
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XML Schema Mappings: Data Exchange and Metadata
Management

Citation for published version:
Amano, S, David, C, Libkin, L & Murlak, F 2014, 'XML Schema Mappings: Data Exchange and Metadata
Management', Journal of the ACM, vol. 61, no. 2, 12, pp. 12. https://doi.org/10.1145/2590773

Digital Object Identifier (DOI):
10.1145/2590773

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of the ACM

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1145/2590773
https://doi.org/10.1145/2590773
https://www.research.ed.ac.uk/en/publications/95cc4310-2c40-4518-96bb-b55f6d11fe61


XML Schema Mappings:

Data Exchange and Metadata Management

Shun’ichi Amano

and

Claire David

and

Leonid Libkin

and

Filip Murlak

Relational schema mappings have been extensively studied in connection with data integration
and exchange problems, but mappings between XML schemas have not received the same amount
of attention. Our goal is to develop a theory of expressive XML schema mappings. Such mappings
should be able to use various forms of navigation in a document, and specify conditions on data
values. We develop a language for XML schema mappings, and study both data exchange with
such mappings and metadata management problems. Specifically, we concentrate on four types
of problems: complexity of mappings, query answering, consistency issues, and composition.

We first analyze the complexity of mappings, i.e., recognizing pairs of documents such that
one can be mapped into the other, and provide a classification based on sets of features used in
mappings. Next, we chart the tractability frontier for the query answering problem. We show
that the problem is tractable for expressive schema mappings and simple queries, but not vice
versa. Then we move to static analysis. We study the complexity of the consistency problem,
i.e., deciding whether it is possible to map some document of a source schema into a document
of the target schema. Finally, we look at composition of XML schema mappings. We analyze
its complexity and show that it is harder to achieve closure under composition for XML than
for relational mappings. Nevertheless, we find a robust class of XML schema mappings that, in

addition to being closed under composition, have good complexity properties with respect to the
main data management tasks. Due to its good properties, we suggest this class as the class to use
in applications of XML schema mappings.

Categories and Subject Descriptors: H.2.5 [Database Management]: Heterogeneous
Databases—data translation; H.2.8 [Database Management]: Database Applications

General Terms: Theory, Languages, Algorithms

Additional Key Words and Phrases: XML, incomplete information, query answering, certain
answers, consistency, membership

1. INTRODUCTION

The study of mappings between schemas has been an active research subject over
the past few years. Understanding such mappings is essential for data integration
and data exchange tasks as well as for peer-to-peer data management. All ETL

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–0??.



2 · S. Amano, C. David, L. Libkin, F. Murlak

(extract-transform-load) tools come with languages for specifying mappings. We
have a very good understanding of mappings between relational schemas (see recent
surveys [Arenas et al. 2010; Barceló 2009; Bernstein and Melnik 2007; Kolaitis
2005]). Several advanced prototypes for specifying and managing mappings have
been developed [Fagin et al. 2009; Popa et al. 2002; Marnette et al. 2011], and
some have been incorporated into commercial systems. There are techniques for
using such mappings in data integration and exchange, and metadata management
tools (i.e., tools for handling mappings themselves), see, e.g., [Nash et al. 2007;
Bernstein and Melnik 2007; Chiticariu and Tan 2006; Fagin et al. 2004; Kolaitis
2005; Madhavan and Halevy 2003] as well as many papers referenced in the surveys
mentioned above.

However, much less is known about mappings between XML schemas. While
commercial ETL tools often claim to provide support for XML schema mappings,
this is typically done either via relational translations, or by means of very simple
mappings that establish connections between attributes in two schemas. Transfor-
mation languages of such tools tend to concentrate on manipulating values rather
than changing structure. In the research literature, most XML schema mappings
are obtained by various matching tools (see, e.g., [Melnik et al. 2002; Milo and Zo-
har 1998]) and thus are quite simple from the point of view of their transformational
power. More complex mappings were used in the study of information preservation
in mappings, either in XML-to-relational translations (e.g., [Barbosa et al. 2005])
or in XML-to-XML mappings, where simple navigational queries were used in addi-
tion to relationships between attributes [Fan and Bohannon 2008]. One extra step
was made in [Arenas and Libkin 2008] which studied extensions of relational data
exchange techniques to XML, and introduced XML schema mappings that could
use not only navigational queries but also simple tree patterns binding several at-
tribute values at once. But even the mappings of [Arenas and Libkin 2008] cannot
reason about the full structure of XML documents: for example, they completely
disregard horizontal navigation and do not allow even the simplest joins, something
that relational mappings use routinely [Arenas et al. 2010; Fagin et al. 2003; Fagin
et al. 2009].

Our main goal is to develop a theory of XML schema mappings. We would like to
introduce a formalism that will be a proper analog of the commonly accepted for-
malism of source-to-target dependencies used in relational schema mappings [Are-
nas et al. 2010; Barceló 2009; Fagin et al. 2003; Fagin et al. 2004]. We would like to
understand the basic properties of such mappings, such as their complexity, oper-
ations on them, and their static analysis. We would like to explore the complexity
of query answering in data exchange settings given by XML schema mappings.

At the end of the study, we would like to understand which features of XML
schema mappings make handling them hard, and which lend themselves to efficient
algorithms. Based on the results of the study, we would like to propose a class of
mappings that can be used in practice due to its good properties.

Examples of mappings. To understand features needed in XML schema map-
pings, we now present some examples of transformations that need to be modeled.
Consider two schemas, given, in this example, by the DTDs below. The first DTD

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 3

europe

country

(Scotland)

ruler

(James V )
ruler

(Mary I )
ruler

(James VI & I )
ruler

(Charles I )

country

(England)

ruler

(Elizabeth I )
ruler

(James VI & I )
ruler

(Charles I )

Fig. 1. Tree T1 conforming to DTD D1

D1 describes a set of countries and their rulers. The rules of D1 are

europe→ country∗

country→ ruler∗

Element type ruler has no sub-elements. We assume that ruler and country

have one attribute each (name), and ruler nodes are ordered chronologically, i.e.,
in the order of succession. A document could look like the tree in Fig. 1.
Now suppose that data stored according to D1 needs to be restructured according

to the DTD D2 that stores successions that took place in various countries.

europe→ succession∗

succession→ country ruler successor

Here we assume that country, ruler, and successor have no sub-elements but
they have one attribute (name).
Simple attribute-to-attribute mappings can establish correspondence between

rulers in D1 and in D2 for example. But for more complex relationships (e.g.,
if a D1-document says that country x was ruled by y, then a D2-document should
contain a node succession with country x and ruler y), we need to define struc-
tural correspondences between schemas that simple mappings between attributes
(or even paths, as in [Fan and Bohannon 2008]) cannot express.
Standard source-to-target dependencies in relational databases specify how

source patterns are translated into target patterns. It is thus natural to extend
this idea to XML, as indeed was done even for limited mappings we mentioned
earlier. Specifically, we shall use tree patterns that collect attribute values. For
example, we can specify the following mapping between D1 and D2:

europe

country(x)

ruler(y)

−→

europe

succession

country(x) ruler(y) successor(z)

It shows how to restructure information about countries and rulers under D2.
Note that some nodes of tree patterns carry variables. The semantics of such a
mapping is that if we have a document T that conforms to D1 and a match for
the pattern on the left, then we collect values x, y that match, and put them in a
document that conforms to D2, structured according to the pattern on the right.
Such pattern-based mappings are more expressive than attribute correspondences

and even path-based constraints. They have been explored in [Arenas and Libkin
2008], but still in a quite limited way. To see one set of features that the mappings

Journal of the ACM, Vol. V, No. N, Month 20YY.



4 · S. Amano, C. David, L. Libkin, F. Murlak

of [Arenas and Libkin 2008] lacked, note that in the mapping above we should
specify the successor’s name z. To do so we need to express that two ruler nodes
are subsequent siblings, which requires horizontal navigation. If we use the −→
edge to express that the two ruler nodes are subsequent siblings, the intended
mapping can be formulated as follows:

europe

country(x)

ruler(y) −→ ruler(z)

−→

europe

succession

country(x) ruler(y) successor(z)

Another limitation of the formalism introduced in [Arenas and Libkin 2008] is
that, unlike relational mapping constraints, it cannot take any joins over the source
document. In fact, it cannot even test attribute values for equality or inequality.
For example, the following constraint, that takes into account that a ruler can be
in power for several subsequent periods (e.g., some presidents), is not allowed in
existing XML mapping formalisms:

europe

country(x)

ruler(y) −→

y 6= z

ruler(z)

−→

europe

succession

country(x) ruler(y) successor(z)

Note that this mapping uses two new features: an inequality comparison (y 6= z)
and horizontal navigation.
Finally, a useful feature is the ability to express the fact that some new value

introduced on the target side does not depend on some of the values collected on
the source side. Suppose that we change the DTD D2 to introduce IDs for rulers:

europe→ succession∗ ruler∗

succession→ country rulerID successorID

ruler has two attributes: ID and name, country, rulerID, and successorID have
one attribute. If we try to express the mapping as

europe

country(x)

ruler(y) −→

y 6= z

ruler(z)

−→

europe

ruler(i, y) ruler(j, z) succession

country(x) rulerID(i) successorID(j)

we do not reflect the fact, that there is a single ID for each ruler. This problem
shows up in relational mappings too and is usually solved by using Skolem functions
[Fagin et al. 2004]. The constraint shown below expresses functional dependency
between the ruler name and the id:

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 5

europe

country(x)

ruler(y) −→

y 6= z

ruler(z)

−→

europe

ruler(f(y), y) ruler(f(z), z) succession

country(x) rulerID(f(y)) successorID(f(z))

To make sure that the IDs are unique, we would need another constraint:

europe

country

ruler(y)

y 6= z

ruler(z)

−→ f(y) 6= f(z)

Key problems and outline of the paper. As mentioned earlier, our goal is to study
general and flexible XML schema mappings that have a variety of features shown
above. We would like to understand which features can easily be used in mappings
without incurring high computational costs, and which features need to be omitted
due to their inherent complexity. Towards that goal, we concentrate on the following
standard data exchange problems (well explored in the relational context).

Complexity of schema mappings. We look at the problem of recognizing pairs of
trees (T, T ′) such that T can be mapped into T ′ by a given mapping. We refer to
this problem as the membership problem. There are two flavors of the membership
problem: for data complexity, the mapping is fixed; for combined complexity, it is
a part of the input.

Query answering. In the problem of data exchange one needs to materialize a
target instance, that is a solution for a given source instance with respect to a
given schema mapping, and use it to answer queries over the target. As there
could be many possible solutions, the standard semantics of query answering is
that of certain answers which are independent of a chosen solution. So for good
mappings one should be able to construct a single solution that permits finding
certain answers within reasonable complexity, at least for simple query languages.

Static analysis of schema mappings. Consider the mapping in the first example
we had and change the DTD D2 to europe → successions; successions →
succession∗; succession → country ruler successor. Then the mapping be-
comes inconsistent: it attempts to make succession nodes children of the root,
while they must be grandchildren. We obviously want to disallow such mappings,
so we study the issue of consistency: whether the mappings make sense.

Schema evolution. Evolution of schemas is usually described by means of the
composition operator: a mappingM◦M′ has the effect of first applyingM followed
by an application of M′. Key questions addressed in the relational case are the

Journal of the ACM, Vol. V, No. N, Month 20YY.



6 · S. Amano, C. David, L. Libkin, F. Murlak

complexity of composition (which is known to be higher than the complexity of
the commonly considered mappings) and closure under composition. The latter is
normally achieved in the relational case by adding Skolem functions [Fagin et al.
2004]. These issues will arise in the XML context too.

We now outline the main contributions of the paper. We define a very general
class of XML schema mappings that, in addition to the only feature considered
previously (vertical navigation in documents), has other features presented in our
examples:

—horizontal navigation;

—data-value comparisons (e.g., joins); and

—Skolem functions.

We also look at a restriction of schemas, in which DTDs are non-recursive and regu-
lar expressions are of rather simple form, generalizing nested relations. Specifically,
they are expressions of the form â1 . . . ân, where all the ai’s are distinct, and â can
stand for a itself, or a∗, or a+, or a|ǫ. All the schemas we saw in the introduction
are such. We call such schemas nested-relational.
We then provide a detailed study of the effect of these features on the main

computational tasks we consider. Below we give a quick summary.

Complexity of schema mappings. We do a full classification of the complexity of
schema mappings. In particular, we show that the membership problem is NP-
complete with respect to data complexity, and NEXPTIME-complete with respect
to combined complexity in the presence of Skolem functions; without them, the
complexity drops to LOGSPACE-complete and Πp2-complete. Thus, as far as the
complexity of mappings is concerned, the XML case matches the relational one
[Fagin et al. 2004; Gottlob and Senellart 2010; Pichler and Skritek 2011].

Query answering. While in the relational case conjunctive queries behave par-
ticularly well in data exchange [Fagin et al. 2003], it was already shown in [Arenas
and Libkin 2008] that even for mappings using just vertical navigation their analogs
could be coNP-hard. Thus, [Arenas and Libkin 2008] isolated a subclass of child-
based schema mappings admitting a polynomial algorithm for query answering. We
start with that class (which includes mappings with nested-relational schemas) and
see how far we can extend it by adding features to mappings and to queries (to
match the expressiveness of the mappings).
Again we do a systematic investigation of the complexity of query answering.

The main lesson of our study is that we cannot extend both mappings and queries
simultaneously: the basic class of queries remains tractable under relatively expres-
sive mappings; but adding new features to the query languages quickly leads to
intractability, even for very simple mappings that behave well with basic queries.

Static analysis of schema mappings. The consistency problem was looked at in
the case of the simplest mappings based on vertical navigation [Arenas and Libkin
2008] and shown to be EXPTIME-complete. Here we fully analyze it for expressive
mappings that use all forms of navigation and joins.
We show that it is the combination of horizontal navigation and joins (equality

tests) that determines the complexity. Having arbitrary joins very quickly leads to

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 7

undecidability, while without them consistency stays in EXPTIME in the presence
of horizontal navigation and Skolem functions. When schemas are nested-relational,
the bounds come down: without joins consistency is polynomial without horizontal
navigation, and PSPACE-complete with it. With joins and Skolem functions it is
NEXPTIME-complete, but adding next-sibling makes it undecidable even for the
simplest schemas.

Composition of schema mappings. In addition to studying the complexity of
composition, we show that closure is much harder to achieve for XML schema
mappings. In fact we identify the set of features that make it impossible to achieve
closure under composition without going beyond what is normally considered in
relational mappings. We then find a robust class of XML schema mappings that
are closed under composition. These are very close to non-relational mappings of
the Clio tool [Popa et al. 2002] extended with Skolem functions.

At the end, we come up with a class of mappings having many desirable proper-
ties: they admit efficient algorithms for both static analysis and query answering,
and are closed under composition.

Note. This paper combines and expands three conference papers: Sections 3,
4, 6, 7 come essentially from [Amano et al. 2009], except Prop. 6.9 and Thm. 7.6,
originally published in [David et al. 2010], Section 5 comes from [Amano et al. 2010].
New results include: Thm. 4.5, Thm. 4.6, Prop. 6.5 (upper bound), Thm. 6.7 (lower
bound without inequality, undecidability without equality, and without inequality),
Prop. 6.8, Prop. 6.9 (inequality), Thm. 7.2 (2-EXPTIME lower bound), Thm. 7.6
(inequality, descendant, and horizontal order).

Organization. Notations are given in Section 2. The schema mapping language is
described in Section 3. In Section 4 we study the membership problem. Complexity
of query answering is studied in Section 5. Static analysis problems are studied in
Section 6. Composition related problems are studied in Section 7. Concluding
remarks are given in Section 8.

2. PRELIMINARIES

2.1 XML documents and DTDs

We view XML documents over a labeling alphabet Γ of element types and a set of
attributes Att as structures T = (dom(T ), ↓,→, lab, (ρa)a∈Att ) where

—dom(T ) is an unranked tree domain (a finite prefix-closed subset of N∗ such that
for all n ∈ N, n · i ∈ dom(T ) implies n · j ∈ dom(T ) for all j < i);

—the binary relations ↓ and→ are child (n ↓ n·i) and next sibling (n·i→ n·(i+1));
—lab : dom(T )→ Γ is the labeling function; and
—each ρa is a partial function from dom(T ) to V , the domain of attribute values,
that gives the values of a for all the nodes in dom(T ) where it is defined.

By |T | we shall denote |dom(T )|, i.e., the number of elements (nodes) of the under-
lying tree domain dom(T ).
A DTD D over Γ with a distinguished symbol r (for the root) and a set of

attributes Att consists of a mapping PD from Γ to regular expressions over Γ−{r}
(one typically writes them as productions ℓ → e if PD(ℓ) = e), and a mapping

Journal of the ACM, Vol. V, No. N, Month 20YY.



8 · S. Amano, C. David, L. Libkin, F. Murlak

AD : Γ → 2Att that assigns a (possibly empty) set of attributes to each element
type. We always assume, for notational convenience, that attributes come in some
order, just like in the relational case: attributes in tuples come in some order so
we can write R(a1, . . . , an). Likewise, we shall describe an ℓ-labeled tree node with
n attributes as ℓ(a1, . . . , an). Note that arbitrary number of attributes can be
modeled by trees with one attribute per node, by using multiple children. Thus,
the number of attributes will not play any special role in our complexity results.
A tree T conforms to a DTD D (written as T |= D) if its root is labeled r, the

set of attributes for a node labeled ℓ is AD(ℓ), and the labels of the children of such
a node, read left-to-right, form a string in the language of PD(ℓ).
We write ‖D‖ for the total size of D, or, in other words, the memory needed to

store a natural representation of D. We shall extend this notation to other complex
objects (sets of patterns, schema mappings, automata, etc.) as needed.

2.2 Relational schema mappings

We review the standard definitions of relational schema mappings, see [Bernstein
and Melnik 2007; Fagin et al. 2003; Kolaitis 2005]. Given two disjoint relational
schemas S (source) and T (target), a source-to-target dependency is an expression
of the form ϕs(x̄, ȳ) −→ ψt(x̄, z̄), where ϕs is a conjunction of atoms over S

and ψt is a conjunction of atoms over T. If we have a source schema instance S
and a target schema instance T , we say that they satisfy the above dependency if
(S, T ) |= ∀x̄∀ȳ (ϕs(x̄, ȳ) −→ ∃z̄ ψt(x̄, z̄)). That is, we assume that new variables
on the right are quantified existentially, and the others are quantified universally.
We also omit quantifiers from our shorthand notation. Intuitively, new variables
z̄ correspond to new values put in the target: every time ϕs(x̄, ȳ) is satisfied, new
tuples are put in the target to satisfy ψt(x̄, z̄) for some z̄.
A schema mapping is a tripleM = (S,T,Σ) where S and T are source and target

relational schemas and Σ is a set of dependencies. We define [[M]] as the set of all
pairs S, T of source and target instances that satisfy every dependency from Σ. If
(S, T ) ∈ [[M]], one says that T is a solution for S underM.
Sometimes one also adds target constraints Σt to the mapping; then for (S, T ) ∈

[[M]] we in addition require that T satisfy Σt. In such a case solutions may not exist
and it is natural to ask whether solutions exist for some instance, all instances, or a
specific instance S. These are essentially various flavors of the consistency problem
for schema mappings; in their most general form, they are undecidable, but for
some important classes of relational constraints their complexity is well understood
[Kolaitis et al. 2006].
One of the main goals in the study of relational schema mappings is to define

various operations on them. Typically these operations correspond to changes that
occur in schemas, i.e., they model schema evolution. The two most important and
studied operations are composition and inverse. While there is still no universally
agreed definition of an inverse of a mapping [Arenas et al. 2009; Fagin et al. 2007],
the notion of composition is much better understood [Nash et al. 2007; Chiticariu
and Tan 2006; Fagin et al. 2004]. If we haveM = (S,T,Σ) andM′ = (T,W,Σ′),
the composition is defined as the relational composition [[M]] ◦ [[M′]]. A key ques-
tion then is whether we can have a new mapping, M ◦M′ between S and W

such that [[M ◦M′]] = [[M]] ◦ [[M′]]. A positive answer was provided in [Fagin

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 9

et al. 2004] for mappings that introduced Skolem functions, i.e., used rules like
ϕs(x̄) −→ ψt

(
f1(x̄1), . . . , fk(x̄k)

)
where the fi’s are Skolem functions and x̄i’s are

subtuples of x̄. For example, R(x1, x2) −→ T (x1, f(x2)) says that for each tuple
(x1, x2) in the source, a tuple containing x1 and a null needs to be put in the target,
but the null value should be the same for all tuples with the same value of x2.

2.3 Child-based schema mappings

The key idea of XML schema mappings defined in [Arenas and Libkin 2008] was to
extend the relational framework by viewing XML trees as databases over two sorts
of objects: tree nodes, and data values. Relations in such representations include
edges in the tree and relations associating attribute values with nodes. In [Arenas
and Libkin 2008], two restrictions were made. First, only child and descendant
edges were considered (essentially it dealt only with unordered trees). A second
restriction was that no joins on data values were allowed over the source.
In relational mappings joins are very common. For example, in S1(x, y) ∧

S2(y, z) −→ T (x, z) we compute a join of two source relations by means of reusing
the variable y. In the setting of [Arenas and Libkin 2008] this was disallowed.
To avoid the syntactically unpleasant formalism of two-sorted structures, [Are-

nas and Libkin 2008] formalized schema mappings by means of tree patterns with
variables for attribute values. Nodes are described by formulae ℓ(x̄), where ℓ is
either a label or the wildcard , and x̄ is a tuple of variables corresponding to the
attributes of the node. Patterns are given by:

π := ℓ(x̄)[λ] patterns
λ := ε | π | //π | λ, λ lists

(1)

That is, a tree pattern is given by its root node and a listing of its subtrees. A
subtree can be rooted at a child of the root (corresponding to π in the definition of
λ), or its descendant (corresponding to //π). We use abbreviations

ℓ(x̄) = ℓ(x̄)[ε] , ℓ(x̄)/ℓ′(ȳ) = ℓ(x̄)[ℓ′(ȳ)] , ℓ(x̄)//ℓ′(ȳ) = ℓ(x̄)[//ℓ′(ȳ)]

and write π(x̄) to indicate that x̄ is the list of variables used in π. For instance,
the source pattern in the first example in the Introduction can be expressed as

π1(x, y) = europe/country(x)/ruler(y) .

Schema mappings were defined in [Arenas and Libkin 2008] by means of constraints
π1(x̄, ȳ) −→ π2(x̄, z̄) so that no variable from x̄, ȳ appears in π1 more than once. For
example, the mapping from the Introduction can be expressed in this formalism.
The target pattern is

π2(x, y, z) = europe/succession[country(x), ruler(y), successor(z)] .

But no other mapping from the Introduction can be expressed in this syntax as
they use data comparison or horizontal navigation, and both are prohibited by (1).

3. SCHEMA MAPPING LANGUAGE

As suggested by our examples (and even translations from relational schema map-
pings to XML), it is natural to consider Skolem functions, equality/inequality com-
parisons, and additional axes (next- and following-sibling) in schema mappings.

Journal of the ACM, Vol. V, No. N, Month 20YY.



10 · S. Amano, C. David, L. Libkin, F. Murlak

We now extend patterns (1) to accommodate these additions. The first addition
is that we allow arbitrary terms constructed of variables function symbols. Terms
are defined inductively: each variable is a term, and if f is a function symbol of
arity k and t1, t2, . . . , tk are terms, then f(t1, t2, . . . , tk) is also a term. The second
addition is that we allow explicit equalities and inequalities between terms in the
patterns. The third addition is that we allow next- and following-sibling axes. To
do so, in the definition of lists of subtrees we replace occurrences of single trees by
sequences specifying precise next- and following-sibling relationship.
Extended patterns are given by the grammar

ϕ := π, α patterns
π := ℓ(t̄)[λ] pure patterns
λ := ε | µ | //π | λ, λ sets
µ := π | π → µ | π →+ µ sequences

(2)

where α is a conjunction of equalities and inequalities on terms over the set of
variables Var and a set of function symbols Fun, and t̄ is a tuple of terms. We
denote the set of variables used in ϕ by Varϕ, and write ϕ(x̄) to indicate that x̄ is
the list of all variables in Varϕ. Terms set aside, the main difference from (1) is
that we replaced π by µ (sequence) in the definition of λ, and µ specifies a sequence
of pure patterns together with their horizontal relationships.
As an example, we consider the last mapping from the Introduction. We now

express both left- and right-hand sides in our syntax. The left-hand side is

europe/country(x) [ruler(y)→ ruler(z)] , y 6= z

and the right-hand side is

europe[ ruler(f(y), y), ruler(f(z), z),

succession[country(x), rulerID(f(y)), successorID(f(z)) ] ] .

The formal semantics of patterns is defined by means of the relation (T, s, F ) |=
ϕ(ā), saying that ϕ(x̄) is satisfied in a node s of a tree T when its variables x̄ are
interpreted as ā and the function symbols are interpreted according to the valua-
tion F , assigning to each function symbol f of arity k a function F (f) : V k → V
(i.e., the value of f(t1, t2, . . . , tk) is F (f)(b1, b2, . . . , bk), where bi is the value of ti).
The relation is defined inductively as follows:

(T, s, F ) |= ℓ(t̄) if lab(s) = ℓ or ℓ = , and t̄ interpreted under F is the
tuple of attributes of s;

(T, s, F ) |= ℓ(t̄)[λ1, λ2] if (T, s, F ) |= ℓ(t̄)[λ1] and (T, s, F ) |= ℓ(t̄)[λ2];
(T, s, F ) |= ℓ(t̄)[µ] if (T, s, F ) |= ℓ(t̄) and (T, s′, F ) |= µ for some s′ with s ↓ s′;
(T, s, F ) |= ℓ(t̄)[//π] if (T, s, F ) |= ℓ(t̄) and (T, s′, F ) |= π for some s′ with s ↓+ s′;
(T, s, F ) |= π → µ if (T, s, F ) |= π and (T, s′, F ) |= µ for some s′ with s→ s′;
(T, s, F ) |= π →+ µ if (T, s, F ) |= π and (T, s′, F ) |= µ for some s′ with s→+ s′;
(T, s, F ) |= π, α if (T, s, F ) |= π and α holds under the interpretation F ;

where ↓+ and →+ are transitive closures of ↓ and →.
Observe that semantically “sets” in tree patterns are literally sets: for a node

satisfying ℓ(t̄)[λ1, λ2], the nodes witnessing λ1 and λ2 are not necessarily distinct.

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 11

For a tree T , a valuation F , and a pattern ϕ, we write (T, F ) |= ϕ(ā) to denote
(T, ε, F ) |= ϕ(ā), that is, patterns are witnessed at the root. This is not a restriction
since we have descendant // in the language, and can thus express satisfaction of a
pattern in an arbitrary node of a tree.
We write (T, F ) |= ϕ(x̄) if (T, F ) |= ϕ(ā) for some ā. If there are no function

symbols in ϕ, or the valuation is clear from the context, we write T |= ϕ(ā) and
T |= ϕ(x̄).
Note that patterns are closed under conjunction: (ℓ1(s̄)[λ1], α1) ∧ (ℓ2(t̄)[λ1], α2)

can be expressed as ℓ1(t̄)[λ1, λ2], α1∧α2∧s1 = t1∧s2 = t2∧· · ·∧sn = tn, if only ℓ1(s̄)
and ℓ2(t̄) are compatible, i.e., ℓ1 = ℓ2 or ℓ1 = or ℓ2 = , and s̄ = s1, s2, . . . , sn,
t̄ = t1, t2, . . . , tn. If ℓ1(s̄) and ℓ2(t̄) are not compatible, the conjunction is always
false. To express this we allow a special pattern ⊥, which can be seen as a new
element type, never allowed by the schema.

Definition 3.1. Source-to-target dependencies are expressions of the form

ϕ(x̄, ȳ) −→ ψ(x̄, z̄) ,

where ϕ and ψ are patterns, the pure pattern π underlying ϕ does not contain
function symbols nor repetitions of variables, and each variable ξ0 in x̄, ȳ satisfies
the safety condition: either ξ0 is used in π or ϕ contains a sequence of equalities
ξ0 = ξ1, ξ1 = ξ2, . . . , ξk−1 = ξk where ξ1, ξ2, . . . , ξk−1 are terms and ξk is a variable
used in π.
Given trees T and T ′ we say that they satisfy the above dependency with respect

to a valuation F if for all tuples of values ā, b̄ such that (T, F ) |= ϕ(ā, b̄), there
exists a tuple of values c̄ so that (T ′, F ) |= ψ(ā, c̄).

The restriction introduced in Definition 3.1 that π does not contain function
symbols nor repetitions of variables is only important for our classification, as we
would like to look at cases with no equality comparisons between attribute values
over the source (such as in [Arenas and Libkin 2008]). With equality formulae, this
is not a restriction at all: for example, a dependency r(x, x) −→ r′(x, x) can be
represented as

r(x, x′), x = x′ −→ r′(x, x′) .

For fragments where equality is allowed we shall just reuse variables.
Now we can define the notions of schema mappings and their semantics.

Definition 3.2. An XML schema mapping is a tripleM = (Ds, Dt,Σ), where
Ds is the source DTD, Dt is the target DTD, and Σ is a set of dependencies.
Given a tree T that conforms to Ds and a tree T ′ that conforms to Dt, we say

that T ′ is a solution for T underM if there exists a valuation F of function symbols
such that (T, T ′) satisfy all the dependencies from Σ with respect to F . We denote
the set of all solutions underM for T by SolM(T ).
The semantics ofM is defined as a binary relation

[[M]] =
{
(T, T ′)

∣∣ T |= Ds, T
′ |= Dt, T

′ ∈ SolM(T )
}
.

In the presence of function symbols, there is no need to introduce new variables on
the target sides of dependencies. They can all be removed by means of a procedure

Journal of the ACM, Vol. V, No. N, Month 20YY.



12 · S. Amano, C. David, L. Libkin, F. Murlak

called skolemization: for each variable zi occurring only on the target side, a fresh
function symbol fzi is introduced, and each occurrence of zi is replaced with fzi(x̄).
After this has been done, it is also possible to eliminate inequalities from the

target side, using equality on the source side and an incompatible pattern ⊥, e.g.,

ϕ(x̄, ȳ) −→ ψ(x̄), t1 6= s1, t2 6= s2

is equivalent to the following three dependencies

ϕ(x̄, ȳ) −→ ψ(x̄) ; ϕ(x̄, ȳ), t1 = s1 −→ ⊥ ; ϕ(x̄, ȳ), t2 = s2 −→ ⊥ .

The mappings introduced above naturally generalize the usual relational map-
pings. If we have relational schemas S and T, they can be represented as DTDs
DS and DT: for example, for S = {S1(A,B), S2(C,D)}, the DTD DS has rules
r → s1, s2; s1 → t∗1; s2 → t∗2, as well as t1, t2 → ε, with t1 having attributes A,B,
and t2 having attributes C,D. Then each conjunctive query over a schema is easily
translated into a pattern over the corresponding DTD together with some equality
constraints. For example, S1(x, y), S2(y, z) will be translated into

r[s1[t1(x, y1)], s2[t2(y2, z)]], y1 = y2.

Of course equalities can be incorporated into the pattern (by taking
r[s1[t1(x, y)], s2[t2(y, z)]]) but as we said, we often prefer to list them separately
to make classification of different types of schema mappings easier. Note also that
these patterns use neither the descendant relation nor the horizontal navigation nor
inequalities.

Classification of schema mappings. Dependencies used in schema mappings can
use four different axes for tree navigation – child, descendant, next and following
sibling – as well as equality, inequality, function symbols, and wildcard.
We denote classes of schema mappings by SM(σ), where σ is a signature indicat-

ing which of the above features are present in dependencies; i.e.,

σ ⊆ {↓, ↓+,→,→+,=, 6=, ,Fun}.

We refer to the usual navigational axes as ↓ (child), ↓+ (descendant), → (next-
sibling), →+ (following-sibling). Having = in σ means that we can use equalities in
patterns (and reuse variables); having 6= in σ means that we can use inequalities.
The use of wildcard is allowed if σ contains , and Skolem functions are allowed if
σ contains Fun.
To simplify notations, we use abbreviations:

⇓ for {↓, ↓+, } (vertical navigation and wildcard);

⇒ for {→,→+} (horizontal navigation);

∼ for {=, 6=} (data value comparisons).

Under these notations, SM(⇓) is precisely the class of mappings studied in [Arenas
and Libkin 2008] (as in [Arenas and Libkin 2008], we do not restrict variable reuse
in target patterns). In this paper we shall look at other classes, for instance,
SM(⇓,⇒), SM(⇓,∼), and the largest class SM(⇓,⇒,∼,Fun).
For reasons to be explained shortly, we work extensively with nested relational

schema mappings, i.e., schema mappings whose target schemas are nested relational

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 13

DTDs: non-recursive DTDs with productions of the form b → â1 . . . ân, where all
the ai’s are distinct, and â can stand for a itself, or a∗, or a+, or a? = (a|ǫ). By
SMnr(σ) we denote the class of nested relational schema mappings in SM(σ).
If we use the standard XML encoding of relational databases, then relational

schema mappings fall into the class SMnr(↓,=).

4. COMPLEXITY OF SCHEMA MAPPINGS

We look now at the membership problem and consider two flavors of it. Combined
complexity of schema mappings is the complexity of Membership:

Problem: Membership

Input: a mappingM, trees T, T ′

Question: (T, T ′) ∈ [[M]] ?

Data complexity of schema mappings is the complexity of Membership with M
fixed:

Problem: Membership(M)
Input: trees T, T ′

Question: (T, T ′) ∈ [[M]] ?

We start our complexity analysis by looking at two other problems, related with
patterns. The first problem is the satisfiability for tree patterns. Its input consists
of a DTD D and a pattern ϕ(x̄) without function symbols; the problem is to check
whether there is a tree T that conforms toD and has a match for ϕ (i.e., T |= ϕ(x̄)).
This problem is NP-complete; the result is essentially folklore as it appeared in
many incarnations in the literature on tree patterns and XPath satisfiability (see,
e.g., [Amer-Yahia et al. 2002; Benedikt et al. 2008; Björklund et al. 2008; Hidders
2003]). For the sake of completeness we include in the Appendix a simple proof,
that applies to patterns in the way they are defined here.

Proposition 4.1. The satisfiability problem for tree patterns is NP-complete.

The proof of this fact uses the notion of homomorphism, which we now recall, as
it will be useful in many arguments.

Definition 4.2. Fix a pattern ϕ(x̄, ȳ, z̄) = π(x̄, ȳ), α(x̄, z̄) and tuples ā, b̄, c̄. An
interpretation of the function symbols F is admissible if it makes α(ā, c̄) hold. Fix
an admissible interpretation F . A homomorphism h from ϕ(ā, b̄, c̄) into a tree T ,
denoted h : ϕ(ā, b̄, c̄) → T , is a function assigning to each sub-pattern of π(ā, b̄) a
node of T so that

(1 ) h(//π1) is an ancestor of h(π1);

(2 ) if h(ℓ(t̄)[µ1, µ2, . . . , µm]) = v, then

(a) either ℓ = or v is labeled with ℓ,

(b) the tuple t̄ interpreted under F is the tuple of attributes of v,

(c) if µi = π1 ❀1 π2 ❀2 · · ·❀k−1 πk for some ❀i∈ {→,→+}, then h(πj) are
children of v and h(π1) ❀1 h(π2) ❀2 · · ·❀k−1 h(πk) in T .

Journal of the ACM, Vol. V, No. N, Month 20YY.



14 · S. Amano, C. David, L. Libkin, F. Murlak

Observe that for a fixed admissible interpretation F ,

T |= ϕ(ā, b̄, c̄) ⇐⇒ there exists a homomorphism h : ϕ(ā, b̄, c̄)→ T.

The second problem is data and combined complexity of evaluating tree patterns.
For data complexity, we fix a pattern ϕ, and we want to check for a given tree T
and a tuple ā whether T |= ϕ(ā). For combined complexity, the question is the
same, but the input includes T, ā and ϕ.
Since patterns are essentially conjunctive queries over trees, the data complexity

is in LOGSPACE (and the bound cannot be lowered in general, since transitive
closures of ↓ and→may have to be computed). And since they are nicely structured
conjunctive queries, the combined complexity is tractable as well.

Proposition 4.3. The data complexity of tree patterns evaluation is
LOGSPACE-complete, and the combined complexity is in PTIME.

Let us go back to mappings. If an interpretation of function symbols is fixed,
the membership problem amounts to evaluating a single pattern. Fix a tree S, a
mapping M = (Ds, Dt,Σ) with no variables introduced on the target side, and a
valuation F of function symbols inM. Consider the following valuated tree pattern

δS,M,F =
∧{

ψ(ā)
∣∣ ϕ(x̄, ȳ) −→ ψ(x̄) ∈ Σ and (S, F ) |= ϕ(ā, b̄)

}
. (3)

Its size is bounded by ‖M‖ · |S|‖M‖. A straightforward check gives the following.

Lemma 4.4. T is a solution for S under M with the witnessing valuation F if
and only if T |= Dt and (T, F ) |= δS,M,F .

The complexity of XML mappings is quite high, but it matches that of relational
mappings with Skolem functions [Fagin et al. 2004; Pichler and Skritek 2011]. We
strengthen the lower bounds a bit by showing hardness for mappings without joins.

Theorem 4.5. For schema mappings from SM(⇓,⇒,∼,Fun), Membership is
NEXPTIME-complete, and Membership(M) is always in NP. Moreover, we get
matching lower bounds in both cases already for relational mappings with Skolem
functions, but without ∼.

Proof. Let us first see that Membership is in NEXPTIME. Let M be a
mapping, and let S and T be the source and target trees. Checking conformance
to DTDs can be done in PTIME. Let us concentrate on dependencies. Denote
by A the set of data values used in S or in T . As usually, we can assume that
no variables are introduced on the target side of the constraints. By Lemma 4.4,
T is a solution for S if there exists a valuation F of function symbols such that
(T, F ) |= δS,M,F . In order to compute and evaluate δS,M,F , it suffices to know
the values of all sub-terms occurring in the definition (3). Their number can be
bounded by N = ‖M‖ · |S|‖M‖. The algorithm non-deterministically chooses for
each of those sub-terms a value from A ∪ {⊥1,⊥2, . . . ,⊥N}, where ⊥i are distinct
fresh values, checks that the obtained valuation is consistent with the structure of
the terms, computes δS,M,F and evaluates it on T . By Proposition 4.3, all this can
be done in time polynomial in N and the size of the input.
To show hardness, we will provide a reduction from the following NEXPTIME-

hard tiling problem [Papadimitriou 1994]: Given a finite list of tile types T =

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 15

〈t0, t1, . . . , tk〉 together with horizontal and vertical adjacency relations H,V ⊆ T 2

and a number n in unary, decide if there exists a tiling of the 2n×2n-grid such that
a t0 tile occurs in the top left position, a tk tile occurs in the bottom right position,
and all adjacency relationships are respected.
We give a reduction to the relational case. Hardness for XML follows via the

standard reduction. We make additional effort to avoid using joins in the mappings.
Take an instance of the tiling problem. The source instance is

{
False(0),True(1),Eq(0, 0),Eq(1, 1)} ∪ {Ni(0, 1, . . . , 1︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
i−1

)
∣∣ i = 1, 2, . . . , n

}

and the target instance contains the adjacency relations H and V together with
{B(t0), E(tk)}. Let us now define the set of dependencies. Intuitively, we encode
tiles as values of a function f . The tile on position (i, j) is encoded as f(〈i〉bin〈j〉bin).
We need to check the adjacency relations. This can be done because we can express
incrementation on n-bit words. For each j = 1, 2, . . . n add dependencies

Eq(x1, u1), . . . ,Eq(xj , uj),Eq(y1, v1), . . . ,Eq(yn, vn)
Nn−j(xj+1, . . . , xn, uj+1, . . . , un)

−→ H(f(x̄, ȳ), f(ū, v̄)) ,

Eq(x1, u1), . . . ,Eq(xn, un),Eq(y1, v1), . . . ,Eq(yj , vj)
Nn−j(yj+1, . . . , yn, vj+1, . . . , vn)

−→ V (f(x̄, ȳ), f(ū, v̄)) .

We also need to check that we begin and end properly:

False(x1), . . . ,False(xn),False(y1), . . . ,False(yn) −→ B(f(x̄, ȳ)) ,

True(x1), . . . ,True(xn),True(y1), . . . ,True(yn) −→ E(f(x̄, ȳ)) .

In terms of data complexity, the algorithm described above is in NP: the size
of δS,M,F is polynomial for every fixed mapping. Let us now prove hardness. Re-
call that if we replace the 2n × 2n-grid with the n × n-grid in the tiling problem
considered above, we end up with an NP-complete problem. The idea of the reduc-
tion from this new problem to Membership(M) is the same as in the reduction
above, and the implementation is even simpler. As the source instance we take
{B(1), E(n),Eq(1, 1),Eq(2, 2), . . . ,Eq(n, n), N(1, 2), N(2, 3), . . . , N(n−1, n)}. The
target instance is just like before. The dependencies are

N(x, u),Eq(y, v) −→ H(f(x, y), f(u, v)) , B(x), B(y) −→ B(f(x, y)) ,

N(x, u),Eq(y, v) −→ V (f(y, x), f(v, u)) , E(x), E(y) −→ E(f(x, y)) .

It is routine to verify the correctness of the reduction.

The main source of hardness are Skolem functions. The first reduction above
uses function symbols of unbounded arity, but they can be easily encoded with
binary functions by using either nested terms or equality. If we bound the arity of
terms (the total number of occurrences of variables) and forbid explicit equalities
between terms (repetition of variables is allowed), the combined complexity drops
to the third level of the polynomial hierarchy. The data complexity is not affected,
since the mappings used in the second reduction above satisfy these restrictions.
Complete proof of the following result is in the Appendix.

Journal of the ACM, Vol. V, No. N, Month 20YY.



16 · S. Amano, C. David, L. Libkin, F. Murlak

Theorem 4.6. For schema mappings from SM(⇓,⇒,∼,Fun) with bounded arity
of terms and no explicit equality, Membership is Σp3-complete, and the lower bound
holds already for relational mappings without ∼.

If we forbid Skolem functions altogether, the data complexity of mappings drops
very low, but combined complexity is still complete for the second level of the
polynomial hierarchy, like in the relational case [Gottlob and Senellart 2010]. If
we additionally bound the number of variables in dependencies, even combined
complexity is polynomial.

Theorem 4.7. For schema mappings from SM(⇓,⇒,∼), Membership(M)
is LOGSPACE-complete, while Membership is Πp2-complete in general and in
PTIME if the maximum number of variables per pattern is fixed.

Proof. (1) Conformance to a fixed DTD can be checked in LOGSPACE. It
remains to show that we can check LOGSPACE if S and T satisfy a single
constraint ϕ(x̄, ȳ) −→ ψ(x̄, z̄). Let x̄ = x1, x2, . . . , xk, ȳ = y1, y2, . . . , yℓ, and
z̄ = z1, z2, . . . , zm. Let A be the set of data values used in S or T . We need to
check that for each ā ∈ Ak and each b̄ ∈ Aℓ such that S |= ϕ(ā, b̄) there exists
c̄ ∈ Am such that T |= ψ(ā, c̄). Since the numbers k, ℓ,m are fixed (as parts of
the fixed mapping), the space needed for storing all three valuations is logarithmic
in the size of S and T . Using Proposition 4.3 we obtain a LOGSPACE algorithm
by simply iterating over all possible valuations ā, b̄, and c̄. LOGSPACE-hardness
follows from Proposition 4.3.
(2) First let us see that the problem is in Πp2. Consider the following algorithm for

the complementary problem: guess a constraint ϕ(x̄, ȳ) −→ ψ(x̄, z̄) and a valuation
ā, b̄ of variables used in ϕ, and check that S |= ϕ(ā, b̄) and T 6|= ψ(ā, z̄). By
Proposition 4.3, the first check is polynomial. The second check however involves
a tree pattern possibly containing free variables, so it can only be done in coNP.
Altogether the algorithm is in Πp2. The Πp2 lower bound for relational mappings
using neither Skolem functions nor equality [Gottlob and Senellart 2010] carries
over to SM(↓) via the standard encoding. The original reduction can be obtained
as a natural modification of the from Theorem 4.6.
(3) Proceed just like in (1). The numbers of variables per pattern is bounded,

so there are only polynomially many possible valuations. Hence, we may iterate
over all of them using algorithm from Proposition 4.3 to check S |= ϕ(ā, b̄) and
T |= ψ(ā, c̄).

5. QUERY ANSWERING

5.1 Query answering problem

The fundamental problem of data exchange is answering queries over target data
in a way consistent with the source data. Inspired by the research on the relational
case [Barceló 2009; Fagin et al. 2003; Kolaitis 2005], we study query answering for
conjunctive queries and their unions. Conjunctive queries over trees are normally
represented with tree patterns [Gottlob et al. 2006; Björklund et al. 2007; 2008].
Thus, for querying XML documents we use the same language as for the dependen-
cies: tree patterns augmented with equalities as well as inequalities, to capture the

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 17

analog of relational conjunctive queries with inequalities. And, of course, we allow
projection.
That is, a query is an expression of the form

∃x̄ ϕ ,

where ϕ is a pattern using no function symbols, such that each free variable satisfies
the safety condition (see Definition 3.1). The semantics is defined in the standard
way. The output of the query is the set of those valuations of free variables that
make the query hold true. This class of queries is denoted by CTQ (conjunctive
tree queries). Note that CTQ is indeed closed under conjunctions, due to the
semantics of λ, λ′ in patterns.
We also consider unions of such queries: UCTQ denotes the class of queries of the

form Q1(x̄) ∪ · · · ∪ Qm(x̄), where each Qi is a query from CTQ. Like for schema
mappings, we write CTQ(σ) and UCTQ(σ) for σ ⊆ { ↓, ↓+,→,→+,=, 6=} to
denote the subclass of queries using only the symbols from σ.
Consider a source DTD Ds

europe → country∗ country : @name

country → ruler∗ ruler : @name

and a target DTD Dt

rulers → ruler∗ ruler : @name

ruler → successor successor : @name

Assuming the rulers are stored in the chronological order on the source side, a
natural schema mappingM might be defined with the following dependency:

europe/country[ruler(x)→ ruler(y)] −→ rulers/ruler(x)/successor(y) .

Suppose that the source tree T1 is the tree in Fig. 1 given in the introduction. A
natural solution for T1 is the following tree T2:

rulers

ruler

(James V )

successor

(Mary I )

ruler

(Mary I )

successor

(James VI & I )

ruler

(James VI & I )

successor

(Charles I )

ruler

(Elizabeth I )

successor

(James VI & I )

As we already know, every tree obtained from T2 by adding new children with
arbitrary data values, or by permuting the existing children, is also a solution for
T1. For instance, T3, shown below, is also a solution for T1:

rulers

ruler

(James V )

successor

(Mary I )

ruler

(Mary I )

successor

(James VI & I )

ruler

(James VI & I )

successor

(Charles I )

ruler

(Louis XIII )

successor

(Charles I )

ruler

(Elizabeth I )

successor

(James VI & I )

A query one might ask over the target database is to list the rulers who were suc-
cessors to more that one ruler. This would be expressed by the following conjunctive

Journal of the ACM, Vol. V, No. N, Month 20YY.



18 · S. Amano, C. David, L. Libkin, F. Murlak

query MultiSucc:

∃x ∃y

(
rulers

[
ruler(x)/successor(z),
ruler(y)/successor(z)

]
, x 6= y

)

On T2 the query MultiSucc would return {“James VI & I”}, and on T3 the an-
swer would be {“James VI & I”, “Charles I”}. What is the right answer then?
Following [Arenas and Libkin 2008; Fagin et al. 2003], we adapt the certain an-
swers semantics.
For a mappingM, a query Q, and a source tree T conforming to Ds, we return

the tuples which would be returned for every possible solution:

certainM(Q, T ) =
⋂{

Q(T ′)
∣∣ T ′ is a solution for T underM

}
.

The subscript M is omitted when it is clear from the context. (Note that our
queries output sets of tuples rather than trees, so we can define certain answers by
taking the intersection of the answers over all solutions). In our running example,

certainM(MultiSucc, T1) = {“James VI & I”} .

Note that when Q is a Boolean query, certainM(Q, T ) is true if and only if Q is
true for all the solutions.
Fix an XML schema mapping M and a query Q. We are interested in the

following decision problem.

Problem: certainM(Q)
Input: a tree T , a tuple s̄

Question: s̄ ∈ certainM(Q, T ) ?

We now recall what is already known about simple settings based on downward
navigation [Arenas and Libkin 2008], i.e., mappings from SM(⇓,=) and queries from
UCTQ(⇓,=). The problem is in coNP, and could be coNP-hard. To reduce the
complexity, one can vary three parameters of the problem: DTDs, dependencies,
and queries. It turns out that in order to get tractability we have to restrict the
first two parameters simultaneously.
The general idea behind the restrictions is to avoid any need for guessing where

patterns could be put in a target tree. For that, the mapping has to be as specific
as possible. In terms of DTDs this restriction is well captured by the notion of
nested relational DTDs: there is no explicit disjunction, and each node has either
at most one a-labeled child or arbitrary many a-labeled children for each a. But
guessing is also involved whenever wildcard or descendant is used. The following
restricts their use.

Definition 5.1. (see [Arenas and Libkin 2008]) We say that a schema mapping
is fully specified if it uses neither nor ↓+ in target patterns in dependencies.

The following summarizes known results on simple mappings that only use ver-
tical navigation.

Fact 5.2. (see [Arenas and Libkin 2008]) For every schema mapping M in
SM(⇓,=) and every query Q ∈ CTQ(⇓,=)

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 19

(1) certainM(Q) is in coNP,

(2) certainM(Q) is in PTIME, ifM is nested-relational and fully specified.

Moreover, if any of the hypotheses in (2) is dropped, one can find a mapping M
and a query Q such that certainM(Q) is coNP-complete.

Note that item (2) includes, as a special case, the tractability of the certain
answers problem for conjunctive queries in relational data exchange. Indeed, it says
that answering queries from CTQ(⇓,=) (and even unions of those) is tractable for
mappings from SMnr(↓,=), and as we remarked earlier, relational schema mappings
fall into this class under the natural representation of relations as flat trees.
The result of [Arenas and Libkin 2008] is actually more precise. For mappings

from SMnr(↓,=) there is a dichotomy in the first parameter: if DTDs allow enough
disjunction, the problem is coNP-hard, otherwise it is polynomial. The exact class
of tractable DTDs is the one using so called univocal regular expressions (see [Are-
nas and Libkin 2008] for a rather involved definition). Intuitively, it extends nested-
relational DTDs with a very week form of disjunction. Query answering in this case
is based on constructing a specific instance using a chase procedure, and the use of
disjunction in DTDs is limited so as to keep the chase polynomial.

Our goal Given the results of [Arenas and Libkin 2008], we must stay with
a restricted class of DTDs and fully specified dependencies to have any hope of
getting tractability of query answering. Hence, our questions are:

(1) How bad could the complexity of certainM(Q) be if we extend the classes
SMnr(⇓,=) of mappings and CTQ(⇓,=) of queries?

(2) Can we extend the classes SMnr(⇓,=) of mappings and CTQ(⇓,=) of queries
with new features while retaining tractable query answering?

In the next section, we show that the coNP bound is not broken by adding new
features as long as inequality is not allowed in queries. With inequality allowed,
the problem quickly becomes undecidable.

5.2 General upper bound

In the previous section we have sketched the tractability frontier for simple map-
pings and simple queries. Now, we would like to see what can be done to extend the
tractable case with horizontal navigation and data comparisons. But first, we need
to verify whether the upper bound remains the same with all the new features.
It is known that containment for conjunctive queries with data equalities and

inequalities is undecidable over trees [Björklund et al. 2008]. From this it already
follows that certainM(Q) cannot be uniformly decidable if inequality is allowed. In
fact, it can be undecidable already for a fixedM and Q that use either child/next-
sibling or child/descendant navigation (see Appendix).

Proposition 5.3. If σ contains either ↓, ↓+ or ↓,→, then there exist a mapping
M ∈ SM(σ) and a query Q ∈ CTQ(σ,∼) such that certainM(Q) is undecidable.
In the case of ↓,→, this holds even under restriction to nested-relational DTDs.

Unlike in some other cases (e.g., relational queries under the closed world seman-
tics [Abiteboul et al. 1991]), the coNP upper bound on certain answers is nontrivial

Journal of the ACM, Vol. V, No. N, Month 20YY.



20 · S. Amano, C. David, L. Libkin, F. Murlak

even in the case of simple child-based mappings (see page 9). Now we show that we
can recover the upper bound for much more expressive mappings. This can be done
by casting the problem as a special case of query answering over incomplete XML
documents, for which the coNP bound was recently proved [Barceló et al. 2010].
We point out that the combined complexity of the procedure proposed in [Barceló
et al. 2010] is bad (worse then exponential), but probably can be improved.

Proposition 5.4. For every schema mapping M from SM(⇓,⇒,∼,Fun) and
every query Q from UCTQ(⇓,⇒,=), the complexity of certainM(Q) is in coNP.

Proof. Take a query Q ∈ UCTQ(⇓,⇒,∼), a mapping M = (Ds, Dt,Σ), and
a source tree S conforming to Ds. Without loss of generality we can assume that
Q is Boolean and that Σ does not introduce fresh variables on the target side. By
Lemma 4.4, the certain answer to Q is false iff there exists a tree T such that
T 6|= Q, T |= Dt, T |= δS,M,F for some witnessing valuation F , where

δS,M,F =
∧{

ψ(ā)
∣∣ ϕ(x̄, ȳ) −→ ψ(x̄) ∈ Σ and (S, F ) |= ϕ(ā, b̄)

}
.

Like in the proof of Theorem 4.5, for all sub-terms in the definition of δS,M,F we
can guess consistent values from the set of data values used in S or a set of nulls
{⊥1,⊥2, . . . ,⊥N}, where N = ‖M‖ · |S|‖M‖, and compute δS,M,F in polynomial
time. Assume that all the equalities and inequalities in δS,M,F hold (if not, reject),
and let π be the pure pattern underlying δS,M,F . Note that π contains no variables,
only data values. Now, it remains to see if there exists a tree T such that T |= Dt,
T |= π and T 6|= Q, which is exactly an instance of the complement of the certain
answers problem in the incomplete information scenario considered in [Barceló et al.
2010]. Hence, it can be done in NP.

Having seen that the upper bound is not affected as long as queries do not
use inequality, we can move on to the second question: Can we find σ1 ⊇ {⇓,=}
and σ2 ⊇ {⇓,=} such that certainM(Q) is tractable for all fully specified
M ∈ SMnr(σ1) and Q ∈ UCTQ(σ2)? In what follows we show that it is almost
impossible to extend the query language, but schema mappings can be extended
with new features—under certain restrictions.

5.3 Extending the query language

We shall now see that even for simple mappings, SMnr(↓,=), the query language
cannot be extended beyond UCTQ(⇓,=).
First, we note that inequality cannot be allowed. We have already seen that it

can lead to undecidability for relatively modest mapping languages. But already in
the relational case there are conjunctive queries with just two inequalities for which
the problem is coNP-hard (with one inequality the problem is tractable) [Fagin
et al. 2003; Ma̧dry 2005]. Since the usual translation from the relational setting to
the XML setting produces mappings from SMnr(↓,=), we have the following result.

Corollary 5.5. There exist a schema mapping M ∈ SMnr(↓,=) and a query
Q in CTQ(↓,=, 6=) such that certainM(Q) is coNP-complete.

Similarly, extending the query language with any form of horizontal navigation
leads to intractability even for the simplest mappings, SMnr(↓).

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 21

Proposition 5.6. There exist a schema mapping M ∈ SMnr(↓), a query Q1 ∈
CTQ(↓,→,=), and a query Q2 ∈ CTQ(↓,→+,=) such that both certainM(Q1)
and certainM(Q2) are coNP-complete.

Proof. The coNP upper bound follows from Proposition 5.4. For the lower
bound we only give the proof for→; the proof for→+ can be obtained by replacing
→ with →+ in our argument.
We give an XML schema mappingM and a Boolean query Q such that 3SAT is

reducible to the complement of certainM(Q), i.e., for each 3SAT instance θ

certainM(Q, Tθ) is false iff θ is satisfiable,

where Tθ is a tree encoding of θ described below.

Suppose we are given a 3-CNF formula θ =
∧n
i=1

∨3
j=1 ℓij , where ℓij is a literal,

and in each clause all three literals are different. The tree encoding, Tθ, is best
explained on a concrete example. A formula (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4) is
encoded as

r

C

L1

(1)
L2

(6)
L3

(7)

C

L1

(3)
L2

(5)
L3

(8)

V
(1,2)

V
(3,4)

V
(5,6)

V
(7,8)

Each V node has two attribute values encoding a variable and its negation with
two different values. For example, the node V (1, 2) indicates that x1 is encoded
by the data value 1 and ¬x1 by 2. Also for each clause in the formula we have a
C node that has three children labeled L1, L2, L3. Each Li holds the data value
encoding the ith literal in the clause. In the example above, the second literal of
the first clause is ¬x3 and hence the data value of L2 under the first C node is 6.
Let us now describe the mapping. In accordance with the encoding, let Ds be

r → C∗V ∗ V : @a1,@a2

C → L1L2L3 Li : @b

where i = 1, 2, 3. The target DTD Dt is defined as

r → C∗V ∗ V : @a1,@a2

C → L∗ L : @b

The dependencies Σ essentially copy Tθ in the target, but allow the reordering of
children under each C node with the use of ‘,’(comma). This reordering corresponds
to ‘choosing one literal per clause’ mentioned earlier. Intuitively, a literal is chosen
if its copy has more than two following siblings. Since each C node has three
L-children with different data values, at least one literal is chosen for each clause.

r[C[L1(x), L2(y), L3(z)]]→ r[C[L(x), L(y), L(z)]]

r[V (x, y)]→ r[V (x, y)]

Thus, a solution gives a (partial) valuation satisfying θ, provided that the choices
are consistent. This is taken care of by the query: it is true if a variable and its
negation are contained among the chosen literals. The query is

∃x∃y
(
r
[
V (x, y), C[L(x)→ L→ L], C[L(y)→ L→ L]

])
.

Journal of the ACM, Vol. V, No. N, Month 20YY.



22 · S. Amano, C. David, L. Libkin, F. Murlak

One easily proves that certainM(Q, Tθ) = false if and only if θ is satisfiable.

We have seen that even if we stick to child-based mappings, we cannot extend
the query language. But perhaps we can find a more suitable class of mappings?
Observe that mappings in the reductions violated the idea behind the principle of
being fully specified (although not the formal definition), as queries used horizontal
navigation, and yet mappings did not specify it completely, by allowing the set
constructor λ, λ′ in patterns (see page 10). Such non-determinism in placing pat-
terns in target trees leads to intractability. So it seems natural to restrict the use of
this non-determinism and require that the mappings specify the relative ordering of
each two sub-patterns which start at children of the same node. An even stronger
restriction could demand that the → relation among the siblings be specified com-
pletely. Unfortunately, unlike in [Arenas and Libkin 2008], such restrictions do not
lead to tractability. Concrete examples can be found in the Appendix.

5.4 Extending the mapping language

In this section we show that one can allow restricted use of horizontal ordering, func-
tion symbols, and data value comparisons in the mappings without losing tractabil-
ity, provided that we stick to the basic query language.
Let us first see that with next-sibling query answering is intractable.

Proposition 5.7. There exists a mapping M ∈ SMnr(↓,→) and a Boolean
query Q ∈ CTQ(↓,=) such that certainM(Q) is coNP-complete.

Proof. The upper bound follows from Proposition 5.4. To obtain the lower
bound, we modify the reduction from 3SAT is to the complement of certainM(Q)
given in Proposition 5.6. The source DTD Ds and the tree encoding the proposi-
tional formula are identical. The target DTD Dt is similar to Ds:

r→ C∗V ∗ V : @a1,@a2

C →ML∗N L : @b

L→ K?

The dependencies Σ copy the tree Tθ in the target, transforming Li labels into L,
adding M and N nodes w.r.t. the target DTD and adding a K-node under at least
one L-node for each C-node:

r/C[L1(x), L2(y), L3(z)] −→ r/C[M → L(x)→ L(y)→ L(z)→ N,L/K] ,

r/V (x, y) −→ r/V (x, y) .

Intuitively, K means that the literal is set to true. As the mapping ensures that
at least one literal is chosen for each clause, a solution gives a (partial) valuation
satisfying θ, provided that we have chosen consistently. This is verified by the query

∃x∃y r
[
V (x, y), C/L(x)/K,C/L(y)/K

]
.

Clearly, the query is true if a variable and its negation are chosen.

The mechanism leading to intractability is actually the one motivating the defi-
nition of nested-relational DTDs: by using the pattern r/C[M → L(x)→ L(y)→
L(z) → N,L/K] in the mapping above we bound the number of L-children and

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 23

thus enforce that the location of the K-node is guessed. We will eliminate this kind
of behavior. We say that a sequence κ = π1 → π2 → · · · → πn is a segment of a
sequence µ, if µ is of the form µ′ →+ κ →+ µ′′, µ′ →+ κ, κ →+ µ′′, or κ. Each
πj → πj+1 → · · · → πj′ is called a sub-segment of µ. The sequence µ is bounding

for a production σ → ℓ̂1 ℓ̂2 . . . ℓ̂m if it has a sub-segment κ such that

head(κ) = τ → ℓi → ℓi → · · · → ℓi︸ ︷︷ ︸
k

→ τ ′

for k > 1, ℓi /∈ {τ, τ ′} and ℓ̂i = ℓ∗i or ℓ̂i = ℓ+i , where head(κ) is defined as

head(τ(s̄)[λ]) = τ ,

head(π1 ❀1 · · ·❀m−1 πm) = head(π1) ❀1 · · ·❀m−1 head(πm) .

A mapping is non-bounding if none of its target patterns contains a sub-pattern of
the form σ(s̄)[λ, µ, λ′] where µ is a bounding sequence for the production for σ in
the target DTD. We will use this restriction later.
With inequality and function symbols query answering is also intractable even

for the simplest query language.

Proposition 5.8. There exists a mapping M ∈ SMnr(↓,=, 6=,Fun) and a
Boolean query Q ∈ CTQ(↓) such that certainM(Q) is coNP-complete.

Proof. In fact, we can prove the coNP-hardness already for relational mappings.
From this the claim follows via standard reduction.
Take a 3-CNF formula

∧m
i=1X

1
i ∨ X

2
i ∨ X

3
i , with Xℓ

i ∈
{
xj , x̄j

∣∣ j = 1, . . . , n
}
.

We encode each pair of literals xi, x̄i as i and n + i. Let the source instance
be {var(1, n+1), var(2, n+2), . . . , var(n, 2n)}∪

{
clause(k1i , k

2
i , k

3
i )
∣∣ i = 1, . . . ,m

}
,

where kℓi = p if Xℓ
i = xp, and kℓi = n + p if Xℓ

i = x̄p. The target schema only
contains a unary relation R.
The mapping guesses truth values for the literals by means of two function sym-

bols, f and g. If f(d) = g(d), then the literal encoded by d is true, otherwise it is
false. If the guess is inconsistent, or leaves some clause false, the mapping demands
an R tuple in the target. The dependencies are

var(x, y), f(x) = g(x), f(y) = g(y) −→ R(u) ,

var(x, y), f(x) 6= g(x), f(y) 6= g(y) −→ R(u) ,

clause(x, y, z), f(x) 6= g(x), f(y) 6= g(y), f(z) 6= g(z) −→ R(u) .

The query Q is simply ∃xR(x). Clearly, there exists a valuation satisfying the
formula iff there exist functions f, g such that ∅ is a valid solution. Hence, the
certain answer is true iff the formula is not satisfiable.

To regain tractability we restrict the conditions put on the guessed values. A
mapping M is ∼-monotonic if it does not contain inequalities between nontrivial
terms on the source side, i.e., dependencies are of the form

π(x̄), α=(x̄), α6=(x̄) −→ π′(x̄), α′(x̄)

where α= is a conjunction of equalities among terms over the variables in x̄, and
α6= is a conjunction of inequalities among variables in x̄. Roughly speaking, this

Journal of the ACM, Vol. V, No. N, Month 20YY.



24 · S. Amano, C. David, L. Libkin, F. Murlak

restriction makes dependencies monotonic with respect to equalities between nulls.
Note that this setting extends both: mappings with function symbols but without
inequalities, and mappings with inequalities but without function symbols.

Throughout the rest of this section we work exclusively with fully specified (i.e.,
using neither nor ↓+ on the target side), non-bounding, and ∼-monotonic map-
pings in SMnr(⇓,⇒,∼,Fun). We are aiming at the following tractability result.

Theorem 5.9. Let M be a fully specified, non-bounding, and ∼-monotonic
mapping in SMnr(⇓,⇒,∼,Fun). Then certainM(Q) is in PTIME for every
Q ∈ UCTQ(⇓,=).

Towards this end we extend the techniques from [Arenas and Libkin 2008] based
on the notion of universal solutions, a standard concept in data exchange [Fagin
et al. 2003]. As a first step, observe that queries in UCTQ(⇓,=) are completely
ignorant to the sibling ordering: if a solution T ′ is obtained from a solution T
by a permutation of siblings, then Q(T ) = Q(T ′) for each Q ∈ UCTQ(⇓,=).
We now generalize and strengthen this property in terms of homomorphisms that
ignore sibling order, and reduce query answering to the problem of constructing
“unordered” universal solutions.
As usually, it is convenient to distinguish between constants, i.e., data values

appearing on the source side, and nulls, representing the unknown values invented
to fill in missing values on the target side. We write Const and Nulls for these sets.
An unordered homomorphism h : T → T ′ consists of a function hNode : dom(T )→

dom(T ′) preserving the root, child relation and labeling, and a function
hNull : Nulls → Nulls ∪ Const, extended to Const as identity, such that if v stores a
tuple t̄ of entries from Nulls ∪ Const, hNode(v) stores hNull(t̄).

Lemma 5.10. If there exists an unordered homomorphism h : T → T ′ between
solutions T and T ′, then Q(T ) ⊆ Q(T ′) for each Q ∈ UCTQ(⇓,=).

U is an unordered universal solution for S underM if it is a solution for S, and
for each other solution T there is an unordered homomorphism from U to T .

Lemma 5.11. Let M ∈ SM(⇓,⇒,∼,Fun) and let U be an unordered universal
solution for a source tree S. For each Q ∈ UCTQ(⇓,=) and each tuple ā,

ā ∈ certainM(Q,S) iff ā ∈ Q(U) .

What Lemma 5.11 means is that certain answers to queries from UCTQ(⇓,=)
can be computed by näıve evaluation on any unordered universal solution. Thus, in
order to prove Theorem 5.9, it suffices to show how to construct unordered universal
solutions in PTIME. The rest of this section describes a solution to this problem.

By Lemma 4.4, T is a solution for S under M = (Ds, Dt,Σ) with a witnessing
valuation F iff T |= Dt and T |= δS,M,F , where

δS,M,F =
∧{

ψ(ā)
∣∣ ϕ(x̄, ȳ) −→ ψ(x̄) ∈ Σ and (S, F ) |= ϕ(ā, b̄)

}
.

Consequently, constructing an unordered universal solution amounts to finding a
“universal” tree satisfying a certain pattern, as soon as we have the correct wit-
nessing valuation. We first show how to build such a tree for a given pattern, and
then how to find the witnessing valuation.

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 25

We start by adjusting patterns to DTDs: for a fully specified non-bounding
pattern ϕ and a nested-relational DTD D, we construct a pattern ϕ′ such that

—ϕ′ is implied by ϕ on trees conforming to D,

—ϕ′ seen as a tree conforms to D and satisfies ϕ.

We turn ϕ into ϕ′ by means of two operations, called completion and merging.
We say that a pattern ϕ is complete with respect to a nested relational DTD D if

each of its nodes has all the children required by the DTD. More precisely, a label
τ is missing in a sub-pattern σ(t̄)[λ] if τ occurs in the production for σ as τ or τ+,
but λ cannot be presented as λ1, µ1 ❀ τ(s̄)[λ′] ❀ µ2, λ2. A pattern is complete if
no label is missing in its sub-patterns.
Completion simply extends the pattern with all missing labels and thus makes it

complete. For a DTD D and a tuple of variables x̄, the operation cplx̄D is defined
inductively as follows:

cplx̄D(λ, λ
′) = cplx̄D(λ), cpl

x̄
D(λ

′) ,

cplx̄D(µ ❀ µ′) = cplx̄D(µ) ❀ cplx̄D(µ
′) ,

cplx̄D
(
σ(t̄)[λ]

)
= σ(t̄)

[
cplx̄D

(
λ
)
, cplx̄D

(
τ1(t̄1)

)
, cplx̄D

(
τ2(t̄2)

)
, . . . , cplx̄D

(
τm(t̄m)

)]
,

where τ1, . . . , τm are the missing labels and t̄i = f i1(x̄), f
i
2(x̄), . . . , f

i
pi
(x̄) where pi is

the number of attributes of τi and f
i
j are fresh function symbols. Since D is non-

recursive, the operation terminates and returns a pattern at most single exponential
in the size of D. We write cplD(π) for cpl

Varπ
D (π), and cplD(π, α) for cplD(π), α.

It is easy to see that the result of completion is equivalent to the original pattern,
up to the valuation of the new function symbols.

Lemma 5.12. Let D be a nested relational DTD, and let ϕ(x̄) be a fully specified
tree pattern. For each T |= D and each valuation F there exists a valuation G of
the new function symbols such that for all ā

(T, F ) |= ϕ(ā) iff (T, F ∪G) |= (cplDϕ)(ā) .

The aim of merging is to merge all sub-patterns that are always mapped to the
same node in trees conforming to the given DTD. More precisely, for a given ϕ it
produces a pattern ϕ′ such that

—ϕ′ admits an injective homomorphism into a tree conforming to D,

—a match for ϕ implies a match for ϕ′, and an injective match for ϕ′ implies a
match for ϕ (over trees conforming to D).

Fix a nested-relational DTD D. The pattern mrgD(ϕ) is built inductively, with
new equalities (induced by merging nodes) added to the global set E along the way.
In the beginning the set E is empty.
If there is no sibling ordering, the construction is easy. To obtain

mrgD(σ(ū)[π1, . . . , πm]) proceed as follows (s̄ = t̄ stands for s1 = t1, . . . , sd = td).

(1) Return ⊥ whenever head(πi) = τ for some τ not used in the production for σ.

(2) For each τ with σ → . . . τ . . . or σ → . . . τ? . . . merge all πi’s with head(πi) = τ :
(a) remove all πi’s with head(πi) = τ , say, πij = τ(t̄j)[λj ] for 1 ≤ j ≤ k,
(b) add a single pattern mrgD(τ(t̄1)[λ1, . . . , λk]),

Journal of the ACM, Vol. V, No. N, Month 20YY.



26 · S. Amano, C. David, L. Libkin, F. Murlak

(c) add to E equalities t̄1 = t̄j for all 2 ≤ j ≤ k.

(3) Replace all the remaining πi with mrgD(πi).

(4) Return the obtained pattern and the equalities from E.

The resulting pattern is clearly equivalent to the original one (over trees conforming
to D), and it admits injective homomorphisms into some trees conforming to D (or
is not satisfiable at all).
If we allow sibling order, some labels occurring under ∗ or + might need merging.

For instance, under r→a∗b∗; b→c?d? all a’s in r
[
a→b→+ b[c], a→b→+ b[d]

]
need

to be mapped to the same a-node (the rightmost one), which means they should
be merged. Similarly, the subsequent b’s should be merged. More generally, for
a pattern σ(ū)[µ1, . . . , µk] and a production σ → τ̂1τ̂2 . . . τ̂n in D, we say that a
sub-segment κ of µi is critical if

head(κ) = τj with τ̂j ∈ {τj , τj?} or head(κ) = τj → τj′ with j < j′ .

Since D is nested relational, each critical sub-segment corresponds to a unique node
or a pair of nodes in every sequence of children of a σ-node (or cannot be matched at
all). Therefore, identical critical sub-segments need to be merged into one, possibly
enforcing further merging of the segments containing them.
It is not always possible to guarantee equivalence when merging in the presence

of sibling order. In the example above, how does one express that b[c] and b[d]
come after a → b in some order? This cannot be done with tree patterns. The
solution is to skip →+ connecting a → b to b[c] and b[d]. The resulting pattern
r
[
a → b, b[c], b[d]

]
is not equivalent, but it satisfies the postulated properties: it is

implied by the original pattern, and if it is mapped injectively into a tree conforming
to D, the tree satisfies the original pattern. This is because in every injective match
this particular→+ relation is enforced by the DTD. We exploit this idea further in
the procedure below.
To obtain mrgD(σ[µ1, . . . , µm]) perform the following steps, collecting equalities

in a set E, initially empty.

(1) Check consistency. Assume that σ → τ̂1τ̂2 . . . τ̂n in D. Let ω be obtained from
τ̂1τ̂2 . . . τ̂n as follows:
(a) set τ̂j to τj whenever τ̂j = τj? and some head(µi) contains τj ,
(b) set τ̂j to τj whenever τ̂j = τ+j or τ̂j = τ∗j and some head(µi) contains a

sub-segment τj1 → τj → τj2 with j1 < j < j2,
(c) replace τ̂j with ε whenever τ̂j = τj? or τ̂j = τ∗j and some head(µi) contains

a sub-segment τj1 → τj2 with j1 < j < j2.
If some head(µi) cannot be satisfied in a word generated by ω, return ⊥.

(2) Remove implied →+. Remove each occurrence of→+ between two segments of
µi, say κ1 →+ κ2, unless head(κ1) and head(κ2) are both of the form τ → τ →
. . .→ τ for the same label τ occurring as τ+ or τ∗ in ω.

(3) Merge segments according to critical sub-segments. As long as there are two
segments that contain critical sub-segments with the same head, merge them
as follows. Let the segments be

π−j → . . .→π0 → π1 → . . .→ πk′ → πk′+1 → . . .→ πk ,

π′
−j′ → . . .→ π′

−j−1 → π′
−j → . . .→π′

0 → π′
1 → . . .→ π′

k′ ,

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 27

where πi = τi(ūi)[λi], π
′
i = τi(ū

′
i)[λ

′
i] and either π0, π

′
0 or π0 → π1, π

′
0 → π′

1 are
critical sub-segments with the same head (we assume j < j′ and k′ < k, other
cases are analogous). If τi = τ ′i for i = −j, . . . , k

′, merge the segments to

π′′
−j′ → . . .→ π′′

−j−1︸ ︷︷ ︸
π′′
i
=mrgD(τ ′

i
(ū′

i
)[λ′

i
])

→ π′′
−j → . . .→ π′′

0 → π′′
1 → . . .→ π′′

k′︸ ︷︷ ︸
π′′
i
=mrgD(τi(ūi)[λi,λ

′
i
])

→ π′′
k′+1 → . . .→ π′′

k︸ ︷︷ ︸
π′′
i
=mrgD(τi(ūi)[λi])

with equalities ū−j = ū′−j, . . . , ūk′ = ū′k′ added to E (if π′′
i = ⊥ for some i,

return ⊥). If τi 6= τ ′i for some i ∈ {−j, . . . , k′}, return ⊥.

(4) Return the obtained tree pattern and the equalities from E.

For generalized patterns, mrgD(π, α) = (π′, α′ ∧ α), where (π′, α′) = mrgD(π).
Note that for all tuples of terms t̄ we have

(mrgDϕ)(t̄) = mrgD(ϕ(t̄)) . (4)

Indeed, the merging procedure never looks at the terms, even when it adds equalities
in step (3), it just matches corresponding attributes.
The described procedure is clearly polynomial and the size of mrgDϕ is linear

in the size of ϕ. A simple inductive argument gives the lemma below, showing
that mrgDϕ satisfies the required properties as long as ϕ is fully specified and non-
bounding (see Appendix). A tree T is consistent with a DTD D if it conforms to
the DTD obtained from D by setting the root symbol to the label of the root of T .
By ϕ◦ we denote the pattern obtained from ϕ by replacing each τ(t̄) with τ , and
dropping all equalities and inequalities.

Lemma 5.13. Let D be a nested relational DTD and let ϕ(x̄) be a fully specified
non-bounding tree pattern. Then, mrgDϕ is fully specified and non-bounding, and
for every T consistent with D and every F, ā

(1 ) (T, F ) |= ϕ(ā) implies (T, F ) |= (mrgDϕ)(ā);

(2 ) if (T, F ) |= (mrgDϕ)(ā) and the witnessing homomorphism is injective, then
(T, F ) |= ϕ(ā);

(3 ) if mrgDϕ 6= ⊥ and F is admissible, (mrgDϕ)(ā) admits an injective homomor-
phism into a tree consistent with D.

In particular, (mrgDϕ)(ā) is satisfiable w.r.t. D iff ϕ(ā) is satisfiable w.r.t. D, and
mrgDϕ = ⊥ iff ϕ◦ is not satisfiable in a tree consistent with D.

Combining the two operations we build a tree conforming to D and satisfying ϕ.

Corollary 5.14. Let ϕ(x̄) be a fully specified non-bounding pattern, complete
with respect to a nested-relational DTD D. Assume that mrgDϕ 6= ⊥ and let T
be the tree obtained from mrgDϕ by evaluating terms according to some admissible
F, ā. Then T is consistent with D and (T, F ) |= ϕ(ā).

Proof. By Lemma 5.13(3), (mrgDϕ)(ā) can be matched injectively in some T ′

consistent with D. Since the merging operation never removes children, and ϕ is
complete, so is (mrgDϕ)(ā). Hence, its image in T ′ is a tree consistent with D.
Since the matching is injective, the image is isomorphic to T . The second claim
follows from (T, F ) |= (mrgDϕ)(ā) by Lemma 5.13(1).

Journal of the ACM, Vol. V, No. N, Month 20YY.



28 · S. Amano, C. David, L. Libkin, F. Murlak

Let us now return to the construction of an unordered universal solution. Suppose
that the mapping contains no function symbols, nor variables introduced on the
target side, and all its target patterns are complete. Recall the pattern δS,M,∅

combining all target sides of dependencies for the empty valuation ∅ of function
symbols (the unique partial mapping from Fun to functions over data values, that
has empty domain). It is complete as well, and has no free variables. If it is not
satisfiable with respect to Dt, there is no solution for S at all. Consider ρ, α =
mrgDt

(δS,M,∅). By Lemma 5.13, ρ 6= ⊥ and α is satisfied. Let U be ρ viewed as
a tree. By Corollary 5.14 we conclude that U is a solution. To show that U is
universal, take some solution T . By Lemma 4.4 and Lemma 5.13(1), T |= ρ, so
there exists a homomorphism from ρ to T . As U and ρ are isomorphic, this gives
a homomorphism from U to T , and proves universality of U . In the general case
we need to find the witnessing valuation, which is done by means of a chase-like
procedure described in the proof below.

Theorem 5.15. LetM = (Ds, Dt,Σ) be a fully specified, non-bounding and ∼-
monotonic mapping in SMnr(⇓,⇒,∼,Fun) with at most d variables in each source
side pattern. For each source tree T an unordered universal solution can be com-
puted in time polynomial in ‖M‖+ |T |d + ‖Dt‖‖Dt‖.

Proof. Let Fun be the set of function symbols used inM, and let Const be the
set of data values used in T . Also, let Nulls be the set of nulls. Let GT(Const,Fun)
denote the algebra of ground terms over Const ∪ Fun, where elements of Const are
treated as constants. In this algebra, we are using the term interpretation of the
function symbols. Under the term interpretation, the value of f(“4”, “1”, “7”) is
the term “f(4, 1, 7)”.
Let α be a conjunction of equalities of terms from GT(Const,Fun). Define ≈α as

the least congruence on GT(Const,Fun) extending
{
(t, s)

∣∣ t = s or s = t is a conjunct of α
}
. (5)

Let [t]α denote the ≈α-class of t. If d ≈α d′ =⇒ d = d′ for all d, d′ ∈ Const, we
say that α is consistent. Otherwise it is inconsistent.
Assume α is consistent. Let να : GT(Const,Fun)/≈α

→ Const ∪ Nulls be a fixed
injection preserving constants, i.e., satisfying να([c]α) = c for c ∈ Const. Let ν̃α be
the lifting of να to GT(Const,Fun), i.e., ν̃α(t) = να([t]α). Note that ν̃α(t) = c ∈
Const iff t ≈α c.
We define a valuation such that each term t evaluates to ν̃α(t). Let Rg ν stand

for the range of function ν. Let Fα assign to every k-ary function symbol f ∈ Fun,
the function Fα(f) : (Rg ν̃α)

k → Rg ν̃α given as Fα(f)(ν̃α(t1), ν̃α(t2), . . . , ν̃α(tk)) =
ν̃α(f(t1, t2, . . . , tk)). To see that Fα(f) is well defined, take s1, s2, . . . sk such that
ν̃α(si) = ν̃α(ti) for all i. By the definition of ν̃α, it means that να([si]α) =
να([ti]α). As να is injective, we have [si]α = [ti]α. Since ≈α is a congru-
ence, f(t1, t2, . . . , tk) ≈α f(s1, s2, . . . , sk), and consequently ν̃α(f(t1, t2, . . . , tk)) =
ν̃α(f(s1, s2, . . . , sk)).
Since under Fα each term t evaluates to ν̃α(t), we have t = s under Fα iff t ≈α s.

The latter can be checked in PTIME for given α, s, t.
For a valuation F of function symbols and a pattern π using no variables, we

write F (π) for the pattern obtained by evaluating the terms in π according to F .

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 29

In the following we say that a dependency ϕ(x̄, ȳ) −→ ψ(x̄) is pending for a pattern
π, α and tuples ā, b̄ ∈ Const if (T, Fα) |= ϕ(ā, b̄) but Fα(π) viewed as a tree does
not satisfy ψ(ā) under the valuation Fα. The algorithm iteratively refines a pattern
π, α (describing the solution), processing pending dependencies and merging into
π, α the missing target constraints. In the last step of the algorithm, the pattern
is converted into a solution.
Recall that we can eliminate all inequalities on the target side by means of

equality on the source side and an inconsistent pattern ⊥ on the target side. By
Lemma 5.12, we can assume that the target side patterns are complete. Initially,
let π = r (the trivial pattern), and let α = true. Repeat the following until there
is no change in π, α:

—Find ā, b̄ and a dependency ϕ(x̄, ȳ) −→ ψ(x̄) pending for π, α and ā, b̄.

—Let π′, α′ = mrgDt
((π, α) ∧ ψ(ā)).

—If π′ = ⊥ or α′ is inconsistent, return “no solution”.

—Replace π, α with π′, α′.

When the loop terminates, let U be the (unordered) tree obtained from π by ignor-
ing→,→+ and evaluating the terms according to Fα (admissible, as α is consistent).
Clearly, the pair (T, U) satisfies all dependencies with the witnessing valuation

Fα. By Corollary 5.14, U is consistent with Dt. Since U has label r in the root,
it conforms to Dt. Hence, U is a solution. It remains to prove that it is universal,
and that if the algorithm returns “no solution”, there is indeed no solution at all.
We shall prove by induction that after every iteration, for each solution T ′ with

a witnessing valuation F , (T ′, F ) |= π, α. For the initial values π = r, α = true,
the claim obviously holds. Assume the claim for π, α and let ϕ(x̄, ȳ) −→ ψ(x̄) be
a dependency pending for π, α and ā, b̄; in particular, (T, Fα) |= ϕ(ā, b̄). Suppose
that T ′ is a solution with a witnessing valuation F . By the induction hypothesis,
α holds under F . Hence, the equality of terms under F is a congruence extending
(5). Since ≈α is the least such congruence, by the definition of Fα, whenever
s = t under Fα, it also holds that s = t under F . Since M is ∼-monotonic, ϕ
does not contain inequalities between nontrivial terms (only between variables).
Consequently, (T, Fα) |= ϕ(ā, b̄) implies (T, F ) |= ϕ(ā, b̄), and so (T ′, F ) |= ψ(ā).
Since (T ′, F ) |= ψ(ā)∧(π, α) and ψ(ā)∧(π, α) is fully specified and non-bounding, we
conclude by Lemma 5.13 (1) that (T ′, F ) |= (π′, α′) where (π′, α′) = mrgDt

((π, α)∧
ψ(ā)), and the claim follows.
The algorithm returns “no solution” only when π′ = ⊥ or α′ is inconsistent.

Then, by the claim above, no solution exists. If the loop terminates with a positive
result, the claim holds for the obtained π, α. In particular, if T ′ is a solution with a
witnessing valuation F , there exists a homomorphism h : F (π)→ T ′. If we manage
to define a homomorphism g : Fα(π)→ F (π), we will be done because U is Fα(π)
viewed as a tree, and so g ◦ h induces a homomorphism from U to T ′. A natural
candidate for g is obtained by taking identity on nodes of π; we only need to check
if g is well defined on nulls and preserves constants. Since α holds under F , like
before we conclude that s = t under Fα implies s = t under F . In particular, if
t = c ∈ Const under Fα, then t = c under F .
As for the complexity, note that the main loop is executed at most ‖M‖ · |T |d

Journal of the ACM, Vol. V, No. N, Month 20YY.



30 · S. Amano, C. David, L. Libkin, F. Murlak

CTQ(↓,=) CTQ(⇓,=) CTQ(↓,⇒,=)

fully specified SMnr(⇓,=) PTIME PTIME coNP

restricted SMnr(⇓,⇒,∼,Fun) PTIME PTIME coNP

SM(⇓,=) coNP coNP coNP
‘restricted’ means ‘fully specified, non-bounding, ∼-monotonic’.
Results on CTQ(⇓,=) for SM(⇓,=) and fully specified SMnr(⇓,=) are from
[Arenas and Libkin 2008].

Fig. 2. The complexity of certainM(Q)

times. The size of the candidate solution grows by at most ‖Dt‖‖Dt‖ ·‖M‖ (the size
of the target side pattern after completion) in each execution of the loop. Hence,
the size of the computed solution can be bounded by |T |d · ‖Dt‖‖Dt‖ · ‖M‖2.
The cost of a single execution of the main loop is polynomial in ‖M‖ · |T |d +
‖Dt‖

‖Dt‖ · ‖M‖. Altogether, the data complexity of the algorithm is polynomial,
and the combined complexity is polynomial in ‖M‖+ |T |d + ‖Dt‖‖Dt‖.

Figure 2 presents the summary of the main results of this section. When we
write coNP, we mean that the problem could be coNP-complete for some choice
of a mapping and a query from the relevant classes (and is in coNP for all such
choices). The last line says that beyond the class of fully specified mappings, there
is no hope to get tractability. Within the class of fully specified mappings, it is
clear that we have certain freedom to increase the expressiveness of the mappings,
but not the queries.
The conclusion, therefore, is that one must restrict the usage of sibling order and

inequality to the mappings. What sense does it make to use sibling order in the
mapping if we cannot ask queries about it? The example in Section 5.1 shows how
one can meaningfully use sibling order on the source side, and store the result on
the target side as labeled tuples. In fact, the semantics of the mappings makes it
impossible to copy from the source to the target ordered sequences of children of
arbitrary length. Hence, whatever we encode on the target side with sibling order,
we can equally well encode using labeled tuples, provided we have a little influence
on the target DTD. Thus, forbidding horizontal navigation in the target database
and queries we do not lose much in terms of expressiveness.

6. CONSISTENCY OF SCHEMA MAPPINGS

As we mentioned in the introduction, XML schema mappings may be inconsistent:
there are mappings M such that no tree has a solution. Formally, a mapping is
consistent if [[M]] 6= ∅; that is, if SolM(T ) 6= ∅ for some T |= Ds. The decision
problem we consider is the following:

Problem: Cons(σ)
Input: A mappingM = (Ds, Dt,Σ) ∈ SM(σ)

Question: IsM consistent?

The complexity of recognizing consistent mappings in SM(⇓) and SMnr(⇓)
was established in [Arenas and Libkin 2008]. (Recall that nr indicates restric-
tion to nested-relational DTDs, i.e., non-recursive DTDs with rules of the form
ℓ→ ℓ̂1 . . . ℓ̂m for distinct ℓi’s, where ℓ̂i is ℓi or ℓi? or ℓ∗i or ℓ+i .)

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 31

Fact 6.1. (see [Arenas and Libkin 2008]) Cons(⇓) is EXPTIME-complete. If
we further restrict to nested-relational DTDs in schema mappings, then Cons(⇓)
is in polynomial (cubic) time.

Here we analyze how the complexity of the problem depends on other features
used in the mappings: horizontal axes and data comparisons.
More refined consistency questions are whether a given source instance has a

solution, and whether each source instance has a solution [Amano et al. 2009]. As
shown recently in [Bojanczyk et al. 2013], these questions are very different from
the original consistency problem: they are both decidable even for the most general
mappings considered here, albeit with high combined complexity.

6.1 Adding horizontal axes

In this section we check how the complexity of consistency changes after horizontal
axes are introduced. Our first result shows that in the absence of data comparisons,
the complexity stays the same.

Theorem 6.2. The problem Cons(⇓,⇒,Fun) is in EXPTIME (and thus
EXPTIME-complete).

The key observation is that without data comparisons, Cons(⇓,⇒) amounts to
solving the problem for mappings that do not mention data values at all, which
can be done by tree automata techniques. Recall that ϕ◦ denotes the tree pat-
tern obtained from ϕ by replacing ℓ(t̄) with ℓ (ℓ can be a label or ). Let
Σ◦ =

{
ϕ◦ −→ ψ◦

∣∣ (ϕ −→ ψ) ∈ Σ
}
. It is easy to check that (Ds, Dt,Σ) is con-

sistent iff (Ds, Dt,Σ
◦) is consistent: obviously [[(Ds, Dt,Σ)]] ⊆ [[(Ds, Dt,Σ

◦)]] and
if (S, T ) ∈ [[(Ds, Dt,Σ

◦)]], then trees S′ and T ′, obtained by replacing all data val-
ues with a single data value, satisfy (S′, T ′) ∈ [[(Ds, Dt,Σ)]]. Thus we can assume
that all tree patterns are variable-free. When data values are ignored, XML trees
become ordinary trees, and we can use tree automata to reason about them.
Let us recall the notion of “first child, next sibling” tree automaton. Such an

automaton can be presented as a tuple A = (Γ, Q, q0, QF , δ), where Γ is the labeling
alphabet (the set of element types in our case), Q is the state space with the initial
state q0 ∈ Q and final states QF ⊆ Q, and δ ⊆ Q × Γ × Q × Q is the transition
relation. A run of A over a tree T is a labeling ρ of the nodes of T with the states
of A that satisfies the following conditions for each node v:

—(ρ(v), labT (v), q0, q0) ∈ δ if v has no children and no next sibling;

—(ρ(v), labT (v), q0, ρ(w)) ∈ δ if v has no children but has the next sibling w;

—(ρ(v), labT (v), ρ(v · 0), q0) ∈ δ if v has children v ·0, . . . , v ·k, but no next sibling;

—(ρ(v), labT (v), ρ(v · 0), ρ(w)) ∈ δ if v has children v·0, . . . , v·k and next sibling w.

The languages of trees recognized byA, denoted by L(A), consists all trees admitting
an accepting run of A, i.e. a run that assigns one of the final states to the root.
It is well known that there is a polynomial translation from DTDs to automata.

Lemma 6.3. For each DTD D there exists a polynomial tree automaton recog-
nizing

{
T
∣∣ T |= D

}
.

Journal of the ACM, Vol. V, No. N, Month 20YY.



32 · S. Amano, C. David, L. Libkin, F. Murlak

The next step is to translate patterns to automata. Since we need to express
negations of patterns as well, it is convenient to translate directly into deterministic
automata. Recall that a tree automaton is (bottom-up) deterministic, if for all
q1, q2 ∈ Q and a ∈ Σ there is exactly one state q such that (q, a, q1, q2) ∈ δ. For a
deterministic automaton A one obtains an automaton recognizing the complement
of L(A) by replacing the set of final states QF with its complement Q−QF .

Lemma 6.4. For every variable-free pattern π, there exists a deterministic tree
automaton recognizing

{
T
∣∣ T |= π

}
that can be computed by a PSPACE transducer

(a Turing machine with polynomial working space and a write-only output tape).

Proof. Let Seq π denote the set of sequence sub-patterns of π, that is patterns
of the form π1 ❀1 π2 ❀2 · · ·❀k πk+1 with ❀1,❀2, . . . ,❀k∈ {→,→+} and k ≥ 0
that are sub-terms of the term constituting π.
To recognize

{
T
∣∣ T |= π

}
the automaton simply computes for each node v the

set of sequence sub-patterns that are satisfied in v and those that are satisfied to
the right from v. The state space is Q = 2Seqπ × 2Seqπ, with the initial state (∅, ∅)
and final states QF =

{
(Φ,Φ′)

∣∣ π ∈ Φ
}
. The transition relation simply updates

the two sets based on their values in the first child and the next sibling. Formally,
for a label a we set δ(a, (Φ,Φ′), (Ψ,Ψ′)) = (∆,Ψ ∪ Ψ′), where ∆ consists of all
sequence sub-patterns of π of the form π1 → µ or π1 →+ µ′ or π1 such that

—µ ∈ Ψ, µ′ ∈ Ψ ∪Ψ′;

—if π1 = ℓ[µ1, . . . , µn] then ℓ ∈ { , a}, µ1, . . . , µn ∈ Φ ∪ Φ′;

—if π1 = //ℓ[µ1, . . . , µn] then either π1 ∈ Φ ∪Φ′ or ℓ ∈ { , a}, µ1, . . . , µn ∈ Φ ∪Φ′.

Observe that each state is represented as an object of size polynomial in the size
of π and checking (Φ,Φ′) ∈ QF and ((∆,∆′), a, (Φ,Φ′), (Ψ,Ψ′)) ∈ δ can be done in
PTIME. It follows easily that the whole automaton can be computed by a PSPACE
transducer.

Proof of Theorem 6.2. As we have observed, it is enough to consider map-
pings that do not mention data values. By Lemma 6.4 we can construct in ex-
ponential time a deterministic tree automaton A(ϕ) that accepts the set of trees
satisfying ϕ. Since the automaton is deterministic, the automaton A(ϕ) accepting
the complement of A(ϕ) is also computable in exponential time.
For a mapping (Ds, Dt,Σ) to be consistent, there must exist a pair (S, T ) such

that for all ϕ −→ ψ ∈ Σ it holds that S |= ϕ implies T |= ψ. Suppose Σ ={
ϕi −→ ψi

∣∣ i = 1, 2, . . . , n
}
. Then the existence of such a pair is equivalent to the

existence of a subset I ⊆ {1, 2, . . . , n} satisfying

—there exists S |= Ds such that S 6|= ϕj for all j 6∈ I,

—there exists T |= Dt such that T |= ψi for all i ∈ I.

This amounts to non-emptiness of the automata

ADs
×
∏

j 6∈I

A(ϕj) and ADt
×
∏

j∈I

A(ψj) ,

where ADs
and ADt

are automata recognizing trees conforming to Ds and Dt

respectively (Lemma 6.3). It is known that testing non-emptiness of A1 × · · · ×Ak

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 33

can be done in time O(|A1|× · · ·× |Ak|). Since the construction of each A(ϕ) takes
exponential time, the overall complexity is EXPTIME.

Unlike the case of mappings SM(⇓) with downward navigation only, once we add
even the simplest form of horizontal navigation, consistency is intractable even over
nested-relational DTDs.

Proposition 6.5. Over nested-relational DTDs, Cons(⇓,⇒) and Cons(⇓,→)
are PSPACE-complete.

The proof of the upper bound is similar to that of Theorem 6.2, but this time,
instead of computing the automata explicitly, we generate them on-the-fly during
the non-emptiness check, using the full power of Lemma 6.4. We also rely on the
fact that testing non-emptiness of an automaton A on trees of depth d can be done
in space polynomial in d · log ‖A‖. Details can be found in the Appendix.
We note that the upper bounds of this section could also be obtained via a

reduction to XPath satisfiability [Benedikt et al. 2008].

6.2 Adding data comparisons

We now move to classes of schema mappings that allow comparisons of attribute
values. It is common to lose decidability (or low complexity solutions) of static anal-
ysis problems once data values and their comparisons are considered [Bojanczyk
et al. 2009; Björklund et al. 2008; David 2008; Fan and Libkin 2002; Segoufin 2006].
Here we witness a similar situation. The proofs, however, cannot be simple adap-
tations of existing proofs which showed undecidability of such formalisms as FO3

[Bojanczyk et al. 2009] or Boolean combinations of patterns with data value com-
parisons [David 2008]. The reason is the very “positive” nature of dependencies in
schema mappings: the use of negation is limited to the implication in dependencies,
while known undecidable formalisms can use negation freely.
Nevertheless, we can prove a strong undecidability result: having either descen-

dant or next-sibling, together with = or 6=, leads to undecidability of consistency.

Theorem 6.6. Problems Cons(↓, ↓+,=), Cons(↓, ↓+, 6=), Cons(↓,→,=), and
Cons(↓,→, 6=) are all undecidable; the latter two already under the restriction to
nested-relational DTDs. In particular, Cons(⇓,⇒,∼) is undecidable.

Proof. (1) Consider first Cons(↓, ↓+,=). We give a reduction from the halting
problem of 2-register machine, known to be undecidable. Given a 2-register machine
(defined below), we construct a schema mapping that is consistent iff the machine
halts. Trees encoding runs of a 2-register machine will be of the form:

r

I1(0, 0)

I1(1, 0)
...

R(0)

R(1)
...

Intuitively, the left branch is meant to represent sequence of states with data values
representing registers while the right one is a sequence to represent natural numbers.
We do not have any equality test against a constant (say, a natural number). So,

Journal of the ACM, Vol. V, No. N, Month 20YY.



34 · S. Amano, C. David, L. Libkin, F. Murlak

what we really do is simulate values by the depth from the root. More concretely
0 and 1 above might as well be 7 and 3. Whatever they are, we simply take the
value at the 0th level as 0 and the 1st level as 1, and so on. The above tree can be
easily described by a DTD. To make sure it is a proper run of the given machine,
we use dependencies to check that the registers change their values according to
legal transitions.
Let us now describe the reduction in detail. A 2-register machine M consists

of a set of states Q = {1, 2, . . . , f}, a list of instructions I = (Ii)i∈Q\{f} (one
instruction for each state apart from the last state f), and two registers r1 and r2,
each containing a natural number. An instantaneous description (ID) of M is a
triple (i,m, n) where i ∈ Q and m,n ∈ N are natural numbers stored in r1 and r2,
respectively.
An instruction of 2-register machine is either increment or decrement, and defines

the transition relation →M between IDs.

Increment. Ii = (r, j), where i, j ∈ Q and r is one of r1 and r2. This means that
M in state i increments r and goes to state j:

(i,m, n)→M

{
(j,m+ 1, n) if r = r1 ,

(j,m, n+ 1) if r = r2 .

Decrement. Ii = (r, j, k), where i, j, k ∈ Q and r is one of the two registers.
This means that M in state i can test whether r is 0, and go to state j if it is, or
decrement r and go to k if it is not. In symbols,

(i,m, n)→M





(j, 0, n) if r = r1 and m = 0 ,

(k,m− 1, n) if r = r1 and m 6= 0 ,

(j,m, 0) if r = r2 and n = 0 ,

(k,m, n− 1) if r = r2 and n 6= 0 .

The initial ID is (1, 0, 0) and the final ID is (f, 0, 0). The halting problem for
2-register machine is to decide, given a 2-register machineM , whether (1, 0, 0)→∗

M

(f, 0, 0).
Let us now describe how to construct a mapping that is consistent iff the given

machine halts. The source DTD Ds over {r, I1, I2, . . . , If , R, ♯} is given by

r → I1R

Ii → Ij for all i such that Ii = (r, j)

Ii → Ij |Ik for all i such that Ii = (r, j, k)

R→ R|♯

If , ♯→ ε

where each Ii has two attributes corresponding to the values of the registers, and
R has one attribute. The target DTD Dt is just r → ε.
As mentioned above, the sequence of R’s is meant to be that of natural numbers,

but what represents a number is the depth in the tree instead of a value itself.
In other words, the data values are used as indices, so they must be unique. The

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 35

following dependency disallows two values to appear more than once.

//R(x)//R(x) −→ ⊥

Let us now deal with the left branch, which is meant to encode the run itself. We
have assumed that the initial ID is (1, 0, 0); it is enforced by the constraint below.

r[I1(x, y), R(z)] −→ x = y, z = y

Now, let us check that we proceed correctly. For each i such that Ii = (r1, j), we
need to enforce that there is a number in the R-branch to set the value of r1 to,
and that the next configuration is indeed obtained by increasing r1.

r[//Ii(x, y), //R(x)/♯] −→ ⊥

r[//Ii(x, y)/Ij(x
′, y′), //R(x)/R(x′′)] −→ x′ = x′′, y′ = y

For each i such that Ii = (r1, j, k), we need to say: if the next state is k, then r1
stores 0, and both registers stay the same; if the next state is j, then r1 does not
store 0, the register r1 gets decreased, and r2 stays the same.

r[//Ii(x, y)/Ik(x
′, y′), R(x′′)] −→ x = x′′, x′ = x, y′ = y

r[//Ii(x, y)/Ij , R(x)] −→ ⊥

r[//Ii(x, y)/Ij(x
′, y′), //R(x′′)/R(x)] −→ x′ = x′′, y′ = y

For each i such that Ii = (r2, j) or Ii = (r2, j, k) we add analogous dependencies.
Finally, we have to make sure that we end properly. In each source tree, the left

branch must end with If , so we do not need to check that. It is enough to say that
both registers are set to 0.

r[//If (x, y), R(z)] −→ x = z, y = z

The obtained mapping (Ds, Dt,Σ) is consistent iff there is a halting run of the given
2-register machine. Thus we have proved that Cons(↓, ↓+,=) is undecidable.

(2) For Cons(↓,→,=), essentially, we rotate the encoding above by 90 degrees.
To make the source DTD nested-relational, in the encoding of the run we use a
single label I with i ∈ Q stored as an attribute. It requires a bit of hassle to make
sure the attributes store values from a fixed set representing Q and to check which
state a given value represents.
Let the source DTD be

r → ♯R+ ♮ I+ ♭ I1 I2 . . . If

R, Ij : @attr 1 ≤ j ≤ f

I : @state @reg1 @reg2

and let the target DTD be r → ε.
The dependency //R(x)//R(x) −→ ⊥ ensuring that the values representing reg-

ister values do not repeat can be rewritten as r[R(x)→+ R(x)] −→ ⊥, but in order
to get undecidability of Cons(↓,→,=), we need to enforce this property without
→+. Due to non-injective semantics of tree patterns, we cannot distinguish between
something happening once and twice, which means we need a trick. The idea is to

Journal of the ACM, Vol. V, No. N, Month 20YY.



36 · S. Amano, C. David, L. Libkin, F. Murlak

disallow switching from one data value to two different ones (the first dependency),
or switching to a data value and the ending marker (the second dependency).

r [R(x)→ R(y), R(x)→ R(y′)] −→ y = y′

r [R(x)→ R,R(x)→ ♮] −→ ⊥

These two conditions imply that if a value repeats in two nodes, the sequence of
children between these nodes repeats forever. The latter obviously cannot happen
in a finite tree, which means that data values stored in R-nodes never repeat.
We want to think of the data value stored in Ii as the name of the state i of our

2-register machine. For that purpose it is enough to say that no two are equal:

r [Ii(x), Ij(x)] −→ ⊥ for all i 6= j

To enforce correctness of the encoded computation, we exploit the fact that our
2-register machine is deterministic: we express that each configuration is followed
by the configuration determined by the instructions of the machine and the content
of the counters. We have assumed that the initial ID is (1, 0, 0):

r[♮→ I(q, x, y), ♯→ R(z), I1(q
′)] −→ q = q′, x = z, y = z .

Now, let us check that we proceed correctly. For each i such that Ii = (r1, j), we
need to enforce that there is a number in the R-branch to set the value of r1 to,
and that the next configuration is indeed obtained by increasing r1:

r[I(q, x, y), Ii(q), R(x)→ ♮] −→ ⊥ ,

r[I(q, x, y)→ I(q′, x′, y′), Ii(q), Ij(q
′′), R(x)→ R(x′′)] −→ x′ = x′′, y′ = y, q′ = q′′.

For each i such that Ii = (r1, j, k), we need to say: if r1 stores 0, then the next state
is k, and both registers stay the same; if r1 does not store 0, then the next state is
j, r1 gets decreased, and r2 stays the same.

r[I(q, x, y)→I(q′, x′, y′), Ii(q), Ik(q
′′), ♯→R(x)] −→ x′ = x, y′ = y, q′ = q′′

r[I(q, x, y)→I(q′, x′, y′), Ii(q), Ij(q
′′), R(x′′)→R(x)] −→ x′ = x′′, y′ = y, q′ = q′′

For each i such that Ii = (r2, j) or Ii = (r2, j, k) we add analogous dependencies.
Finally, we make sure that we end properly, i.e., that the last ID is (f, 0, 0).

r[I(q, x, y)→ ♭, ♯→ R(z), If (q
′)] −→ x = z, y = z, q = q′

The obtained mapping (Ds, Dt,Σ) is consistent iff there is a halting run of the
given 2-register machine. Thus we have proved that Cons(↓,→,=) is undecidable.

(3) It is not difficult to rewrite all the dependencies in the vertical and horizontal
version with 6= instead of =. To eliminate = from the target side, simply replace
all dependencies of the form ϕ −→ x = y, z = w, . . . , with ϕ, x 6= y −→ ⊥,
ϕ, z 6= w −→ ⊥, etc. On the source side, we use equality in the form of repeated
variables. In dependencies like r[I(q, x, y), Ii(q), R(x) → ♮] −→ ⊥ we use two
repetitions, and we cannot replace them with inequalities on the target side without
disjunction. In such dependencies, the repeated use of q expresses the fact that q
represents state i. Using inequality we can express this in a different way: we
can say that q does not represent any other state. This is done by replacing the
term Ii(q) with I1(q1), . . . , Ii−1(qi−1), Ii+1(qi+1), . . . , If (ff ) and adding inequalities

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 37

q 6= q1, . . . , q 6= qi−1, q 6= qi+1, . . . , q 6= gf to the source side. Separately, we ensure
that the first attribute of each I-node stores a data value representing some state:

r[I(q, x, y), I1(q1), . . . , If (ff )], q 6= q1, . . . , q 6= gf −→ ⊥ .

This gives an equivalent set of dependencies with at most one repetition of variable.
It remains to replace the two occurrences of the repeated variable x with x1 and
x2, add x1 6= x2 on the target side and remove ⊥.

This result raises the question whether there is any useful decidable restriction of
SM(⇓,⇒,∼). We know from papers such as [Bojanczyk et al. 2009; Fan and Libkin
2002] that getting decidability results for static analysis problems that involve data
values is a very nontrivial problem. This time, nested-relational DTDs give us a
decidable restriction, if there are no horizontal axes.

Theorem 6.7. Under the restriction to nested-relational DTDs, both
Cons(⇓,∼,Fun) and Cons(↓, ,=) are NEXPTIME-complete.

Proof. (1) Let us start with the upper bound for Cons(⇓,∼,Fun). Let M =
〈Ds, Dt,Σ〉 be a schema mapping withDs andDt nested-relational. First recall that
tree pattern formulae (even with = and 6=) are monotone in the following sense: for
any tree pattern formula ϕ, if T ′ is obtained from T by erasing some subtrees and
T ′ |= ϕ, then T |= ϕ. Roughly speaking, this allows us to consider the smallest tree
possible with regard to a DTD. More precisely, for a nested-relational DTD D, D◦

is obtained by turning each ℓ∗ and ℓ? into ε and each ℓ+ into ℓ [Arenas and Libkin
2008]. The mappingM is consistent iff (D◦

s , Dt,Σ) is consistent. Since disjunctions
are not allowed in productions, we have only one tree conforming to D◦

s (up to data
values stored in the attributes). The size of this tree is at most Ns = ‖Ds‖‖Ds‖.
Let us guess a tree S like this, with attributes taken from Bs = {1, 2, . . . , Ns}. By
Lemma 4.4, a tree T , conforming to Dt, is a solution for S iff it satisfies

δS,M,F =
∧{

ψ(ā)
∣∣ ϕ(x̄, ȳ) −→ ψ(x̄) ∈ Σ and (S, F ) |= ϕ(ā, b̄)

}
.

for some valuation F of function symbols. Like in the proof of Theorem 4.5, for
all sub-terms in the definition of δS,M,F we can guess consistent values from Bs ∪
{⊥1,⊥2, . . . ,⊥N}, where N = ‖M‖ · |S|‖M‖ = ‖M‖ · ‖Ds‖‖Ds‖·‖M‖, and compute
δS,M,F (in exponential time). Assume that all the equalities and inequalities in
δS,M,F hold (if not, reject), and let π be the pure pattern underlying δS,M,F . Note
that π contains no variables. It remains to see if there exists a tree T such that
T |= Dt, T |= π. By Lemma 4.1, this can be done nondeterministically in time
polynomial in the size of π and Dt. Hence, the whole procedure is in NEXPTIME.
(2) The lower bound for Cons(↓, ,=) is proved by a reduction from the following

NEXPTIME-complete problem: given a non-deterministic Turing machine M and
n ∈ N, does M accept the empty word in at most 2n steps? The idea of the
reduction is to encode in the target tree an accepting run of M (a sequence of 2n

configurations of length 2n). The machine M is stored in the source tree, except
the (specially preprocessed) transition relation, which is encoded in the target tree.
The source tree is also used to address the configurations and their cells.
Let M have the tape alphabet A with the blank symbol ♭ ∈ A and the states

q0, q1, . . . , qf . W.l.o.g. we assume that qf is the only final accepting state. The

Journal of the ACM, Vol. V, No. N, Month 20YY.



38 · S. Amano, C. David, L. Libkin, F. Murlak

extended transition relation of M , denoted δ̂, describes possible transitions in a
window of three consecutive tape cells. Formally, δ̂ ⊆ ({q0, q1, . . . , qf , ♮} × Â)6,

where Â is the set of decorated tape symbols, defined as Â =
{
s, s⊲, s⊳

∣∣ s ∈ A
}
.

The symbol ♮ means “the head is elsewhere”, ⊲ marks the beginning of the tape,
⊳ marks the end of the tape (at position 2n), and (p1, σ1, p2, σ2, . . . , p6, σ6) ∈ δ̂
iff at most one of p1, p2, p3 is not equal to ♮, and p4σ4p5σ5p6σ6 is obtained from
p1σ1p2σ2p3σ3 by performing a transition of M . Note that p1 = p2 = p3 = ♮ and
p4 6= ♮ is possible as long as σ4 is not marked with ⊲. Note that δ̂ can be computed
in PTIME. The constant d used in the target DTD is equal to |δ̂|.
The source DTD is given as

r → zero one q0 q1 · · · qf ♮ τ1 τ2 · · · τm

zero, one→ bit

where Â = {τ1, τ2, . . . , τm} and each label except r, zero, one has a single attribute.
The target DTD is given as

r → a1 b1 tr1 tr2 · · · trd

tri → tr tr : @st1 @sym1 @st2 @sym2 · · · @st6 @sym6

aj , bj → aj+1 bj+1

a2n, b2n → cell cell : @a1 @a2 · · · @a2n@st@sym

for i = 1, 2, . . . , d, j = 1, 2, . . . , 2n− 1, and d = |δ̂|. The cell nodes store in binary
a configuration number and a cell number, as well as a state and a decorated tape
symbol. The tr nodes store δ̂.
First we enforce that each source tree admitting a solution stores different data

value in each node. This is done by means of a set of dependencies of the form

r[π(X), π′(X)] −→ ⊥

where π(X) and π′(X) range over pairs of different patterns from among
zero/bit(X), one/bit(X), qi(X), ♮(X), τj(X).
The children of the root store data values encoding the states and tape sym-

bols used in δ̂. To ensure that δ̂ is stored properly on the target side, for each
(p1, σ1, p2, σ2, . . . , p6, σ6) ∈ δ̂ add a dependency

r[p1(u1), σ1(v1), p2(u2), σ2(v2), . . . , p6(u6), σ6(v6)] −→

−→ r/ /tr(u1, v1, u2, v2, . . . , u6, v6) .

Note that d different dependencies are introduced, so each tr node in the target
tree contains a tuple from δ̂.
The data values stored in two bit nodes are used to address the configurations

and their cells. This is done by means of three auxiliary patterns, First(x̄), Last(x̄),
and Succ(x̄, ȳ) with x̄ = x1, x2, . . . , xn, ȳ = y1, y2, . . . , yn, which roughly speaking
implement a binary counter over n bits. In the auxiliary patterns we use disjunction,
but since we are only going to apply them on the source side of dependencies,

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 39

disjunction can be easily eliminated at the cost of multiplying dependencies. Let

First(x̄) = zero
[
bit(x1), bit(x2), . . . , bit(xn)

]
,

Last(x̄) = one
[
bit(x1), bit(x2), . . . , bit(xn)

]
,

Succ(x̄, ȳ) =

n∨

i=1

(
i−1∧

j=1

[
bit(xj), bit(yj)

]
, zero/bit(xi), one/bit(yi),

n∧

j=i+1

one/bit(xj) ∧ zero/bit(yj)

)
.

Using the auxiliary patterns we ensure that the target tree encodes an accepting
run of M . In the first configuration the tape is empty and the head state q0 is over
the first cell,

r[First(x̄),First(ȳ), q0(u), ♭
⊲(v)] −→ r//cell(x̄, ȳ, u, v) ,

r[First(x̄), Succ(z̄1, ȳ), Succ(ȳ, z̄2), ♮(u), ♭(v)] −→ r//cell(x̄, ȳ, u, v) ,

r[First(x̄),Last(ȳ), ♮(u), ♭⊳(v)] −→ r//cell(x̄, ȳ, u, v) .

Note that the valuations of ȳ correspond to all numbers from 0 to 2n− 1, and thus
the content of each cell of the tape is specified.
The correctness of transitions is ensured by

r
[
Succ(x̄0, x̄1), Succ(ȳ1, ȳ2), Succ(ȳ2, ȳ3)

]
−→

−→ r
[
/tr(u1, v1, u2, v2, . . . , u6, v6),

∧

i,j

//cell(x̄i, ȳj, u3i+j , v3i+j)
]
.

Again, x̄0, x̄1 range over k, k + 1 with 0 ≤ k < 2n − 1, and y1, y2, y3 range over
ℓ, ℓ + 1, ℓ + 2 with 0 ≤ ℓ < 2n − 2, which means that the evolution of each three
consecutive cells is checked for every step.
Finally, the machine needs to reach the accepting state (w.l.o.g. we assume that

the accepting state is looping),

r
[
qf (u)

]
−→ r//cell(x̄, ȳ, u, v) .

Note that each occurrence of // above can be replaced with a sequence of and /
symbols of suitable length.
It is straightforward to verify that M has an accepting computation of length at

most 2n if and only if there exists a tree which admits a solution with respect to
the mapping defined above.

6.3 Well-behaved classes

In this section we apply the solution building techniques developed in Section 5.4
to identify classes of mappings that admit more practical algorithms for the con-
sistency problem. Unfortunately, classes with polynomial complexity are as rare
as they are welcome. On the other hand, as the consistency problem only deals
with syntactical objects (mappings), single exponential complexity might be ac-
ceptable in certain applications. To cut the complexity down to single exponential,
we need to restrict the setting of Theorem 6.7 to fully specified mappings and forbid
inequality on the source side. The proof of the result below is in the Appendix.

Journal of the ACM, Vol. V, No. N, Month 20YY.



40 · S. Amano, C. David, L. Libkin, F. Murlak

Horizontal navigation
NO YES

Equality tests

NO
Cons(⇓) Cons(⇓,⇒,Fun)

EXPTIME-complete EXPTIME-complete

YES
Cons(↓, ↓+,=) Cons(↓,→,=)
undecidable undecidable

Fig. 3. Summary of consistency results

Horizontal navigation
NO YES

Equality tests

NO
Cons(⇓) Cons(⇓,→), Cons(⇓,⇒)
in PTIME PSPACE-complete

YES
Cons(⇓,∼,Fun) Cons(↓,→,=)

NEXPTIME-complete undecidable

Fig. 4. Summary of consistency results for nested-relational mappings

Proposition 6.8. For schema mappings from SMnr(⇓,∼,Fun) which are fully
specified and do not use 6= on the source side, Cons is EXPTIME-complete.
If either restriction is lifted, the problem becomes NEXPTIME-hard.

The EXPTIME-algorithm from Proposition 6.8 can be easily extended to map-
pings using horizontal ordering under some restrictions. First, we need to make sure
that the source side patterns are monotonic. This is guaranteed by forbidding →.
Also, our construction builds upon the algorithm constructing universal solutions,
which needs the mapping to be non-bounding.
Using the same technique we can also extend the tractability of consistency for

SMnr(↓,=) [Arenas and Libkin 2008] to SMnr(↓,∼,Fun) under certain restrictions
(see Appendix for details).

Proposition 6.9. For mappings from SMnr(↓,∼,Fun) which do not use 6= on
the source side, Cons is in PTIME.

Again, the result above can be extended to mappings using horizontal ordering,
provided that they do not use→ on the source side, and are non-bounding. If→ is
not allowed on both sides, the argument in the proof of Proposition 6.9 carries over.
In order to cover the full case of non-bounding mappings, instead of modifying the
target DTD one should skip the completion step in the solution building algorithm.
The resulting tree may not be a solution, but it will be a witness for the existence
of one. The witness can be turned into a solution by the completion procedure.
To summarize our results, we see that it is the interplay between using equality

and horizontal navigation that affects the complexity of consistency, with equality
tests having more dramatic effect. These are shown in Figure 3 for arbitrary schema
mappings, and in Figure 4 for nested-relational schema mappings.

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 41

7. COMPOSITION

We now look at the most commonly studied operation on schema mappings: their
composition. The definition of the composition is exactly the same as in the rela-
tional case [Fagin et al. 2004], since [[M]] is defined as a binary relation. We define
the composition of two mappings M and M′ simply as [[M]] ◦ [[M′]]. That is, for
two mappings M12 = (D1, D2,Σ12) and M23 = (D2, D3,Σ23), their composition
consists of pairs of trees (T1, T3) such that:

(1) T1 |= D1 and T3 |= D3; and
(2) there exists T2 |= D2 such that (T1, T2) satisfy Σ12 and (T2, T3) satisfy Σ23.

We consider the following problems:

—Complexity of composition;
—Consistency of composition: is [[M12]] ◦ [[M23]] empty?
—Syntactic definability of composition: can we find a mapping M13 such that
[[M13]] = [[M12]] ◦ [[M23]]?

The first and the last problem have been studied in the relational case; the sec-
ond problem is motivated by the consistency problem for XML schema mappings
themselves.

7.1 Complexity of composition

By analogy with the complexity of schema mappings, we define complexity of com-
position. Combined complexity of composition is the complexity of CompMember-

ship:

Problem: CompMembership

Input: mappingsM,M′, trees T, T ′

Question: (T, T ′) ∈ [[M]] ◦ [[M′]] ?

Data complexity of composition is the complexity of CompMembership with M
andM′ fixed:

Problem: CompMembership(M,M′)
Input: trees T, T ′

Question: (T, T ′) ∈ [[M]] ◦ [[M′]] ?

Data complexity of relational composition is known to be in NP, and could be NP-
complete for some mappings [Fagin et al. 2004]. For XML mappings, the problem
becomes undecidable once data value comparisons are allowed.

Theorem 7.1. There exist mappings M,M′ ∈ SM(⇓,=) for which
CompMembership(M,M′) is undecidable. The same holds for SM(⇓, 6=),
SM(↓,→,=), and SM(↓,→, 6=).

Proof. Our argument relies upon a particular property of the reductions used
in the proof of Theorem 6.6: there, halting of a 2-register machine M is reduced to
consistency of a mapping MM = (Ds, Dt,Σ) whose each dependency had only a
conjunction of equalities or inequalities on the target side. For such dependencies,
the target sides’ satisfaction does not depend on the target tree.

Journal of the ACM, Vol. V, No. N, Month 20YY.



42 · S. Amano, C. David, L. Libkin, F. Murlak

Now we need two fixed mappings for which the composition problem is unde-
cidable. It is well known that there exists a universal 2-register machine U , such
that it is undecidable whether for a given n the machine accepts with registers
initialized to (n, 0). We shall construct mappingsM andM′ and trees Tn so that
(Tn, r) ∈ [[M]] ◦ [[M′]] if and only if U accepts with registers initialized to (n, 0).
ForM′ we takeMU , except that we use

r[I1(x, y), R(z)] −→ y = z

instead of r[I1(x, y), R(z)] −→ x = z, y = z, to allow arbitrary initial values of the
first register.
The mapping M ensures that the first register is initialized with the number

encoded in the source tree Tn. Recall that MU uses the data values stored in
subsequent R-nodes as values of the registers: n is encoded as the n-th data value
in this path, counting from the root. Therefore, to encode the value of the first
register properly in Tn, we enforce concrete values in the initial n nodes of this
path. The source DTD ofM is {r→ R; R→ R | ♯} where R has a single attribute.
For Tn we take the tree given by the pattern r/R(a1)/R(a2)/ . . . /R(an)/♯ where
a1, a2, . . . , an are arbitrary pairwise different data values. The dependencies say
that the initial segment of register values is copied correctly,

r/R(x) −→ r/R(x) ,

r//R(x)/R(y) −→ r//R(x)/R(y) ,

and that the first register is initialized to the nth value of this segment,

r//R(x)/♯ −→ r/I1(x, y) .

To see that the copying dependencies work as intended, recall that MU contains
a dependency r//R(x)//R(x) −→ ⊥, which ensures that the values copied from Tn
are stored in the initial segment of the path.
This shows the undecidability of SM(↓, ↓+,=) and SM(↓, ↓+, 6=). Analogous mod-

ification gives the undecidability of SM(↓,→,=) and SM(↓,→, 6=), even under the
restriction to nested-relational DTDs.

Without data value comparisons and Skolem functions, CompMembership is
decidable; the data complexity goes a little bit up compared to the relational case,
and we have the usual exponential gap between data and combined complexity.

Theorem 7.2. For schema mappings from SM(⇓,⇒), CompMembership is
2-EXPTIME-complete, CompMembership(M,M′) is in EXPTIME, and there
existM,M′ for which it is EXPTIME-complete.

Proof. (1) First we show CompMembership is in 2-EXPTIME. Let M =
(D1, D2,Σ12) and M′ = (D2, D3,Σ23), with Σ12 =

{
ϕi −→ ψi

∣∣ i = 1, 2, . . . , n
}

and Σ23 =
{
γj −→ δj

∣∣ j = 1, 2, . . . ,m
}
. Given trees T1 |= D1 and T3 |= D3, we

have to check if there is an interpolating tree T2.
For a start, consider a variable and attribute free situation. What are the con-

straints on the interpolating tree? Clearly, what is imposed by T1, is that some of
the target sides of dependencies from Σ12 have to be satisfied in T2. In contrast,
what is imposed by T3, is that some source sides of dependencies from Σ23 are not

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 43

satisfied in T2: indeed, T2 |= γ =⇒ T3 |= δ is equivalent to T3 6|= δ =⇒ T2 6|= γ.
Therefore, an interpolating tree T2 exists iff the following automaton is non-empty:

AD2
×

∏

i : T1|=ϕi

A(ψi) ×
∏

j : T3 6|=δj

A(γj) .

This gives an EXPTIME algorithm for the case without data values.
Let us now consider the general case, with variables. Still, neither equality nor

inequality is allowed. In particular, no variable can be used more than once on the
source side. The main idea is simply to throw in every data value used in T1 to the
alphabet. A tentative set of positive constraints imposed on T2 by T1 would be

Ψ =
{
ψ(ā, z̄)

∣∣ ϕ(x̄, ȳ) −→ ψ(x̄, z̄) ∈ Σ12 , T1 |= ϕ(ā, b̄)
}
.

The problem is that ψ(ā, z̄) still contains free variables which makes it impossible
to use automata.
The solution is to guess valuations for free variables. What should the domain

of our guess be? Let A be the set of data values used in T1, and B the set of data
values used in T3. In an intermediate tree T2 each data value not in A ∪B can be
safely replaced by any fixed data value, in particular, by a fixed data value from
A. Indeed, such modification does not interfere withM, since it does not use ∼ on
the target side. To see thatM′ is not affected, note that as we do not have ∼ on
the source side, the modification will not make any additional source side patterns
true. Moreover, since we do not have ∼ on the target side, the only restrictions
on the attribute values in T2 are that they must fit in T3. Attribute values in T2
that do not come from A∪B do not fit in T3 anyhow, which means they are never
transferred to the target side, and their value is irrelevant. Hence, we can assume
that T2 only uses data values from A∪B, and guess the values for the outstanding
variables in Ψ from A ∪ B. Let Ψ′ denote the set Ψ with guessed data values for
free variables (independently for each element of Ψ) and similarly let

Γ =
{
γ(ā, b̄)

∣∣ γ(x̄, ȳ) −→ δ(x̄, z̄) ∈ Σ23, ā ∈ (A∪B)|x̄|, b̄ ∈ (A∪B)|ȳ|, T3 6|= δ(ā, z̄)
}
.

The algorithm for CompMembership should construct the set Ψ (at most |Σ12| ·
|A|‖Σ12‖ polynomial checks), construct Γ (at most |Σ23| · (|A| + |B|)‖Σ23‖ single
exponential checks), and then test non-emptiness of

AD2
×
∏

ψ∈Ψ′

A(ψ) ×
∏

γ∈Γ

A(γ) ,

iterating over all possible Ψ′ (at most (|A|+ |B|)|Σ12|·|A|‖Σ12‖

iterations, each taking
time exponential in the size of Ψ′ and Γ, i.e., double exponential in the size of the
input). Altogether we obtain a 2-EXPTIME algorithm.
(2) The 2-EXPTIME lower bound can be obtained via a reduction from the

membership problem for alternating EXPSPACE Turing machines, which is known
to be 2-EXPTIME-hard. The reduction is similar to that from Theorem 6.7, but
much more technical. The idea is that the intermediate tree encodes an accepting
computation tree of the machine, whose correctness is enforced by the second map-
ping with the help of a suitable encoding of the transition relation of the machine
stored in the target tree. The main difficulty is that we are not allowed to use

Journal of the ACM, Vol. V, No. N, Month 20YY.



44 · S. Amano, C. David, L. Libkin, F. Murlak

Problem Data complexity Combined complexity
Pattern evaluation LOGSPACE-complete PTIME

Membership SM(↓,Fun) NP-complete NEXPTIME-complete
Membership SM(⇓,⇒,∼,Fun) NP-complete NEXPTIME-complete

Membership SM(⇓,⇒,∼) LOGSPACE-complete Πp2-complete
Composition membership SM(⇓,⇒) EXPTIME-complete 2EXPTIME-complete

Composition membership

SM(⇓,∼) and SM(⇒,∼)
undecidable undecidable

Fig. 5. Summary of complexity results

data comparisons in patterns. We circumvent this obstacle by explicitly storing
each needed equality/inequality relation on data tuples in the target tree. The first
mapping and the source tree are trivial. Details can be found in the Appendix.
(3) Let us now move to CompMembership(M,M′). If the mappings M,M′

are fixed, the size of the sets Ψ and Γ in the algorithm above is polynomial, so
each iteration takes single exponential time. The number of iterations is also single
exponential for fixed Σ12. In consequence, CompMembership(M,M′) is in EX-
PTIME for all M,M′ ∈ SM(⇓,⇒). The EXPTIME lower bound is shown by a
reduction from non-universality problem for bottom-up non-deterministic automata
on binary trees. The proof is a straightforward adaptation of the reduction from
[Arenas and Libkin 2008]. Details can be found in the Appendix.

In the EXPTIME lower bound we use both ⇓ and ⇒. From the relational case
[Fagin et al. 2004] we have NP lower bound for SM(⇓) and SM(⇒). As the upper
bound is still EXPTIME, this leaves a substantial gap. It would be also interesting
to see if the upper bounds can be extended to SM(⇓,⇒,Fun).
Fig. 5 presents a summary of complexity results. By saying that the data com-

plexity is EXPTIME-complete we mean that it is always in EXPTIME, and there
exist mappingsM,M′ such that CompMembership(M,M′) is EXPTIME-hard.
By putting “undecidable” for data complexity we mean that there are mappings
M,M′ such that CompMembership(M,M′) is undecidable.

7.2 Consistency of composition

We say that the composition ofM and M′ is consistent if [[M]] ◦ [[M′]] 6= ∅. The
consistency of composition problem comes in two flavors. One is simply to check
whether the composition of two given mappings is consistent. This is not very
different from the usual consistency problem: by composing a mapping with a
trivial one (e.g., sending the source root to the target root) we can use consistency
of composition to test consistency of the mapping itself. A more interesting version
of consistency is when we know that both inputs themselves are consistent:

Problem: ConsComp(σ)
Input: Two consistent mappingsM,M′ ∈ SM(σ)

Question: Is the composition ofM andM′ consistent?

It turns out that the complexity of ConsComp(σ) and Cons(σ) is the same.

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 45

Theorem 7.3.

—ConsComp(⇓) and ConsComp(⇓,⇒,Fun) are EXPTIME-complete.

—ConsComp(↓, ↓+,∼) and ConsComp(↓,→,∼) are undecidable.

The decidability result carries over to an arbitrary number of mappings, where the
composition ofM1, . . . ,Mn is defined as the composition of binary relations [[Mi]].

Proposition 7.4. The problem of checking whether the composition of n map-
pings M1, . . . ,Mn from SM(⇓,⇒,Fun) is consistent is in EXPTIME.

7.3 Closure under restrictions

We now address the last issue related to composition of schema mappings:
the syntactic representation. The question is whether for two given mappings
M12 = (D1, D2,Σ12) and M23 = (D2, D3,Σ23) we can find a mapping M13 =
(D1, D3,Σ13) so that [[M13]] = [[M12]] ◦ [[M23]].
We show here that getting closure for XML schema mappings is harder than for

relational mappings, and can only be obtained in limited settings that essentially
correspond to nested relations. Such settings constitute an important practical
class however; for example, they are used in non-relational extensions of the Clio
project [Fagin et al. 2009; Popa et al. 2002].
From Theorem 7.1 it follows immediately that finding a mapping expressing

the composition is not always possible for any of the classes SM(⇓,=), SM(⇓, 6=),
SM(↓,→,=), and SM(↓,→, 6=). The following examples give a more direct illustra-
tion of problems with composing XML schema mappings.
Let D1 = {r→ ε}, D2 = {r→ b1|b2; b1, b2 → b3}, and D3 = {r→ c1?c2?c3?}; no

attributes are present. Let Σ12 = {r −→ r/ /b3}, Σ23 =
{
r/bi −→ r/ci

∣∣ i = 1, 2
}
.

Then [[M12]] ◦ [[M23]] consists of pairs of trees (r, T ), where T matches either r/c1
or r/c2. To define such a mapping, we need a disjunction over the target (note that
c3? is necessary in D3: with the production r → c1?c2? the composition would be
definable by r −→ r/ ). Disjunctions in mappings are not well understood even in
the relational case, and we certainly do not know how to compose such mappings.
As another example, look at D1 = {r → a∗}, D2 = {r→ b b}, and D3 = {r→ ε},

with a and b having an attribute each, and mappings r/a(x) −→ r/b(x) for Σ12

and r −→ r for Σ23. In the composition we have pairs (T, r) such that in T at
most two different data values are present. This again requires disjunction, e.g.,
r[a(x), a(y), a(z)] −→ (x = y ∨ y = z ∨ x = z).
In fact a variety of features such as wildcards or sibling order in patterns take

us out of our usual classes of schema mappings. We now summarize what causes
problems with composition.

Proposition 7.5. Consider DTDs D1 = {r → ε} and D3 = {r → c1?c2?c3?}
with no attributes. Then we can find schema mappings so that their composition,
as a mapping between D1 and D3, contains exactly pairs (r, T ), where T matches
r/c1 or r/c2, if we allow the first mapping to be not fully specified or bounding, or
the second mapping to use → or →+ or 6=.

Proof. For each of the mentioned features we provide an intermediate DTD D2

and two sets of dependencies Σ12, Σ23 such that the semantics of the composition

Journal of the ACM, Vol. V, No. N, Month 20YY.



46 · S. Amano, C. David, L. Libkin, F. Murlak

of (D1, D2,Σ12) and (D2, D3,Σ23) is

{r} × {r[c1], r[c2], r[c1, c2], r[c1, c3], r[c2, c3], r[c1, c2, c3]} .

Let us start with on the target side of Σ12:

D2 = {r → a∗1a
∗
2; a1 → b; a2 → b} ,

Σ12 = {r −→ r/ /b} , Σ23 = {r/a1 −→ r/c1; r/a2 −→ r/c2} .

For an example for ↓+ replace with // in the above, and for bounding consider

D2 = {r → a b∗ c; b→ b1? b2? b3?} ,

Σ12 = {r −→ r[a→ b/b1 → b/b2 → c, b/b3]} ,

Σ23 = {r/b[b1, b3] −→ r/c1; r/b[b2, b3] −→ r/c2} .

An example for → on the source side of Σ23 is similar:

D2 = {r→ ab?c}

Σ12 = ∅ , Σ23 =
{
r[a→ c] −→ r/c1; r[b→ c] −→ r/c2

}
.

and for →+ it is slightly more complicated:

D2 = {r → a∗; a −→ b1?b2?} ,

Σ12 =
{
r −→ r

[
a/b1, a/b2

]}
, Σ23 =

{
r[a/b1 →

+ a/b2] −→ r/c1;

r[a/b2 →
+ a/b1] −→ r/c2;

r/a[b1, b2] −→ r/c2
}
.

For inequality we make use of the fact that x 6= y =⇒ x 6= z ∨ y 6= z for all
x, y, z (the a, b, and c nodes store a single attribute):

D2 = {r → a∗b∗c∗} ,

Σ12 =
{
r −→ r[a(C1), b(C2), c(C3)] ; Σ23 =

{
r[a(x), c(z)], x 6= z −→ r/c1;

C2 = C3 −→ ⊥
}

r[b(y), c(z)], y 6= z −→ r/c2
}
.

In other words, the following features make composition problematic by requiring
capabilities (disjunction in mappings) not understood even in the relational case:

—the presence of disjunctions in DTDs;
—wildcard and descendant on the target side of the first mapping;
—next-sibling, following-sibling, and inequality on the source side of the second
mapping.

When these features are forbidden, syntactic representation of the composition is
guaranteed.

Theorem 7.6. For all M1,M2 ∈ SMnr(⇓,⇒,∼,Fun) such that

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 47

—M1 is fully specified and non-bounding, and

—M2 uses neither 6= nor ⇒ on the source side,

their composition belongs to SMnr(⇓,⇒,∼,Fun) and can be computed in EXPTIME.

One last ingredient we need to prove Theorem 7.6 is the notion of homomorphisms
between patterns. A homomorphism h from a ⇓-pattern π into a ↓,⇒-pattern π′

is a substitution of π’s variables hVar and a function hSub : Sub(π) → Sub(π′),
mapping sub-patterns of π to sub-patterns of π′, preserving

—the labeling and structure of patterns: hSub(ℓ[π1, . . . , πm]) = ℓ[µ1, . . . , µn]
and hSub(πi) ∈

{
π′
∣∣ µj = µ′

❀1 π
′
❀2 µ

′′ for some j,❀1,❀2, µ
′, µ′′

}
for all i

(µ′ and µ′′ may be empty);

—the structure of terms: hSub(ℓ(t)) = ℓ(hVar(t)).

For a formula ϕ with Varϕ ⊆ x̄, and a tuple ā of length equal to x̄, we write ā|ϕ
for the projection of ā on the coordinates corresponding to Varϕ.

Lemma 7.7. If h is a homomorphism from π into π′, then for all trees T , valua-
tions of function symbols F , and tuples ā, if T |= π′(ā) then T |= hVar(π)(ā|hVar(π)).

Proof. The composition of h with any homomorphism from π′(ā) to T gives a
witnessing homomorphism from hVar(π)(ā|hVar(π)) to T .

Algorithm 1 lists the composition procedure. It uses the notation X ←֓ Y for
X := X ∪ Y . Recall also that head(σ(t̄)[λ]) = σ. The first instruction of the

Algorithm 1 Composing schema mappings.

Input: M12 = (D1, D2,Σ12), M23 = (D2, D3,Σ23) ∈ SMnr(↓,=,Fun),
no variables introduced on target sides, source side patterns use only variables

Output: M13 = (D1, D3,Σ13) ∈ SMnr(↓,=,Fun) s.t. [[M13]] = [[M12]] ◦ [[M23]]

Σ̂12 :=
{
ϕ −→ cplD2

ψ
∣∣ ϕ −→ ψ ∈ Σ12

}

m := max {|Σ12|, 2} ∪
{
‖ϕ‖

∣∣ ϕ→ ψ ∈ Σ23

}

Σ13 := ∅
for all ϕ1 −→ ψ1, ϕ2 −→ ψ2, . . . , ϕk −→ ψk ∈ Σ̂12 , k ≤ m do

{in case of repetitions, rename variables}
ρ, η := mrgD2

(ψ1 ∧ · · · ∧ ψk)
if ρ = ⊥ or head(ρ) 6= r then Σ13 ←֓

{
ϕ1 ∧ · · · ∧ ϕk −→ ⊥

}
end if

Σ13 ←֓
{
ϕ1 ∧ · · · ∧ ϕk −→ η

}

for all π, α −→ ψ ∈ Σ23 and all homomorphisms h from π to ρ do

Σ13 ←֓
{
ϕ1 ∧ · · · ∧ ϕk ∧ hVar(α) −→ hVar(ψ)

}

end for

end for

return (D1, D3,Σ13)

algorithm simply ensures that in Σ̂12 the target side patterns are complete with
respect to D2 (see page 25). By Lemma 5.12 the resulting set of dependencies

is equivalent to the original. Hence, we can assume that Σ̂12 = Σ12 and that
the algorithm does not introduce any new function symbols. Then, the algorithm

Journal of the ACM, Vol. V, No. N, Month 20YY.



48 · S. Amano, C. David, L. Libkin, F. Murlak

essentially composes implications: if T1 is such that patterns ψ1, . . . , ψk have to be
accommodated in T2 because of Σ12, and their presence in T2 fires some rule of Σ23

enforcing ψ in T3, then ψ should be also enforced by Σ13. Additionally, if ψ1, . . . , ψk
are not satisfiable with respect to D2, this information has to be reflected in Σ13.
Similarly, if ψ1, . . . , ψk enforce some equalities η, they should also be enforced by
Σ13. Correctness of thus produced dependencies, given by Lemma 7.8 below, is
quite intuitive. Completeness, shown in Lemma 7.9, relies on the fact that if a
dependency of Σ23 is fired by the presence of some patterns in T2, then there is a
bounded size subset of these patterns, which already fires this dependency.

Lemma 7.8. If (T1, T2) ∈ [[M12]] and (T2, T3) ∈ [[M23]] with a witnessing valua-
tion F , then (T1, T3) ∈ [[M13]] with the same witnessing valuation F .

Proof. Pick a constraint from Σ13. First, suppose that it is of the form

ϕ1 ∧ · · · ∧ ϕk −→ ⊥ ,

where ϕ1 −→ ψ1, ϕ2 −→ ψ2, . . . , ϕk −→ ψk ∈ Σ12 and mrgD2
(ψ1∧· · ·∧ψk) = ⊥ or

mrgD2
(ψ1∧· · ·∧ψk) = (ρ, α) with head(ρ) 6= r. Assuming that T1 |= ϕ1∧· · ·∧ϕk(c̄)

for some c̄, we get T2 |= ψ1∧· · ·∧ψk(c̄|ψ1∧···∧ψk
), and by Lemma 5.13 (1) we obtain

a contradiction, T2 |= mrgD2
(ψ1 ∧ · · · ∧ ψk)(c̄|ψ1∧···∧ψk

).
Next, suppose the constraint is of the form

ϕ1 ∧ · · · ∧ ϕk −→ η ,

where ϕ1 −→ ψ1, ϕ2 −→ ψ2, . . . , ϕk −→ ψk ∈ Σ12 and (ρ, η) = mrgD2
(ψ1 ∧ · · · ∧

ψk). Pick c̄ such that T1 |= ϕ1 ∧ · · · ∧ ϕk(c̄). Then T2 |= ψ1 ∧ · · · ∧ ψk(c̄|ψ1∧···∧ψk
),

and by Lemma 5.13 (1), η(c̄|η) holds.
Finally, assume the constraint is of the form

ϕ1 ∧ · · · ∧ ϕk ∧ hVar(α) −→ hVar(ψ) ,

where ϕi −→ ψi and (ρ, η) are like above, Σ23 contains dependency π, α −→ ψ
and h is a homomorphism from π into ρ. Pick c̄ such that T1 |= ϕ1 ∧ · · · ∧ ϕk ∧
hVar(α)(c̄). Then T2 |= ψ1 ∧ · · · ∧ ψk(c̄|ψ1∧···∧ψk

) and by Lemma 5.13 (1) we get
T2 |= ρ(c̄|ρ). Hence T2 |= hVar(π)(c̄|hVar(π)). As hVar(α)(c̄|hVar(α)) holds, we have
T2 |= hVar(π, α)(c̄hVar(π,α)) and hence T3 |= hVar(ψ)(c̄|hVar(ψ)).

Lemma 7.9. If (T1, T3) ∈ [[M13]] with a witnessing valuation F , then there exists
an intermediate tree T2 such that (T1, T2) ∈ [[M12]] and (T2, T3) ∈ [[M23]] with the
same witnessing valuation F .

Proof. Let ∆ =
{
ψ(ā)

∣∣ ϕ(x̄, ȳ) −→ ψ(x̄) ∈ Σ12, T1 |= ϕ(ā, b̄)
}
. By Lemma 4.4,

a tree T2 |= D2 is a solution for T1 if and only if T2 |= (
∧
δ∈∆ δ). We shall construct

an intermediate tree T2 from mrgD2
(
∧
δ∈∆ δ).

First, we need to assert mrgD2
(
∧
δ∈∆ δ) 6= ⊥. Assume mrgD2

(
∧
δ∈∆ δ) = ⊥. By

Lemma 5.13,
(∧

δ∈∆ δ
)◦

=
∧
δ∈∆ δ

◦ is not satisfiable in a tree consistent with D2.

Whether
∧
δ∈∆ δ

◦ is satisfiable or not depends only on
{
δ◦
∣∣ δ ∈ ∆

}
; multiplicities

do not count. Consequently, there are distinct ϕ1 −→ ψ1, ϕ2 −→ ψ2, . . . , ϕℓ −→ ψℓ
in Σ12 such that T1 |= ϕi(āi, b̄i) and ψi(āi) ∈ ∆ for some āi, b̄i, and

∧
i (ψi(āi))

◦
=∧

i ψ
◦
i = (

∧
i ψi)

◦
is not satisfiable. At some iteration of the main loop the algorithm

will process this set of dependencies. By Lemma 5.13, mrgD2
(
∧
i ψi) = ⊥, so

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 49

ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕℓ −→ ⊥ will be added to Σ13. Since T1 |= ϕi(āi, b̄i) for all i,
T3 |= ⊥, which is a contradiction. Thus, mrgD2

(
∧
δ∈∆ δ) 6= ⊥.

Next, we check that F is admissible for mrgD2
(
∧
δ∈∆ δ), i.e., that each equality

in mrgD2
(
∧
δ∈∆ δ) holds under F . Pick an equality t = t′. Where does it come

from? Either it was present already in some δ ∈ ∆, or it was introduced in step (3)
of the merging procedure (page 26), when some two nodes v, v′ of

∧
δ∈∆ δ where

merged. The nodes v, v′ come either from the same δ ∈ ∆ or from two different
δ, δ′ ∈ ∆. Let γ = δ or γ = δ ∧ δ′, accordingly. Observe that v and v′ must also
be merged in mrgD2

γ. Indeed, whether they are merged or not depends only on
their ancestors and the nodes connected by a sequence of → to the ancestors, and
these are identical in

∧
δ∈∆ δ and in γ. Since v and v′ are merged in mrgD2

γ, the
equality t = t′ is entailed by mrgD2

γ, though not necessarily explicitly present.
Summing up, there are ψ1(ā1), . . . , ψk(āk) ∈ ∆, k ≤ 2, such that t = t′ is

entailed by the the equalities in mrgD2
(
∧
i ψi(āi)) =

(
mrgD2

(
∧
i ψi(x̄i))

)
(ā, . . . , āk)

(if t = t′ is present in δ ∈ ∆, it is also present in mrgD2
δ). By the definition of ∆,

for i = 1, . . . , k, there is ϕi −→ ψi ∈ Σ12 such that T1 |= ϕi(āi, b̄i) for some b̄i. At
some iteration of the main loop the algorithm processes these k dependencies and
adds to Σ13 dependency ϕ1∧· · ·∧ϕk −→ η, where (ρ, η) = mrgD2

(
∧
i ψi(x̄i)). Since

T1 |= ϕi(āi, b̄i) for all i, we have T3 |= η((ā1, . . . , āk)|η), which implies T3 |= t = t′.
Thus F is admissible for mrgD2

(
∧
δ∈∆ δ) and we can construct a tree T2 from

mrgD2
(
∧
δ∈∆ δ) in the usual way by evaluating the terms. Since each δ ∈ ∆ is com-

plete, so is
∧
δ∈∆ δ. Hence, by Corollary 5.14, T2 |= (

∧
δ∈∆ δ) and T2 is consistent

with D2. The root of T2 must have label r. Indeed, if it has label σ 6= r, then there
is ϕ −→ ψ in Σ12 such that T1 |= ϕ(ā, b̄) and ψ(ā) ∈ ∆ for some ā, b̄, and the root
of ψ has label σ. At some iteration the algorithm processes ϕ −→ ψ, notices that
the root of mrgD2

ψ has label σ 6= r, and adds ϕ −→ ⊥ to Σ13. Since T1 |= ϕ(ā, b̄),
we have T3 |= ⊥, which is a contradiction. Thus, T2 |= D2 and (T1, T2) ∈ [[M12]].
It remains to verify that (T2, T3) ∈ [[M23]]. Pick (π, α)(x̄, ȳ) −→ ψ(x̄) ∈ Σ23.

Suppose that T2 |= (π, α)(ā, b̄) and let g : π → T2 be a witnessing homomor-
phism. Then, g can be interpreted as a homomorphism from π to the pure pat-
tern ρ∆ underlying mrgD2

(
∧
δ∈∆ δ), such that gVar(x̄) = ā and gVar(ȳ) = b̄. Let

v1, . . . , vk be the nodes of ρ∆ that are in the image of g, k ≤ ‖π‖. Each vi can
be traced back to a pattern ψi(āi) ∈ ∆: when a node is obtained by merging two
nodes in segments κ and κ′ in step (3) of the merging procedure, choose κ. Let
ρ, η = mrgD2

(
∧
i ψi(āi)). Since each two nodes are merged in mrgD2

(
∧
i ψi(āi))

iff they are merged in mrgD2
(
∧
δ∈∆ δ), ρ is contained in ρ∆ (more precisely, ρ can

be mapped injectively into ρ∆). Since ρ also contains the image of g, we can see
g as a homomorphism g : π → ρ. By the definition of ∆, for i = 1, . . . , k, there is
ϕi −→ ψi ∈ Σ12 such that T1 |= ϕi(āi, b̄i) for some b̄i. By equation (4) on page 27,
we have ρ = ρ̂((ā1, . . . , āk)|ρ̂) for (ρ̂, η̂) = mrgD2

(ψ1 ∧ · · · ∧ ψk). Recall that π uses
each variable exactly once, and it does not use function symbols. This allows us to
lift g : π → ρ to a homomorphism ĝ : π → ρ̂ such that

(ĝVar(x̄))
(
(ā1, . . . , āk)|gVar(x̄)

)
= ā , (ĝVar(ȳ))

(
(ā1, . . . , āk)|gVar(ȳ)

)
= b̄ . (6)

Consequently, Σ13 contains ϕ1 ∧ · · · ∧ ϕk ∧ ĝVar(α) → ĝVar(ψ). Recall that T1 |=
ϕi(āi, b̄i) for all i. By (6), ĝVar(α)((ā1, . . . , āk)|ĝVar(α)) is identical to α

(
(ā, b̄)|α

)
,

and thus guaranteed by T2 |= (π, α)(ā, b̄). Hence, T3 |= ĝVar(ψ)((ā1, . . . , āk)|ĝVar(ψ)),

Journal of the ACM, Vol. V, No. N, Month 20YY.



50 · S. Amano, C. David, L. Libkin, F. Murlak

which is the same as T3 |= ψ(ā).

Combining the necessary restrictions on the target sides of the first mapping and
the source sides of the second mapping, we obtain that the class of fully specified
non-bounding mappings from SMnr(⇓,⇒,=,Fun) without ⇒ on the source side is
closed under composition. The use of sibling order in this class seems marginal;
eliminating it we obtain a more elegant result.

Corollary 7.10. The class of fully specified mappings from SMnr(⇓,=,Fun) is
closed under composition.

8. CONCLUSIONS

This paper has offered a detailed investigation of various features of XML schema
mappings and analyzed their effect on the complexity of the main computational
tasks associated with data exchange and metadata management.
One outcome of this analysis we would like to highlight is that the class of fully

specified mapping from SMnr(⇓,=,Fun) has particularly good properties. It sub-
sumes nested relations (and non-relational extensions of data exchange systems such
as those in [Popa et al. 2002; Yu and Popa 2004]) and all the key problems related
to this class are tractable: polynomial in the size of data, and single exponential
in the size of syntactic objects (mappings, queries). The class is closed under com-
position (Theorem 7.10) and the composition can be computed in EXPTIME. The
consistency problem is in EXPTIME (Proposition 6.8). Universal solutions exist for
all source trees and can be computed in PTIME (Theorem 5.15). In consequence,
query answering is in PTIME (Theorem 5.9). Combined complexity of both these
algorithms is single-exponential, matching the relational case [Fagin et al. 2003].
Therefore, this class of mappings might be a good starting point for real-life

applications. Moreover, for some of the mappings from this class, algorithms for
implementing data exchange tasks using relational data exchange systems have been
worked out [Chirkova et al. 2012], which eliminates the need for building specially
tailored systems to handle them.

Future work. We would like to extend this work in several directions. So far, we
have concentrated on data complexity of the query answering problem. We would
also like to look at combined complexity in the future in order to have a better
understanding of query answering in XML schema mappings. We have obtained
some of the upper bounds, in particularly for query answering, by using results from
[Barceló et al. 2010], which do not even yield an elementary bound for combined
complexity. However, it was shown recently [Gheerbrant et al. 2012; David et al.
2013] that for some query answering problems over incomplete XML documents, an
alternative construction reduces combined complexity to single exponential, thus
opening up a possibility of finding good combined complexity bounds.
Although we have shown that it is rather difficult to extend the query language,

there might still be some hope to extend it in a limited way, as was done for queries
with inequalities in relational data exchange [Arenas et al. 2009].
Yet another dimension that has not been investigated is the distinction between

open world assumption (OWA) and closed world assumption (CWA). Here, we have
worked under OWA. In the relational case, an anomaly is observed when the query

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 51

involves negation [Arenas et al. 2004; Fagin et al. 2003]. As a remedy to such
unintuitive behavior, the notion of solutions under CWA was proposed in [Libkin
2006], further extended in [Afrati and Kolaitis 2008; Hernich et al. 2011; Libkin
and Sirangelo 2011]. This direction is hardly explored for XML: it is not even clear
how to define the notion of CWA in the XML context.
We also would like to work further on operations on schema mappings. We have

identified a natural class that is closed under composition, but we do not know
anything about its maximality, nor do we know anything about other operations
such as inverse [Arenas et al. 2009; Fagin et al. 2007] or merge [Bernstein and
Melnik 2007]. And we would like to extend structural results of [ten Cate and
Kolaitis 2009] from relational to XML mappings.

Acknowledgments. The authors thank the anonymous reviewers for their helpful
comments. Most of this work was done when the authors were at the University of
Edinburgh. The authors were supported by EPSRC grants G049165 and J015377,
and the FET-Open Project FoX (grant agreement 233599). A part of the work was
done within the Querying and Managing Navigational Databases project realized
within the Homing Plus program of the Foundation for Polish Science, co-financed
by the European Union from the Regional Development Fund within the Opera-
tional Programme Innovative Economy (“Grants for Innovation”).

REFERENCES

Abiteboul, S., Kanellakis, P., and Grahne, G. 1991. On the representation and querying of
sets of possible worlds. Theoretical Computer Science 78, 1, 158–187.

Afrati, F. and Kolaitis, P. 2008. Answering aggregate queries in data exchange. In ACM
Symposium on Principles of Database Systems (PODS). 129–138.

Amano, S., David, C., Libkin, L., and Murlak, F. 2010. On the tradeoff between mapping
and querying power in XML data exchange. In International Conference on Database Theory
(ICDT). 155–164.

Amano, S., Libkin, L., and Murlak, F. 2009. XML schema mappings. In ACM Symposium on
Principles of Database Systems (PODS). 33–42.

Amer-Yahia, S., Cho, S., Lakshmanan, L., and Srivastava, D. 2002. Tree pattern query
minimization. VLDBJ 11, 315–331.

Arenas, M., Barceló, P., Fagin, R., and Libkin, L. 2004. Locally Consistent Transformations
and Query Answering in Data Exchange. In Proceedings of the 23rd ACM Symposium on
Principles of Database Systems, PODS’04. 229–240.

Arenas, M., Barceló, P., Libkin, L., and Murlak, F. 2010. Relational and XML Data Ex-
change. Morgan&Claypool Publishers.

Arenas, M., Barceló, P., and Reutter, J. 2009. Query languages for data exchange: beyond
unions of conjunctive queries. In International Conference on Database Theory (ICDT). 73–83.

Arenas, M. and Libkin, L. 2008. XML data exchange: Consistency and query answering. J.
ACM 55, 2.

Arenas, M., Pérez, J., and Riveros, C. 2009. The recovery of a schema mapping: Bringing
exchanged data back. ACM Transactions on Database Systems 34, 4, 22:1–22:48.

Barbosa, D., Freire, J., and Mendelzon, A. 2005. Designing information-preserving mapping
schemes for xml. In Very Large Data Bases (VLDB). 109–120.

Barceló, P. 2009. Logical Foundations of Relational Data Exchange. SIGMOD Record 38, 1,
49–58.

Barceló, P., Libkin, L., Poggi, A., and Sirangelo, C. 2010. XML with incomplete information.
Journal of the ACM 58, 1.

Journal of the ACM, Vol. V, No. N, Month 20YY.



52 · S. Amano, C. David, L. Libkin, F. Murlak

Benedikt, M., Fan, W., and Geerts, F. 2008. XPath satisfiability in the presence of DTDs.

Journal of the ACM 55, 2.

Bernstein, P. A. and Melnik, S. 2007. Model management 2.0: manipulating richer mappings.
In ACM SIGMOD Conference. 1–12.

Björklund, H., Martens, W., and Schwentick, T. 2007. Conjunctive query containment over
trees. In DBPL. 66–80.

Björklund, H., Martens, W., and Schwentick, T. 2008. Optimizing Conjunctive Queries over
Trees Using Schema Information. In MFCS. 132–143.

Bojanczyk, M., Kolodziejczyk, L. A., and Murlak, F. 2013. Solutions in xml data exchange.
J. Comput. Syst. Sci. 79, 6, 785–815.

Bojanczyk, M., Muscholl, A., Schwentick, T., and Segoufin, L. 2009. Two-variable logic
on data trees and XML reasoning. J. ACM 56, 3.

Chirkova, R., Libkin, L., and Reutter, J. 2012. Tractable XML data exchange via relations.
Frontiers of Computer Science 6, 3, 243–263.

Chiticariu, L. and Tan, W.-C. 2006. Debugging schema mappings with routes. In International
Conference on Very Large Data Bases (VLDB). 79–90.

David, C. 2008. Complexity of Data Tree Patterns over XML Documents. In MFCS. 278–289.

David, C., Gheerbrant, A., Libkin, L., and Martens, W. 2013. Containment of pattern-based
queries over data trees. In International Conference on Database Theory (ICDT). 201–212.

David, C., Libkin, L., and Murlak, F. 2010. Certain answers for XML queries. In ACM
Symposium on Principles of Database Systems (PODS), J. Paredaens and D. V. Gucht, Eds.
ACM, 191–202.

Fagin, R., Haas, L., Hernandez, M., Miller, R., Popa, L., and Velegrakis, Y. 2009. Clio:
Schema mapping creation and data exchange. In Conceptual Modeling: Foundations and Ap-
plications, Essays in Honor of John Mylopoulos, A. Borgida, V. Chaudhri, P. Giorgini, and
E. Yu, Eds. Lecture Notes in Computer Science, vol. 5600. Springer-Verlag, 198–236.

Fagin, R., Kolaitis, P., Miller, R., and Popa, L. 2003. Data exchange: semantics and query
answering. In Proceedings Ninth International Conference on Database Theory, ICDT’03. Full
version in Theoretical Computer Science. 207–224.

Fagin, R., Kolaitis, P. G., Popa, L., and Tan, W. C. 2004. Composing Schema Mappings:
Second-Order Dependencies to the Rescue. In ACM Symposium on Principles of Database

Systems (PODS). 83–94.

Fagin, R., Kolaitis, P. G., Popa, L., and Tan, W. C. 2007. Quasi-inverses of schema mappings.
In Proceedings of the 26th ACM Symposium on Principles of Database Systems (PODS). 123–
132.

Fan, W. and Bohannon, P. 2008. Information preserving xml schema embedding. ACM Trans-
actions on Database Systems 33, 1.

Fan, W. and Libkin, L. 2002. On XML integrity constraints in the presence of DTDs. Journal
of the ACM 49, 3, 368–406.

Gheerbrant, A., Libkin, L., and Tan, T. 2012. On the complexity of query answering over
incomplete XML documents. In International Conference on Database Theory (ICDT). 169–
181.

Gottlob, G., Koch, C., and Schulz, K. 2006. Conjunctive queries over trees. Journal of the
ACM 53, 2, 238–272.

Gottlob, G. and Senellart, P. 2010. Schema mapping discovery from data instances. J.
ACM 57, 2.

Hernich, A., Libkin, L., and Schweikardt, N. 2011. Closed world data exchange. ACM
Transactions on Database Systems 36, 2.

Hidders, J. 2003. Satisfiability of XPath expressions. In DBPL03. 21–36.

Kolaitis, P. G. 2005. Schema Mappings, Data Exchange, and Metadata Management. In ACM
Symposium on Principles of Database Systems (PODS). 61–75.

Kolaitis, P. G., Panttaja, J., and Tan, W. C. 2006. The complexity of data exchange. In
ACM Symposium on Principles of Database Systems (PODS). 30–39.

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 53

Lewis, H. 1980. Complexity results for classes of quantificational formulas. Journal of Computer

and System Sciences 21, 317–353.

Libkin, L. 2006. Data Exchange and Incomplete Information. In ACM Symposium on Principles
of Database Systems (PODS). 60–69.

Libkin, L. and Sirangelo, C. 2011. Data exchange and schema mappings in open and closed
worlds. Journal of Computer and System Sciences 77, 3, 542–571.

Madhavan, J. and Halevy, A. Y. 2003. Composing Mappings Among Data Sources. In Inter-
national Conference on Very Large Data Bases (VLDB). 572–583.

Marnette, B., Mecca, G., Papotti, P., Raunich, S., and Santoro, D. 2011. ++Spicy: an
opensource tool for second-generation schema mapping and data exchange. PVLDB 4, 12,
1438–1441.

Ma̧dry, A. 2005. Data exchange: On the complexity of answering queries with inequalities.
Information Processing Letters 94, 6, 253–257.

Melnik, S., Garcia-Molina, H., and Rahm, E. 2002. Similarity flooding: a versatile graph
matching algorithm. In ICDE. 117–128.

Miklau, G. and Suciu, D. 2004. Containment and equivalence for a fragment of xpath. J.
ACM 51, 1, 2–45.

Milo, T. and Zohar, S. 1998. Using schema matching to simplify heterogeneous data translation.
In Very Large Data Bases (VLDB). 122–133.

Nash, A., Bernstein, P. A., and Melnik, S. 2007. Composition of mappings given by embedded
dependencies. ACM Trans. Database Syst. 32, 1, 4:1–4:51.

Papadimitriou, C. 1994. Computational Complexity. Addison-Wesley.

Pichler, R. and Skritek, S. 2011. The complexity of evaluating tuple generating dependencies.
In ICDT. 244–255.

Popa, L., Velegrakis, Y., Miller, R., Hernández, M., and Fagin, R. 2002. Translating web
data. In Very Large Databases (VLDB). 598–609.

Segoufin, L. 2006. Automata and Logics for Words and Trees over an Infinite Alphabet. In
Computer Science Logic. 41–57.

ten Cate, B. and Kolaitis, P. 2009. Structural Characterizations of Schema-Mapping Lan-
guages. In International Conference on Database Theory (ICDT). 63–72.

Yu, C. and Popa, L. 2004. Constraint-based XML query rewriting for data integration. In ACM
SIGMOD Conference. 371–382.

Journal of the ACM, Vol. V, No. N, Month 20YY.



54 · S. Amano, C. David, L. Libkin, F. Murlak

r

a

a1

a2

a3

b

c a4

e

a5 a6

(a) the image in the tree

r

a a2

a3

b

c a4

e

(b) the image in the support

Fig. 6. A homomorphism from r[//a, //b/c, //e] into a tree and its support

A. COMPLEXITY OF SCHEMA MAPPINGS

Let the support of a homomorphism h from ϕ into T , denoted supph, be the
subtree of T obtained by keeping only nodes that have a descendant or a sibling in
the range of h. For example, consider a tree pattern r[//a, //b/c, //e]. This pattern
is satisfied by a tree T given in Figure 6(a) with the obvious homomorphism h
which appropriately assigns sub-formulae to the encircled nodes. To obtain supph,
we remove all nodes except from ancestors of the nodes from the range of h, and
their siblings. The result is shown in Figure 6(b).

Proposition 4.1. The satisfiability problem for tree patterns is NP-complete.

Proof. We show that for each pattern ϕ satisfiable with respect to a DTD D
over Γ, there exists a homomorphism from ϕ to some T conforming to D with the
support of size O(‖ϕ‖ · ‖D‖). Take an arbitrary T conforming to D and satisfying
ϕ. Let h be a homomorphism from ϕ to T . Divide the nodes of supph into four
categories: the nodes from the image of h are red, the nodes that are not red and
have more than one child that is an ancestor of a red node (or is red itself) are
green, the others are yellow if they are ancestors of red nodes, and blue otherwise.
For example, in Figure 6(b) the encircled nodes are red, a2 is green, a3 is yellow,
and a4 is blue. Let Nred, Ngreen, Nyellow, and Nblue be the numbers of red, green,
yellow, and blue nodes.
By definition, Nred ≤ ‖ϕ‖. AlsoNgreen ≤ ‖ϕ‖: when going bottom-up, each green

node decreases the number of subtrees containing a red node by at least one, and
since in the root we arrive with one subtree containing a red node, Ngreen ≤ Nred.
By a pumping argument we may assume that all yellow paths in supph are not
longer than the number of labels in Γ. Similarly, all blue sequences of siblings in
supph are not longer than the size of the regular expressions in the productions
of D, which can be bounded by ‖D‖. The number of (maximal) yellow paths is
at most Nred + Ngreen. Hence there are at most 2‖ϕ‖ · ‖D‖ yellow nodes. Since
all blue nodes are siblings of nodes of other colors, the number of (maximal) blue
sequences of siblings is at most 2(Nred+Ngreen+Nyellow) ≤ 4‖ϕ‖ · (‖D‖+1) and so

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 55

Nblue ≤ 4‖ϕ‖·(‖D‖+1)‖D‖. Altogether we have at most 2‖ϕ‖(‖D‖+1)(2‖D‖+1) ≤
12‖ϕ‖ · ‖D‖2 nodes.
Now, to decide satisfiability, first guess a polynomial support and a homomor-

phism. Verifying the homomorphism is polynomial in the size of the formula and
the support, hence it is polynomial. Verifying that the support is actually a re-
striction of a tree conforming to D amounts to checking if a given word is in the
language defined by a regular expression, and checking if there exist subtrees to be
rooted in the yellow nodes. Both these checks can be done in polynomial time.
To get NP-completeness we do a standard 3CNF SAT reduction. In fact, we only

use ↓, and we do not need variables. Take a formula θ =
∧k
j=1 Z

1
j ∨ Z

2
j ∨ Z

3
j with

Zij ∈ {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}. Consider a DTD D (without attributes)

r → x1x2 · · ·xn

xi →
{
Cj
∣∣ ∃ℓZℓj = xi}|{Cj

∣∣ ∃ℓZℓj = x̄i
}

1 ≤ i ≤ n

over the alphabet {x1, x2, . . . , xn, C1, C2, . . . , Ck}. In the second rule, interpret each
set as a concatenation of all its elements.
The labels Cj are intended to correspond to Z1

j ∨Z
2
j ∨Z

3
j . Each tree conforming

to D encodes a valuation of all variables xi: for each xi it stores either all conjuncts
made true by assigning 1 to xi, or all conjuncts made true by assigning 0 to xi.
The satisfiability of θ is equivalent to the satisfiability of the pattern

r[ /C1, /C2, . . . , /Ck] with respect to D.

Proposition 4.3. The data complexity of tree patterns evaluation is
LOGSPACE-complete, and the combined complexity is in PTIME.

Proof. Take a tree pattern ϕ = π, α, a valuation ā and a tree T . Checking
that T |= ϕ(ā) can be done in PTIME by checking if α(ā) and evaluating the
sub-patterns of π(ā) bottom-up. Annotate each node v with a set Φ(v) containing
those sub-patterns of π(ā) which are satisfied in v. If v is a leaf labeled with σ and
storing a tuple b̄, let Φ(v) contain all sub-patterns of π(ā) of the form σ(b̄) and (b̄).
If v is an internal node labeled with σ, having children v1, v2, . . . , vk, and storing
a tuple b̄, let Φ(v) contain all sub-patterns of π(ā) of the form σ′(b̄)[λ1, λ2, . . . , λp]
satisfying

—σ′ ∈ {σ, },

—for each λi = //π1 there exists a node vj such that //π1 ∈ Φ(vj) or π1 ∈ Φ(vj),

—for each λi = π1 ❀1 π2 ❀2 . . . ❀r−1 πr there exists a sequence 1 ≤ n1 < n2 <
. . . < nr ≤ k such that πj ∈ Φ(vnj

), and if ❀j=→ then nj+1 = nj + 1 for all j,

and all sub-patterns of ϕ(ā) of the form //π1 satisfying π1 ∈ Φ(vj) or //π1 ∈ Φ(vj)
for some j. Clearly, T |= π(ā) iff π(ā) ∈ Φ(ε).
Let us now consider the data complexity, i.e., suppose we are given T and ā and

are to check if T |= ϕ(ā) for some fixed pattern ϕ = π, α. Equalities and inequalities
in α(ā) can be verified in LOGSPACE. In order to store a homomorphism from
π(ā) to T , we need only logarithmic space: a fixed number of “pointers” to the
tree. Verifying a given homomorphism amounts to reachability tests in the tree
plus local consistency checks, which can be done in LOGSPACE. Hence, if only we
can do the reachability test in LOGSPACE, we can get a LOGSPACE algorithm

Journal of the ACM, Vol. V, No. N, Month 20YY.



56 · S. Amano, C. David, L. Libkin, F. Murlak

by simply iterating over all possible homomorphisms until we get a correct one, or
find out that none such exists.
To see that we can do reachability tests, notice that one can compute the descen-

dant and the following-sibling relations in a tree in LOGSPACE since reachability
is known to be in LOGSPACE over graphs in which every node has at most one
outgoing edge. This is the case for the next-sibling relation; for the child relation,
we simply invert it, obtaining the parent relation that satisfies the property, com-
pute its transitive closure, which gives us the ancestor relation, and then invert it
to get descendant.
Finally, LOGSPACE-hardness follows from the hardness of reachability over

successor-relations; hence even evaluating r[a →+ b] over a tree of depth 1 is
LOGSPACE-hard.

Theorem 4.6. For schema mappings from SM(⇓,⇒,∼,Fun) with bounded arity
of terms and no explicit equality, Membership is Σp3-complete, and the lower bound
holds already for relational mappings without ∼.

Proof. We say that a term s(y1, y2, . . . , yk) is a fragment of a term t if there are
terms s1, s2, . . . , sk such that s(s1, s2, . . . , sk) is a subterm of t and each si contains
at least one variable. Note that the arity of s is then bounded by the arity of t.
The algorithm to test if (S, T ) ∈ [[M ]] is as follows:

—Assume that the data domain is partitioned into the set A of values used in S or
in T , and the infinite set of nulls N = {⊥1,⊥2, . . . }.

—Guess consistent values from A∪N for all ground instances of fragments of terms
used inM that can be obtained by substituting variables with values from A.

—Universally choose a constraint ϕ(x̄, ȳ) −→ ψ(x̄, z̄) from Σ and tuples ā, b̄ with
entries from A such that S |= ϕ(ā, b̄).

—Guess a tuple c̄ with entries from A ∪ N ′ (a local set of fresh nulls N ′ =
{⊥′

1,⊥
′
2, . . . , }) and consistent values from A∪N ∪N ′ for all subterms in ψ(ā, c̄)

such that: if at least one of the terms ti gets a value from N ′ then f(t1, . . . , tk)
gets a value from A ∪N ′ (†).

—Accept if T |= ψ(ā, c̄) under the guessed partial valuation.

Since the arity of terms is bounded, we have polynomially many ground instances
and the first guess of the algorithm is polynomial. When the tests S |= ϕ(ā, b̄)
and T |= ψ(ā, c̄) are performed, all relevant terms have fixed values, so by Propo-
sition 4.3 we can do them in polynomial time. Thus, the algorithm is in Σp3.
Let us move to correctness. Assume that the algorithm assigns to f(t1, t2, . . . , tk)

value d, and to ti value di for all i. This enforces constraint f(d1, d2, . . . , dk) = d
on the valuation of f . We claim that either di ∈ N ′ for some i, or this constraint
is already enforced by the initial guess. From this claim it follows immediately
that the guesses made by all the universal branches of the algorithm are consistent:
constraints of the first kind coming from different branches do not interfere with
each other because each branch has its own local N ′, constraints of the second kind
are respected by all branches. To see that the claim holds, suppose that d1, . . . , dk ∈
A ∪ N . By the condition (†), it follows that for each i, ti = si(s

1
i , s

2
i , . . . , s

ℓi
i )

such that for each j the value of sji was not fixed by the initial guess, but is now

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 57

eji ∈ A, and si(e
1
i , e

2
i , . . . , e

ℓi
i ) is a ground term with the value di fixed by the initial

guess. Hence, the value d of f(s1(e
1
1, e

2
1, . . . , e

ℓ1
1 ), . . . , sk(ek1 , e

k
2 , . . . , e

k
ℓk
)) was also

fixed by the initial guess, which implies constraint f(d1, d2, . . . , dk) = d. Thus,
if the algorithm accepts, all guesses are consistent and there is a valuation F of
function symbols witnessing (S, T ) ∈ [[M]].
Conversely, suppose that there is a witnessing valuation F over domain A ∪

N . We can assume that in the first step the algorithm guesses values consistent
with F . Take ϕ(x̄, ȳ) −→ ψ(x̄, z̄) and ā, b̄ such that S |= ϕ(ā, b̄). There exists
a tuple d̄ with entries in A ∪ N such that T |= ψ(ā, d̄) under valuation F . To
show completeness of the algorithm it suffices to find c̄ with entries in A ∪N ′ and
modify F to meet condition (†). Let c̄ be obtained from d̄ by replacing each ⊥i
with ⊥′

i. We extend valuation F to N ′ as follows: F (f) treats ⊥′
i just like ⊥i,

except that it adds a prime to the result if it is a null, e.g., if F (f)(a,⊥1,⊥2) = ⊥3,
then F (f)(a,⊥′

1,⊥2) = F (f)(a,⊥1,⊥′
2) = F (f)(a,⊥′

1,⊥
′
2) = ⊥

′
3. The extended F

obviously meets condition (†). To see that T |= ψ(ā, d̄) holds under extended F ,
recall that there are no explicit equalities in ψ, and note that our modifications do
not change values of terms that where originally in A and do not equate terms that
were not equal originally. This concludes the correctness proof.

To prove that Membership is Σp3-hard, we reduce validity of Σ3 quantified
Boolean formulae, building upon the Πp2-hardness for relational mappings without
Skolem functions [Gottlob and Senellart 2010]. Satisfiability of

∃x1 · · · ∃xℓ∀xℓ+1 · · · ∀xm∃xm+1 · · · ∃xn

k∧

j=1

Z1
j ∨ Z

2
j ∨ Z

3
j

is equivalent to the following membership problem: the source instance is

S = {False(0),True(1), V (0), V (1)} ;

the target instance is

T =

{
C(a1, a2, a3, b1, b2, b3)

∣∣∣∣
a1, a2, a3, b1, b2, b3 ∈ {0, 1},

(a1 ⊕ b1) ∨ (a2 ⊕ b2) ∨ (a3 ⊕ b3) = 1

}
,

where⊕ is the xor operator and ∨ is the disjunction operator; and the set Σ contains
a single constraint

False(f) ∧ True(t) ∧
m∧

i=ℓ+1

V (xi) −→
k∧

j=1

C(X1
j , X

2
j , X

3
j , Y

1
j , Y

2
j , Y

3
j ) ,

where (Xp
j , Y

p
j ) =

{
(xi, f) for Zpj = xi

(xi, t) for Zpj = x̄i
, and—against the convention—symbols

x1, . . . , xℓ are Skolem functions of arity 0 (constants). To see that the reduction is
correct, note that according to the semantics of mappings the three blocks of xi’s
are quantified like in the formula, and for a given valuation the target side atoms
hold in T if and only if the corresponding clauses in the formula hold.

Journal of the ACM, Vol. V, No. N, Month 20YY.



58 · S. Amano, C. David, L. Libkin, F. Murlak

B. QUERY ANSWERING

Proposition 5.3. There exist M1 ∈ SM(↓, ↓+), Q1 ∈ CTQ(↓, ↓+,∼) andM2 ∈
SMnr(↓,→), Q2 ∈ CTQ(↓,→,∼) such that certainM1

(Q1) and certainM2
(Q2)

are undecidable.

Proof. First, we prove the result for UCTQ. We modify the reductions from
the proof of Theorem 7.1. There,M1 ∈ SM(↓, ↓+),M′

1 ∈ SM(↓, ↓+, 6=) andM2 ∈
SMnr(↓,→),M′

2 ∈ SMnr(↓,→, 6=) are constructed such that the sets [[M1]] ◦ [[M′
1]]

and [[M2]] ◦ [[M′
2]] are undecidable. The mappings M′

1,M
′
2 have an additional

property: the target sides of their dependencies are either single inequality, or ⊥.
Hence, they can be rewritten easily so that all dependencies have ⊥ on the target
side: simply replace z 6= z′ on the target side with ⊥ and add z = z′ to the
source side. Now, let Qi be the union of the source side patterns of dependencies
inM′

i. It is clear that (S, T ) ∈ [[Mi]]◦ [[M′
i]] iff certainMi

(Qi, S) = false . It follows
immediately that certainMi

(Qi) is undecidable.
Next, we use a technique from [Miklau and Suciu 2004] to carry over the unde-

cidability results to CTQ. Let us start from the case with →. Assume that

Q2 =

k⋃

j=1

∃x̄j (πj , αj) ,

where x̄j are pairwise disjoint tuples of variables from {y1, y2, . . . , yn} such that the

set of entries of x̄j coincides with Var(πj , αj). Let M̃2 be defined as follows. The
source DTD is obtained from source DTD of M2 by replacing the root symbol r
by a fresh label p with attributes @attr1,@attr2, . . . ,@attrn and production p→ r.
The target DTD is obtained from the target DTD of M2 by replacing the root
symbol r with p and adding productions

p→ ♯ q∗ ♮

q → ♯ r∗ ♮

for fresh labels p, q. The set of dependencies of M̃2 contains

p(ȳ) −→ p
[
♯→ πQ2

→ . . .→ πQ2︸ ︷︷ ︸
k−1

→ q[♯→ r → ♮]→ πQ2
→ . . .→ πQ2︸ ︷︷ ︸

k−1

→ ♮
]

(7)

with πQ2
= q [π1, . . . , πk] and for each dependency ϕ −→ π, α fromM2 it contains

p[ϕ] −→ p
[
♯→ q → . . .→ q︸ ︷︷ ︸

k−1

→ q[π]
]
, α . (8)

Finally, let

Q̃2 = ∃x̄1 . . . ∃x̄k p[q/π1 → . . .→ q/πk], α1 ∧ · · · ∧ αk .

Let ā be chosen in such a way that each πj , αj is satisfiable in a tree conforming
to the target DTD ofM2 under the valuation ȳ = ā (without loss of generality we
can assume that each πj , αj is satisfiable). Then, for every tree S we have

certainM2
(Q2, S) = false ⇐⇒ certain

M̃2

(
Q̃2, p(ā)[S]

)
= false .

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 59

Indeed, suppose that T is a solution for S falsifying Q2. Consider T
′ defined as

p
[
q[T1, . . . , Tk] , . . . , q[T1, . . . , Tk]︸ ︷︷ ︸

k−1

, q[T ] , q[T1, . . . , Tk] , . . . , q[T1, . . . , Tk]︸ ︷︷ ︸
k−1

]

where Tj is any tree conforming to the target DTD of M2 that satisfies πj , αj
with variables evaluated according to ȳ = ā (such Tj exists by the choice of ā). It

is clearly a solution for p(ā)[S] under M̃2. If T ′ |= Q̃2, then for some valuation
of ȳ, α1, . . . , αk are satisfied and some πj is matched in T . That means that

T |= ∃x̄j πj , αj , which is a contradiction. Hence, T ′ 6|= Q̃2.

Conversely, assume that T is a solution for p(ā)[S] that falsifies Q̃2. By (7), the
root of T has exactly 2k− 1 children labelled with q, and the kth child has exactly
one child labelled with r. Let T ′ be the subtree rooted at this child. By (8), T ′ is a
solution for S underM. If T ′ satisfies πj , αj with x̄j = b̄, then, by (7), T satisfies

Q̃2 with x̄j = b̄ and x̄i evaluated according to ȳ = ā for i 6= j. Hence, T ′ 6|= Q2.

Thus, certainM2
(Q2) reduces to certain

M̃2
(Q̃2), which shows that

certain
M̃2

(Q̃2) is undecidable.

In the case with ↓+ the source DTD, like above, is obtained from the source
DTD of M2 by replacing the root symbol r by a fresh label p with attributes
@attr1,@attr2, . . . ,@attrn and production p → r. The target DTD is obtained
from the target DTD of M2 by replacing the root symbol r with p and adding
productions

p→ q

q → (q | ♯) s

s→ (s | ♯) r

for fresh labels p, q, s. For the sake of readability we write ℓ[λ]/π for ℓ[λ, π]. The
dependencies are

p(ȳ) −→ p /πQ2
/ . . . /πQ2︸ ︷︷ ︸
k−1

/q[s/♯] /πQ2
/ . . . /πQ2︸ ︷︷ ︸
k−1

/♯ ,

where πQ2
= q
[
s[π1]/ . . . /s[πk]

]
, and

p[ϕ] −→ p /q/ . . . /q︸ ︷︷ ︸
k−1

/q/s/π, α

for each dependency ϕ −→ π, α inM2. The query is

Q̃1 = ∃x̄1 . . . ∃x̄q p//q[s//π1]/ . . . /q[s//πk], α1 ∧ · · · ∧ αk .

The rest of the argument is entirely analogous.

Proposition 5.6. There exist a schema mapping M ∈ SMnr(↓), a query Q1 ∈
CTQ(↓,→,=), and a query Q2 ∈ CTQ(↓,→+,=) such that both certainM(Q1)
and certainM(Q2) are coNP-complete.

Proof. The coNP upper bound follows from Proposition 5.4. For the lower
bound we only give the proof for→; the proof for→+ can be obtained by replacing
→ with →+ in our argument.

Journal of the ACM, Vol. V, No. N, Month 20YY.



60 · S. Amano, C. David, L. Libkin, F. Murlak

We give an XML schema mappingM and a Boolean query Q such that 3SAT is
reducible to the complement of certainM(Q), i.e., for each 3SAT instance θ

certainM(Q, Tθ) is false iff θ is satisfiable,

where Tθ is a tree encoding of θ described below.
Suppose we are given a 3-CNF formula θ =

∧n
i=1

∨3
j=1 ℓij , where ℓij is a literal,

and in each clause all three literals are different. The tree encoding, Tθ, is best
explained on a concrete example. A formula (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4) is
encoded as

r

C

L1

(1)
L2

(6)
L3

(7)

C

L1

(3)
L2

(5)
L3

(8)

V
(1,2)

V
(3,4)

V
(5,6)

V
(7,8)

Each V node has two attribute values encoding a variable and its negation with
two different values. For example, the node V (1, 2) indicates that x1 is encoded
by the data value 1 and ¬x1 by 2. Also for each clause in the formula we have a
C node that has three children labeled L1, L2, L3. Each Li holds the data value
encoding the ith literal in the clause. In the example above, the second literal of
the first clause is ¬x3 and hence the data value of L2 under the first C node is 6.
Let us now describe the mapping. In accordance with the encoding, let Ds be

r → C∗V ∗ V : @a1,@a2

C → L1L2L3 Li : @b

where i = 1, 2, 3. The target DTD Dt is defined as

r → C∗V ∗ V : @a1,@a2

C → L∗ L : @b

The dependencies Σ essentially copy Tθ in the target, but allow the reordering of
children under each C node with the use of ‘,’(comma). This reordering corresponds
to ‘choosing one literal per clause’ mentioned earlier. Intuitively, a literal is chosen
if its copy has more than two following siblings. Since each C node has three
L-children with different data values, at least one literal is chosen for each clause.

r[C[L1(x), L2(y), L3(z)]]→ r[C[L(x), L(y), L(z)]]

r[V (x, y)]→ r[V (x, y)]

Thus, a solution gives a (partial) valuation satisfying θ, provided that the choices
are consistent. This is taken care of by the query: it is true if a variable and its
negation are contained among the chosen literals. The query is

∃x∃y
(
r
[
V (x, y), C[L(x)→ L→ L], C[L(y)→ L→ L]

])
.

Let us see that certainM(Q, Tθ) = false if and only if a 3-CNF formula θ is
satisfiable.
(⇒) Suppose certainM(Q, Tθ) = false. Then there exists a tree T ′ that is a

solution for the tree encoding of θ and falsifies the query. We extract an assignment
v from T ′ as follows. For each fragment matching r[C[L(x)→ L→ L]], v assigns

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 61

true to the literal encoded by x (if the value of x does not encode a literal, just
ignore it). This assignment is consistent since the query is false over T ′. Finally
the assignment satisfies θ. The dependency requires that for each clause there is a
C node with L nodes storing values encoding the three literals. Since the literals
are different, the three nodes are different as well, and at least one of them has two
following siblings. Hence, the corresponding literal is true by the assignment.
(⇐) Suppose that θ is satisfiable. Assume v is a satisfying assignment. To

construct a solution for Tθ that falsifies the query, we simply change the order of
L’s under each C node so that, for each clause, some literal assigned true has at
least two following siblings. More specifically, for each tree fragment of the form
r[C[L1(d1), L2(d2), L3(d3)]], the corresponding clause has at least one literal that
is assigned true by v. We choose the data encoding one such literal (we choose
the one corresponding to a literal with the smallest index if there are more than
one literal to which v assigns true). For example, suppose it is d2. Then we make
the tree fragment r[C[L(d2) → L(d1) → L(d3)]]. After we have processed all the
fragments corresponding to clauses, we simply copy all the L nodes in the target.
Since v never assigns true to a variable and its negation, the query is false over the
constructed tree.

Mappings with fully specified sibling order. There are two possible ways to define
the notion of being fully specified with respect to the horizontal ordering. In the
more relaxed notion, called →+-fully specified, we insist that for every two sub-
patterns which start at children of the same node, we know their relative ordering.
In the stronger notion, called→-fully specified, we completely specify the→ relation
among the siblings.
More precisely, →+-fully specified patterns exclude, in addition to //π and wild-

card, the ability to take union (i.e., the λ, λ′ construct) and are given by:

π := ℓ(x̄)[µ]
µ := ε | π | π → µ | π →+ µ

The →-fully specified patterns in addition exclude →+ and are given by:

π := ℓ(x̄)[µ] µ := ε | π | π → µ

For example, a[b, c] is neither →-fully specified nor →+-fully specified; a[b→+ c] is
→+-fully specified, but not→-fully specified, and a[b→ c→ d] is→-fully specified.
We say that a mapping is →-fully specified if each dependency has a →-fully

specified pattern on the target side; analogously for →+-fully specified.

Proposition B.1.

(1 ) There exist a →-fully specified schema mappingM ∈ SMnr(↓,→) and a query
Q ∈ CTQ(↓,→,=) such that certain(Q) is coNP-complete.

(2 ) There exist a →+-fully specified schema mapping M ∈ SMnr(↓,→+) and
a query Q from the class CTQ(↓,→+,=) such that certain(Q) is coNP-
complete.

Proof. (1) As in the previous proof, we will provide an XML schema mapping
M = (Ds, Dt,Σ) and a query Q such that we can reduce 3SAT to the complement

Journal of the ACM, Vol. V, No. N, Month 20YY.



62 · S. Amano, C. David, L. Libkin, F. Murlak

of certainM(Q, Tθ), where Tθ is the same encoding of formulae as in the previous
proof.
The idea of the reduction is the following: we transform a 3CNF formula θ into

a source tree Tθ. The mapping is defined so that a solution of Tθ corresponds to a
selection of (at least) one literal for each clause in the formula. Finally we provide a
query that is true when such a selection contains a variable and its negation. Thus
the existence of a solution falsifying the query means the existence of a well-defined
(partial) assignment that satisfies the formula θ. The difference from the previous
proof is how we “choose” literals.
The source DTD Ds is just like before, and the target DTD Dt is again almost

the same as Ds, except that it has Mi nodes. With these extra nodes, we ‘choose’
a literal from each clause. Intuitively we select Li’s that are ‘two step to the right
of M1’.

r→ C∗V ∗ V : @a1,@a2

C →M1M2?M3?L1L2L3 L1, L2, L3 : @b.

The dependencies are simply copying precisely the source to the target.

r[C[L1(x)→ L2(y)→ L3(z)]] −→ r[C[L1(x)→ L2(y)→ L3(z)]]

r[V (x, y)] −→ r[V (x, y)]

The query Q is true if a variable and its negation are both ‘chosen’, just as in
the previous proof:

∃x∃y(r[V (x, y), C[M1 → → → (x)], C[M1 → → → (x)])

In order to formally prove the correctness of the reduction, we have to prove that
certain(Q, Tθ) is false iff θ is satisfiable.
(⇒) To prove the left-to-right implication, suppose certain(Q, Tθ) is false, which

means there is a target tree T ′ that is a solution for T and falsifies Q. Then we
define the truth assignment from T ′ as follows: for each C node corresponding to a
clause, find the node below it that is two steps away from M1 (whose element type
must be one of Li), say, Li(p). By the first dependency, p encodes a literal. If p
encodes xj (resp. ¬xj), then assign true (resp. false) to xj . By the target DTD
each clause contains a true literal. Furthermore, since the query is false over T ′,
the truth assignment does not assign true to a variable and its negation, hence the
assignment is well-defined.
(⇐) For the other direction, suppose the formula is satisfiable with an assignment

v. We shall construct a solution of the mapping for Tθ base on v. First we copy
every L node. Next for each fragment of the form r[C[L1(d1)→ L2(d2)→ L3(d3)]],
we will copy it and put M1 to the left of L1 with possibly putting M2 and M3 in-
between. If v assigns true to the first literal in the corresponding clause, then we
put both M2 and M3 between M1 and L1 (to make L1 “two steps to the left of
M1); otherwise if it is the second literal that is assigned true by v, then we put
M2 alone; otherwise we put neither M2 nor M3. Since a truth assignment does not
assign true to both a variable and its negation, it will not happen that the values
paired in V , i.e. those encoding a variable and its negation, are both two steps
away from M1. Thus the query is false in the constructed tree, as desired.

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 63

(2) We provide M = (Ds, Dt,Σ) and a query Q to which 3SAT is reducible to
certainM(Q).
The idea of the reduction is the following: we transform a 3CNF formula θ into

a source tree Tθ. The mapping is defined so that a solution of Tθ corresponds to a
selection of (at least) one literal for each clause in the formula. Finally we provide a
query that is true when such a selection contains a variable and its negation. Thus
the existence of a solution falsifying the query means the existence of a well-defined
(partial) assignment that satisfies the formula θ. The difference from the previous
proofs is how we “choose” literals.
Ds is quite similar as before:

r → C∗V ∗ C : @a1 V : @a2,@a3

C → L∗ L : @b

Note that the subscript in L is dropped and the C-nodes now store one attribute.
We encode a given 3CNF formula θ as Tθ, by dropping the subscript in the previous
encoding and inserting a fresh data value in the attribute of each C-node.
The target DTD is the following very simple one.

r → A∗V ∗ A : @b1,@b2 V : @a2,@a3

The constraint is the following: it “flattens” the structure using two attributes
in A: the first indicates a clause and the second encodes a literal. Formally the
dependencies are:

r/C(x)/L(y) −→ r/A(x, y)

r/V (x, y) −→ r/V (x, y)

In a target tree, we choose a literal that has at least two following siblings in each
clause (i.e., with the same first attribute value).
Finally, let us define the query Q. Like in the previous reductions, Q is true when

the set of selected literals contains a variable and its negation.

∃xyuvz1z2z3z4 r
[
V (x, y), A(u, x)→+ A(u, z1)→

+ A(u, z2),

A(v, y)→+ A(v, z3)→
+ A(v, z4)

]
.

We need to show that certainM(Q, Tθ) is false iff θ is satisfiable.
(⇒) Suppose certain(Q, Tθ) is false. We have a solution T ′ for Tθ that falsifies

the query Q above. We extract a truth assignment as follows. For any fragment
matching r[A(d, d1) →+ A(d, d2) →+ A(d, d3)], where each di is a data value
encoding a literal (i.e, appears in some V node in the source) and d is a data value
encoding a clause (i.e., appears in C in the source), the variable encoded by d1 is
assigned true. Since T ′ falsifies Q, our assignment is consistent. Also it satisfies θ.
Each clause C(d) in the source has three L-labelled children storing different data
values (in each clause all three literals are different), so we have at least three nodes
of the form A(d, d′) in the target. Hence at least one literal in the clause will be
assigned true.
(⇐) Assume θ is satisfiable, with a satisfying assignment v. We need to construct

a solution of the mapping for the source tree Tθ. First we copy all the V nodes
from the source. For each fragment of the form r[C(d)[L1(d1), L2(d2), L3(d3)]], a

Journal of the ACM, Vol. V, No. N, Month 20YY.



64 · S. Amano, C. David, L. Libkin, F. Murlak

solution must contain the three fragments r[A(d, d1)], r[A(d, d2)], and r[A(d, d2)]
in some order. The order of the above three fragments is decided according to
which literal is assigned true by v, as follows. If it is the first literal, we put
r[A(d, d1) → A(d, d2) → A(d, d3)]; otherwise if it is the second literal, we put
r[A(d, d2) → A(d, d1) → A(d, d3)]; otherwise we put r[A(d, d3) → A(d, d1) →
A(d, d2)] Repeating this for each fragment encoding a clause, we obtain a tree that
conforms to the target DTD and is a solution for Tθ. Since v does not assign true
to both a variable and its negation, the constructed tree falsifies the query.

Note that we cannot replace →+ with → here because the above constraints do
not guarantee all the a’s with the same first coordinate (identifier for clause) appear
consecutively in the target.
Note also that this gives another proof of coNP-hardness of CTQ(↓,→+,=)

(Proposition 5.6).

Lemma 5.13. Let D be a nested relational DTD and let ϕ(x̄) be a fully specified
non-bounding tree pattern. Then, mrgDϕ is fully specified and non-bounding, and
for every T consistent with D and every F, ā

(1 ) (T, F ) |= ϕ(ā) implies (T, F ) |= (mrgDϕ)(ā);

(2 ) if (T, F ) |= (mrgDϕ)(ā) and the witnessing homomorphism is injective, then
(T, F ) |= ϕ(ā);

(3 ) if mrgDϕ 6= ⊥ and F is admissible, (mrgDϕ)(ā) admits an injective homomor-
phism into a tree consistent with D.

In particular, ϕ(ā) is satisfiable w.r.t. D iff (mrgDϕ)(ā) is satisfiable w.r.t. D, and
mrgDϕ = ⊥ iff ϕ◦ is not satisfiable in a tree consistent with D.

Proof. Since mrgD(π, α) = (π′, α′ ∧ α) with (π′, α′) = mrgDπ, it is enough to
prove the lemma for ϕ = π. The algorithm never introduces // or , so mrgDπ
is fully specified. The only place where a bounding sequence could possibly be
introduced is when π−j → . . . → πk and π′

−j′ → . . . → π′
k′ are merged in step (3)

of the merging algorithm. Let the result of the merging be π′′
−j′′ → . . .→ π′′

k′′ with
j′′ = max(j, j′), k′′ = max(k, k′). Note that either π′′

0 or π′′
0 → π′′

1 is a critical
subsegment. In either case, each bounding sub-segment in π′′

−j′′ → . . .→ π′′
k′′ must

be contained in π′′
−j′′ → . . . → π′′

1 or in π′′
0 → . . .→ π′′

k′′ . But then there would be
a bounding sub-segment in one of the original patterns, which we assumed not to
happen. Thus, mrgDπ is non-bounding.
Let us move to the main claim of the lemma. Since mrgD(π(t̄)) = (mrgDπ)(t̄),

we can work with mrgD(π(ā)) instead of (mrgDπ)(ā) and assume that the merging
procedure works directly on π(ā). Let us fix an interpretation F . By induction on
the depth of π we prove the following:

(1’) for each homomorphism h : π(ā)→ T witnessing that (T, F ) |= π(ā) for some
T consistent with D, if some two nodes of π(ā) are merged in mrgD(π(ā)) then
their images under h coincide, and the function mrgD(π(ā)) → T thus induced
by h is a homomorphism witnessing that (T, F ) |= mrgD(π(ā));

(2’) for each injective homomorphism h : mrg(π(ā))→ T witnessing that (T, F ) |=
mrgD(π(ā)) for some T consistent with D, the function π(ā) → T induced by h
is a homomorphism;

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 65

(3) if mrgDϕ 6= ⊥ and F is admissible, (mrgDϕ)(ā) admits an injective homomor-
phism into a tree consistent with D.

If π(ā) = σ(t̄), then mrgD(π(ā)) = σ(t̄) and the whole claim is obvious. Let us
assume that π(ā) = σ(t̄)[µ1, . . . , µm].
(1’) Let h : π(ā) → T be a homomorphism witnessing that (T, F ) |= π(ā). It is

straightforward to see that the sequence of labels of the root’s children in T is a
word generated by the regular expression ω, computed in step (1) of the merging
algorithm. Consequently, head(µi) is satisfiable in a word generated by ω for all
i, and step (1) does not return ⊥. Removing →+ in step (2) does not affect the
homomorphism h. Let us look at step (3). Take segments π−j → . . . → πk and
π′
−j′ → . . . → π′

k′ such that either π0, π
′
0 or π0 → π1, π

′
0 → π′

1 are critical sub-
segments with identical heads. It follows immediately that the roots of π0 and
π′
0 are mapped by h to the same node in T : in the first case there can be just

one node with an appropriate label, and in the second case there are only two
subsequent siblings with appropriate labels. Hence, h agrees on the roots of πi and
π′
i for i = −j

′, . . . , k. From this it follows that τi = τ ′i for i = −j′, . . . , k, and the
algorithm merges the two segments. It also follows that the introduced equalities
are satisfied and that the arguments of the recursive calls of mrgD are satisfied in
the corresponding subtrees of T , witnessed by h. By the inductive hypothesis, the
recursive calls do not return ⊥, and h induces homomorphisms witnessing that the
returned patterns are satisfied in these subtrees as well. Repeating this reasoning
for all merges performed in step (3), we end up with an induced homomorphism
witnessing that (T, F ) |= mrgD(π(ā)).
(2’) Any homomorphism h : mrgD(π(ā)) → T naturally induces a function

ĥ : π(ā)→ T . The function ĥ clearly satisfies all the conditions to be a homomor-
phism, except preserving relations →+: in step (2) we remove some occurrences of
→+ from π(ā). We claim that each removed →+ is imposed by the structure of
D—provided that h is injective.
Suppose that →+ is removed from κ →+ κ′, a subsequence of µi. By step

(1) of the algorithm, head(µi) is satisfiable in a word generated by ω, and so is
κ →+ κ′. Recall that ω = σ̂1 . . . σ̂k for distinct σi. If head(κ) and head(κ′) share
no labels, the missing →+ is always satisfied when κ, κ′ are matched in a word
generated by ω. If they do share a label, from the shape of ω it follows that
head(κ) = κ0 → σi → σi → . . . → σi and head(κ′) = σi → σi → . . . → σi → κ′0,
where κ0 and κ′0 share no labels. Since →+ between κ and κ′ is removed, either κ0
or κ′0 contains a label different from σi. Hence, if head(κ) and head(κ′) are matched
disjointly in a word generated by ω, then the missing →+ is also satisfied. Note
also that in either case κ and κ′ cannot contain critical subsegment with identical
heads, so they will not be merged in mrgD(π(ā)).
Now, assume that h : mrg(π(ā)) → T is an injective homomorphism witnessing

that (T, F ) |= mrgD(π(ā)). Then, ĥ matches the heads of all segments of µi in the
root’s children. Examining step (1), we see that the word w given by the sequence
of labels of the root’s children can be generated by ω. If →+ is removed from
κ →+ κ′, we know that κ and κ′ are not merged in mrgD(π(ā)). Consequently, ĥ
matches their heads disjointly in w and →+ is respected. The claim follows by the
induction hypothesis.

Journal of the ACM, Vol. V, No. N, Month 20YY.



66 · S. Amano, C. David, L. Libkin, F. Murlak

(3) Assume that mrgD(π(ā)) 6= ⊥ and F is admissible. Let ω = σ̂1 . . . σ̂k be the
regular expression computed in the step (1). Since π(ā) is non-bounding, and each
head(µi) is satisfiable in a word generated by ω, after step (2) we have a collection
of sequences of two kinds: segments with critical sub-segments, with heads of the
forms

σp → . . .→ σp︸ ︷︷ ︸
σ̂p=σ∗

p or σ̂p=σ
+
p

→σp+1 → σp+2 → . . .→ σq−1︸ ︷︷ ︸
σ̂j=σj for p<j<q

→ σq → . . .→ σq︸ ︷︷ ︸
σ̂q=σ∗

q or σ̂q=σ
+
q

,

σp → σp+1 → . . .→ σq−1︸ ︷︷ ︸
σ̂j=σj for p≤j<q

→ σq → . . .→ σq︸ ︷︷ ︸
σ̂q=σ∗

q or σ̂q=σ
+
q

,

σp → . . .→ σp︸ ︷︷ ︸
σ̂p=σ∗

p or σ̂p=σ
+
p

→σp+1 → σp+2 → . . .→ σq︸ ︷︷ ︸
σ̂j=σj for p<j≤q

,

σp → σp+1 → . . .→ σq︸ ︷︷ ︸
σ̂j=σj for p≤j≤q

,

σp → . . .→ σp︸ ︷︷ ︸
σ̂p=σ∗

p or σ̂p=σ
+
p

→σq → . . .→ σq︸ ︷︷ ︸
σ̂q=σ∗

q or σ̂q=σ
+
q

with q = p+ 1

and sequences without critical sub-segments, with heads of the form

(σp → . . .→ σp)→
+ (σp → . . .→ σp)→

+ . . .→+ (σp → . . .→ σp)

with σ̂p = σ∗
p or σ̂p = σ+

p .
This property is not affected by the merging in step (3): only sequences of the

first kind get merged, and the result is also of the first kind (we assumed ⊥ is never
returned). Let mrgD(π(s̄)) = σ(t̄)[κ1, . . . , κr], β. We know that no two sequences κi
have critical sub-segments with identical heads. It follows that for i 6= i′, head(κi)
and head(κi′) share at most one label σj and moreover σ̂j = σ∗

j or σ̂j = σ+
j .

Together with the special form of the heads described above, this guarantees that
we can order κi so that there exist 1 ≤ p1 ≤ q1 ≤ p2 ≤ q2 ≤ · · · ≤ pr ≤ qr ≤ k such
that head(κi) uses exactly labels σpi , σpi+1, . . . , σqi and moreover if qi = pi+1 then
σ̂qi = (σqi )

∗ or σ̂qi = (σqi )
+. Let

w = w0 word(κ1)w1 word(κ2)w2 · · · word(κk)wk

where word(κi) is the word obtained from head(κ2) by skipping all occurrences of→
and →+, and wi is the shortest word generated by σ̂qi+1σ̂qi+2 · · · σ̂pi+1−1 (q0 = −1,
pr+1 = k + 1). Obviously, the heads of κi can be matched pairwise disjointly in
w and w is generated by ω. By the construction of ω, w is also generated by the
regular expression in the production for σ inD. To extend this to an injective match
of mrgD(π(ā)) in a tree consistent with D, we invoke the induction hypothesis for
the arguments of the recursive calls made in step (3). This concludes the inductive
proof.
The additional claims follow easily from the main claim. By part (1), if ϕ(ā)

is satisfiable, so is (mrgDϕ)(ā). Conversely, if (mrgDϕ)(ā) is satisfiable, then
mrgDϕ 6= ⊥, mrgDϕ has label r in its root node, and F is admissible. By part (3),

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 67

mrgDϕ can be matched injectively in a tree T conforming to D. By part (2), ϕ is
satisfiable.
Let π be a pattern that uses no function symbols, constants, nor repetitions of

variables, such that ϕ = π(t̄)∧α. Clearly, ϕ◦ is satisfiable in a tree consistent with
D iff so is π. Like in the previous paragraph, π is satisfiable in a tree consistent
with D iff so is mrgDπ. Since π uses no function symbols or constants, by part
(3), mrgDπ is satisfiable in a tree consistent with D iff mrgDπ 6= ⊥. Finally, by
equation (4) on page 27, mrgDπ 6= ⊥ iff mrgDϕ = (mrgDπ)(t̄) 6= ⊥.

C. CONSISTENCY OF SCHEMA MAPPINGS

Lemma 6.3. For every DTD D there exists a polynomial tree automaton recogniz-
ing

{
T
∣∣ T |= D

}
.

Proof. Let Aa = (Γ, Qa, ia, Fa, δa) be the NFA equivalent to the regular ex-
pression in the production for a in D, obtained by the classical linear translation.
Without loss of generality we assume that all Qa’s are disjoint.
The automaton recognizing

{
T
∣∣ T |= D

}
simply runs the Aa on the sequence of

children of each a-node in the tree, with a ranging over the set of element types Γ.
More precisely, the state space is Q =

⋃
a∈ΓQa, with I =

⋃
a∈Γ Fa and F = {ir}

where r is the root symbol of the DTD. The transition relation δ consists of tuples
(q, b, ib, q

′) such that (q, b, q′) ∈ δa for some a ∈ Γ.

Proposition 6.5. Over nested relational DTDs both Cons(⇓,⇒) and
Cons(⇓,→) are PSPACE-complete.

Proof. To solve the consistency problem in PSPACE we follow the approach
taken in the proof of Theorem 6.2. Like before, we reduce consistency of the
mapping

(
Ds, Dt,

{
ϕi −→ ψi

∣∣ i = 1, 2, . . . , n
})

to non-emptiness of the automata

As = ADs
×
∏

j 6∈I

A(ϕj) and At = ADt
×
∏

j∈I

A(ψj)

for some subset I ⊆ {1, 2, . . . , n} (since we are working in PSPACE, we simply
guess I). But this time, instead of computing the automata and then deciding non-
emptiness, we will be generating them on-the-fly during the non-emptiness check,
using the full power of Lemma 6.4.
We also rely on the fact that testing non-emptiness of an automaton A =

(Σ, Q, I, F, δ) on trees of depth d can be done in space polynomial in d · log ‖A‖.
Let NonEmpty(q, d) check if there exist a1, a2, . . . , an ∈ Γ, q0, q1, . . . , qn ∈ Q and
p1, p2, . . . , pn ∈ Q, n ≤ |Q|, such that q0 = q, qn ∈ I, (qi−1, ai, pi, qi) ∈ δ and
NonEmpty(pi, d−1) for all 1 ≤ i ≤ n. This can be done by guessing the subsequent
ai, pi, qi while i stays below |Q|. At every step we refer to the automaton to check if
the guessed values are consistent with δ, and make a recursive call. NonEmpty(q, 0)
simply checks if q ∈ I. Local memory at each call is O(‖A‖+ log d) and the depth
of the recursion is d, hence the overall space complexity is O(d · log ‖A‖+ d · log d).

Journal of the ACM, Vol. V, No. N, Month 20YY.



68 · S. Amano, C. David, L. Libkin, F. Murlak

To check non-emptiness of A on trees of depth d simply run NonEmpty(q, d − 1)
for a guessed state q such that (p, a, q, p′) for some p ∈ F , a ∈ Σ and p′ ∈ I.
In order to decide consistency, we run the above non-emptiness test for the prod-

uct automata As and At and d equal to the depth of the corresponding schema
(can be bounded by the number of element types). The non-emptiness algorithm
guesses labels and states of the product automaton and whenever it needs to refer
to the transition relation, we simply compute it from scratch using the PSPACE-
transducer given by Lemma 6.4. Instead of outputting the whole automaton, which
would take exponential space, we simply enumerate the transition relation, tuple
by tuple, within polynomial space. As log ‖As‖ and log ‖At‖ are polynomial in the
size of the mapping, we obtain a PSPACE algorithm.

Let us now turn to the lower bound. We show PSPACE-hardness of Cons(⇓,→)
using reduction from Q3SAT. Suppose we are given a formula Q1x1 · · ·Qnxn C1 ∧
C2∧. . .∧Cm, where Qi ∈ {∀, ∃} and each conjunct Ci consists of 3 atomic disjuncts,
e.g., (x1 ∨ x̄3 ∨ x7).
Define the source DTD Ds over alphabet {r, ♯, ♮, t1, t2, . . . , tn, f1, f2, . . . , fn} as

r→ ♯t1f1♮ if Q1 = ∀

r→ ♯t1?f1?♮ if Q1 = ∃

ti, fi → ♯ti+1fi+1♮ for all i < n such that Qi+1 = ∀

ti, fi → ♯ti+1?fi+1?♮ for all i < n such that Qi+1 = ∃

tn, fn → ε

The target DTD Dt is simply r→ ε. Note that both DTDs are nested-relational.
Intuitively, ti means that xi is assigned true, and fi means it is assigned false. For

universally quantified variables the DTD requires branching, which corresponds to
two values of the variable. For existentially quantified variables we have to choose
one truth value, but it does not prevent us from choosing none or both. This will
be taken care of by the constraints.
The key observation is that in the presence of sibling order we can enforce the

existence of a node. Consider the following constraints:

// [♯→ ♮] −→ ⊥ ,

// [ti, fi] −→ ⊥ for all i ≤ n such that Qi = ∃ .

The first one says that at least one of ti and fi appear. The second one says that
if Qi = ∃, at most one of ti and fi appear.
Finally, for each Ci we add a constraint enforcing that it is satisfied, e.g., for a

conjunct (xi ∨ x̄j ∨ xk), we add

//fi//tj//fk −→ ⊥ .

It is straightforward to see that consistency of this mapping is equivalent to satis-
fiability of the given Q3SAT formula.

Proposition 6.8. For schema mappings from SMnr(⇓,∼,Fun) which are fully
specified and do not use 6= on the source side, Cons is EXPTIME-complete.
If either restriction is lifted, the problem becomes NEXPTIME-hard.

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 69

Proof. (1) As usual, assume that all variables are used exactly once in source
side tree patterns. By the monotonicity of patterns, it is enough to consider trees
having as few nodes as possible. Thus, if a node is not enforced by the DTD, we
will not put it in the tree. Hence, we may safely remove from the productions all
expressions of the form σ∗, σ?, and replace σ+ with σ.

After this modification, there is exactly one tree conforming to the source DTD
– up to the values stored in the attributes. Let us call this tree with missing data
values T . Now, we need to fill in those values. More precisely, we need the right
pattern of equalities between the values in different nodes. We reduce this problem
to the solution building problem.

Let us associate a constant cv with each node v of T . Replace each dependency
in M with a set of dependencies obtained as follows: for each possible homomor-
phism from the source side pattern to T produce a new dependency by removing
the pattern from the source side (keep the equalities) and replacing each variable
mapped to v by the constant cv. Replace the source DTD with r → ε, and call
the new mapping M′. As all variables were used in the source side patterns, the
new dependencies contain no variables at all. Clearly, M is consistent iff M′ is
consistent. ButM′ is consistent iff the trivial tree r has a solution. Thus we can
use the solution building algorithm from Theorem 5.15 for the source tree r and
the mapping M′. Let us examine its complexity. As T is single exponential in
the size of the source DTD and each original dependency from M was replaced
with at most |T |‖M‖ new dependencies, the number of dependencies inM′ is single
exponential as well. The dependencies use no variables and the target DTDs is
polynomial. Hence, the whole algorithm runs in EXPTIME.

(2) To obtain the EXPTIME lower bound for each deterministic Turing machine
M and each n we construct a mappingM that is consistent if and only ifM reaches
an accepting state in at most 2n steps starting from the empty input word. The
construction is a modification of the one in Theorem 6.7. We are going to store
the run of the machine in the source tree. The target schema will be trivial and
the target sides of dependencies will be conjunctions of equalities. Let M be a
deterministic Turing machine with the tape alphabet A including the blank symbol
♭, states q0, q1, . . . , qf , the initial state q0, and the transition function δ. W.l.o.g.
we assume that qf is the only final accepting state and that the machine moves the
head back to the first cell of the tape before it terminates. For technical reasons it
is also convenient to assume that the machine loops in the accepting state as soon
as it is reached.

Journal of the ACM, Vol. V, No. N, Month 20YY.



70 · S. Amano, C. David, L. Libkin, F. Murlak

The source DTD is given as

r→ a1 b1 q0 q1 . . . qf ♮ τ1 τ2 · · · τm

aj , bj → aj+1 bj+1 1 ≤ i < n

an, bn → 01 11

0i, 1i → 0i+1 1i+1 1 ≤ i < n

0n, 1n → cell

cell : @state @symbol

0i, 1i, zero, one : @attr 1 ≤ i ≤ n

♮, qi, τj : @attr 0 ≤ i ≤ f, 1 ≤ j ≤ m

where the set of decorated tape symbols Â =
{
s, s⊲, s⊳

∣∣ s ∈ A
}
consists of symbols

τ1, τ2, . . . , τm. The subtrees rooted in nodes labeled an or bn represent subsequent
configurations of M . Under each such node we store the content of the tape in the
leaves of the exponential subtree consisting of nodes with labels 0i, 1i. The address
of the cell is the sequence of labels on the path leading to the leaf. We will make
sure that for each node on the path, its label is mirrored in the data value it stores.
For each cell we remember the tape symbol and the state (or the information that
the head is elsewhere, encoded by ♮).
The target DTD is just

r → q0 q1 . . . qf ♮ τ1 τ2 · · · τm zero one

zero, one, ♮, qi, τj : @attr 0 ≤ i ≤ f, 1 ≤ j ≤ m.

Let us now describe the dependencies. First we enforce that each each state and
each tape symbol is encoded with a unique data value. This is done by means of a
set of dependencies of the form

r
[
π(x), π′(x)

]
−→ ⊥

where π(x) and π′(x) range over pairs of different patterns from among qi(x), ♮(x),
τj(x).
We make sure that the data values reflect labels in the 0i and 1i nodes by intro-

ducing the following dependencies for i = 1, 2, . . . , n (the last dependency enforces
that the values encoding directions are different)

r//0i(x) −→ r/zero(x) ,

r//1i(x) −→ r/one(x) ,

r[//01(x), //11(x)] −→ ⊥ .

To ensure that states and tape symbols are encoded consistently we add

r
[
q0(x0), q1(x1), . . . , qf (xf ), ♮(y)

]
−→ r

[
q0(x0), q1(x1), . . . , qf (xf ), ♮(y)

]
,

r
[
τ1(z1), τ2(z2), . . . , τm(zm)

]
−→ r

[
τ1(z1), τ2(z2), . . . , τm(zm)

]
.

Correctness of the computation tree is enforced by the dependencies. The initial

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 71

configuration is checked by

r/a1/a2/ . . . /an/01/02/ . . . /0n/cell(u, v) −→ r
[
q0(u), ♭

⊲(v)
]
,

r/a1/a2/ . . . /an/01/02/ . . . /0j/1j+1//cell(u, v) −→ r
[
♮(u), ♭(v)

]
,

r/a1/a2/ . . . /an/11/12/ . . . /1j/0j+1//cell(u, v) −→ r
[
♮(u), ♭(v)

]
,

r/a1/a2/ . . . /an/11/12/ . . . /1n/cell(u, v) −→ r
[
♮(u), ♭⊳(v)

]
,

where j = 2, 3, . . . , n− 1; transitions are checked by

r

[
Step(u1, u2, . . . , u6, v1, v2, . . . , v6),

p1(u1), p2(u2), p3(u3), σ1(v1), σ2(v2), σ3(v3)

]
−→ r

[
p4(u4), p5(u5), p6(u6),
σ4(v4), σ5(v5), σ6(v6)

]
,

where (p1, σ1, p2, σ2, . . . , p6, σ6) ∈ δ̂; and the final configuration is checked by

r/b1/b2/ . . . /bn/01/02/ . . . /0n/cell(u, v) −→ r
[
qf (u)

]
.

The auxiliary pattern Step(ū , v̄) is defined as

Step(ū, v̄) =
n∨

i=1

//

[
ai/bi+1/bi+2/ . . . /bn/ThreeCells(x̄, u1, u2, u3, v1, v2, v3),
bi/ai+1/ai+2/ . . . /an/ThreeCells(x̄, u4, u5, u6, v4, v5, v6)

]
,

ThreeCells(x̄, ū, v̄) =

n−1∨

i=1

ThreeCellsi(x̄, ū, v̄) ∨
n−1∨

i=1

ThreeCells′i(x̄, ū, v̄)

and ThreeCellsi(x̄, ū, v̄), ThreeCells
′
i(x̄, ū, v̄) are shown in Figure 7.

Proving correctness of the construction above poses no difficulties. Each occur-
rence of // can be replaced with a disjunction of sequences of / and symbols.
Disjunction is only used at the source side, and therefore can be eliminated at the
cost of multiplying dependencies.

(3) In Theorem 6.7 the NEXPTIME lower bound was proved for SMnr(↓, ,=).
To obtain the lower bound for fully specified mappings from SMnr(↓, ,∼), we give
a reduction from satisfiability of Bernays-Schoenfinkel formulae, which is known to
be NEXPTIME-hard [Lewis 1980]. Let the given formula be

∃x1 · · · ∃xm∀xm+1 · · · ∀xn

k∧

i=1

ℓ∨

j=1

Ci,j ,

where Cij is an atom or a negated atom over a relational signature R. It is known
that if a Bernays-Schoenfinkel formula has a model at all, it has a model of size
N = m + maxR∈R ar(R). The idea is to guess a model in the source tree, with
assistance of the target tree.
The target DTD is simply Dt = {r → ε} and the source DTD Ds is defined as

Journal of the ACM, Vol. V, No. N, Month 20YY.



72 · S. Amano, C. David, L. Libkin, F. Murlak

(x1)

(x2)

..

.

(xi−1)

0i(xi)

1i+1(xi+1)

1i+2(xi+2)

.

..

1n−1(xn−1)

0n

cell(u1, v1)

1n(xn)

cell(u2, v2)

1i

0i+1

0i+2

.

..

0i−1

0n

cell(u3, v3)

(a) ThreeCellsi(x̄, ū, v̄)

(x1)

(x2)

..

.

(xi−1)

0i

1i+1

1i+2

.

..

1n−1

1n

cell(u1, v1)

1i(xi)

0i+1(xi+1)

0i+2(xi+2)

.

..

0i−1(xn−1)

0n(xn)

cell(u2, v2)

1n

cell(u3, v3)

(b) ThreeCells′
i
(x̄, ū, v̄)

Fig. 7. Auxiliary patterns used in ThreeCells(x̄, ū, v̄)

follows:

r → t f v1 v2 · · · vN x1

xi → v xi+1 1 ≤ i < m

xm → v xm+1,1 xm+1,2 · · · xm+1,N

xi,j → v xi+1,1 xi+1,2 · · · xi+1,N m+ 1 ≤ i < n, 1 ≤ j ≤ N

xn,i → v ∧ 1 ≤ i ≤ N

∧ → ∨1 ∨2 · · · ∨k

∨i → Ci,1 Ci,2 · · · Ci,ℓ

Ci,j : @attr 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ

vi, v, t, f : @attr 1 ≤ i ≤ N

The idea is that each xi and xi,j holds a value (as an attribute). The initial
sequence of xi’s encodes the existential guesses. Below, each of the branching xi,j
paths corresponds to the universal guesses. Thus each path from x1 to xn,j is a
valuation of all variables. At the bottom of each path we store truth values of the
literals Ci,j with respect to this valuation. One remaining problem is that we have
to make sure that all the values come from a fixed N -element universe. For that
purpose we encode the universe in source trees in the sequence of nodes labeled
v1, v2, . . . , vN and ensure that each value appearing in the valuations comes from
the universe. Apart from the the encoding of the model described above, we store

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 73

sample truth values in the nodes t (true) and f (false). Note that each “variable”
node has a child v which is meant to hold the assigned value. The attribute of each
node labeled with Ci,j will be used to store the truth value w.r.t. the valuation
encoded by the path leading to this node.
Let us now describe the dependencies. To avoid confusion with the Bernays-

Schoenfinkel formula’s variables, we will be using capital letters for variables in
dependencies. For notational simplicity we use //, but it can be easily replaced
with a sequence of / and of suitable length. We also use an auxiliary tree pattern
pathi(X1, . . . , Xi)[ψ] defined as

path1(X1)[ψ] = [v(X1), ψ] ,

pathi+1(X1, X2, . . . , Xi+1)[ψ] = [v(X1), pathi(X2, X3, . . . , Xi+1)[ψ]] .

We omit the subscript i, since it is clear from the number of arguments,
e.g., path(X,Y, Z)[ψ] = [v(X), [v(Y ), [v(Z), ψ]]]. To enhance appropriate
intuitions we slightly abuse the notation and write path(X1, X2, . . . , Xn)/ψ
instead of path(X1, X2, . . . , Xn)[ψ] and path(X1, X2, . . . , Xn)//ψ instead of
path(X1, X2, . . . , Xn)[//ψ].
First, make sure that the sample truth values are not equal, and that each value

stored in a Ci,j node is one of the sample truth values:

r[t(X), f(X)] −→ ⊥

r[t(Y ), f(Z), //Ci,j(X)], X 6= Y,X 6= Z −→ ⊥ for all i, j .

Second, check that all the “variable” values are taken from the universe: for all
1 ≤ i ≤ N

r[path(X1, . . . , Xn), v1(Y1), . . . , vN (YN )], Xi 6= Y1, Xi 6= Y2, . . . , Xi 6= YN −→ ⊥.

Since each branching for xi with i > m is meant to be a universal quantification,
all the data values must be different:

// [xi,p[v(X)], xi,q [v(X)]] −→ ⊥ for all i > m and p 6= q .

Next, we need to make sure that the truth values of relations are consistent. Take
Ci,j = K(xi1 , xi2 , . . . , xis) and Ci′,j′ = K ′(xi′

1
, xi′

2
, . . . , xi′s), with K,K ′ ∈ {R, R̄}

for some R ∈ R. We have to check that for every two ā and b̄ such that aip = bi′p
for p = 1, 2, . . . , s, the values of Ci,j [ā] and Ci′,j′ [b̄] coincide. For K = K ′ this is
expressed by

r [path(X1, X2, . . . , Xn)//Ci,j(V ), path(X ′
1, X

′
2, . . . , X

′
n)//Ci′,j′(V

′)] ,

Xi1 = X ′
i′
1
, . . . , Xis = X ′

i′s
−→ V = V ′

and for K 6= K ′ replace V = V ′ with V 6= V ′.
Finally, we have to ensure the truth values assigned make our formula true:

r[f(X), //∨i [Ci,1(X), . . . , Ci,ℓ(X)] −→ ⊥ for all 1 ≤ i ≤ k .

It is straightforward to see that the mapping is consistent iff the given formula is
satisfiable.

Proposition 6.9. For mappings from SMnr(↓,∼,Fun) which do not use 6= on
the source side, Cons is in PTIME.

Journal of the ACM, Vol. V, No. N, Month 20YY.



74 · S. Amano, C. David, L. Libkin, F. Murlak

Proof. Proceed like in Proposition 6.8: remove from the productions all ex-
pressions of the form σ∗, σ?, replace σ+ with σ, and consider the unique tree T
conforming to the modified source DTD. Again, we need to fill in the data values.
This time we cannot work directly with all the nodes of T , because T is potentially
exponential. Instead, we will use a trick based on the fact that only polynomial
part of the tree matters for the source side tree patterns.
As the source DTD is nested relational, siblings have different labels. Hence, each

node of the source tree is determined by the sequence of labels of the nodes forming
the unique path from the root to this node. Moreover, for fully specified patterns
there exists at most one homomorphism into T . Hence, each source side pattern
that can be mapped assigns each of its variables to exactly one node, determined
by the sequence of labels on the path in the pattern leading from the root to the
variable.
Make sure that no variable is used twice in any source side pattern and then

modify the mapping as follows. For each dependency whose source side pattern
can be mapped into T , replace in each variable with a constant Cρ associated
with the path ρ from root to the variable in the source side pattern, and remove
the pattern from the source side (keeping the equalities), e.g., r[a(x), a/b(y)], x =
y −→ r/d(x, y) should be replaced with Cra = Crab −→ r/d(Cra, Crab).
It suffices to check if the trivial tree r has a solution with respect to the modified

mapping. Notice however, that applying the solution building procedure would still
lead to an exponential algorithm, since the target tree might need to be exponential
in the size of the target DTD.
This time we also need to modify the target DTD. Observe that we can harmlessly

relax the target schema by replacing in the productions all occurrences of ℓ with ℓ?,
and ℓ+ with ℓ∗. Indeed. each solution conforming to the relaxed DTD can be easily
extended so as to conform to the original DTD by simply adding the required nodes,
and since we disallow →, adding nodes will not violate the target side patterns.
For the modified DTD each pattern is complete (see page 25). In consequence,
the completion phase of the solution building algorithm can be skipped, and the
algorithm becomes polynomial in |T |d + ‖M′‖, which gives polynomial procedure
asM′ has no variables.

D. COMPLEXITY OF COMPOSITION

Theorem 7.2. For schema mappings from SM(⇓,⇒), CompMembership is
2-EXPTIME-complete, CompMembership(M,M′) is in EXPTIME, and there
existM,M′ for which it is EXPTIME-complete.

Proof. It remains to show the lower bounds.
(1) To obtain the 2-EXPTIME lower bound for CompMembership we give a

reduction from the membership problem for alternating EXPSPACE Turing ma-
chines, which is known to be 2-EXPTIME-hard. For a machine M and an input
word w we will build a mapping M = (Ds, Dt,Σ) and a tree T conforming to
Dt such that (S, T ) ∈ [[M]] for some S if and only if M accepts w. We show
hardness of CompMembership by asking whether (r, T ) ∈ [[M1]] ◦ [[M]], where
M1 = ({r→ ε}, Ds, ∅).
The idea of the reduction is that the tree S encodes an accepting computation

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 75

tree of M on w, whose correctness is enforced by the mappingM with the help of
a suitable encoding of the transition relation of M stored in T . The main difficulty
is that we are not allowed to use data comparisons in patterns. We circumvent this
obstacle by storing each needed equality/inequality relation on data tuples in T .
Let p be a polynomial and let M be an alternating Turing machine running in

time 2p(|w|) with the tape alphabet A including the blank symbol ♭, the state space
Q = Q∀ ∪ Q∃, the initial state q0, and the transition relation δ. Without loss of
generality we assume that q0 ∈ Q∀, all final states are existential, each transition
leads from Q∀ to Q∃ or from Q∃ to Q∀, and for each q ∈ Q and each σ ∈ A, there
are exactly two different transitions of the form (q, σ, . . . ). Fix also an input word
w and let n = p(|w|).
The source DTD is given as

r→ conf

conf→ conf1 conf2 01 11

conf1, conf2 → (conf | leaf ) 01 11

0i, 1i → 0i+1 1i+1 1 ≤ i < n

0n, 1n → cell

cell : @state @symbol

and the labels conf, conf1, conf2 and 0i, 1i have a single attribute. The conf
nodes represent configurations with universal states and have two children labeled
conf1, conf2 representing configurations with existential states. Each of these has a
single child labeled conf. Under each node representing a configuration one stores
the content of the tape in the leaves of the exponential subtree consisting of nodes
with labels 0i, 1i. The address of the cell is the sequence of labels on the path
leading to the leaf. We will make sure that for each node on the path, its label is
mirrored in the data value it stores. For each cell we remember the tape symbol
and the state (or the information that the head is elsewhere).
The target DTD is given as

r → forall∗ exists∗ init∗ step∗ final∗ zero one

step→ a∗1a
∗
2 . . . a

∗
n

init→ b∗1b
∗
2 . . . b

∗
n

forall : @st@sym@tr1 @tr2

exists : @st@sym@tr

step : @tr@st1 @sym1 @st2 @sym2 · · · @st6 @sym6

init : @st@sym

final : @st

bi : @attr1@attr2 1 ≤ i ≤ n

zero, one, ai : @attr 1 ≤ i ≤ n

The nodes zero and one are meant to store the values encoding the addresses of
tape cells. The exist nodes store transitions allowed by δ for a given existential
state and tape symbol. The forall nodes store both transitions allowed by δ for a

Journal of the ACM, Vol. V, No. N, Month 20YY.



76 · S. Amano, C. David, L. Libkin, F. Murlak

given universal state and tape symbol. The final nodes store the accepting states
of the machine.
The subtrees rooted at init nodes store the initial configuration of the machine for

the input word w. The target tree we are going to construct will satisfy a pattern

r/init(q, σ)
[
b1(j1), b2(j2), . . . , bn(jn)

]

if and only if the content of the cell number 〈j1j2 . . . jn〉2 (we are counting from
zero) is described by the state q and symbol σ (possibly decorated with ⊳ or ⊲ to
denote the beginning and the end of the tape). We use a mock state ♮ /∈ Q to say
that the head is elsewhere. For simplicity we assume that the data domain contains
Q ∪ {♮} and A, as well as 0 and 1. Formally, one can think of an encoding with
distinct data values.
The step nodes store the relation δ̂ extended with the information on the tran-

sition that leads to this evolution of the tape. Again, we are assuming that each
tuple from δ is contained in the data domain as a single value. The target tree is
going to satisfy the pattern

r/step(t, q1, q2, . . . q6, σ1, σ2, . . . , σ6)
[
a1(j1, k1), a2(j2, k2), . . . , an(jn, kn)

]

if either 〈j1j2 . . . jn〉2 6= 〈k1k2 . . . kn〉2 or the three consecutive cells described by
q1σ1q2σ2q3σ3 can evolve into q4σ4q5σ5q6σ6 after the machine takes transition t.
Let us now encode these relations in a polynomial-size target tree T . Let k be

the smallest number such that |w| ≤ 2k. Note that 2k is polynomial in the length
of w. We construct T by arranging the following nodes and subtrees according to
the target schema:

—zero(0) and one(1);

—final(q) for each final accepting state q, and for q = ♮;

—exists(q, σ, t) for all q ∈ Q∃ ∪ {♮}, σ ∈ Â, t ∈ δ such that q = ♮ or t = (q, τ, . . . )
and σ ∈ {τ, τ⊳, τ⊲};

—forall(q, σ, t1, t2) for all q ∈ Q∃ ∪ {♮}, σ ∈ Â, t1, t2 ∈ δ such that q = ♮ or t1 and
t2 are precisely the two transitions of the form (q, τ, . . . ) where σ ∈ {τ, τ⊳, τ⊲};

—init(q, σ)
[
b1(0), b2(0), . . . , bn−k(0), bn−k+1(j1), bn−k+2(j2), . . . , bn(jk)

]
for all

j1, j2, . . . , jk ∈ {0, 1} such that ℓ = 〈j1j2 . . . jk〉2 and q, σ describe the content of
the ℓth cell in the initial configuration, i.e.,

q =

{
q0 for ℓ = 0,
♮ for ℓ > 0,

σ =




τ⊲0 for ℓ = 0,
τℓ for 0 < ℓ < |w|,
♭ for ℓ ≥ |w|,

where w = τ0τ1 . . . τ|w|−1;

—init(♮, ♭)

[
b1(0), . . . , bj−1(0), bj+1(0), . . . , bn(0),
b1(1), . . . , bi−1(1), bi+1(1), . . . , bn(1)

]
for all 1 ≤ j ≤ n− k, 1 ≤ i ≤ n,

i 6= j;

—init(♮, ♭⊳)
[
b1(1), b2(1), . . . , bn(1)

]
;

—step(t, q1, . . . q6, σ1, . . . , σ6)

[
a1(0, 0), . . . , an(0, 0),
a1(1, 1), . . . , an(1, 1)

]
for all q1, . . . , q6 ∈ Q ∪ {♮},

σ1, . . . , σ6 ∈ Â, t ∈ δ such that (q1, σ1, . . . , q6, σ6) ∈ δ̂ and the step of the com-
putation is consistent with the transition t;

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 77

—step(t, q1, . . . q6, σ1, . . . , σ6)




a1(0, 0), . . . , ai−1(0, 0), ai+1(0, 0), . . . , an(0, 0),
a1(1, 1), . . . , ai−1(1, 1), ai+1(1, 1), . . . , an(1, 1),

a1(0, 1), . . . , an(0, 1),
a1(1, 0), . . . , an(1, 0)


 for

all 1 ≤ i ≤ n, q1, . . . , q6 ∈ Q ∪ {♮}, σ1, . . . , σ6 ∈ Â, t ∈ δ.

Let us now describe the dependencies. We make sure that data values reflect
labels in the 0i and 1i nodes by introducing the following dependencies for i =
1, 2, . . . , n

r//0i(x) −→ r/zero(x) ,

r//1i(x) −→ r/one(x) .

Correctness of the computation tree is enforced by the dependencies

r/ /Tape(x̄, u, v) −→ r/init(u, v)[a1(x1), a1(x2), . . . , an(xn)] ,

r//

[
Tape(x̄, u, v),

conf1(z1), conf2(z2)

]
−→ r/forall (u, v, z1, z2) ,

r// [Tape(x̄, u, v), conf(z)] −→ r/exists(u, v, z) ,

r//

[
ThreeCells(x̄, t̄, ū),

(z)/ThreeCells(ȳ, v̄, w̄)

]
−→ r/step(z, t̄, ū, v̄, w̄) [b1(x1, y1), . . . , bn(xn, yn)] ,

r// [Tape(x̄, u, v), leaf] −→ r/final(u) ,

where the auxiliary patterns are defined as

Tape(x̄, u, v) = (x1)/ (x2)/ . . . / (xn)/cell(u, v)

ThreeCells(x̄, ū, v̄) =

n−1∨

i=1

ThreeCellsi(x̄, ū, v̄) ∨
n−1∨

i=1

ThreeCells′i(x̄, ū, v̄)

and ThreeCellsi(x̄, ū, v̄), ThreeCells
′
i(x̄, ū, v̄) are shown in Figure 7 on page 72.

Proving correctness of the construction above poses no difficulties. Each occur-
rence of // can be replaced with a disjunction of sequences of / and symbols.
Disjunction is only used at the source side, and therefore can be eliminated at the
cost of multiplying dependencies.

(2) Now, we shall construct mappingsM = (D1, D2, ∅) andM′ = (D2, D3,Σ23)
in SM(⇓,⇒) such that CompMembership(M,M′) is EXPTIME-hard. We will re-
duce from the non-universality problem for bottom-up non-deterministic automata
on binary trees, modifying a proof from [Arenas and Libkin 2008].
First, define D3 over {r, label , state, nontr , rejecting} as

r → ♯ state∗ ♮ label∗♭nontr∗

state → rejecting?

rejecting , label , nontr → ε

label , state : @attr

nontr : @left ,@right ,@label ,@up

A tree conforming to D3 is meant to encode an automaton. It stores the alphabet
in the label -nodes, state space in the state-nodes (we assume that the initial state

Journal of the ACM, Vol. V, No. N, Month 20YY.



78 · S. Amano, C. David, L. Libkin, F. Murlak

is stored as first, just after ♯), and the complement of the transition relation. The
reason we store the complement is that we do not have negation. We do not have to
enforce anything on such a tree, since we will be constructing it ourselves based on
a given automaton, when preparing input for composition membership algorithm.
In particular, we will make sure, that all states, labels, and non-transitions are
stored correctly.
Next, let D2 over {r, node, label , state, leaf , yes , no} be given by

r → node

node → label ♯ state∗ ♮ (node node | leaf )

state → yes | no

leaf , label → ε

state, label : @attr

A tree conforming to D2 is meant to encode a rejecting run of the corresponding
power set automaton. This time we will need to ensure that it really is a correct
rejecting run with the dependencies, since this is precisely the tree that will be
produced by the composition membership algorithm.
Finally, we define D1 simply as r → ε. The only tree conforming to D1 will be

used as a stub.
Let us now describe Σ23, which will enforce the correctness of the run. First, we

make sure that label -nodes store labels:

//label(x) −→ r/label (x) .

Second, we need to check that for each node-node, each state is stored in exactly
one state-node, and that nothing else is stored there. We do this using the switching
trick from the proof of Theorem 6.6 again:

//node[♯→ state(x)] −→ r[♯→ state(x)] ,

//node[state(x)→ state(y)] −→ r[state(x)→ state(y)] ,

//node[state(x)→ ♮] −→ r[state(x)→ ♮] ,

//node[state(x)→+ state(y)] −→ r[state(x)→+ state(y)] .

The last dependency guarantees that we do not store a state twice, which ensures
that for each state we either have a yes-node, or a no-node.
Next, we make sure that the yes/no nodes are properly assigned in the leaves,

and then properly propagated up the tree:

//node[state(x)/no, label(u), leaf ] −→ r[♯→ state(y), nontr(y, y, u, x)] ,

//node[state(x)/no, label(u), node/state(y)/yes → node/state(z)/yes ] −→

−→ r/nontr(y, z, u, x) .

Finally, check that the run is rejecting:

r/node/state(x)/yes −→ r/state(x)/rejecting .

Let us see that CompMembership
(
(D1, D2, ∅), (D2, D3,Σ23)

)
is indeed

EXPTIME-hard. Take an automaton A = (Γ, Q, δ, q0, QF ) with Γ =

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML Schema Mappings · 79

{a1, a2, . . . , am} and Q = {q0, q1, . . . , qn}. Without loss of generality we may as-
sume that QF = {qk, qk+1, . . . , qm}. Let

Q×Q× Γ×Q \ δ = {(p1, r1, b1, s1), (p2, r2, b2, s2), . . . , (pℓ, rℓ, bℓ, sℓ)} .

Encode A as a tree TA defined as

r[♯, state(q0)/rejecting, state(q1)/rejecting , . . . , state(qk−1)/rejecting ,

state(qk), state(qk+1), . . . , state(qn), ♮,

label (a1), label (a2), . . . , label(am), ♭,

nontr(p1, r1, b1, s1), nontr(p2, r2, b2, s2), . . . , nontr(pℓ, rℓ, bℓ, sℓ)] .

Proving that A rejects some tree iff (r, TA) ∈ [[(D1, D2, ∅)]] ◦ [[(D2, D3,Σ23)]] is
straightforward.

D.1 Consistency of composition

Theorem 7.3.

—ConsComp(⇓) and ConsComp(⇓,⇒,Fun) are EXPTIME-complete.

—ConsComp(↓, ↓+,∼) and ConsComp(↓,→,∼) are undecidable.

Proof. (1) We first prove that ConsComp(⇓,⇒,Fun) is in EXPTIME. The
idea is the same as for Cons(⇓,⇒,Fun) (Theorem 6.2). The composition of
(D1, D2,Σ12) and (D2, D3,Σ23) is consistent iff the composition of (D1, D2,Σ

◦
12)

and (D2, D3,Σ
◦
23) is consistent, so we may assume that DTDs have no arguments,

and dependencies use no variables. Suppose Σ12 = {ϕi −→ ψi | i ∈ 1, 2, . . . , n} and
Σ23 = {ϕ′

j −→ ψ′
j | j = 1, 2, . . . ,m}. The composition is consistent iff there exist

I ⊆ {1, 2, . . . , n} and J ⊆ {1, 2, . . . ,m} such that there are XML trees T1, T2, T3
with

T1 |= D1 ∧
∧

i6∈I

¬ϕi , T2 |= D2 ∧
∧

i∈I

ψi ∧
∧

j 6∈J

¬ϕ′
j , T3 |= D3 ∧

∧

j∈J

ψ′
j .

Equivalently, we need to check non-emptiness of the following automata for all
possible I and J :

AD1
×
∏

i6∈I

Ā(ϕi) , AD2
×
∏

i∈I

A(ψi)×
∏

j 6∈J

Ā(ψ′
j) , AD3

×
∏

j∈J

A(ψ′
j) .

Like for Cons(⇓,⇒,Fun), this gives an exponential algorithm.

(2) Next we show how to reduce consistency of a single mapping to consistency of
a composition of two consistent mappings. Suppose we are givenM = (Ds, Dt,Σ).
We provide two consistent mappings, M1 and M2, such that M is consistent iff
the composition ofM1 andM2 is consistent.
Let ♮ be a fresh symbol, not used inM. Let D♮ be the DTD obtained from D by

extending the alphabet with ♮, and replacing the production for the root, r → ω,
with the production r → ω | ♮. Define

M1 = (D♮
s, D

♮
t ,Σ ∪ {r/♮ −→ r/♮}) , M2 = (D♮

t , D, {r/♮ −→ r/♮}) ,

where D is just r → ε. Observe that both mappings are consistent: (r[♮], r[♮]) ∈
[[M1]], and (T, r) ∈ [[M2]] for any T |= Dt.

Journal of the ACM, Vol. V, No. N, Month 20YY.



80 · S. Amano, C. David, L. Libkin, F. Murlak

Let us check that their composition is consistent iffM is consistent. If (S, T ) ∈
[[M]], then (S, T ) ∈ [[M1]], (T, r) ∈ [[M2]], and so (S, r) ∈ [[M1 ◦M2]]. Conversely,
suppose (T1, T2) ∈ [[M1]] and (T2, T3) ∈ [[M2]]. Note that ♮ gets propagated to T3
if it occurs in T1 or T2. In consequence, T1 and T2 do not contain ♮. But then,
T1 |= Ds and T2 |= Dt. Since the pair (T1, T2) satisfies all the constraints from
Σ ∪ {r/♮ −→ r/♮}, we conclude that (T1, T2) ∈ [[M]].
Observe that if M uses neither = nor 6=, the same is true for M1 and M2.

Hence, the reduction proves that consistency of composition is EXPTIME-hard in
the absence of = and 6=, and is undecidable in their presence.

Proposition 7.4. The problem of checking whether the composition of n map-
pings M1, . . . ,Mn from SM(⇓,⇒,Fun) is consistent is in EXPTIME.

Proof. The idea used in the proof of Theorem 7.3 can be ex-
tended to consistency of multifold composition. Suppose we are given
(D1, D2,Σ1), . . . , (Dn, Dn+1,Σn), where Σi =

{
ϕij −→ ψij

∣∣ j = 1, 2, . . . , ni
}

for
i = 1, 2, . . . , n and we want to know if there are trees T1, . . . , Tn such that
(Ti, Ti+1) ∈ [[(Di, Di+1,Σi)]] for i = 1, 2, . . . , n.
Like before, without loss of generality we can assume that the mappings use no

attributes and no variables, and the problem becomes reducible to automata non-
emptiness. For every n-tuple (I1, . . . , In) ⊆

∏n
i=1{1, 2, . . . , ni}, test non-emptiness

of the following automata:

AD1
×
∏

i6∈I1

Ā(ϕ1
i ) , . . . , ADj+1

×
∏

i∈Ij

A(ψji )×
∏

i6∈Ij+1

Ā(ϕj+1
i ) , . . . , ADn+1

×
∏

i∈In

A(ψni ) .

The composition of the given n mappings is consistent iff these products are
nonempty for some (I1, . . . , In).

Journal of the ACM, Vol. V, No. N, Month 20YY.


