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Abstract

Since a binding-time analysis determines how an off-line
partial evaluator will specialize a program, the accuracy
of the binding-time information directly determines the de-
gree of specialization. We have designed and implemented
a binding-time analysis for an imperative language, and in-
tegrated it into our partial evaluator for C, called Tempo
[9]. This binding-time analysis includes a number of new
features, not available in any existing partial evaluator for
an imperative language, which are critical when specializ-
ing existing programs such as operating system components
[24, 25].

●

●

●

Flow sensitivity. A ditTerent binding-time description
is computed for each program point, allowing the same
variable to be considered static at one program point
and dynamic at another.

Context sewitivity. Each function call is analyzed
with the context of the call site, generating multiple
binding-time annotated instances of the same function
definition.

Return sewitivitu. A difFerent binding-time descrip-
tion is computed for the side-effects &d the ret&
value of a function

1 Introduction

Automatic program speciahzation is emerging aa a key soft-
ware engineering concept which allows sothvare to be generic
without sacrificing performance. The motivation for our
work on Tempo [9], a partial evaluator for C, is to demon-
strate that partial evaluation can provide a realistic baais
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for automatic program specialization. Therefore, we have
chosen to deal with a widely used language, namely C, and
focus on optimizing existing, realistic applications. One of
the main areas of applications we are looking at is operating
system code. Indeed, this is an area where the conflict be-
tween generality (an operating system must, by definition,
deal with a wide variety of situations) and performance is
especially acute. It is therefore not surprising that many
opportunities for applying partial evaluation to operating
systems code have been identified [11, 12, 28].

However, we have discovered that existing partial-
evaluation technology is not sufficiently advanced to effec-
tively specialize the corresponding programs. This is due to
a lack of accuracy of binding-time analyses in dealing with
typical features of imperative programs, such as pointers,
aliases., and side-effecting functions. We have found that
flow, contezt, return, and use sensitivity are necessary in a
binding-time analysis in order to successfully specialize sys-
tems programs.

Use sensitivity is addressed in [18]. The basic idea is that,
at specialization time, the value of a variable is allowed to be
computed in certain contexts even if the variable identifier
is residualized in others. An accurate handling of pointers
and structures makes it essential that a single residualized
use of an object does not force all other uses to be residu-
ahzed. ThB led us to develop an analysis in two different
phases. The tirst phase determines which parts of the pro-
gram can be computed at specialization time, whereas the
second phase determines the actual transformations which
will be applied at specialization time.

This paper focuses on the fist phase of the analysis,
which determines which parts of the program are static,
i.e. can be computed at specialization time, and describes
how to obtain flow, context, and return sensitivity. Firstly,
flow sensitivity allows a dfierent binding time to be wo-
ciated with a variable at ditTerent program points, i.e. a
variable is allowed to be static at one point and dynamic at
another. Secondly, systems code contains calls to the same
function which occur in different system states. Context
sensitivity permits each call to be analyzed with respect to
its specific state, allowing the dfierent static values in each
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state to be exploited by each call. Finally, a system pro-
cedure typically returns some sort of constant error status.
Return sensitivity allows the binding-time analysis to take
advantage of this constant value, even if the system function
contains dynamic constructs.

We have implemented an inter-procedural flow, context,
and return-sensitive binding-time analysis and integrated it
into Tempo. The analysis deals with a wide subset of C,
including in particular multiple returns, pointers, and struc-
tures. As a result, significant existing applications can be
handled without major rewriting. The results of the analysis
are used to drive both Tempo’s compile-time and run-time
specialize [9, 10]. We have found that, with this extra pre-
cision obtained by our analysis, we are able to effectively
specialize systems code [24, 25, 31]. It has also been ap-
plied successfully to many other application domains such
as domain-specific language interpreters [30], and, in the
context of run-time specialization, scientific programming
and image processing [27].

In the next section, Sect. 2, we explain flow, context, and
return sensitivity and show how they improve the precision
of the binding-time analysis. The details of the analysis are
then presented in Sect. 3. Existing applications on which
this analysis is being applied are given in Sect. 4. Related
work is addressed in Sect. 5 and final remarks are made in
Sect. 6.

2 Sensitivity ies

Let us look at a few examples that exhibit flow, context, and
return sensitivity. For each example, we first present the ini-
tial source program. Then we give the program annotated
by the first phase of the binding-time analysis, where static
constructs are overlined and dynamic constructs underlined.
The second phase of the binding-time analysis determines
which action (z. e. transformation) to apply to each con-
struct during specialization. The evaluate action instructs
the specialize to evaluate the construct and residualize in-
structs the specialize to residuaJize it. We present the
action-annotated program, where overlined constructs are
to be evaluated and underlined constructs are to be residu-
alized. Finally, we show the resulting specialized program.

2.1 Flow Sensitivity

A flow-sensitive analysis associates a different state with
each program point. This allows variables that are read
and written multiple times to be associated with different
binding-times at different locations in a program.

In the example in Fig. 1, the function is analyzed with an
initial binding-time description specifying that parameters
x, Y, and p are all static, and that the global variable d is
dynamic. The variable x is read and written multiple times,
and is static at some program points and dynamic at others.
The left-hand side, or lvo.lue,of an assignment is considered
static if it depends only on static data. This is why, in the
example, all of the variables which occur on the left-hand
side of an assignment am static.

Pointers and aliasing may create an ambiguous defini-
tion, an assignment for which the analysis cannot statically
determine which location will be modified at run time. In
the example, we assume that pointer p may point to either x
or y, which creates an ambiguous assignment (binding-time
annotated aliases appear in comments next to dereferenced

pointers). Since the assignment is dynamic, both locations
must become dynamic.

The action annotations only slightly differ from the
binding-time annotations, Static constructs become eval-
uate constructs, and dynamic constructs become residualize
constructs. The only exceptions to this are the static left-
hand sides of dynamic assignments, which are annotated
residualize, instructing the specialize to residualize the vari-
able identifiers on the left-hand sides (instead of evaluating
the variable and lifting the resulting value),

The subsequent specialization phase is guided by the ac-
tion annotations. Evafuate constructs are evaluated and
residualize constructs are residualized. Evaluate statements
disappear completely. Evaluate expressions are evaluated,
and the resulting value is lifted into the residual code. Resid-
ualize expressions and statements are residualized.

2.2 Context Sensitivity

Context sensitivity enables a function to be analyzed
wit h respect to different states, or cent ezts, producing an
annotated instance of the function for each context. Since
annotated instances are separate, each one can exploit the
static vafues of its specific context.

The second example shows a function f () which contains
a sequence of calls to g (), as given in Fig. 2. Function f ()
is analyzed with an initial binding-time description specify-
ing that global d is dynamic. The context of the first call
consists of a static actual parameter, a static non-local vari-
able x, and a dynamic non-local variable y (binding times of
the non-local variables appear in comments). An instance of
the function is then annotated with respect to this context.
Notice that x becomes dynamic while analyzing the body of
g (), which creates a different context for the second call to
g (). Therefore, a second instance of the function is created
and annotated with respect to this new context. The third
call to g ( ) has the same context as the second call, so a new
instance is not created.

The corresponding actions are then produced and axe
used to specialize the program. In the residual program,
each different instance of function g () produces a different
residual function definition. Since the third call to g () had
the same context as the second call, it also shares the same
residual function definition.

2.3 Return Sensitivity

Return sensitivity allows a function to return a static value
even though the function contains dynamic side-effects and
is therefore rwidualized.

In the third example, shown in Fig. 3, the function is
analyzed with an initial binding-time description specifying
that global variable d is dynamic. Return sensitivity allows
the static value returned by g ( ) to be used at its call site,
which in turn enables the multiplication to be considered
static as well. At the function’s definition, we indicate that
the function contains dynamic side-effects by annotating the
identifier g as dynamic and that it returns a static value by
annotating its return type int as static. At the call site, the
identifier is annotated as both static and dynamic.

The specialize exploits the static return value returned
by g () to perform the multiplication, and residualizes the
call in order to residualize its side-effects. Notice that the
specialized definition of g () no longer returns a value.
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Source code

int d;
void f (int x, int y, int *p)

{
x =X+y;
x=d;
X=x+y;

*P = d;
=X+y;

}X

Binding-time annotated code

int d;

void–f(int ~, int ~, int ~)
{

—
x = d:——
—
X=x+y;——-

‘~=d; /* alias: p+{;, j}*/-—

i=x+y;———

~

Action annotated code

int d;
void–f(int x, int y, int *p)

i_____” - –
x =X+y;

x=d:———

X=x+y;-—— —

*P = d; I* alias: _ _p + {x, y} */--- —
x =X+y;-—- --

1

Specialized code (w.r.t. x=2, y=3)

int d;
void f(int x, int y, int *p)

{
x=d;
x =X+3;

*P = d;
x =X+y;

Figurel: Flow sensitivity

3 The Binding-Time Analysis

Weshall make the above-mentioned ideaapreciseby de-
scribing our binding-time analysis using a data-flow analysis
framework (see, for instance, [1, 20]) on the subset of C de-
scribed in Fig. 4. For the sake of conciseness, this subset
contains only a limited number of expressions and state-
ments; further details on the intra-procedural aspects of the
analysis can be found in [18]. Note also that non-void func-
tion calls are assumed to assign their return value directly
to an identifier, which can then be used in subsequent cal-
culations. This strategy simplifies the aualysis without re-
stricting its applicability. We assume that all programs are
transformed prior to the analysis, if needed, so that they
conform with this constraint. Also, the analysis presented
is further simplified by the fact that it doea not handle re-
cursive functions.

3.1 Intra-procedural aspects

Locations -d States we refer to the sets of values
propagated by the analysis as states. States are elements of
Location ~ Bt, where Bt is the lattice U c S K D with
least upper bound operator U. U stands for undefined, S
for static, sad D for dynamic. In the intra-procedural case
aud in the absence of structures, Location = Identifier,

provided all identifiers have been renamed in order to be
unique. That is, each actual memory location associated to
a @ven variable identifier is modeled by a single abstract
location denoted by the identifier.

The binary operator \ of type State x Locations ~ State
resets a set of locations to the bottom element U.

In the following, we shall use a graph representation of
states. The application of a state is modeled by a lookup
function which takes a graph (a set of pairs location/binding
time) and a location, and returns the corresponding binding
time. All the locations do not need to occur in the graph.
A location which does not occur in the graph is considered
to be undefined (the lookup function returna U).

Pre-processing We assume that, prior to binding-time
analysis, an ahas analysis and a definition analysis have
been executed. The alias analysis givea, for each derefer-
ence expression *eezp at program point e, the set dimes(e)
of corresponding aliases, i.e. a set of locations. The def-
inition analysis computes, for each statement at program
point s, the set of locations clefs(s) which may be defined
(through an assignment) within the statement. The func-
tion unambiguous-clefs () additionally computes, for each as-
signment, the set of locations unambiguously defied by the
assignment. If there is a single location associated to the
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g(int z)
{

X=(x +z)+y;

}

Source code Action annotated code

int x, y, d; int ~, y, d;—-void fo

{ void fo void g(int ~) /* =, Y ●/

x= 1; i__ ~ .-=(=l .y;-y=d; x=i;
g(5) ;

:Old-g:.ntz) ,* X-Y*,
g(5) ;

y=d;
--—

g(5) ;
}

g(G); /* z, y */
. . —

— -’ —

g(:); /* x, y */ ~——

g(=); /* x, y */ x =(x+ ;)+y;
—— -—— -

i ~

Binding-time annotated code Specialized code

int x, y, d; int y, d;
void fo

void fo void g(int =) I* ~,y *1

l--i
{

1 --= (~) + y;
y=d;

x . x glo;

to.d ~:lllt Z) /* X-y */

g20 ;
~=d;

—— g20 ;
. - }g(~); /* =, y */ -’—

g(s); /* x, y */ ~-—

g(s); /* x, y */ ;= (x + ;) + y;
— — — ——

~ ~

Figure2: Context sensitivity

Source code Action annotated code

int x, d; int x, d;—
void fo int g(int z)

{ {
void fo = g(int ;)

X = (g(l) * 2) + d; x =z+d; ~ ~-
} return (z + 3); X = (~(~) ~ ~) + d; x = z+ d;

}
——— _— ——— —

~
— ———
return (z + 3);

~

Binding-time annotated code Specialized code

int x, d; int x, d;
void fo

void fo = g(int ;)

i_ i_-
{

go;
x ~(~(~):~)+d; x=~+d; x=8+d;—— --

— ———
J

}
return (z + 3);

]

Figure 3: Return sensitivity

void glo
{

=6+y;

}=
void g20

{
X=(x+s)+y;

}

void go

{
x=l+d;

}



Domains:

const G Integer
id G Identifier
bop G Binary Operator

Abstract syntax:

exp ::= const const at
I id variable
I & lexp reference
I * exp dereference
I exp bop exp binary expression

lexp ::= id variable
I * exp dereference

stint ::= lexp = exp assignment
I if ( exp ) stint else stint conditional statement
I do stint while ( exp ) loop
I { stint” } block
I id ( exp” ) void function call
I id=id(exp”) non-void function call
I return exp function return
I return void function return

type-spec ::= int I char I . . . base types
I * type-spec pointer type

decl ::= type-spec id declaration

func-def ::= type-spec id ( decl” ) stint function definition

program ::= decl” func-de~ program

Figure 4: Syntax of C subset

left-hand side of the assignment, the assignment is unamb-
iguous; it unambiguously defines the location. Otherwise,
there are, because of abaing, aweral locations associated
to the left-hand side of the assignment, the assignment is
ambiguous; the defined location cannot be determined stat-
ically. The set of locations unambiguously defined by the
assignment is therefore empty. This information is neces-
sary since the binding-time analysis is capable of detecting
that a dynamic variable becomes static if it is assigned a
static value, but only if the assignment is unambiguous.

The analysis Assuming a single function and a single
return statement, the analysis propagates forward the initial
state, whkh returns S or D for any input parameter declared
static or dynamic respectively, and U for any other location.
The join operator u on binding-time states is defined as a
pointwise application of the least upper bound operator u
on the State function space range.

The data-flow equations relating the state in(s) at the
entry point of a statement at program point s and the state
out (s) at the output of the same statement are given in Fig. 5

with the transfer functions given in Fig. 6.
The function t.()describes the evolution of the state

caused by data dependencies of an assignment at program

point s. Each location in the set of possible definitions is
mapped to the assignment binding time, given by stmt-bt(s)
(see Fig. 7). Note that the assignment binding time depends
on the input state. If the assignment is ambiguous, a safe
approximation has to be taken: the new binding time of
each defined location ia the least upper bound of its previous
binding time and of the assignment binding time. If the
-ignment is unambiguous, the new binding time of the
defied variable is the assignment binding time.

A second transfer function, t.,s(),takes control depen-
dencies into account to compute the state at join points. If
the specialize does not duplicate continuations, aa is the
case for Tempo, join points exist at the end of conditional
statements aud loops. To compute the proper safe approx-
imation of the state at a join point, the binding time of
each location possibly defined within the conditional or loop
statement is the least upper bound of its previous binding
time and of the binding time of the conditional or loop test,
given by ezp-bt(e, state) (see Fig. 7). If a test is dynamic,
all the locations possibly defined in the scope of the test
are considered dynamic. In case of a static test, the join
operation has no etfect; the transfer function is the identity
function.

For instance, let us consider the case of a variable which
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lexp’] =S expe’: out(s) = t.(in(s))

if S ( expe ) stmt~] else stmt~z: in(sl) = in(s)
in(sz) = in(s)
out(s) = te,sl (Out(sl)) L! te,s2 (CW(S2))

do’ stmtso while ( exp= ): in(SO) G in(S) U te,.~(OIJt(sO))
out(s) = out(so)

{ stmt~’ . . stmt~ }’: in(sl) = in(s)
‘in(Sa+l) = Old(Si), 1 ~ i < n
out(s) = out(sn)

returns expe: out(s) = in(s)

I Figure 5: Intra-procedural bindhw-time analysis — data-flow equations for statements

t, (state) = {(be, sttnt-bt(s)) I 10CE clefs(s)} ~ (state\ unarnbiguous-defs( s))

t.,. (state) = {(1oc, ezp-bt(e, state)) I 10CE clefs(s)} ~ state

Figure 6: Intra-procedural binding-time analysis — the transfer functions

is assigned a static value in a branch of a conditional state-
ment whose test is dynamic. At specialization time, the
value of the variable after the join point will be unknown.
At execution time, if the branch is taken, the variable will be
assigned the static value; if not, it will keep the value it had
before entering the conditional statement. Therefore, such
variables need to be considered dynamic at the join point.

3.2 Inter-procedural aspects

In order to deal with multiple functions, new program
points, noted f, are introduced for function definitions.
Context sensitivity is obtained by duplicating function defi-
nitions and the corresponding data-flow equations according
to the dWerent calling contexts encountered in the program
for a given function.

These calling contexts are given by the binding times of
the call input, i.e. the binding times of the actual pararrm
ters as well as the binding times of the non-local locations
that may be wed by the function, taking into account other
nested calls. In the same way, it is possible to detine the
return context of a call, which is given by the binding time
of the returned value together with the binding times of the
non-local locations that may be dejined by the call, again
taking into account any other nested call. Since the num-
ber of locations defined by a given program is finite, these
contexts are finite.

We assume that the non-local locations used and defined
by a function are computed in another preprocessing phsse,
similar to inter-procedural summary information [5]. Note
that this phase must follow (or be combined with) alias aual-
ysis. When, as a right-hand side (left-hand side) expression,
a pointer potentially points to several locations, all these lo-

cations must be considered used (defined). Also, the notion
of use and definition actually relates to the analysis rather
than to actual executions. In particular, in c~e of an am-
biguous defiltion of a pointer dereference, all the locations
(potentially) pointed by the pointer must also be considered
used as their binding times are used to compute the binding
times of the (potentially) defined locations.

In order to propagate the binding time of the return value
from the function definition to the calling sites, a new type
of location is introduced. Each non-void return statement is
considered to set the binding time of a return location. This
return location is considered to be unambiguously defined
by the return statement.

Dealing with multiple function returns also led us to
propagate return states. Let us, for instance, consider a con-
ditional statement with return statements in both branches
as well as paths that do not return. At the join point, only
the non-returning paths should be joined and propagated
to the next statement as the output state of the condl-
tional statement. On the other hand, all the returning paths
should be joined too, taking into account the possibility of
return statements under dynamic control.

The corresponding data-flow equations are given in
Fig. 8. The functions used-non-localso and de~-non-localso
return the used non-local and defined non-local locations,
respectively. In function calls, the calling context ctz puts
together the part of the state relevant to the call by com-
puting the binding time of each actual parameter and asso-
ciating it to each corresponding formal parameter, as well
as computing the binding time of each non-local location (a
simple state lookup). The call forrnal-ioc(i, id) simply re-
turns the location associated to the ith formal parameter of
function id. The output state of a call statement is obtained

68



statements:
lexp’1 =s exp’z:

stmt-bt(s) = lezp-bt(el, in(s)) u erp-bt(ez, in(s))
ifs ( expe ) stmt~’ else stmt~’:

stmt-bt(s) = ezp-bt(e, in(s)) u strnt-bt(sl ) u stmt-bt(s2)

do’ stmt’” uhile ( exp’ ):
stmt-bt(s) = ezp-bt(e, out(so)) u stmt-bt(so)

{ stmt~’ . . . stmt~” }S:
stntt-bt(s) = U1<i<nst~t-bt(si)

returns expe:
stmt-bt(s) = ezp-bt(e, in(s))

expressions:

right-hand side expression:
wnste:

ezp-bt(e, -) = S
ide:

ezp-bt(e, state) = lookup(state, id)
&e lexpeo:

ezp-bt(e, state) = lezp-bt(eo, state)
*’ exp’o:

ezp-bt(e, state) = ezp-bt(eo, state) I-I(UIOc~ali~.e~(.)lo~kup(state, 10C))
exp~’ hope exp~:

ezp-bt(e, state) = ezp-bt(el, state) 1-lezp-bt(ez, state)

left-hand side expression:
ide:

lezp-bt(e, state) = S
*= expeo:

lezp-bt(e, state) = ezp-bt(eo, state)

Figure 7: Intra-procedural binding-time analysis — binding-time annotations

by updating the binding times of the defined non-local lo-
cations of the callee. In case of a non-void function call, the
binding time of the left-hand side location is additionally set
to the bindhg time of the return location.

The output state of a return statement s is the state {},
which associates to any location the binding time U. It is
the return state ret-out(s) which is propagated to the exit
point of the function. These return states are propagated
along through the ret-in(s) and ret-out (s) input and out-
put return states. The corresponding equations, very sim-
ilar to the ones relating m(s) and out(s), are omitted. For
the assignment statement, ret-out(s) is equal to ret-in(s).
For conditional statements, loops, and blocks, ret-in(s) and
ret-out(s) are related by exactly the same equations as in(s)
and out (s) (see Fig. 5). In particular, the transfer function
t,,.()deals with return locations under conditional control.

A call statement can then be annotated with two binding
times: the binding time of the callee return location and
the least upper bound of the binding times of the callee
defined non-local locations, summarizing the side-effects of
the call. Depending on these annotations, the statement will
be evaluated away (both binding times are static), rebuilt
(the return is dynamic), or reduced (the return is static but
there are dynamic side-effects). In the latter case, the non-
void function call is residualized into a void function call and
the corresponding function definition is residualized into a

function returning void.

4 Applications

The Tempo partial evaluator is being used to specialize a
wide variety of existing, complex, and real-world applica-
tions. In this section we summarize the applications which
have already been specialized by Tempo. As well, we give a
couple of examples taken from of these applications which
show how key features of Tempo’s binding-time analysis de-
scribed in this paper enable static data to be exploited.

Specializing systems code has been the main target for
which Tempo and its analyses have been designed. Previous
work has shown that specializing operating system compo-
nents with respect to system states that are likely to occur
can produce significant speedups [28]. To validate this as-
sertion, Tempo has been used to specialize the Sun Remote
Procedure Call (RPC) [24, 25]. As is common for system
components, Sun RPC is generic and structured in layers.
Therefore, once a given remote procedure call is fixed, the
interpretive overhead can be eliminated. Both the client
and server functions were specialized, each of which consist
of roughly 1000 lines of C code, and speedups of up to 3.75
were achieved.

Specialization is also used in various approaches to de-
sign application genemtors, programs which automatically
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W (ezp~l ezp~ ):
ctz = {(formal- loc(z, id), ezp-bt(e,, in(s))) I 1< z < n} U {(1oc, lookup(in(s), 10C)) I 10CE used-non-locals(id)}

‘n(.fi~,.t.) = ct~
out(s) = (in(s) \ dej-non-locals( id)) ~ 0’Ut(fid,ctz)
ret-out(s) = ret-in(s)

idl=’idz (ezp~l . . . ezpv ):
ctm= {(formal-loc(i, i&), e~-bt(e; , in(s))) I 1 ~ i ~ n} U {(1oc, lookup(in(s), 10C)) I 10Cc used-non-locals (id2)}

~n(fidz,ctz)= ~x
out(s) = (in(s) \ (dej-non-locais(idz) U {~dl }))

U ollt(fidz,ctz) U {(~dl , ~ookuP(out(fid2,ct. )j RETURN(fid2,ct~ )))}
ret-out(s) = ret-in(s)

returns:
out(s) = {}
ret-out(s) = in(s) ~ ret-in(s)

return* expe:
out(s) = {}
ret-out(s) = ret-in(s) U in(s) !4 {( R?iTUIUV(f), ew-bt(e, Ms)))

idf (fOWncliS) bod~’ :
ret-in(s) = {}
in(s) = in(f)
out(f) = {(1oc, lookup(ret-out(s), 10C)) I 10CE def-non-locds(f)}

Figure 8: Inter-procedural binding-time analysis - data-flow equations

translate specifications into applications 16, 7, 301. Tempo
plays a key-role in the approz&presented .iri [30], in whid a
specific application is generated by combining and inatanti-
ating generic components. This approach involves defining
an abstract machine and a micro-language interpreter, both
of which contain interpretation overhead which is eliminated
by partial evaluation. Currently, this framework is being
applied to automatically generate device drivers for video
cards, such as SVGA drivers for the XFree86 Xl 1 server.
In this study, the abstract machine implementation consists
of about 1000 lines of code, while the interpretor is roughly
4000 lines.

As well, scientific algorithms and image processing func-
tions have been specialized by Tempo [27]. Functions such
as Fast Fourier Transform, cubic spline interpolation, and
image dithering have been specialized, producing significant
speedups. In addition to compile-time specialization, these
functions were also specialized at run time, using Tempo’s
automatic, template-based run-time speciahzer [10]. Com-
pared with operating systems or application generation pro-
grams, these functions are rather small-all consisting of
less under 100 lines of code.

Let us now give a couple of examples of how two of the
features presented in this paper, flow sensitivity and return
sensitivityy, were critical in effectively specializing these ap-
plications.

The fist example illustrates a binding-time improvement
which relies on a flow-sensitive analysis. Fig. 9 contains a
program fragment where variable x is assigned a dynamic
value, followed by a number of statements which use x. Since
the assignment renders x dynamic, all of its subsequent uses
are dynamic as well. If, however, it is known that there are
certain values for x which are more common than others,

Original Source Code

x = a dynamic expression;

statements in which x is wnsidered dynamic;

Transformed Code

x=a

if (x

x=

dynamic expression;

== cOrmnon.case-value) {

comnon-c ase.value;

statements in which x is considered static;

} else {

statements in which x is considered dynamic;

}

Figure 9: Example of generalized partial computation which
.elies on flow-sensitive analysis
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the program can be transformed in such a way to exploit
this information. Specifically, a conditional is introduced to
determine if x is in fact equal to some common value. If
it is, then by explicitly adding an assignment in the truth
branch of the conditional and copying the statements which
use x into both branches, the statements in the truth branch
can be specialized with respect to this common value for
x. This example of generalized partial computation [15, 16]
has proven useful both with the Sun RPC as well as with
application generation. This binding-time improvement is
possible because the binding-time analysis is flow sensitive.

The second example shows how return sensitivity is cru-
cial to specialize the excerpt of the Sun RPC client code [21]
shown in Fig. 10. The initial function Xdr.bytes () contains
code which encodes data in the client bufh by making a crdl
to Xdr-u-int () and checking the return value for a success
or failure. By following this call interprocedurally, we finally
arrive at the function Xdrmem-putlong which does the actual
encoding. In addition to doing the encoding (performed by
the assignment to ● (xdrs ->x-private) ), this function also
decrements the client buffer size xdrs->x-hendy, increments
the client buffer pointer xdrs->x-private, and returns an
error value (0) if the buffer was empty (xdrs->x-handy <
O) and a success value (1) if not.

If the client buifer is considered to be known at compile
time, the binding-time annotations in Fig. 10 are produced.
As can be seen, the assignment which performs the encod-
ing is considered dynamic, since the data to be encoded
will only become known at run time. However, all of the
other operations, namely those which depend on the client
buffer, are considered static. For example, a buffer overflow
can be statically computed, and the resulting return value
can be propagated interprocedurally. In this example, all
of the intermediate function calls can be eliminated during
specialization and even the initial if statement can be re-
duced. This is due to the fact that return sensitivity allows
static return values to be propagated interprocedurally, de-
spite the fact that functions contain dynamic side-effects.

5 Related Work

There are a number of existing off-line paztial evaluators for
imperative languages [2, 3, 4, 19, 26] as well as for functional
languages [8, 17, 191291.

All existing imperative binding-time analyses are jiow-
insensitiue; that is, one single description of the binding-
time state is maintained for an entire program. In this case,
if a variable is dynamic anywhere in the pro~am, its sin-
gle description would be dynamic, and therefore the vari-
able would be considered dynamic everywhere in the pro-
gram. In this paper we have obtained flow sensitivity by
writing an analysis which is flow sensitive; an rdternative
approach would be to use a flow-insensitive analysis on an
intermediate program flow representation which explicitly
encodee flow dependencies, such as Single Static Assignment
(SSA) [13]. For example, a bindmg-tirne analysis has been
described for a simple imperative language, which obtains
flow-sensitivity by using a Program Representation Graph,
a representation which contains some of the features of SSA
~14]. The focus of this work is on providing formal semau-

int Xdr-bytes (. ..)

{

—. .——
if (( Xdrm-int (xdrs, sizep) != O) == O)—

return O;

}

~ Xdrmint ( struct strl *xdrs, unsigned int *G)

{

——
return Xdr-u-long (xdrs, up) ;

}

~ Xdrmdong (struct strl *xdrs, unsigned int *G

{

if ( (int) (xdrs->x-op) == O)—

return Xdrmern-putlong (xdrs, (int ●) ulp);

R ( (int) (xdrs->x-op) == 2)
return 1;

return O;

)

~ Xdxmem-putlong (struct strl *xdrs, int *F)
[,

XdXS->x_handy = XdXS->x-hendy - ~U;
~ (xdrs->xhndy < O)

return O;

● (xdrs->x-private) = htonl (*F);—— -

xdrs->x-private = 4U + xd.rs->x.private;
return 1;

}

Figure 10: Return sensitivity for operating systems code

tics and proving safety conditions of binding-time analyses
in order to establish a semantic foundation, and therefore
implementation or application isauea were not considered. It
would be interesting to determine if this framework could be
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adapted to handle real programs, for example, by treating a
more realistic language containing pointers, data structures,
or functions, The idea of flow sensitivity does not apply to
functional languages since there is no notion of a state or
updates.

Similarly, all existing imperative binding-time analyses
are contezt insensitive. Contexts of all the calls to a func-
tion are approximated by a single, least precise, context. If
a parameter or non-local variable is dynamic at any call site,
it will be considered dynamic at every call site. On the other
hand, there are a number of existing binding-time analyses
for functional languages which are context sensitive, more
commonly referred to as polyuariant [8, 17, 29]. However,
a context-sensitive binding-time analysis for an imperative
language is more complicated since contexts must include
the binding-times of the non-local variables that are read by
a function and the state must be updated with respect to
non-local variables that are written. This is further compli-
cated by the possibility of definitions being ambiguous due
to aJiasing.

Return sensitivity, which prevents the side-effect binding
time of a function from interfering with its return binding-
time, is a new concept which has not previously been ex-
plored. We discovered the need for return sensitivity when
applying partial evaluation to a specific application domain,
namely operating systems code. Return sensitivity is not ap-
plicable for functional languages since pure functions have a
return value but do not contain side-effects.

A different approach for obtaining effective specializa-
tion of imperative programs has been proposed [22, 23]. In-
stead of directly treating an imperative program, the orig-
inal source program is transformed into a functional rep-
resentation. An existing partial evaluator for a functional
language is then used to specialize the program, after which
the residual program is transformed back into the original
imperative language. The main advantage of this approach
is that reusing an existing, mature partial evaluator avoids
the need to design and implement a new partial evaluator.
Initial results show that this approach may achieve a high
degree of specialization; flow, context, and even return sen-
sitivity have been demonstrated for small examples. More
experimentation would be needed to determine if this ap-
proach could be scaled up to handle the size and complexity
of existing, realistic programs.

6 Conclusion

We have designed and implemented a bindkg-time analysis
for imperative programs which accurately handles the com-
plexities found in existing, realistic software systems. We
have described how this prectilon is obtained by presenting a
binding-time analysis which is flow, context, and return sen-
sitive. We have validated our approach by applying our par-
tial evaluator to existing, realistic applications. Specifically,
we have studied and identified opportunities for specializa-
tion in operating systems, application generation, scientific
computations, and image processing, and have successfully
specialized programs in these domains using a partial eval-
uator based on the binding-time analysis presented in this
paper.
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