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ABSTRACT
Software bugs often arise from differences between what develop-
ers envision their system does and what that system actually does.
When faced with such conceptual inconsistencies, debugging can
be very difficult. Inferring and presenting developers with accurate
behavioral models of the system implementation can help devel-
opers reconcile their view of the system with reality and improve
system quality.

We present Perfume, a model-inference algorithm that improves
on the state of the art by using performance information to differ-
entiate otherwise similar-appearing executions and to remove false
positives from the inferred models. Perfume uses a system’s run-
time execution logs to infer a concise, precise, and predictive fi-
nite state machine model that describes both observed executions
and executions that have not been observed but that the system
can likely generate. Perfume guides the model inference process
by mining temporal performance-constrained properties from the
logs, ensuring precision of the model’s predictions. We describe
the model inference process and demonstrate how it improves pre-
cision over the state of the art.

Categories and Subject Descriptors: D.4.8 [Performance]: Mod-
eling and prediction
General Terms: Algorithms, Design, Modeling
Keywords: Model inference, log analysis, performance, Perfume

1. INTRODUCTION
Software developers spend half their time looking for and fixing

bugs [5,21] with the global annual cost of debugging topping $300
billion [5]. Mature software projects often ship with known de-
fects [14], and even security-critical bugs remain unaddressed for
long periods of time [11].

One significant cause of bugs is differences between what the
developers envision their system does, what the developers un-
derstand the specification to mean, and what the system actually
does [7]. To increase understanding, developers instrument key lo-
cations in the code and use runtime logging to peek into an im-
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plementation’s behavior. Logging system behavior is one of the
most ubiquitous, simple, and effective debugging tools. Logging
is so important that production systems at companies like Google
are instrumented to generate billions of log events each day. These
events are stored for weeks to help diagnose bugs [22].

These logs are often incredibly rich, or trivial to make rich, with
information about which events executed when and in what context,
as well as with performance details such as resource use and timing.
But the same richness that makes logs potentially useful also makes
them complex, verbose, and difficult to understand. Further, logs
contain linear series of events that represent individual executions,
and it is difficult to use them to understand the aggregate system
behavior. This paper focuses on improving the understanding of
whole-system performance behavior at scale.

Dynamic behavioral specification mining, e.g., [3,4,16,18], tack-
les this problem by inferring behavioral models that summarize all
observed executions in a concise form. Such models have been
used to improve developers’ understanding of system implementa-
tions and to find, diagnose, and remove bugs [3]. While state-of-
the-art model inference algorithms rely on event names, message
types, and sometimes data values stored in the logs, they ignore
other rich information that makes logs so useful. We posit that by
including more execution information available in system logs, the
precision of model inference algorithms can improve, and the util-
ity of the inferred models can increase.

We propose Perfume, a novel model inference algorithm that
extends Synoptic [3] in a principled manner to account for perfor-
mance information often available in system logs. Our focus is on
execution timing information, although the algorithm we present
extends trivially to resource use, such as memory utilization. Per-
fume mines temporal properties with performance constraints from
the log and uses these properties to identify and remove imprecise
generalizations in the Synoptic process.

Perfume’s models can therefore more precisely describe the be-
havior of a system. In particular, system optimizations such as the
use of caches, lazy evaluation, and loop perforation [19] both affect
system performance and can cause bugs, which would be concealed
in models that ignore performance information. Perfume models
account for key differences in performance between observed exe-
cutions both to improve model precision and to enable better pre-
diction of unobserved executions. This is achieved by ensuring the
models satisfy performance-constrained temporal properties mined
from the observed executions. Further, it is achieved generally us-
ing existing runtime logs and requires access to neither the source
code nor binaries of the modeled system.

Next, in Section 2, we illustrate why including performance in-
formation in a behavioral model is useful. We show that Perfume-
generated models can be more insightful than those produced with
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model-inference approaches that do not account for performance.
Then, we detail the Perfume algorithm in Section 3 and discuss
related research in Section 4. In Section 5, we summarize our con-
tributions and describe the potential benefits of Perfume-inferred
models in debugging and automated test generation.

2. WHY MODEL PERFORMANCE?
Consider a network diagnosis tool for identifying problematic

client network paths. The tool first determines if the client is using
narrowband or broadband and then runs a series of queries. Based
on the speed and characteristics of the client’s responses to the
queries, the tool classifies the network path as OK or problematic.

The tool’s developer wants to know what factors cause the tool to
report client paths as problematic. Runtime logs of the tool, shown
in Figure 1(a), can help answer this question, but the information is
hard to infer manually. Instead, model-inference tools can summa-
rize the log. Figures 1(b) and (c) depict models inferred using two
well-known algorithms, kTails [4] and Synoptic [3], respectively.
The kTails model differentiates execution paths of broadband and
narrowband clients, but it contains no indication of the types of
executions that suggest network problems because all paths pass
through the common bottom node. Unlike the kTails model, the
Synoptic model correctly conveys that no network problems are
reported for narrowband clients. However, it does not help the de-
veloper further differentiate between those broadband clients who
experienced a network problem and those who did not.

What the developer really wants to see is a model that reveals
what types of executions imply a network problem. Our proposed
approach, Perfume, infers the model shown in Figure 1(d) that ex-
poses this information. This model is still predictive, and it still
differentiates execution paths of broadband and narrowband users,
but it also separates the sub-path broadband→ query→ query→
problem from the sub-path broadband→ query→ query→ OK
based on the performance of the second query. The former sub-path
reveals that the tool reports a network problem when a broadband
client responds slowly to the second data query.

Note that simply adding performance information to the edges on
the kTails and Synoptic models would not help identify what leads
the tool to report a problem. The Synoptic model would predict that
both slow and fast responses on broadband can lead to a problem.
Meanwhile the kTails model would predict that all combinations of
response speeds and bandwidths can lead to a problem. By contrast,
the Perfume model not only displays the performance information,
but is also more precise in its predictions, which leads to a more
accurate differentiation between executions.

3. PERFORMANCE-AWARE MODEL
INFERENCE

Perfume’s goal is to produce a representative model of a system
from an execution log containing examples of that system’s behav-
ior. In doing so, Perfume aims to improve on the state-of-the-art
model-inference techniques by utilizing performance information
in the log to guide the inference process and more accurately pre-
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Figure 2: The Perfume model-inference process.

dict which unobserved executions are likely possible. Additionally,
Perfume’s goal is to be applicable to a wide range of systems and
to produce concise and descriptive models. Figure 1(d) illustrates
how Perfume can be used to help understand complex behavior.

To infer descriptive but precise models, Perfume strives to pro-
duce concise models that are still consistent with constrained tem-
poral properties observed in the logged executions. Figure 2 sum-
marizes the high-level process Perfume uses to infer models, which
extends the existing Synoptic algorithm [3]. Synoptic models do
not enforce constrained temporal properties, and thus they are likely
more concise but less precise than Perfume models. Still, Synoptic
models have been shown to enhance developers’ understanding of
their systems and to help developers find bugs [3], which suggests
that Perfume’s more precise models may be similarly useful.

The rest of this section details the Perfume inference process.

3.1 Log Parsing
Perfume operates on system execution logs and requires access

to neither system source code nor binaries, making Perfume broadly
applicable to a wide range of systems. Perfume has two inputs:
the system log and a set of regular expressions for parsing from
the log the individual execution traces, events within those traces,
and timestamps on the events. In the example log in Figure 1(a),
a trace is a session for one IP address, and event instances are
server actions, such as query. The parsing expressions for that log
are \k〈ip〉 for the traces and (?〈ip〉) .+:(?〈DTIME〉.+)\] "GET
HTTP/1.1 /(?〈TYPE〉.+)" for the events and timestamps.

3.2 Property Mining
Perfume parses the log and mines five types of temporal, perfor-

mance-constrained properties that hold for every observed trace in
the log. Using variables a and b to describe possible event types
and t to describe times, the five temporal property types are:

• If whenever a is present in a trace, b is also present later in
the same trace in no more than t time, we say “a always
followed by b upper-bound t”.
• Similarly, if whenever a is present in a trace, b is also present

later in the same trace in no less than t time, we say “a al-
ways followed by b lower-bound t”.
• If whenever b is present in a trace, a is also present earlier

in the same trace in no more than t time, we say “a always
precedes b upper-bound t”.
• Similarly, if whenever b is present in a trace, a is also present

earlier in the same trace in no less than t time, we say “a
always precedes b lower-bound t”.
• Finally, if whenever a is present in a trace, b is never present

later in the same trace, we say “a never followed by b”.

More formally, we have defined each of these properties with
timed propositional temporal logic (TPTL).1

These five properties capture the behavioral differences between
the observed executions and executions the system likely cannot
produce. When Perfume infers a model, it ensures that all execu-
tions predicted by the model adhere to the mined properties. Note
that while there are only five property types, there can be many
more instances of these types; the number of instances typically
depends on the number of different event types the system can pro-
duce. The five property types are templates for constraints on the
possible behavior of the system, with the first four property types
also encoding the system’s performance characteristics. For the
1For example, the “a always followed by b upper-bound t” prop-
erty is represented with TPTL as �x.(a→ (3y.(b ∧ y - x ≤ t)))
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    19.38.218.11 [31/May/2014:31200.0] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.1] "GET HTTP/1.1 /test bandwidth"
    38.151.1.182 [31/May/2014:31200.2] "GET HTTP/1.1 /test bandwidth"
      95.39.21.28 [31/May/2014:31200.3] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.8] "GET HTTP/1.1 /broadband"
    38.151.1.182 [31/May/2014:31200.9] "GET HTTP/1.1 /broadband"
    19.38.218.11 [31/May/2014:31202.0] "GET HTTP/1.1 /narrowband"
210.82.199.247 [31/May/2014:31202.1] "GET HTTP/1.1 /query"
    38.151.1.182 [31/May/2014:31202.2] "GET HTTP/1.1 /query"
      95.39.21.28 [31/May/2014:31202.3] "GET HTTP/1.1 /narrowband"
    38.151.1.182 [31/May/2014:31203.6] "GET HTTP/1.1 /query"
    38.151.1.182 [31/May/2014:31204.1] "GET HTTP/1.1 /OK"
    19.38.218.11 [31/May/2014:31205.7] "GET HTTP/1.1 /query"
      95.39.21.28 [31/May/2014:31206.0] "GET HTTP/1.1 /query"
      95.39.21.28 [31/May/2014:31206.8] "GET HTTP/1.1 /OK"
210.82.199.247 [31/May/2014:31208.3] "GET HTTP/1.1 /query"
210.82.199.247 [31/May/2014:31208.8] "GET HTTP/1.1 /problem"
    19.38.218.11 [31/May/2014:31208.9] "GET HTTP/1.1 /query"
    19.38.218.11 [31/May/2014:31209.7] "GET HTTP/1.1 /OK"

(a) Input log

Figure 1: (a) A sample network diagnosis tool’s log of four execution traces, and models inferred by the (b) kTails algorithm with
k = 2, (c) Synoptic, and (d) Perfume on that log.

upper-bound constraints, t is the maximum timestamp difference,
for all traces, between the first event a and the last event b in each
trace. For the lower-bound constraints, t is the minimum times-
tamp difference between any event a and any event b in each trace.

Perfume’s properties extend Synoptic’s properties [3] with per-
formance data to capture behavior of the system more precisely.
For example, from the log in Figure 1(a), one of the properties
Perfume mines is “broadband always precedes problem lower-
bound 8.7 seconds”. This property helps explain the system’s be-
havior because it differentiates the query events after broadband
that lead to problem from those that lead to OK. This reveals that
network problems are reported after a fast query followed by a slow
query, whereas no problems are reported after two fast queries.
Section 3.3.1 explains how Perfume uses these temporal properties
to derive a model that separates paths with distinct behavior.

3.3 Model Construction
To construct a model, Perfume first builds the most concise model

it can — all events of the same type lead to the same state. While
concise, this initial model is imprecise because it predicts many
executions that do not satisfy the mined temporal performance-
constrained properties. Thus, Perfume iteratively refines the ini-
tial model to satisfy these properties. Section 3.3.1 explains the
refinement process. Perfume’s task is NP-hard [6], so it approxi-
mates a solution and may at times make suboptimal refinements.
To partially correct these suboptimalities, once Perfume’s refine-
ment reaches a model that satisfies all mined properties, it coarsens
the model where possible without introducing property violations.
Section 3.3.2 explains the coarsening process. Finally, Section 3.3.3
summarizes important properties of the final Perfume model.

3.3.1 Refinement
The goal of this phase of the algorithm is to refine a model that

violates some of the mined properties into a concise version that
satisfies all of those properties. Creating such a model that is opti-
mally concise is NP-hard [6]. Like prior work [3,4,16,18], Perfume
finds an approximate solution.

Perfume iteratively performs counterexample guided abstraction
refinement (CEGAR) [6] until the model satisfies all mined prop-
erties. In each iteration, Perfume uses model checking to identify
a predicted path in the model that violates a mined property2. Us-
ing this identified counterexample path, Perfume splits states in the

2The model checking does not differentiate between observed and
predicted paths, but observed paths cannot violate the properties
mined from the observed paths themselves.
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query 6.2 query 1.4
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[1.4, 6.2]

OK 0.5problem 0.5
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Figure 3: An example of a Perfume refinement step, part of
the process for deriving the model in Figure 1(d). The partial
model in (a) does not satisfy the mined property “broadband
always precedes problem lower-bound 8.7 seconds.” Perfume
refines the shaded state in this model into the two shaded states
in (b). The refined model in (b) satisfies the mined property.

model to eliminate the path from the model. Then, Perfume iter-
ates to find another violation of this or another property and further
refines the model until all properties are satisfied.

Figure 3 shows one example refinement iteration. The partial
model in Figure 3(a) does not satisfy the mined temporal property
“broadband always precedes problem lower-bound 8.7 seconds.”
Perfume finds the counter-example path that contains the sub-path
“broadband 0.7 → query 1.3 → problem 0.5” and refines the
model to eliminate this path by splitting the shaded state into the
two shaded states in Figure 3(b). The resulting model satisfies the
mined property.

Perfume’s refinement is guaranteed to produce a model that sat-
isfies all of the mined properties because in the worst case, it will
refine the model until it describes exactly the observed executions
and makes no other predictions. In our experience, however, Per-
fume finds a more concise, predictive model.

3.3.2 Coarsening
Since model inference is NP-hard, refinement efficiently approx-

imates inferring the most concise model by sometimes making sub-
optimal splits. Once refinement produces a model that satisfies all
of the mined properties, a modified version of kTails [4] with k = 1
can make the model more concise through coarsening. This pro-
cess checks each pair of states with the same incoming transition
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event types to see if these states can be merged without violating
any properties. This guarantees that Perfume’s model is locally
minimal, although it cannot guarantee global optimality.

3.3.3 Model Construction Goals
The initial model construction, refinement, and coarsening ad-

dress three goals of model inference: the final model is concise,
predictive, and precise.

Concise models are human-readable and likely make it easier to
understand the execution information contained in the log. Con-
cise models also contribute to generalization, preventing or reduc-
ing overfitting to the observed executions. Perfume ensures con-
ciseness in three ways: (1) the initial model is the smallest possible
starting point that only separates different event types and limits the
edges to only those observed during execution, (2) the refinement
process only enlarges the model when it is necessary to eliminate a
counter-example, and (3) the coarsening process corrects subopti-
mal refinements.

Predictive models generalize from the observed executions to
also describe unobserved but likely possible executions. Predictive-
ness goes hand-in-hand with conciseness, as sharing model states
among executions lends to combining observed traces into unob-
served, predicted ones.

Precise models, particularly in their predictions, correctly iden-
tify which unobserved executions are possible. Perfume ensures
precision by enforcing a rich set of temporal, performance-con-
strained properties that hold in the observed executions, and by
allowing no new model edges other than those observed during ex-
ecution, while allowing these edges to form unobserved paths.

4. RELATED WORK
Perfume builds on Synoptic [3], which infers behavioral models

that obey temporal properties without time constraints. Walkin-
shaw et al. [20] also infer models constrained by temporal proper-
ties, but these properties are provided manually by the user. Other
approaches infer different kinds of models, such as live sequence
charts [15], or enrich models with other information, such as data
invariants [16]. In contrast, Perfume infers precise models to help
developers understand system performance characteristics.

Perfume mines temporal properties with constraints from the
input log. Prior specification-mining work has focused on min-
ing temporal [10, 23] and data [8] properties, as well as richer
performance-related properties for distributed systems [12]. On
their own, however, mined properties can easily overwhelm a de-
veloper, which is why Perfume uses mined properties to infer a
more comprehensible, concise model of a system’s performance.

Other approaches for tracing and capturing performance data in
complex systems [1, 2, 9] are complementary to ours as they pro-
duce logs that Perfume can use to reveal system structure.

Performance debugging can be aided by lag hunting [13] and
performance differencing [17]. The goal of Perfume is to help a
developer understand the behavior of a system by deriving a per-
formance-aware model. These models may be used for debugging,
but also for comprehension, testing, and other tasks.

5. CONTRIBUTIONS AND VISION
The Perfume approach improves on the state of the art by aug-

menting the model inference process with performance informa-
tion. The resulting models convey information that other approaches
miss, which can improve a developer’s system understanding. Perfume-
generated models may also improve software processes and various
forms of program analysis. For example, library developers can use
Perfume to document the performance characteristics of the library

API. These models can then be used to automatically optimize pro-
grams according to their library’s usage patterns. In testing, Per-
fume models can be used to broaden a test suite’s coverage by pro-
ducing and testing Perfume-predicted executions. Further, testing
can focus on likely executions that are especially slow and are more
likely to contain performance bugs. Our early results show great
promise for applying Perfume in these areas and in contexts where
program behavior and performance modeling may produce insight
into how the system operates.
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