
Please do not remove this page

Metamorphic fault tolerance: an automated and
systematic methodology for fault tolerance in
the absence of test oracle
Liu, Huai; YUSUF, IMAN IBRAHIM; Schmidt, Heinrich; Chen, Tsong Yueh
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Metamorphic-fault-tolerance-an-automated-and/9921859342401341/fi
lesAndLinks?index=0

Liu, H., YUSUF, I. I., Schmidt, H., & Chen, T. Y. (2014). Metamorphic fault tolerance: an automated and
systematic methodology for fault tolerance in the absence of test oracle. Proceedings of the 36th
International Conference on Software Engineering, ICSE Companion 2014, 420–423.
https://doi.org/10.1145/2591062.2591109

Published Version: https://doi.org/10.1145/2591062.2591109

Document Version: Accepted Manuscript

Downloaded On 2024/04/23 16:53:35 +1000
© 2014 ACM
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Metamorphic-fault-tolerance-an-automated-and/9921859342401341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Metamorphic-fault-tolerance-an-automated-and/9921859342401341
http://doi.org/doi:https://doi.org/10.1145/2591062.2591109
https://researchrepository.rmit.edu.au

Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Liu, H, YUSUF, I, Schmidt, H and Chen, T 2014, 'Metamorphic fault tolerance: an
automated and systematic methodology for fault tolerance in the absence of test oracle', in
Pankaj Jalote, Vasudeva Varma (ed.) Proceedings of the 36th International Conference on
Software Engineering, ICSE Companion 2014, New York, United States, 31 May - 7 June
2014, pp. 420-423.

https://researchbank.rmit.edu.au/view/rmit:24881

Accepted Manuscript

 2014 ACM

http://dx.doi.org/10.1145/2591062.2591109

http://researchbank.rmit.edu.au/

Metamorphic Fault Tolerance:

An Automated and Systematic Methodology

for Fault Tolerance in the Absence of Test Oracle

Huai Liu, Iman I. Yusuf, Heinz W. Schmidt
Australia-India Research Centre for Automation Software Engineering

RMIT University, Melbourne, Australia
{huai.liu, iman.yusuf, heinz.schmidt}@rmit.edu.au

Tsong Yueh Chen
Department of Computer Science and Software Engineering
Swinburne University of Technology, Melbourne, Australia

tychen@swin.edu.au

August 6, 2014

Abstract

A system may fail due to an internal bug or a fault in its execution
environment. Incorporating fault tolerance strategies enables such system
to complete its function despite the failure of some of its parts. Prior to the
execution of some fault tolerance strategies, failure detection is needed.
Detecting incorrect output, for instance, assumes the existence of an oracle
to check the correctness of program outputs given an input. However, in
many practical situations, oracle does not exist or is extremely difficult
to apply. Such an oracle problem is a major challenge in the context of
software testing. In this paper, we propose to apply metamorphic testing,
a software testing method that alleviates the oracle problem, into fault
tolerance. The proposed technique supports failure detection without the
need of oracles.

keywords: Fault tolerance, oracle problem, metamorphic testing,
metamorphic relation.

1 Introduction

Software reliability is the probability of a system performing its normal function
for a period of time in a given environment [3]. One major threat to reliability
is failure, which is the behavior of a system that deviates from normal system
functions. The root cause of a failure is a fault, a defect in the system. Fault

1

removal and fault tolerance, for instance, are used to improve the reliability of
a system [3]. Fault removal aims to remove as many existing faults of a system
as possible. Software testing techniques can be applied to reveal software faults.
However, it is extremely difficult, if not impossible, to remove all program faults.
Fault tolerance, on the other hand, is concerned with enabling a system to
perform its normal function despite the presence of faults.

The execution of a reactive fault tolerance strategy is preceded by failure
detection. Detecting a failure like incorrect output, which is a main interest
of this paper, requires a mechanism for checking the correctness of a program
output. Such an output verification mechanism is termed as oracle in the context
of software testing. Only with an oracle can we decide whether a failure occurs,
and thus whether we should apply the fault tolerance strategy to provide an
alternative program output. When the oracle does not exist or is extremely
difficult to apply (namely the oracle problem in the context of testing), the
applicability and effectiveness of a fault tolerance strategy will be significantly
affected. One way of addressing the oracle problem within the context of fault
tolerance is by using assertions to detect the failures due to the violation of
certain properties (such as, out of range, incorrect data type, etc) [14].

The oracle problem is not rare in practice, and has become a major re-
search focus in software testing. Metamorphic testing [8] aims at addressing
the oracle problem. It makes use of some relations among multiple inputs and
their corresponding outputs, namely metamorphic relations, to provide a test
result verification mechanism alternative to the oracle. Previous studies [6] have
shown that metamorphic testing can detect more faults than assertion check-
ing [10], another popular technique for alleviating the oracle problem. A more
recent study [8] demonstrated that metamorphic testing can effectively alleviate
the oracle problem, and a small number of diverse metamorphic relations are
sufficient by themselves to imitate a test oracle in terms of fault detection.

In this paper, we discuss how to apply the basic intuition of metamorphic
testing into fault tolerance, and thus propose the theoretical framework of a
new technique that can handle system failure without the need of oracles during
failure detection. Various research questions will be discussed, and proposals
for the research directions will be made.

2 Metamorphic testing

Metamorphic testing is executed in the following steps. First, testers analyze
the software under test and identify some necessary properties, which are then
represented in the form of relations among multiple inputs and their correspond-
ing outputs, namely metamorphic relations. Secondly, some test cases, referred
to as the source test cases, are generated using some traditional test case gener-
ation techniques (such as random testing [9]). Thirdly, new test cases, termed
as the follow-up test cases, are constructed from the source test cases and based
on the metamorphic relations. After both source and follow-up test cases are
executed on the software under test, their outputs are verified against the meta-

2

morphic relations. If a metamorphic relation is violated, a failure is said to be
detected.

The basic process of metamorphic testing is illustrated by the following ex-
ample. Suppose that a web search engine S takes a set of key words as an
input and displays the results containing all the key words. The following two
metamorphic relations can be identified for S.

MRa if the order of the key words is changed, the search results should remain
unchanged.

MRb if one key word is deleted, the amount of search results should either
increase or at least remain unchanged.

Suppose that we have generated a source test case t containing a set of key
words, and its associated output is o containing a set of search results. According
to MRa, we can generate a follow-up test case t′ by simply permutating t. Given
that the output associated with t′ is o′. We need to check whether the relation
o′ = o is satisfied or violated. If violated, a failure is said to be detected.
Similarly, according to MRb, we can have another follow-up test case t′′ by
removing one key word from t. After the execution of test cases, we check
whether o′′ (the output of t′′) and o hold the relation o ⊆ o′′.

3 Theoretical framework

To address the oracle problem in software fault tolerance, we propose a new
technique, namely metamorphic fault tolerance. In the context of testing, meta-
morphic relations are used for (i) test case generation (especially for follow-up
test cases) and (ii) test result verification. Our new technique makes use of
metamorphic relations in the following three aspects.

Generator Based on the original input t, generate other inputs t′, t′′, · · ·
according to metamorphic relations.

Checker Through the checking against the metamorphic relations among the
outputs of t, t′, t′′, · · · (denoted by o, o′, o′′, · · ·, respectively), judge
whether or not o is trustworthy.

Calculator If o is untrustworthy, calculate the output from o′, o′′, · · · based
on the information provided by the metamorphic relations.

Figure 1 shows the basic process of metamorphic fault tolerance. In the
framework, the generator implements a similar function to the follow-up test
case generation in metamorphic testing: It makes use of metamorphic relations
to generate other new inputs. In particular, it should be pointed out that the
generator is not limited to the conversion of t into other inputs — the inputs
that are converted from t can be further transformed into other inputs. For
example, t can be converted into t′ according to a metamorphic relation. The
same or a different metamorphic relation can be applied to further convert t′

3

into another input; in other words, inputs can be iteratively generated based on
a set of metamorphic relations [12]. Note that in metamorphic testing, multiple
executions are required to verify the test results. Similarly, metamorphic fault
tolerance also executes the system using the generated multiple inputs in parallel
for output verification. Though the parallel executions of the system may be
expensive, the cost would be acceptable for systems that require high reliability.
Generating new inputs (or follow-up test cases) has been extensively discussed
in previous studies of metamorphic testing [8, 12]. Thus we mainly focus on
checker and calculator) in this paper.

Figure 1: Framework of metamorphic fault tolerance

3.1 Checker

The checker in metamorphic fault tolerance is more complicated than the test
result verification process in metamorphic testing. A major objective of testing
is to detect failures. In metamorphic testing, once a metamorphic relation
is violated, a failure is said to be detected, no matter whether the failure is
actually caused by the source or the follow-up test case, or even both. However,
in metamorphic fault tolerance, when a metamorphic relation is violated, it is
also required to know whether or not the original input t is the reason of the
violation, based on which we can in turn decide whether or not its output o can
be used.

A checking algorithm should be carefully designed to judge whether t causes
a failure or results in a trustworthy output. Intuitively speaking, our confidence
on the trustworthiness of t depends on the number of violations or satisfactions
of metamorphic relations. The more relations are satisfied and the less relations
are violated, the more trustable t is. Let us recall the search engine S men-
tioned in Section 2. Suppose that MRa and MRb are the only two metamorphic
relations identified for S. If o and o′ violates MRa, o and o′′ violates MRb, but
o′ and o′′ satisfies MRb (note that t′ and t′′ can also be used as the source and
follow-up test cases in MRb), it is very likely that the input t is untrustworthy.
It should be pointed out that research has been conducted on how to check the
trustworthiness of different inputs based on metamorphic relations [5]. We can
make use of the results of these previous studies in our work of fault tolerance.

4

3.2 Calculator

The calculator is a new mechanism that has never been investigated in previous
studies in metamorphic testing, which is mainly focused on showing the presence
of faults but not on providing the acceptable outputs. In fault tolerance, after
the failure detection, some mechanisms should be applied for fault recovery, for
example, alternative outputs should be computed. Luckily, the checking against
the metamorphic relations may provide some useful information for us to get the
trustworthy output as the alternative to the failed original output. If t is judged
as untrustworthy by the checker, we can further evaluate the trustworthiness
of each new input (t′, t′′, · · ·), decide the most reliable input, say tb, and then
produce the most trustworthy output based on the output (ob) associated with
tb. However, metamorphic relations are not limited to equivalence ones —
actually, any form of relation is acceptable in metamorphic testing as long as
the relation can be checked (for instance, MRb in Section 2 involves the relation
of “subset”). Therefore, the production of the trustworthy output is not so
straightforward as it looks. Let us consider the following scenarios.

Case 1 There exists a metamorphic relation that two inputs are associated
with the identical outputs. MRa in Section 2 is a typical example for such
a relation. For this case, given the most reliable input tb, its associated
output ob can be directly used for the system.

Case 2 Instead of the exact equivalence relation, there exists a metamorphic
relation that involves an equation, which can in turn help us calculate a
trustworthy output based on ob. For example, suppose that a metamorphic
relation is that for two inputs t and tb, ob = 2 × o + 1. If o is judged as
untrustworthy, we can calculate the output as (ob − 1)/2.

Case 3 If it is impossible to get the exact answer based on only one meta-
morphic relation, another metamorphic relation(s) may be used to pose
some limitations such that we can make the best choice. Suppose a meta-
morphic relation is that for two inputs t and tb, ob = o2. After a simple
calculation, we have two options,

√
ob and –

√
ob, for the system output. If

there is another metamorphic relation that for two inputs t and t′, o′ > o
and o′ <

√
ob, we can then decide that the output should be –

√
ob.

Case 4 If all the above three cases are impossible, we can still choose another
input, say tc, which is also more trustworthy than t though it may not be
as trustworthy as tb. If tc falls into one of the Cases 1 to 3, we can tolerate
the system fault based on tc’s output.

Note that we use simple scientific functions to illustrate the above various
scenarios for metamorphic fault tolerance. In practice, metamorphic relations
can be of more complex forms, decided by the innate software properties, and
thus be applied in the testing of various application domains (not limited to
mathematical properties), such as office applications [6], financial services [11],
telecommunications [4], etc. Thus, the implementation of calculator will depend

5

on the nature of the software system. Moreover, the calculator of a trustworthy
output may become expensive if a large number of inputs and metamorphic
relations are involved. Greedy algorithms may be applied to reduce the com-
putation overhead. It should also be pointed out that there exist situations
where no trustworthy alternative output can be provided, that is, none of the
above four cases is valid. Under such situations, approximate output might be
provided or even an error report might be issued.

In summary, the rich information provided by metamorphic relations not
only helps to check the correctness of the system output more precisely, but
also provides a more effective mechanism for obtaining a trustworthy output.

4 Discussion

Besides various operations of the checker and the calculator, the following two
are also very important to our research:

4.1 Identification of Metamorphic Relations

As shown in Figure 1, metamorphic relations are the core part of the new tech-
nique. The mechanism to identify high-quality metamorphic relations has been
one important research topic in metamorphic testing, and it was suggested in the
most recent study [8] that the diversity among metamorphic relations is the key
factor for ensuring a high testing effectiveness. Diversity should also be highly
recommended for identifying metamorphic relations in this new fault tolerance
technique. It has been widely acknowledged that similar program inputs tend
to cause similar execution behaviors and thus show a high degree of similarity in
failure detection. Given such intuition, metamorphic relations involving similar
inputs may not be effective in precisely finding the failure-causing input. In a
word, a high degree of diversity among metamorphic relations is very important
for providing a trustworthy judgment among different inputs as well as a reliable
calculation of outputs.

Besides diversified, the identified metamorphic relations should also be evenly
related to each possible input. Suppose that there is a bias in the metamorphic
relations; for instance, most of them are correlated with certain part of inputs.
As a result, the checking process will be unfair for those inputs that are not
extensively covered by the metamorphic relations: Even if these inputs provide
acceptable outputs, they will still get fewer satisfactions because they are only
associated with a small number of metamorphic relations. Briefly speaking,
when identifying metamorphic relations for the new technique, the number of
relations correlated to different types of inputs must be evenly distributed across
the whole input space of the software system.

In addition, the identified metamorphic relations should be as tight as possi-
ble in order to increase the probability of obtaining an exact result. For example,
MRb can be enhanced to the following metamorphic relation:

6

MRc Given two inputs t and t′, where t′ is constructed by removing one key
word from t, their associated outputs o and o′ should have the following
relation: o′\o = lk, where lk is the set of results that are in o′ but do not
contain the removed key word.

MRc is a tighter relation than MRb, and thus can provide a more effective
clue to calculate an exact result.

4.2 Comparison and Integration with Other Fault Toler-
ance Strategies

There exist several fault tolerance strategies that address the oracle problem
to some extent. For example, the N-version programming technique [2] makes
use of multiple implementations for the same system to handle failure. For the
same input, all versions will be executed in parallel to provide a set of outputs,
based on which a ranking algorithm is then implemented to decide the majority
of outputs, if there is no test oracle. However, there are some criticism on the
effectiveness of such a method in alleviating the oracle problem. Knight and
Leveson [7] conducted a series of experiments and found that even if different
teams were recruited to develop multiple versions, they might make similar
mistakes and consequently caused similar faults. In such a situation, the ranking
algorithm in the N-version programming may not give the correct answer.

Another fault tolerance strategy similar to our technique is data diversity [1],
which makes use of multiple inputs that are expected to have the same output.
Once an input causes a failure, it is “reexpressed” into a new input, which hope-
fully can provide the acceptable output.Though data diversity is very similar
to the simplest case (Case 1 in Section 3.2) in metamorphic fault tolerance, we
would like to point out that data diversity is fundamentally different from meta-
morphic fault tolerance. Data diversity has a constraint: only the equivalence
relation is allowed. On the contrary, metamorphic relations can be of any form.
As a result, data diversity can only work when Case 1 in Section 3.2is valid;
while metamorphic fault tolerance is applicable under various scenarios due to
the rich forms of metamorphic relations.

A promising research direction is to integrate the new metamorphic fault
tolerance technique with these existing strategies. For instance, using metamor-
phic relations in the N-version programming can help more precisely checking
which version provides a reliable output given certain inputs, and thus increas-
ing the correctness of its ranking algorithm. Moreover, metamorphic relations
can enrich the data diversity across the input space, and thus can deliver a more
effective fault tolerance support. The research on such integration will result in
a family of fault tolerance strategies without the need of oracles.

5 Conclusion

Software faults are almost unavoidable despite extensive testing and debugging.
In order to enable software systems to perform their functions, various fault tol-

7

erance strategies have been proposed. The execution of these strategies involves
failure detection. However, detecting failures, in particular incorrect outputs,
implicitly assumes the existence of an oracle, which is a mechanism to check
whether an input results in a correct output or causes a software failure. In
this paper, we proposed a new technique, namely metamorphic fault tolerance,
which handles system failure without the need of oracles during failure detec-
tion. Metamorphic relations, which are originally used in alleviating the oracle
problem in the context of software testing, are leveraged in fault tolerance to
help checking whether or not an input causes a failure as well as calculating
the acceptable output. A theoretical framework of the new technique has been
presented. Also discussed were the strategies on how to properly conduct the
research on the new technique.

Metamorphic testing has been used to alleviate the oracle problem in several
areas, such as program proving and debugging, and thus has resulted in novel
techniques in the areas, namely semi-proving [5] and metamorphic slicing [13],
respectively. These techniques basically are the application of metamorphic
testing into areas related to fault removal. The new technique is the first sys-
tematic approach to addressing the oracle problem in the field of fault tolerance.
It would be interesting to investigate whether and how metamorphic testing can
be applied into other reliability engineering fields, such as fault prevention and
fault forecasting. As the first paper on metamorphic fault tolerance, we used
simple examples to illustrate the feasibility and applicability of our framework.
In fact, different types of metamorphic relations have been identified and used
for the testing of various systems, such as wireless network [4], web services [11],
etc. There is no reason why these types of metamorphic relations could not be
used for the fault tolerance in the specific fields; however, this needs to be
assessed through further studies.

6 Acknowledgments

This research was supported by an Australia Research Council Discovery Grant
(DP120104773).

References

[1] P. E. Ammann and J. C. Knight. Data diversity: An approach to software
fault tolerance. IEEE T Comput, 37(4):418–425, 1988.

[2] A. Avizienis. The N-version approach to fault-tolerant software. IEEE T
Software Eng, 11(12):1491–1501, 1985.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE T Depend Se-
cure, 1(1):11–33, 2004.

8

[4] T. Y. Chen, F.-C. Kuo, H. Liu, and S. Wang. Conformance testing of
network simulators based on metamorphic testing technique. In Proceedings
of FORTE’09, pages 243–248, 2009.

[5] T. Y. Chen, T. H. Tse, and Z. Zhou. Semi-proving: An integrated method
for program proving, testing, and debugging. IEEE T Software Eng,
37(1):109–125, 2011.

[6] P. Hu, Z. Zhang, W. K. Chan, and T. H. Tse. An empirical comparison
between direct and indirect test result checking approaches. In Proceedings
of SOQUA’06, pages 6–13, 2006.

[7] J. C. Knight and N. G. Leveson. An experimental evaluation of the as-
sumption of independence in multiversion programming. IEEE T Software
Eng, 12(1):96–109, 1986.

[8] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen. How effectively does meta-
morphic testing alleviate the oracle problem? IEEE T Software Eng, in
press.

[9] G. J. Myers. The Art of Software Testing. John Wiley and Sons, second
edition, 2004.

[10] D. S. Rosenblum. A practical approach to programming with assertions.
IEEE T Software Eng, 21(1):19–31, 1995.

[11] C.-A. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen. Metamor-
phic testing for web services: Framework and a case study. In Proceedings
of ICWS’11, pages 283–290, 2011.

[12] P. Wu. Iterative metamorphic testing. In Proceedings of COMPSAC’05,
volume 1, pages 19–24, 2005.

[13] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu. Metamorphic slice: An
application in spectrum-based fault localization. Inform Software Tech,
55(5):866–879, 2013.

[14] I. I. Yusuf, H. W. Schmidt, and I. D. Peake. Architecture-based fault
tolerance support for grid applications. In Proceedings of QoSA’11, pages
177–182, 2011.

9

	Liu, Huai - n2006047456 Metamorphic Fault.pdf
	Due Diligence Record LogKeely.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

