
BIGTYPES in LIL

Bruce J. McAdam

bjm@dcs.ed.ac.uk

The University of Edinburgh

Supervisor: Stephen Gilmore stg@dcs.ed.ac. uk

Motivation

Despite the assistance which a typed functional program-
ming language gives programmers, programming is still a
process fraught with problems. In fact, sometimes problems
are caused by programmed relying too heavily on correct
typing as an indication of a program correctness[3].

BIGTYPES are a system devised to provide extra type
information to programmers in languages using Hindley-
Milner type inference (e.g. Standard ML[4]). By making
extra information available, the programmer will discover
more errors without the need to break apart a stmctured
program in order to investigate local definitions.

The extra information in a BIGTYPE explains every use

of a name in a program (e.g. declarations of new functions

and uses of library functions). This helps the programmer
by: letting them know if a library function had a different
type from that expected; giving the type of imperative oper-
ations; reminding a programmer of the types in a program.

An Example

The BIGTYPE has two parts, a DEEPTYPE describing free
names (e.g. those referring to librzg-ies or built into the lan-
guage) and a WIDETYPE describing new names (e.g. func-
tions defined by the programmer). This example below
shows a simple but incorrect program which could be de-
bugged with the aid of BIGTYPES.

fun len (Cons (h, t)) = 1 + len(t)
I len (Smpty) = O

The BIGTYPE tells the programmer that Empty is a pat-
tern (variable) with type List. This is not what was expec-
ted, it should be a constructor with type List.

In this case, the programmer has not realised that lists
are ‘fat-lists’ implemented with three constructors: Cons,
App and Nil. Empty is treated as matching lists with struc-
ture App(a, b) or Nil. This consequently gives incorrect
answers for lists formed with the append constructor.

The BIGTYPE for this example is sufficient to show the

programmer the error by telling him how the names have

been interpreted.

Permission to make digital/hard copy of part or all this work for

personsl or claasroom uae is granted without fee provided that
copies are not made or distributed for profit or commercial advan-

tage, the copyright notica, the title of the publication and its date

appear. and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to

redistribute 10 lists, requires prior specific permission and/or a fee

ICFP ’97 Amsterdam, ND

@ 1997 ACM 0-89791 -918 -1/97 /0006,.. $3.50

Implementation — W

The BIGTYPES are derived using an extension of the stand-
ard algorithm for Hindley-Milner type-inference[2], W. We
call this extended algorithm W’.

W has clauses for each of the type-derivation rules, W’
retains these but also inserts into the BIGTYPE information
which algorithm W wouJd discard. Though the implementa-
tion was for ML, the close relationship between the semantic
rules and W’ mean that BIGTYPES can be implemented for

any similarly typed language.

Algorithm W’ has been added to the ML-Kit compiler[l]
to demonstrate the use of BIGTYPES. There was no notice-

able effect on run-time.

The implementation used a simple pretty-printer for dis-
playing the results. Information could be presented bet-
ter using a more sophisticated printing routine, for example
an interactive printer which allows the programmer to pick
which parts to display (so the programmer can focus on a
particular area and not be overwhelmed by extra informa-
tion).

The Poster

The poster illuminates the concept with examples of pro-
grams and their BIGTYPES. The algorithm is also given in
detail with an explanation of its relationship to the semantic
rules to show how easily it can be added to an existing type
checker.

References

[1]

[2]

[3]

[4]

Lars Birkedal, Nick Rothwell, Mads Tofte, and David N.
Turner. The ML Kit. DIKU, March 1993.

Luis Damas and Robin Milner. Principal type-schemes
for functional programs. In Ninth Annual Symposium on
Principles of Programming Languages, 1982.

Stephen Gilmore. Designing for proof. In Mathematics
0/ Software Quality, 1995.

Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. MIT Press, 1990.

316

http://crossmark.crossref.org/dialog/?doi=10.1145%2F258949.258985&domain=pdf&date_stamp=1997-08-01

