList s a))
| MutNil

One of the main reasons to introduce compositional refer-
ences (Mutable) is to avoid introducing new mutable data
types for corresponding immutable ones. However, we can-
not obtain the type of mutable lists by just attaching Mutable
s to the type of ordinary lists. In order to make automatic
definition of the type of mutable lists possible, it might be
necessary to change the form of recursive data type defini-
tions as follows:

data List a = Cons a Self | Nil

where Self is a reserved word corresponding to the type
being defined (like Current in Eiffel). Then, it would be
possible to provide the mutable version of the type of lists
(generally, recursive data types) automatically. Such modifi-
cation would be also necessary for object-oriented style data
type definitions where data types are defined incrementally
as discussed in Section 3.3. Then, overloading would play a
more important role in order to treat such families of data
types uniformly.

6 Conclusion

We proposed a new type constructor Mutable and a set of
new primitives (e.g. appR, cmpR, fetch and assign) based on
the notion of compositional references. First of all, it enables
us to use various space-efficient mutable data structures—
otherwise, we would need to introduce primitive mutable
data types in an ad-hoc manner. Second, when we do not
need the expressiveness of the explicit style, we can write
stateful programs in the implicit style. State transform-
ers can use data structures such as arrays and tuples di-
rectly as state and have simple functional accounts and sim-
ple monomorphic types. Then they can be freely used as
function parameters. We showed that such implicit style
computations can be implemented efficiently by utilizing the
relation between the implicit and the explicit styles.

Acknowledgments

The author would like to thank Atsushi Ohori and the anony-
mous referees for their helpful comments on earlier versions
of this paper.

References

[1] Peter Achten, John van Groningen, and Rinus Plas-
meijer. High level specification of 1/O in functional
languages. In Launchbury et al., editors, Proceed-
ings of Glasgow Workshop on Functional Programming.
Springer Verlag, 1993.

[2] Martin Hofmann and Benjamin Pierce. Positive sub-
typing. In Annual ACM Symp. on Principles of Prog.
Languages, pages 186-197, 1995.

(3

(4]

(16}

Paul Hudak. Mutable abstract datatypes. Research
Report YALEU/DCS/RR-914, Yale University Depart-
ment of Computer Science, December 1992.

Koji Kagawa. Mutable data structures and composable
references in a pure functional language. In Proc. of
the Second ACM SIGPLAN Workshop on State in Pro-
graming Languages, pages 79-94, January 1995. Techni-
cal Report UITUCDCS-R-95-1900, University of IHinois
at Urbana-Champaign.

John Launchbury and Simon L. Peyton Jones. State in
Haskell. Lisp and Symbolic Computation, 8(4):293-341,
1995.

John C. Mitchell. Foundations for Programming Lan-
guages. MIT Press, June 1996.

Eugenio Moggi. Computational lambda-calculus and
monads. In [EFE Symposium on Logic in Computer
Sctence, June 1989.

Martin Odersky and Konstantin Laufer. Putting type
annotations to work. In Proc. 23rd ACM Symposium
on Principles of Programming Languages, pages 65-77,
January 1996.

Frank Joseph Oles. Type algebras, functor categories,
and block structure. In Algebraic Methods in Semantics,
pages 543-573. Cambridge University Press, 1985.

John Peterson, Kevin Hammond, et al. Re-
port on the programming language Haskell version
1.3. http://haskell.cs.yale.edu/haskell-report/
haskell-report.html, 1996.

Simon L. Peyton Jones and Philip Wadler. Imperative
functional programming. In Annual ACM Symp. on
Principles of Prog. Languages, 1993.

Benjamin C. Pierce and David N. Turner. Object-
oriented programming without recursive types. In An-
nual ACM Symp. on Principles of Prog. Languages,
January 1993.

John C. Reynolds. The essence of Algol. In J. W,
de Bakker and J. C. van Vliet, editor, International
Symposium on Algorithmic Languages, pages 345-372.
North-Holland, 1981.

Philip Wadler. Theorems for free! In Proc. ACM Conf.
Functional Programming and Computer Architecture,
pages 347-359, 1989.

Philip Wadler. Comprehending monads. In ACM Symp.
on Lisp and Functional Programming, pages 61-78,
1990.

Philip Wadler. The essence of functional programming.
In 4nnual ACM Symp. on Principles of Prog. Lan-
guages, 1992,

A Proof of the Lemma

Lemma: All the constants (returnST, thenST, appR, fetch
and assign) satisfy the logical relations.
Proof:
We show the cases for thenST and appR. The other cases
are easier.
(case for thenST)
Suppose that m ~s7,a m' and k ~q_,57 05 k'. And sup-
pose that

for any s,g,q

s~q 8 where s’ =rdqg

(17)

Let (a,s1) = m s, (a’,q1) = m’ q g and s{ = rd g g1 then
(a,31) ~(a,0) (a', 87) therefore ka ~sr o 3 k'a’. From this we
can conclude that kas; ~(s,0) (b, 53) where (b, 92) = k'a’g
and s5 = rdqg,. Moreover, from g; = wrqg. s}, g = wrqg; s’
and (3), we can conclude that g = wr ggs s’

(case for appR)

Assume that r ~putabic o:r ' and st ~s7 5 st’ and (17).
We must show that (r ‘appR., st) s ~(a.s) (a’,51) and g =
wrqg; s’ where (a’,g1) = (v’ *appR.,.st')qg, and s} = rdqg.
From s ~, 8"

rdrs ~, rdr's
= rdr'(rdgg)
= rd(g'‘cmpR r') g

Then, it follows from st ~s1 5 o st' that (a,£;) ~(a,r) (a’,t))
and g = wr (g ‘cmpR‘ r') g1 t' where

t = rdrs
{a,t;) = stt
(a",91) = st'(¢‘cmpR'r')g
= (r'‘appR,.st')qg
ty = rd(qg‘cmpR'r) g
t = rd(g‘cmpR'r')g

Then, we have to show that wr r s t; ~, si. For this, it is
sufficient to show that s} = wr r’' s’ t{. To show this:

(rhs) = wrr' (rd qg)(rd(g‘cmpR r')g1)

= wrr' (rdq(wr(g'empR'r'} g t'})

{rd (q ‘cmpR' ') ¢1)
= wrr'(rdq(wrgg (wrr'(rdgg)t)))
(rd (g ‘cmpR'r') g1)
= wrr' (wrr'(rdgg)t’) (rd(q'cmpR' r') g1)

= wrr'(rdqg) (rdr' (rdqqi))

rd q g1
= (Lhs.)

]

In addition, we must show that

wrgg (rdgqg)=g

To show this:

(Lhs.) wr ggy (rd g (wr (g ‘cmpR'r') g1 ')

wr qgi (rd g (wrggi (wrr' (rdgg1)t')))

225

wrggy (wr v (rdgg) t)

wr (q'empR r'ygi t'

= (r.hs))

This completes the proof.

226

