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Abstract

We examine the costs and benefits of a variety of copying
garbage collection (GC) mechanisms across multiple archi-
tectures and programming languages. Our study covers
both low-level object representation and copying issues as
well as the mechanisms needed to support more advanced
techniques such as generational collection, large object spaces,
and type-segregated areas.

Our experiments are made possible by a novel perfor-
mance analysis tool, Oscar. Oscar allows us to capture
snapshots of programming language heaps that may then be
used to replay garbage collections. The replay program is
self-contained and written in C, which makes it easy to port
to other architectures and to analyze with standard perfor-
mance analysis tools. Furthermore, it is possible to study
additional programming languages simply by instrumenting
existing implementations to capture heap snapshots.

In general, we found that careful implementation of GC
mechanisms can have a significant benefit. For a simple
collector, we measured improvements of as much as 95%.
We then found that while the addition of advanced features
can have a sizeable overhead (up to 15%), the net bene-
fit is quite positive, resulting in additional gains of up to
42%. We also found that results varied depending upon
the platform and language. Machine characteristics such as
cache arrangements, instruction set (RISC/CISC), and reg-
ister pool were important. For different languages, average
object size seemed to be most important.

The results of our experiments demonstrate the useful-
ness of a tool like Oscar for studying GC performance. With-
out much overhead, we can easily identify areas where pro-
gramming language implementors could collaborate with GC
implementors to improve GC performance.
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1 Introduction

Garbage collection (GC) is an important feature of many
programming languages, “functional” ones in particular. De-
spite the importance of GC performance, there is surpris-
ingly limited information available to guide implementors
in how to design their languages, data representations, and
runtime systems so that the collector has good performance.
In practice, implementors either tune their systems based on
their own experiments and guesses, or worse, just ignore the
performance of the collector.

In this paper, we attempt to improve this situation for
copying GC. We explore the costs and benefits of mecha-
nisms that are needed to implement a wide range of copying
GC techniques, focusing on how they affect the speed with
which data is collected. These mechanisms include those
needed by even the most basic copying collectors, including
valid pointer determination, object type and length determi-
nation, and copying. We also examine mechanisms that are
needed to implement many of the most sophisticated GC
techniques such as generational collection, non-contiguous
spaces, object-segregation by types, and large object spaces.

In our study, we examine heaps generated by the imple-
mentations of multiple languages (Standard ML (SML) and
Java) and hardware platforms (SGI/MIPS and HP /Intel).
The diversity of our study allows us to gain more general
insights than a similar study that only addresses a specific
collector for a specific language on a specific platform.

To facilitate our study, we have designed and imple-
mented a GC testbed, Oscar. Oscar uses a snapshot and
replay strategy to allow repeatable experiments to be per-
formed in a controlled environment. We instrument a pro-
gramming language’s implementation to snapshot each heap
to disk in a standard format just before it is collected by the
native collector. Then, using a portable and highly param-
eterized replay program, we read in the heaps and replay
the collections using the GC mechanisms we wish to study.
This allows us to study the effects of heap characteristics
that are associated with a language implementation but not
its collector, such as sizes, types, and distributions of objects
being collected. Oscar is easy to port, and since the replay
program is written in C, we can use standard performance
analysis tools. Therefore, studying additional languages is
as simple as instrumenting existing implementations to cap-
ture snapshots, and studying additional architectures merely
involves porting the replay program.

Due to the sheer volume of possible choices, it will come
as no surprise that we do not touch on all aspects of copying



GC performance. Instead, we focus on those aspects of GC
performance that are the least well understood in a general
context and on which we believe we can shed the most light.
Because Oscar measures only the garbage collection time,
it cannot evaluate the costs that GC mechanisms impose
on other parts of the language implementation. One exam-
ple of this is mutation-tracking devices like remembered sets
whose overhead is mostly felt during program execution. We
therefore concentrate on measuring GC mechanisms whose
impact is felt entirely (or nearly so) by the collector. Fur-
thermore, we focus on the costs of these mechanisms rather
than on the policies needed to control them; these policies
are very language-implementation dependent. We expect
that our results will help language implementors set policies
in a more informed way through a greater understanding of
the costs involved.

Our results show that a careful implementation of some
of the simple mechanisms can result in significant improve-
ments in GC speed, as much as 95%. In addition, we found
that the benefits of the advanced techniques we measured
result in further GC speed improvements of as much as 42%.
Overall, we Oscar was extremely successful in enabling us to
draw general conclusions about copying GC mechanisms, as
well as to understand tradeoffs resulting from a particular
language or architecture.

We begin by presenting an overview of basic copying
garbage collection and the advanced techniques we shall con-
sider, focusing on the mechanisms that we shall study. We
then describe the design and implementation of Oscar, fol-
lowed by a description of the experimental conditions of our
tests. The results from our experiments form the heart of
the paper. We begin by briefly assessing the impact of cache
locality on our benchmarks. Then we examine the impact of
various design and implementation choices on a simple col-
lector. We proceed to study the costs and benefits of more
advanced GC techniques. Finally, we discuss related works,
our plans for the future, and our conclusions.

2 Copying Garbage Collector Design

In this section, we provide a brief overview of the design,
implementation and basic performance costs of copying GC.
We concentrate on the issues and constructs that we measure
in our study. For a more general discussion of GC design and
implementation, see Wilson [17], or Jones [9]. Throughout
the paper, “object” simply refers to a datum managed by the
collector; the existence of methods or other semantic features
is not important. Likewise, “type” refers to the type that is
relevant to the collector, rather than to the type as seen by
the programming language.

2.1 Basic Algorithm

Both copying and mark-and-sweep collectors are tracing col-
lectors. Tracing collectors work by finding all live objects
that may be used by the program in the future and then re-
claiming the unused garbage objects. Tracing collectors find
the live objects by starting with all objects that are directly
referenceable by the program, the roots, and then following
(or tracing) pointers to find the transitive closure of all ob-
jects reachable from the roots. We refer to the total size of
the live objects as the livesize.

Copying collectors copy all of the live objects from their
current location, from-space, into a new location, to-space.

When the algorithm terminates, from-space contains only
the garbage and the old versions of the live objects and can
be reclaimed. Most, although not all, copying collectors use
a technique called the Cheney scan [2] to implement the
transitive closure algorithm. Because it is by far the most
common, it is this specific technique that we focus on here;
see the future work (Section 7) for the issues involved in
studying other techniques.

2.1.1 The Cheney Scan

Two operations are used to implement the Cheney scan,
copy and scan. Copy takes a pointer to an object in from-
space. If the object is not yet copied then copy performs the
following actions: it copies the object to to-space at the lo-
cation pointed to by the copy pointer, marks the from-space
version as forwarded, stores a forwarding pointer in the from-
space version pointing to the to-space version, advances the
copy pointer, and returns the location to which the object
was copied. If the object has already been marked as for-
warded then copy simply returns the forwarding pointer.
Scan takes the object pointed to by the scan pointer and ap-
plies copy to each from-space pointer in the object, updating
them with the new to-space locations; scan then advances
the scan pointer to point at the next object in to-space.

The algorithm is initialized by setting the copy and scan
pointers to the beginning of to-space and then applying copy
to each root, updating them with the new to-space loca-
tions. The algorithm proceeds by applying scan until the
scan pointer equals the copy pointer, at which time all ob-
jects have been copied and updated and the algorithm ter-
minates. At the end of a collection, to-space contains only
live objects, so copying collection has the additional benefit
that it compacts the live data. Note that the Cheney scan
results in a breadth-first traversal of the pointer graph, with
the region between the copy and scan pointers serving as an
implicit queue of objects to be processed.

Consider the mechanisms needed to implement this al-
gorithm. Scan will need to know how to find all the point-
ers in an object, how to tell if they point into from-space,
and how to advance the scan pointer. It is common that
some objects do not contain pointers and thus need not be
scanned; this requires that scan be able to determine the
type of the object. Copy will need to know if the object has
been forwarded, how to find the forwarding pointer, how
to determine the object’s length, how to advance the copy
pointer, and of course how to copy the object. Variations
in how these mechanisms are implemented are an important
part of our study, so we defer the details of how our collector
achieves them until the experimental results in Section 5.

2.1.2 The Cost of Basic Copying Collection

The simplest asymptotic bound on the cost of copying col-
lection is that collection is O(livesize). However, our study
focuses on the details of the cost, so we need a more detailed
picture. Each object must be copied and scanned once, and
each of these operations has some cost related to the size of
the object and some cost that is incurred on a per-object
basis. Since the from-space is reclaimed in a single opera-
tion, the size of from-space does not affect the asymptotic
cost of collection and we do not consider this cost here.
When copy is applied to a pointer to an uncopied ob-
ject, the following costs are per object: determining if the



object is forwarded, finding the objects’ length, and ad-
vancing the copy pointer. Of course, the cost of actually
copying the object is dependent on the size of the object.
For already-copied objects, determining if the object is for-
warded and finding the forwarding pointer are per-object
costs, and there is not generally any size-dependent cost.

For scan, determining the size and type of the object and
advancing the scan pointer are per-object costs, and in fact,
for objects that do not contain pointers these are the only
costs. For objects that can contain pointers, the costs for
determining where the pointers are and then applying copy
to them and updating them with the to-space pointers are
size-dependent. In addition to the costs for scanning heap
objects, scanning the roots incurs the cost of applying copy
to each root that is a pointer.

2.2 Advanced Techniques

A major goal of our study is to compare the costs in a simple
Cheney-scan collector described above to those of the mech-
anisms needed by more advanced techniques in common use.
Here we provide a brief overview of the advanced techniques
covered in this study; further implementation detail can be
found in the experimental results in Section 5. Space does
not permit a full discussion of the motivations or policies for
using these techniques. We consider following techniques:

e Generational collection [10, 15] segregates objects by

allocation age and focuses collection work on the younger

objects, which are more likely to become garbage.

e Non-contiguous spaces occur when a “space” is not a
contiguous range of memory. These can be used to
reduce virtual memory use [8] and are needed by some
of the advanced techniques.

e Segregation by type [13] (for example, separating ob-
jects that contain pointers from those that do not) is
used by some collectors to take advantage of common
characteristics to improve GC performance.

e Separate big-object spaces [1, 16] are used to avoid the
inefficient copying of large objects, especially those
that do not contain pointers.

Each of these techniques makes implementing the basic GC
mechanisms more costly, but may also have compensating
benefits. Our goal is to gain insight into how to minimize
the cost, and thus maximize the net benefit.

3 Oscar

To facilitate our study, we designed and implemented a GC
testbed, Oscar. Oscar provides a controlled and portable
environment in which to study particular GC techniques
systematically and comparatively using data derived from
a variety of programming language implementations. It is
important to understand that our goal is not to study a
programming language implementation’s native collector or
collection technique; in fact, the native collector can bear es-
sentially no relation to the collection techniques being stud-
ied. What we wish to capture from a language are the sizes,
types, and distributions of the objects being collected.
Oscar is based on a simple snapshot and replay tech-
nique: a language implementation is modified to capture

the pertinent GC conditions in heap snapshots, and a re-
play program repeats the collections corresponding to these
snapshots so they may be closely observed. The replay pro-
gram is parameterized so that we may systematically vary
particular aspects of the collections being studied in a con-
trolled way. This approach mirrors those that are common
in other forms of experimental computer science, such as
using reference traces when studying cache effects or eval-
uating file-system design. The advantages of this approach
include:

e It provides a controlled and repeatable environment.

e It allows changes to be made to garbage collection
mechanisms without requiring changes to other parts
of the language implementation, such as the allocator
or compiler.

e Heaps from different languages can be studied with ex-
actly the same collector, without having to understand
the details of the language implementation’s collector
and how it interfaces to the rest of its implementation.

e The replay program is a C program, so it is portable
and can be used with standard performance evaluation
tools. Often language runtimes are such that standard
tools cannot be used.

A principle disadvantage is that Oscar cannot measure the
costs that GC mechanisms incur outside of the collector.

3.1 Heap Snapshots

A heap snapshot is written to disk each time the implemen-
tation’s collector is called and captures all of the informa-
tion needed to repeat the collection. The heap snapshots are
taken in a canonical form similar to that used by Standard
ML of New Jersey (SML/NJ) 1.09; this collector contains
most of the features we wish to model and so this repre-
sentation is sufficiently general for our current use. If in
the future we wish to study other features not supported
by this canonical representation, extending it should not be
difficult. Furthermore, our results do not depend on this
canonical form, it merely serves as a standard format in
which to store snapshots.

One significant detail is that, for collections based on
generational heaps, the remembered set is processed into the
same representation used for the roots in non-generational
heaps when the snapshot is taken. This effectively factors
out the remembered set implementation, which is not within
the scope of this study.

Currently we can capture heaps from SML/NJ 1.09, and
from Sun Microsystem’s Java Developer’s Source Release 1.0.
Because we use a similar heap representation, making snap-
shots of SML/NJ 1.09 heaps is straightforward. On the
other hand, the Java implementation has a heap represen-
tation designed for mark-and-sweep collection with com-
paction. Support for compaction includes a handle-space
through which object references are indirected. Further-
more, the location of pointers is encoded in the class struc-
ture for each class, unlike SML/NJ. Thus making snapshots
of Java heaps is more challenging but still feasible. The Java
snapshots still encode the basic types, lengths, and even rel-
ative locations of the objects in Java’s heap. Since they have
no impact on this study, we omit the details of exactly how
SML and Java snapshots are generated.



[ Machine | Cache | Makeup Size Index Write-Policy Line-Size  Write-Buffer |
SGI Challenge | Primary split Instr:16K  direct-map write-back 64 bytes 64 bytes
Data:16K
Secondary || unified 4 MB direct-map write-back 128 bytes 128 bytes
HP Netserver | Primary split Instr:8K 2-way write-back 32 bytes n/a
Data:8K
Secondary || unified 1 MB direct-map write-back 128 bytes n/a

Table 1: Cache characteristics of Benchmark Machines

3.2 Heap Replay

The replay program is simple. It first reads in the canon-
ical representation and converts it to the exact representa-
tion needed for a given experiment. For example, it might
convert the lengths of objects from bytes to words. Then
the program prepares the environment for the actual replay.
For example, it may flush the caches and then touch certain
parts of the heap to make them cache resident. Finally, it
calls the garbage collector and replays the collection.

The replay program’s collector contains code to imple-
ment a large number of different options and mechanisms.
In general, these options are parameterized by #ifdef’s and
a customized version of the replay program is compiled to
test the performance of a particular feature. This approach
avoids using runtime tests to change the behavior of the sys-
tem; such checks would cause the replay collector to have
unrealistic performance. Although it typically uses similar
object representations, the replay collector is not based on
the SML/NJ 1.09 collector, but is instead based on a collec-
tor that we wrote and tuned extensively using a preliminary
version of Oscar.

4 Experimental Conditions

Here we describe the conditions of our experiments, includ-
ing: the machine environment, the programs used to gen-
erate the heaps, the distribution of data in the heaps, and
some miscellaneous details.

4.1 Machine Environment

An important feature of Oscar is that is it quite portable,
allowing the use of a variety of machines. For our current
study, we have used two machines, one from Silicon Graph-
ics (SGI) based on a RISC-style processor from MIPS, and
one from Hewlett Packard (HP) based on a CISC-style pro-
cessor from Intel. These machines are quite representative of
the major architectural variations that are found in today’s
market. Both machines provide a modest level of instruction
level parallelism, but do not support aggressive instruction
level parallelism or speculative execution. We do not be-
lieve our major conclusions are sensitive to this issue, but
expect that as such machines become more common that we
will need to verify this. With respect to architectural varia-
tion, a more significant limitation is that both machines used
have structurally similar memory hierarchies, although our
results do show some important differences. Fortunately, as
we discuss in Subsection 5.2.1, the majority of our recom-
mendations are not sensitive to memory hierarchy effects,
despite the fact that absolute GC performance certainly is.

4.1.1 SGI Challenge-L

Our SGI machine is a Challenge-L. The machine is equipped
with four 250 MHz MIPS R4400 processors (our bench-
marks only use one processor) and has 384 megabytes of
main memory, which is two-way interleaved. Cache charac-
teristics are shown in Table 1. The machine runs IRIX 6.2.
Bcopy achieves a copying rate of 36 megabytes per second
on this machine, while simply reading memory can be done
at 67 megabytes per second, and writing it can be done
at 74 megabytes per second. The latency for loading from
the first level cache is 8 nanoseconds and from the second
level cache is 64 nanoseconds, while for main memory it is
1150 nanoseconds, almost a factor of twenty difference from
the second level cache. To perform timing measurements, we
used MIPS’ high-speed cycle counter that has an overhead
of roughly 200 nanoseconds per access.

4.1.2 HP NetServer

Our HP machine is a NetServer 5/166 LS4. The machine
is equipped with four 166 MHz Intel Pentium processors
and has 128 megabytes of main memory. Cache character-
istics are summarized in Table 1, although we were unable
to find information about the write buffers for this machine.
The machine runs Red Hat Linux 4.0. Bcopy achieves a
copying rate of 25 megabytes per second on this machine,
while simply reading memory can be done at 61 megabytes
per second, and writing it can be done at 37 megabytes
per second. The latency for loading from the first level
cache is 6 nanoseconds and from the second level cache is
100 nanoseconds, while for main memory it is 500 nanosec-
onds, only a factor of 5 difference from the second level
cache. Thus, compared to the SGI, main memory is signif-
icantly closer to the processor. We will see that this makes
memory hierarchy effects much less pronounced on the HP.
To perform timing measurements, we used the Pentium cy-
cle counter that has an overhead of about 2 microseconds
per access.

4.2 Snapshot Generation

The Java heaps were generated by compiling the Java com-
piler and running a number of Java applets. These snapshots
were generated on a Sparc, which was necessary because we
do not have access to the source for a Java implementation
that runs on our benchmarking machines. Because of space
limitations, we only present the Java compiler heaps here.
In general, the other Java heaps were small enough that
they were collected so fast that it was difficult to gather sta-
tistically meaningful data about them, although the results
suggest that the compiler heaps were representative.
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Figure 1: Distribution of Objects (Java)

For SML/NJ, we generated heaps both by compiling the
compiler, and from a sort benchmark. We collected heaps
from both “minor” first generation collections and “major”
higher generation collections. The major collection heaps
include both typed-segregated objects and separate big ob-
jects. Our results in Subsection 5.8 make it clear that the
big objects should be handled separately, so in general, we
excluded them from the heaps used for our tests. SML’s al-
location arena, which is collected by minor collections, does
not contain big objects and does not segregate objects by
types, so the minor heaps do not have these features. Again,
in the interest of space, we do not present the sort bench-
mark heaps, although the results of studying those heaps
are quite similar to the compiler heaps.

4.3 Heap Object Distributions

Here we present some information about the distribution of
object sizes and types in the heaps we studied. This is im-
portant, because these distributions determine the relative
importance of costs that are per-object and costs that are
size-dependent and between the cost of copying and scan-
ning. Here we also introduce a convention we use through-
out the rest of the paper, in which we label our plots with
“Java” for the Java compiler heaps, with “Major” for the
SML compiler major collection heaps, and with “Minor” for
the SML compiler minor collection heaps.

Figure 1 shows the distribution of live objects in the
Java compiler heaps. The X-axis is the object size in words,
while the Y-axis is the percent of objects having that size.
The objects labeled “string” do not contain pointers, while
those labeled “record” do. The classification into string and
record is not one made by the Java runtime, but rather one
we imposed when we snapshot the heaps by labeling non-
pointer containing objects as strings. Note that we have not
shown some very large, but infrequent object sizes.

Notice that only odd-sized objects occur. This is because
the Java implementation requires that all objects begin on
a two word boundary, and all objects include a one word
header, which is not included in these lengths. The most
typical object size is five words. Also note that almost all
objects contain pointers, which means they must be scanned
as well as copied.

Figure 2 shows the distribution of live objects in the
SML compiler major heaps, in the same format as Figure 1.
Because SML has a somewhat more complicated set of GC
types, the legend uses “string” to refer to objects that do
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Figure 2: Distribution of Objects (Major)

not contain pointers, “array” to refer to objects that are mu-
table and can contain pointers, “record” to refer to objects
that are immutable and can contain pointers, and “pair” to
refer to pointer containing objects that are immutable and
of exactly length two. The distribution for SML compiler
minor heaps is similar, and is not presented here.

Note that pairs are by far the most common object type,
making up about 50% of the heaps. Also notice that strings
and mutable objects are rare. The shorter object length will
mean that for the SML heaps, per-object costs will be more
important than for Java heaps.

4.4 Other Details

In all cases, when virtual memory is allocated for the heaps,
it is touched, forcing physical pages to be assigned to it and
avoiding those overheads during replay. Because our bench-
marking machines have ample physical memory, no paging
occurs during collection. Prior to running each collection we
flush the first and second level caches; details of why we use
this policy are given in Subsection 5.2.1.

On the SGI machine, we used the vendor supplied C
(Version 6.2) compiler to compile Oscar, while of the HP, we
used gee (Version 2.7.2). We experimented with optimiza-
tion levels and compiler flags and used those that resulted in
the highest performance with our basic collector. There is
some evidence that the SGI C compiler was somewhat more
aggressive in its optimizations.

All measurements are based on elapsed time. Within
the limits of the coarse-grained clocks used to measure CPU
time, we found CPU time to be well correlated with elapsed
time as we would expect since the system does no I/O dur-
ing GC. All of the measurements presented here are the
median values of at least thirteen, and often twenty-one,
runs. Examining the quartiles of the runs showed that the
measurements show only a small variance.

To help interpret our measured results, we also used the
SGI’s tool, Pixie. Pixie reads a program, determines its
basic blocks, then instruments the program to count how
often each block is entered. After the program is run, Pixie
then converts Instruction counts to machine cycles, typically
with a CPI of around 1.58.
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5 Experiments

We performed three different kinds of experiments. First
were tests designed to quantify the effect of locality on our
basic collector and our benchmarks. Second were experi-
ments that studied variations of the implementation of our

basic collector, such as how unrolling the copying loop changed

the speed of the collector. Finally, we were interested in how
the mechanisms needed by the advanced features would af-
fect performance.

Unfortunately, space does not permit us to show all of
our results. Instead we have selected representative results
when all of the results lead to the same conclusion, and
multiple results when they allow us to show some interest-
ing language or architectural difference. All of the results,
as well as sample code sequences, and other details can be
found in Hicks, et al. [5]. See Section 8 for how to obtain [5],
as well as our data, heap snapshots, and Oscar itself.

5.1 Our Basic Collector

Before we describe the experiments we did, we must first fill
in the details about how the basic collector itself and its data
representation work. In Section 2.1 we described the basic
mechanisms needed by a copying collector. In our basic col-
lector, we enable these mechanisms in a simple and common
way. Each object has a header word that records its length
and type. The type is used to determine certain object char-
acteristics, such as whether the object may contain pointers,
whether the object is mutable, or the units of its length (e.g.,
words, bytes, etc.). In pointer-containing objects, the words
that are pointers are tagged (using a low-bit tag) so that
they can be identified. From-space is a single contiguous
region of memory, and so a trivial range check can establish
whether a pointer points into from-space. Pointers are only
allowed to point to the word immediately after the header,
so finding the length of an object given a pointer to it is sim-
ple. This is in contrast to some collectors that allow interior
pointers, thus requiring a more complicated header finding
scheme; SML/NJ 1.09 currently allows interior pointers, for
example. When an object is copied, the header is changed
so that it identifies the object as forwarded, and the for-
warding pointer is stored in the first word after the header.
The to-space is also contiguous, and is sized so that copy
will never write beyond its bounds. In our basic collector,
the copy loop is unrolled four times, a number which we had
found to be optimal on earlier experiments on the SGI.

5.2 Locality Effects

We wanted to first quantify the effect of locality on our ba-
sic collector and benchmarks. This information is useful for
differentiating cache from instruction count effects when in-
terpreting the results of later experiments.

To this end, we performed two experiments. The first
measured the performance of the collector with initially hot
or cold caches. The second experiment involved systemat-
ically varying the space between live objects in the heap,
primarily to learn how the caches’ line structures would af-
fect collector performance.

5.2.1 Hot versus Cold Caches

When we replay a collection, it is not possible for us to recre-
ate the cache contents present when the heap was captured.
This is both because we are not able to observe this informa-
tion at the time of the snapshot, and because we may well
be using a completely different cache during replay. How-
ever, we do know that in the best case the cache will be hot
and will contain only heap data, and in the worst case, it
will be cold and will contain no heap data. Thus we can
gain an understanding of the range of possible performance
by studying these two extremes.

Before looking at the results, it is important to consider
how locality will affect the measured performance. For a
fixed set of roots and GC traversal algorithm, the pattern
in which data will be referenced is fixed, and therefore the
pattern in which it is entered into the cache during GC is
fixed. In a cold cache, the initial reference to each object
will incur a miss for each word that is copied. For the hot
cache, all initial references will be in the cache. In either
case, whether or not a subsequent reference will be in the
cache is determined by the fixed reference pattern. There-
fore, the only difference between the hot and cold case is the
locality of the initial references, and then only if the initial
reference is not to a location in the cache already touched by
the collection. This implies that when comparing collectors
whose mechanisms differ slightly (such as in the implemen-
tation of the copy loop) but whose traversal algorithm is the
same, the effect of initial cache locality will affect both col-
lectors in the same way. For this reason, all the experiments
in the remainder of the paper were run with a cold cache.

To measure performance with a cold cache, we simply
flush the caches before replaying each collection. To create
a hot cache, we first flush the cache, and then touch all the
heap data in a linear fashion. Figure 3 shows the effect of
our experiments on the elapsed time of the SML compiler’s
minor collections, for both the SGI and HP platforms. The
X-axis is the livesize of the heap in kilobytes, while the Y-
axis is the elapsed time in seconds.

As expected for heaps that fit entirely inside the second-
level cache, we found a noticeable difference in the elapsed
times. The minor heaps are 1 MB in total size (including
garbage), so they fall into this category for both machines.
The effect of flushing the cache on the HP is less pronounced
than on the SGI: about 3% as compared to 20%. This is
because the HP’s memory access time relative to that of its
second-level cache is far less than that of the SGI. In fact,
this trend is present in the results throughout the rest of the
paper: improvements tend to be less pronounced on the HP
than on the SGI. Figure 3 also clearly demonstrates that the
GC time increases linearly with livesize, as discussed earlier.
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Figure 4: Cache Effects (Major)

Figure 4 shows the effect of cache flushing on the SML
compiler’s major collections, again for both platforms. Here,
we show the performance (on the Y-axis) in terms of the
copying rate (megabytes copied divided by elapsed time);
larger numbers indicate better performance. This presen-
tation effectively factors out the linear increase in elapsed
time due to the livesize, and we will use it throughout the
rest of the paper. Also note that the X-axis is the size of
from-space, not the livesize, and that the Y-axis does not
begin at zero.

For heaps that did not fit in the second-level cache, the
effect of flushing declined as heap size increased until no
measurable effect was observed. For these heaps, only the
data touched most recently was in the cache at the time of
GC. The larger the heap, the less likely the data initially
referenced by the collector would be in the cache. Recall for
the SGI machine that the second-level cache size is 4 MB,
while for the HP it is 1 MB. For smaller heaps on the SGI,
hot caches show a slight advantage, but as the heap size
increases beyond 4 MB, the flushing effect disappears. For
the HP, all of the heaps shown are larger than 1 MB and
so exhibit the minimal effect of flushing. There are two ma-
jor heaps where the hot case shows a significant advantage;
both of these heaps have significantly smaller livesizes than
the rest (41K and 71K), thus significantly reducing conflict
misses.

We also used Pixie to generate instruction counts and
compared them to the measured results. As expected, Pixie
indicates fairly constant GC speeds, the differences being
largely attributed to cache effects. It is also notable that
Pixie presents GC speeds of up to 70% greater than those
measured. This shows that the cache can have a great effect
on the absolute performance of a collector.

5.2.2 Heap Respacing

The previous experiment indicates that while initial cache
contents play a relatively minor role in GC Speed, the differ-
ence between perfect and measured locality can be signifi-
cant. Locality can be improved in several ways. One obvious
way would be to increase the size of the caches. Another,
more subtle way would be to increase the amount of data
prefetched into the cache as a result of filling a cache line.
In GC, cache line effects are largely felt in from-space.
When an object is being copied into to-space, its from-space
data will be brought into the caches. If the object doesn’t
completely fill the cache lines, some additional data will be
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Figure 5: Heap Respacing (SGI) (Java)

prefetched into the cache. If this data is part of another
object to be reached by copy soon, it will already be at least
partially in the cache when it is reached, thereby improving
the time to process the object. We can expect that this
effect will be greater in heaps that are mostly live, because
they will have more livedata per cache line.

To determine the magnitude of the possible improve-
ment, we respaced the heaps to align live objects on an
n-word boundary, and then ran tests for various n. The
results for the Java heaps on the SGI machine are shown in
Figure 5 and for the HP machine in Figure 6. The Y-axis is
GC speed in megabytes per second, while the X-axis is the
livesize in megabytes. The numbers in the legend indicate
the various values of n, while “basic” is the result for the
true spacing of the data.

Again, the overall effect on the HP is less than on the
SGI; the difference from 0 to 128 word alignment is only a
decrease of 15% as compared to 47% for the SGI. For both
machines, the performance when using the original spac-
ing falls almost exactly between the best and worst cases,
amounting to a drop from n=0 of 26% on the SGI and 7%
on the HP. Since the instruction counts for all of these runs
are the same, the measured difference is entirely the result
of locality.

The cache line effects can be more clearly seen for the
SGI machine, as indicated by the bands present at n val-
ues of 16 and 32 corresponding to the cache line sizes of 32
and 64 bytes, respectively. We believe that the severe drop
from n=8 to n=16 is a result of eliminating first level cache

11.0
1 z z0
# 105 z o2
g z o4
S . z [
< ] 8 VA @) © 8
B 100+ % 216
2 1 o 8 B +32
] T % o ‘gb o X 64
] X
3 %7 3¢ * % 0128
] °© X % basic
1 [e)
9.0 , -
1.0 15
Livesize (MB)

Figure 6: Heap Respacing (HP) (Java)



[EnY
N

o o o ° ¢ unrolled
o 13 o o simple
=3 12 °© ° o o memcpy
& 11
3 10 °
0 o 0 o
9 T T T T T T T T T T 1
1.0 15 2.0
Livesize (MB)

Figure 7: Copy Loop Implementation (SGI) (Java)

prefetching, and the second drop is due to the elimination
of second level cache prefetching. However, we must also
consider that since the respacing procedure also inflates the
heapsize, there is a greater chance for conflict misses as de-
pendent on the size of the cache. Since the HP has only a
1 MB second level cache, this effect likely dominates in the
quick drop from n=0 to n=2 followed by much lower reduc-
tions from then on. This clouds the trends due to linesize
for the HP, although we can see a slight drop from n=8 to
n=16.

5.3 Variations of the Basic Collector

We found that seemingly minor implementation and compi-
lation details can significantly affect the collector’s perfor-
mance. We first measured the effect to GC performance of
varying the level of compiler optimization. We then mea-
sured the performance of GC using various copy loop imple-
mentations and object header formats.

Not surprisingly, complier optimizations had a major ef-
fect on the speed of the collector. Our tests show that dif-
ferences of as much as 40% in the basic copying rate are
common. To achieve good performance, it was also impor-
tant to inline key GC functions and to make sure that critical
values were kept in registers. In general, using globals for
important values like the copy pointer defeats the register
allocator, and so we found it to be important to pass them
into functions as arguments. All of the results presented in
this paper are with the maximum possible optimization.

5.3.1

At the heart of copy is the copy loop that actually does the
job of moving the bytes from from-space to to-space. We
compared three implementations of the copy loop: the basic
collector’s unrolled loop, a simple wordwise loop, and the
system’s memcpy procedure.

The results of these options run with the Java heaps on
the SGI machine are shown in Figure 7. The X-axis is the
the livesize in megabytes, while the Y-axis is the GC copying
speed in megabytes per second. Note the non-zero origins.

The unrolled loop performs the best, about 6% better
than the simple loop, and 35% better than memcpy. This
can be correlated with the fact that over 70% of the ob-
jects in the Java heaps are length 5 or more, thus allowing
the unrolling setup time to be absorbed. Even so, it seems
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Figure 8: Copy Loop Implementation (HP) (Java)

odd that memcpy would not also have such unrolling opti-
mizations. We believe the hand-coded loops are better than
the system memcpy because memcpy supports a more general
byte-wise copy and requires a procedure call.

The results of the same experiment on the HP are shown
in Figure 8, with similar axes. Here, the results are exactly
reversed, with memcpy improving on the simple and unrolled
loops by about 9% and 10%, respectively (notice that the
Y-axis scale is different). While the superiority of memcpy
is not surprising, it is curious that the simple loop would
outperform the unrolled one. We disassembled both and
found that in both cases, performance was limited by the
small supply of general-purpose registers: references to the
stack were made during the loop, with the unrolled loop
having more occurrences, since it requires more registers to
do the unrolling. Examining the header files shows that
memcpy is translating directly into the Pentium’s string move
instruction, which probably avoids these unneeded memory
accesses since it can access implementation resources not
visible at the architectural level.

The lesson of this experiment is clear. The implementa-
tion of the copy loop has a significant effect that is architecture-
and operating system- dependent. Fortunately, this aspect
of collector performance is easy to tune, and so language
implementors should give it careful consideration to achieve
the best performance.

5.3.2 Object Header Representation

As described in Subsection 5.1, the purpose of the object
header is twofold: it denotes object type and length. Scan
uses the type to determine if an object contains pointers, and
both scan and copy use the length to determine how much to
scan or copy, respectively. Optimizing header representation
to facilitate quick access to length and type characteristics
would reduce per-object costs of GC. We therefore looked
at a number of ways headers might be implemented.

Our basic collector reserves 4 bits for type and 26 bits
for length (the remaining two bits are lost to low bit tags).
The type-fields are the same as those of SML/NJ 1.09. To
determine if an object contains pointers, the type field is
extracted (by shift and mask operations), and used to index
an array of booleans. In our basic collector, lengths are
always in words; in contrast, in SML/NJ 1.09, lengths may
be in double words, words, or bytes, the units are determined
by the type within a long switch statement.
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Figure 9: Effect of Object Header Design (SGI) (Java)

In addition to using SML’s type fields, we designed our
own set so that determining if an object may contain point-
ers can be done by shift and mask alone. Our tags also
facilitate using a shift/mask to determine the units of the
length field. We experimented with each combination of
tag and length representation to determine the effect on the
collector.

The results of measuring these arrangements on the Java
heaps on the SGI is shown in Figure 9. The Y-axis is GC
speed in megabytes per second, and the X-axis is livesize in
megabytes. Both axes have non-zero origins. The results
measured on the HP were similar, and so are not presented
here.

The slowest of all arrangements is the SML/NJ 1.09 im-
plementation. The effect of implementing these tests via
shift/mask can be seen by the results of using our tags
with multiple lengths. Making lengths in words removes the
length-units test, and this has a significant effect, for both
ours and SML’s type-fields. Less significant is the cost of
indexing an array to determine if the object contains point-
ers as shown by comparing SML tags to our own when using

lengths in words. Overall, the best case (tags=ours,len=words)

improves on the worst case (tags=SML,len=SML) by about
5%. We expected that all of these improvements are a result
of reduced instruction counts, especially in the case of the
eliminated switch statement for the length determination.
This was confirmed by examining the results from Pixie,
which closely resemble Figure 9.

Again, the lesson is simple. Careful attention to the de-
sign of tags and length representations can have a positive
effect on GC performance. The overhead of even a few extra
instructions or branch penalties can be significant. Fortu-
nately for the implementor, these effects are not cache de-
pendent, and so simply choosing representations that mini-
mize instruction counts is sufficient.

5.3.3 Object Length Representation

The previous section indicated that GC performance im-
provements result from requiring that all object lengths be
in words. However, this requirement may be unacceptable
when the language implementation also uses the length fields
for its own operations. A more reasonable canonical form
would be to specify lengths in bytes, which could then ac-
curately represent the lengths of byte-arrays and strings in
the language. This would require two additional machine in-
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Figure 10: Byte versus Word Length (SGI) (Major)

structions to obtain the length in words to be used by copy
and scan.

We measured the effect of using lengths in bytes and
compared it to our basic collector. The results for the SML
compiler major heaps on the SGI are shown in Figure 10,
while the effect on instruction counts (from Pixie) is shown
in Figure 11. Both graphs have a Y-axis of GC speed in
megabytes per second and a X-axis of livesize in megabytes.
Both have non-zero origins and the Y-origin is not the same
for each graph.

Since object length is determined twice for each live ob-
ject, once by copy and once by scan, we would expect that
difference between bytes and words would be 4x the num-
ber of live objects. This is confirmed by the Pixie instruc-
tion counts, which differ by exactly this amount, resulting
in about a 3% decline in speed. For the measured cases, the
decline is about 2.5%. This clearly indicates that a canoni-
cal length format is a win, and while using bytes rather than
words is less attractive to the GC, it is still more attractive
than the heterogeneous case.

5.3.4 Summary of Basic Variation Results

Each of the results presented thus far analyzes a particu-
lar mechanism and the effect of its implementation on per-
formance. To summarize the effects in aggregate, we have
constructed bar graphs that show the relative improvement
gained by the best of each of the implementations we stud-
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Figure 11: (Pixie) Byte versus Word Length (SGI) (Major)
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ied. Starting with the worst performing arrangement, we
replaced the worst with the best implementations one at a
time, and then graphed the improvements as percent greater
than the starting case. The SGI graph is depicted in Fig-
ure 12. For the SGI machine, the worst case used memcpy
for its copy loop, allowed interior pointers, used SML length
formats, and used SML tags, while the best case used the
unrolled loop (denoted as unrolled in the legend), disallowed
interior pointers (noip), required all object lengths in words
(len words) and used our tag formats (our tags). For the
HP machine, the worst case was identical to that of the SGI
machine except that it used the unrolled copy loop; the best
case was also identical except for the use of memcpy in the
copy loop. The HP results are in Figure 13. The graphs
depict minimum, average, and maximum observed improve-
ment for both the Major and Java benchmarks. The order
that the mechanism implementations were replaced to the
worst case is arbitrary, and since effects are additive a differ-
ent order might yield different tier sizes, even though total
improvement would be the same.

For both machines, we see that the impact of the copy
loop (the lowest tier of the bars) is far greater for the Java
benchmark than for the Major benchmark. This is likely
due to the larger average object size in the Java heaps, thus
improving the performance of the cache as well as the cost
of loop unrolling. The remaining effects are all instruction
count related. The required disuse of interior pointers (sec-
ond tier) can be a significant win, as shown by the MA-
JOR/max case of Figure 12 which happens to contain many
interior pointers. The Java heaps have no interior point-
ers, so the measured difference is only in the support for
potentially having them. In general, the instruction count-
based improvements have greater relative effect on the HP
machine because of its fairly unwavering cache effects.

Overall, these graphs paint a clear picture: careful im-
plementation can net significant gains. The GC Speed of
the SGI heaps improves by up to 95%, while the HP heaps
see up to 23% improvement.

5.4 The Costs and Benefits of Advanced
Features

The advanced features discussed in Subsection 2.2 can both
introduce new costs into GC and yield performance benefits.
Here we explore the costs and benefits of many of the mech-
anisms needed to implement generational collection, typed
areas, and big-object spaces.
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Figure 13: Overall Improvement on the HP

5.5 Multiple From-Spaces

From-space will, in general, be composed of several distinct
regions of memory in collectors that implement multiple gen-
erations, that segregate objects by type, or that support
non-contiguous spaces. One impact of this is that a simple
range check of a pointer against two register-resident val-
ues is no longer sufficient for scan to determine if a pointer
points into from-space.

‘We explore two possible implementations of multiple from-
spaces here. The first is to use a table containing boolean
values indicating whether an address is in from-space using
some part of the address as an index. If the index is just
the upper n bits of the address for some n, then determin-
ing whether a pointer is in from-space requires only a shift
and an array lookup. The second implementation is to keep
the bounds of the from-spaces in a pair of arrays and search
these arrays doing a series of bounds checks. We consider
both linear and binary searches.

To study the costs of multiple from-spaces in Oscar, we
evenly divided a single-area from-space into n smaller areas,
and then used one of the above schemes to perform the from-
space determination. The results of running this experiment
on the minor SML compiler heaps on the SGI are shown in
Figure 14. The Y-axis is GC speed in megabytes per second
and has a non-zero origin, while the X-axis is the number
of from-spaces. The “basic” point represents the single-area
range check used by the basic collector.

Use of the table lookup results in a small overhead com-
pared to the basic case. More importantly, it shows es-
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Figure 15: Multiple To-Spaces (SGI) (Major)

sentially constant performance as the number of spaces in-
creases. This suggests that accesses to the table have good
locality and thus are inexpensive. The disadvantage is that
the table itself may be large, depending upon the granu-
larity of the address ranges used as indices. Still, this re-
sult strongly suggests that GC designers need not shy away
from using multiple from-spaces, even if the number of divi-
sions is large. The array schemes, on the other hand, store
only the from-space bounds as meta-data, and so are very
space-efficient. However, both array schemes perform poorly
compared to the table scheme, with the simplicity of a lin-
ear search winning over binary search for small numbers of
from-spaces. This indicates that a GC designer using an ar-
ray scheme should keep an expected number of from-spaces
in mind when choosing an implementation.

5.6 Multiple To-Spaces

Generational-collection, typed arenas, big object spaces, and
general support for non-contiguous spaces all may require
that to-space actually be many separate spaces. This means
that when an object is copied, the collector must decide into
which space to copy it, as well as maintain separate scan
and copy pointers for each to-space area. A straightforward
scheme involves keeping the multiple scan and copy pointers
in arrays. Alternatively, we might define local variables for
each scan and copy pointer in an attempt to keep them in
registers during GC, just as the single scan and copy pointers
are kept in registers for our basic collector. Of course, as the
number of local variables approaches the number of general
purpose registers on the machine, we would expect them to
be spilled into the stack.

‘We explore both of these implementations in Oscar, us-
ing a technique similar to our multiple from-space study in
Subsection 5.5. We divide to-space into several regions, and
then systematically copy each successive object to a differ-
ent region. This method cannot model the cost of deciding
which copy pointer to use (this is fundamentally a policy de-
cision), but we believe it realistically models the other costs
of maintaining multiple pointers.

Figure 15 shows the results averaged over the SML Major
heaps on the SGI. The Y-axis, which has a non-zero origin,
is GC speed in megabytes per second, while the X-axis is
the number of to-spaces modeled. To make the data easier
to read, we have omitted markers for the individual points,
but the tick marks on the X-axis indicates which sizes we
actually measured.
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Figure 16: Multiple To-Spaces (HP) (Major)

The uppermost two curves show the speeds for the ar-
ray and local variable implementations, calculated based on
instruction counts from Pixie. Notice that the array im-
plementation is almost constant across different numbers of
from-spaces, which is as one would expect. The local vari-
able graph drops with additional sets of local variables until
most of the variables have been spilled into the stack, at
which point the curve also levels off. Disassembling the code
showed that the substantial drops at the beginning are also
due to more efficient compilations of the switch statement
that avoid the use of a jump table.

The lower two curves in Figure 15 represent the average
speeds calculated from elapsed time measurements. The
curve for the local variables is shaped roughly like the Pixie
version of the curve, although it never levels off completely.
However, the array implementation shows some very un-
usual memory hierarchy effects, which we are not funda-
mentally able to explain. The general trend is mostly flat
(except for the aberrations at 3, 4, 13, and 14 spaces), but
much slower relative to the local variable implementation
when compared to the Pixie numbers. One possible expla-
nation is that our arrays of copy and scan pointers may
have an unfortunate alignment with respect to our direct-
mapped cache. The ability to do memory hierarchy simu-
lations would be extraordinarily valuable here in aiding our
understanding of these unusual results.

Figure 16 shows the elapsed time-based results for the
HP platform, in the same format as Figure 15. This graph
is much more similar to the Pixie curves in Figure 15, which
is another demonstration that cache effects have less of an
impact on the HP. This result allows us to tentatively accept
the array implementation as the better of the two.

In comparison to our basic collector, the average speed
for it (Pixie version) on the SGI is 17.3 MB/s, and for
elapsed time, 11.0 MB/s. Both the array and local variable
implementations are so much slower because of to-space se-
lection policy we chose. After copying each object, we add
1 to the current “copy index” and then perform a modulo
operation, which was implemented using a costly div in-
struction in order to make the code generated not dependent
upon the number of to-spaces. It is perfectly reasonable to
expect that an actual multiple to-space policy could be less
expensive; in fact, the policy used for our next experiment
with type segregation in the next section requires minimal
additional overhead because each to-space has an associated
from-space, and the process of testing a pointer to see if it
points into from-space also returns a to-space index.
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Figure 17: Type Segregation Schemes (HP) (Major)

5.7 Segregation by Type

By segregating objects by type, some collectors are able
to take advantage of their type-related properties to im-
prove GC performance. For example, keeping non-pointer-
containing objects in their own area allows the collector to
avoid scanning that area. If we segregate objects of fixed
size and type, we can avoid storing headers for them (as
their lengths and types are implied by their locations in
memory), and thus avoid copying the headers during GC.
Of course, creating multiple type-based regions incurs the
costs of multiple to- and from-spaces, as already studied in
Subsections 5.5 and 5.6. Here we explore some of the other
issues that are specific to segregation by type.

We address the issues of multiple to- and from-spaces in
this experiment by using table lookups for the from-space
determination and by keeping our multiple scan and copy
pointers in arrays—the optimal choices as suggested by our
previous experiments. The table used to determine whether
a pointer points into from space contains an arena index,
which can be used directly to look up the to-space. We
examine the effects of several segregation schemes in the
context of GC types:

(a) doing no segregation (denoted as “single” in the leg-
end),

(b) separating the non-pointer-containing objects from the
rest (“pnp”),

(c) storing (fixed length) pairs without headers separately
from the other objects (“prnpr”),

(d) combining schemes (b) and (¢) (“ppnp”), and

(e) extending scheme (d) by adding a third area for mu-
table pinter containing types (“a la 109”)*

Note that only the major collection heaps from SML/NJ
have sufficient information for this experiment, although we
did process the Java heaps so that we could do a simpler
version of this experiment, and got similar results..

The results for the SML major collections on the HP
compared to the basic collector are shown in Figure 17. The
Y-axis is GC speed in megabytes per second, while the X-
axis is the livesize in megabytes.

The SML/NJ-1.09 [13] runtime uses this mutable area to aid in
remembered set calculation in support of multiple generations.

There are several trends that are important. Notice first
that the basic collector outperforms the single arena case
by about 14% again illustrating the overhead of multiple-
space support. Segregating non-pointer-containing objects
provides a benefit, as this not only allows the collector to
avoid scanning them but also allows it to scan every pointer-
containing object for pointers without further regard to type.
On average, this provides around a 15% gain in speed over
the basic case. Keeping the pairs separate nets about 27%
improvement; the savings derived from not copying and
scanning the header are significant since the header repre-
sents 33% of the overall size of a pair, and this advantage is
greatly multiplied due to the high frequency of pairs in SML
heaps. We can see that the two schemes combine quite well
with just over 42% overall improvement. Finally, adding an
additional pointer-containing area (like the mutable region
in the “a la 109” scheme) does not adversely affect perfor-
mance, which suggests that if it derives other benefits, it can
be done without penalty.

In general, we can see that the benefits of all of these
segregation schemes far outweigh the costs of the additional
mechanisms needed to support them.

5.8 Big Objects

It is wasteful to copy very large objects that survive repeated
collections. For this reason, some collectors keep large ob-
jects in a separate area that is managed by mark-and-sweep
collection. For example, SML/NJ 1.09 keeps its code ob-
jects in such special regions. Although a complete study of
big object spaces is beyond the scope of the current work,
since SML/NJ 1.09 supports this feature, we were curious
to at least see if a more extensive study was warranted.

To implement a big object space, our collector maintains
a linked list of “handles” that point to big objects; during
scan, big objects are themselves marked as they are reached.
After all data has been scanned and copied, the collector
sweeps through the linked list of handles, adding the ones
that point to garbage (unmarked) objects to the free list.

To study the costs and benefits involved, we compared
the mark-and-sweep technique for big objects to the basic
“copy everything” technique. We used heaps that contained
big objects, as well as the same heaps with the big objects
removed. These tests include only the objects classified by
SML/NJ as big objects in the big object space (strings that
contain code). A more general study would need to con-
sider a range of other possibilities, for instance, classifying
all non-pointer-containing objects above a certain size as big
objects.

The results for the SML major compiler heaps on the
SGI are shown in Figure 18. The Y-axis is GC speed in
megabytes per seconds, and the X-axis is livesize in megabytes.

The following trend is clear: copying big objects is ex-
pensive. When compared to the basic collector on heaps
with the big objects removed, the mark-and sweep tech-
nique adds a non-trivial overhead. However, of course, the
former is not really an option; big objects exist and must
be collected. Given this, an important result is that once
the mark-and-sweep space is in place, actually collecting
big objects imposes only a minimal impact on speed, and
furthermore shows a significant advantage over copying the
big objects. One final trend is worth explaining; it appears
that the advantage of these techniques diminishes as the
livesize increases. The reason for this is simple: all of these
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heaps contain roughly the same amount of big object data,
thus as the livesize increases the number of small objects
increase and the effect of the small objects becomes more
pronounced.

In summary, it appears that for languages that generate
big objects, special support for them can be a significant
advantage. Further study will be need to gain a clear idea
of exactly what the design space of desirable options is.

6 Related Work

There have been many sophisticated copying garbage col-
lectors designed and implemented. Our understanding of
what mechanisms are needed to implement such collectors
draws especially on the language independent GC toolkit
of Hudson et al. [8] and on Reppy’s SML/NJ collector [13].
Wilson’s survey [17] provides pointers to many individual
papers concerning copying GC implementation.

Our study ignores GC related costs that occur while the
user’s code is executing. The study by Tarditi and Di-
wan [14] examines these costs in some detail. Our study
also ignores the costs associated with maintaining and using
remembered sets. There have been a number of papers con-
cerning this issue, but the work by Hosking [7, 6] is perhaps
the most complete. In general, these studies complement
our current work.

There have been a number of studies relating cache per-
formance and GC [12, 19, 4], but they are concerned with
a different set of issues than we are. Zorn has compared
the cost of copying and mark-and-sweep collection [20] and
the cost of conservative collection to malloc-and-free alloca-
tion [21], but again he does not provide the same multiple
language and platform context that our current study does,
and he also focuses on different issues. Zorn [3] has used a
trace-oriented approach to study collection in the context of
database collection. We are unaware of any other general
studies of the issues considered here.

7 Future Work

An important avenue for future work is improving Oscar it-
self. We consider it particularly important to extend Oscar
to enable more detailed memory hierarchy studies by us-
ing address tracing. With such facilities, we should be able
to better understand which effects are issues of instruction

counts and pipeline structure and which are due to caching.
Such traces will also allow us to study the effects of other
cache architectures, in particular ones that we might antic-
ipate becoming common in the future.

We are also interested in extending Oscar to study other
GC techniques. One obvious study suggested by the current
work is a more extensive examination of big-object space
related issues, such as the minimum size of big objects,
whether or not they can contain pointers, and how they
are allocated. Another issue is how non-Cheney scanning
techniques [11, 18] might affect performance. Since the goal
of these techniques is usually to improve the performance
of the client, we expect such a study would also have to
include programming language dependent/client side mea-
surements. Finally, in the long term we hope to be able to
use Oscar to directly compare copying and mark-and-sweep
collection.

Finally, it is also important that we extend the range of
language implementations we can study. To this end, we
have begun to instrument a Smalltalk implementation, and
we expect to finish this implementation soon. We suspect
that the distribution of object types and sizes in Smalltalk
is considerably different from our current heaps and we are
eager to discover how this affects our current results.

8 Conclusions

We found Oscar to be extremely valuable in studying GC
performance for a number of reasons. Since capturing a
heap is much simpler than making systematic changes to an
entire language implementation, it is easy to determine the
performance of GC techniques for many different languages.
In addition, the portable, canonical format of the snapshots
allows us to study the heaps on machine types other than
the one on which they were generated. The replay program
also makes it easier to repeat and control experiments, and
it avoids having to rerun client code just to generate heaps
with which to study collection. The language independent
nature of Oscar does restrict our studies to issues that are
not directly coupled to the programming language imple-
mentation, but this restriction also aids us in separating the
issues into component parts, crucial when trying to under-
stand a complex system.

Using Oscar, we have have been able to quantitatively es-
tablish a number of issues about copying GC performance.
In particular, it is quite clear from our study that GC per-
formance can be significantly improved if careful attention
is paid to implementation details; we measured gains of up
to 95%. In some cases, the same implementations exhibited
similar trends on both architectures (such as in the choice
of type representation), but for others, the outcome was
architecture- and language- dependent (as in the copy loop
implementation). Particularly interesting are some of the
results about the costs and preferred techniques for imple-
menting certain advanced techniques. These results iden-
tify implementations that can be used without major per-
formance penalty. We found that some of the advanced tech-
niques can result in significantly faster collectors, with gains
of as much as 42% over a well-implemented basic collector,
despite their increased complexity.

We have made Hicks, et al. [5], our data, the heap snap-
shots used here, as well as the source for Oscar available via
anonymous ftp at: ftp://ftp.cis.upenn.edu/pub/oscar.
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