
Steering Model-Based Oracles to Admit
Real Program Behaviors∗

Gregory Gay, Sanjai Rayadurgam, Mats P.E. Heimdahl
Department of Computer Science & Engineering

University of Minnesota, USA
greg@greggay.com, [rsanjai,heimdahl]@cs.umn.edu

ABSTRACT
The oracle—an arbiter of correctness of the system under test (SUT)
—is a major component of the testing process. Specifying ora-
cles is challenging for real-time embedded systems, where small
changes in time or sensor inputs may cause large differences in be-
havior. Behavioral models of such systems, often built for analysis
and simulation, are appealing for reuse as oracles. However, these
models typically provide an idealized view of the system. Even
when given the same inputs, the model’s behavior can frequently be
at variance with an acceptable behavior of the SUT executing on a
real platform. We therefore propose steering the model when used
as an oracle, to admit an expanded set of behaviors when judging
the SUT’s adherence to its requirements. On detecting a behavioral
difference, the model is backtracked and then searched for a new
state that satisfies certain constraints and minimizes a dissimilar-
ity metric. The goal is to allow non-deterministic, but bounded,
behavior differences while preventing future mismatches, by guid-
ing the oracle—within limits—to match the execution of the SUT.
Early results show that steering significantly increases SUT-oracle
conformance with minimal masking of real faults and, thus, has
significant potential for reducing development costs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Software Testing, Test Oracles, Model-Based Testing

1. INTRODUCTION
The oracle is a judge that determines the correctness of the ex-

ecution of a given system under test (SUT) against a test suite.

∗This work has been partially supported by NSF grants CNS-
0931931 and CNS-1035715 and an NSF Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31—June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

Despite increased attention in recent years, the test oracle prob-
lem [5]—constructing efficient and robust oracles—remains a ma-
jor challenge for many domains. Real-time process control systems—
embedded systems that interact with physical processes such as
pacemakers or power management systems—are particularly dif-
ficult to build oracles for, as their behavior depends not only on
the values of inputs and outputs, but also on their time of occur-
rence [2], and minor behavioral distinctions may have significant
consequences [6]. When executing on an embedded hardware plat-
form, several sources of non-determinism, such as input processing
delays, execution time fluctuation, and hardware inaccuracy, can
make the SUT exhibit varying but acceptable behaviors.

Behavioral models [8], typically expressed as state-transition sys-
tems, represent requirements by prescribing the behavior (the sys-
tem state) to be exhibited in response to each input. Such models
are used for many purposes in industrial software development and
so their reuse as test oracle is highly desirable. However, these
models provide an abstract view of the system that typically sim-
plifies the actual conditions in the execution environment. On a
real hardware platform, the SUT may exhibit behavior that differs
from what the model prescribes for a given input. Over time, these
differences can build to the point where the execution paths of the
model and the SUT diverge enough to flag “failure”, even if the
system is operating within the system requirements.

We take inspiration for addressing this problem from program
steering, the process of adjusting the execution of live programs
in order to improve performance, stability, or correctness [9]. We
hypothesize that behavioral models can be adapted for use as ora-
cles for real-time systems through the use of steering actions [13].
By comparing the state of the model-based oracle (MBO) with that
of the SUT following an output event, we can guide the model to
match the state of the SUT, as long as a set of constraints are met.
The result would be a widening of the behaviors accepted by the
MBO, thus compensating for allowable non-determinism, without
impairing the ability of the MBO to judge the SUT.

We propose an automated framework for comparing and steer-
ing the MBO with respect to the SUT, discuss the current prototype
implementation of the framework, and assess its capabilities on a
model for the control module of an infusion pump—a real-world
system with complex, time-based behaviors. Results indicate that
steering successfully accounts for all allowable differences between
the MBO and the SUT, eliminating a large number of spurious
“failure” verdicts. However, steering also masks a small number
of faults, indicating a need to future work.

To the best of our knowledge, this is the first work proposing
the automated steering of the test oracle. While this research is
still in its infancy, the initial results are promising. If successful,
this approach would lower testing costs and reduce development

1. for test in Tests
2. for step in test
3. initialVerdict = Sym(Sm, Ssut)

4. if initialVerdict > 0
5. oldState = Sm

6. targetState=callModelChecker(model,Sm,Ssut,Sym())
7. while Sym(targetState, Ssut) < Sym(oldState, Ssut)

8. oldState = targetState
9. targetState=callModelChecker(model,Sm,Ssut,Sym())
10. transitionModel(model,targetState)

Figure 1: Steps in the Steering Process
effort for real-time control systems by enabling reuse of behavioral
models as oracles.

2. PROBLEM DEFINITION
A test oracle is defined as a predicate on a sequence of stimuli to

and reactions from the SUT that judges the resulting behavior ac-
cording to some specification of correctness [5]. Although oracles
can be derived from many sources of information, we are partic-
ularly interested in using behavioral models, such as those often
built for purposes of simulation, analysis and testing [8].

Executable behavioral models can be divided into declarative
models created in formal specification languages, and constructive
models built with state-transition languages such as Simulink &
Stateflow, Statemate, finite state machines, or other automata struc-
tures [8]. Presently, we focus on constructive state-transition sys-
tems, as these are frequently used to model real-time control sys-
tems. Real-time control systems monitor and interact with a phys-
ical environment. Examples of such systems include pacemakers,
traffic-control systems, and power plant management software.

Non-determinism is a major concern for systems that interact
with physical processes. The task of monitoring the environment
and pushing signals through multiple layers of sensors and actu-
ators can introduce additional points of failure, delay, and unpre-
dictability. Input and observed output values may be skewed by
hardware noise, timing constraints may not be met with precision,
or inputs may arrive faster than the system can process them. Of-
ten, the system behavior may be acceptable, even if such behavior
is not what was captured in the model—which, by its very nature,
incorporates a simplified view of the problem domain. A common
abstraction when modeling is to elide any details that distract from
the core system behavior in order to ensure that model-based analy-
ses are feasible and useful. Yet these details manifest as differences
between the model and the implemented system.

This raises the question—why use models as oracles? Alterna-
tive approaches could be to turn to an oracle based on explicit be-
havioral constraints—assertions or invariants—or to build declar-
ative behavioral models in a formal notation such as Modelica.
However, these solutions have their limitations. Assertion-based
approaches only ensure that a limited set of properties hold at par-
ticular points in the program. Further, such oracles may not be
able to account for the same range of testing scenarios as a model
that prescribes behavior for all inputs. Declarative models that
express the computation as a theory in a formal logic allow for
more sophisticated forms of verification and can better account for
time-constrained behaviors [3]. However, Miller et al. have found
that developers are more comfortable building constructive models
than formal declarative models [10]. Constructive models are visu-
ally appealing, easy to analyze without specialized knowledge, and
suitable for analyzing failure conditions and events in an isolated
manner [3]. The complexity of declarative models and the knowl-

edge needed to design and interpret such models make widespread
industrial adoption of the paradigm unlikely.

While there are challenges in using constructive model-based or-
acles, it is a widely held view that such models are indispensable in
other areas of development and testing, such as automatic test gen-
eration [7]. From this standpoint, the motivational case for models
as oracles is clear—if these models are already being built, their
reuse as test oracles could save a large amount of time and money.
Practitioners are well-versed in these models and so these are likely
to be less error-prone compared to building a new unfamiliar type
of oracle. Therefore, we seek a way to use constructive model-
based oracles that can handle the non-determinism introduced dur-
ing system execution on the target hardware.

3. ORACLE STEERING
In a typical model-based testing framework, the test suite is ex-

ecuted against both the SUT and the MBO, and the values of cer-
tain variables are recorded to a trace file after each execution step.
The oracle’s comparison procedure examines those traces and is-
sues a verdict for each test (fail if test reveals discrepancies, pass
otherwise). When testing a real-time system, we would expect non-
determinism to lead to behavioral differences between the SUT and
the MBO during test execution. The actual behaviors witnessed
in the SUT may not be incorrect—they may still meet the sys-
tem requirements—but they just do not match what the model pro-
duced. We would like the oracle to distinguish between correct,
but variant behaviors introduced by non-determinism and behav-
iors that are incorrect.

An approach to address this would be to augment the comparison
procedure with a filtering mechanism to detect and discard accept-
able differences on a per-step basis. The issue with this is that the
effect of non-determinism may linger on for several steps, leading
to irreconcilable differences between the SUT and MBO. Filters
may not be effective at handling growing behavioral divergence.

We take inspiration from program steering—however, instead of
steering the SUT, we steer the oracle to see if the model is capa-
ble of matching the SUT’s behavior. When the two behaviors differ,
we backtrack and apply a steering action—e.g., adjust timer values,
apply different inputs, delay or withhold an input—that changes the
state of the MBO to a state more similar to the SUT (as judged by
a dissimilarity metric). Oracle steering, unlike filters, is adaptable.
Such actions provide flexibility to handle non-determinism, while
still retaining the power of the oracle as an arbiter. Improper steer-
ing can bias the behavior of the MBO, masking both acceptable
deviations and actual indications of failures. However, we believe
that it is possible to sufficiently bound steering such that the ability
to detect faults is still retained, using a series of constraints:
1: A set of tolerance constraints governing the allowable changes
to certain variables (input, internal, or output) in the model that
can be effected by steering. These rules define the level of non-
determinism or behavioral deviation that can be accounted for with
steering. “No change allowed to the system’s operational mode” or
“computed output may be produced between x and y seconds” are
examples of such tolerance constraints.
2: A dissimilarity function Sym(model state, SUT state), that
compares the state of the model to the observable state of the SUT.
We seek a minimization of Sym(snew

m , ssut) < Sym(sm, ssut).
3: A further set of general policy decisions on when to steer. For
example, one might decide not to steer unless Sym(snew

m , ssut) =
0 — that is, unless there exists a steering action that results in a
model state identical to that observed in the SUT.

In other words, the new state of the MBO following the applica-
tion of a steering action must be one that is possible to reach within

a limited number of transitions from the current state of the model,
must fall within the boundaries set by the tolerance constraints, and
must minimize the dissimilarity function.

We have implemented the basic steering approach outlined in
Figure 1. It is a search process based on SMT-based bounded model
checking [4], which is a natural choice for this problem. We have a
series of constraints that govern steering actions and seek to locate
a model state reachable in a limited number of transitions that satis-
fies those constraints and minimizes a dissimilarity metric. Specif-
ically, we make use of the Kind model checker [4].

Note that the constraint Sym(snew
m) < Sym(sm) would give us

a model state that is more similar to the behavior of the SUT than
the original transition taken by the MBO, but carries no guarantee
that the satisfying state minimizes the dissimilarity metric. Thus,
we apply the model checker with this constraint in order to get an
initial threshold, then iteratively reapply the model checker with
new thresholds until we can no longer find a better solution. The
best solution found then becomes the new model to that state.

4. RELATED WORK
Several authors have addressed model-based conformance test-

ing for real-time systems [1, 7, 2]. For example, Larsen et al. [7]
model a system as a non-deterministic timed automata that is con-
strained by an environment model. The combined model serves as
an oracle during test execution.

While several approaches consider limited non-determinism, there
are a few key differences with our proposed approach, which de-
couples the model from the rules governing steering. This makes
non-determinism implicit and the approach more generally appli-
cable. Explicitly specified non-deterministic behavior would limit
the scope of non-determinism handled by the oracle to what has
been modeled. It is difficult to anticipate the non-determinism re-
sulting from deploying software on a hardware platform, and thus,
such models will likely undergo several revisions during develop-
ment. Steering instead relies on a set of rule-based constraints that
may be easier to revise over time. Also, by not relying on a specific
model format, steering can be made to work with models created
for a variety of purposes.

Oracle steering is conceptually similar to dynamic program steer-
ing, the automatic guidance of program execution [9]. The most
relevant in terms of the techniques employed is Spec Explorer [13],
where an executable behavioral model is steering through differ-
ent execution scenarios for test generation as opposed to adjudging
system execution.

5. PILOT STUDY
We aim to gain an understanding of the capabilities of oracle

steering and the impact it has on the testing process—both positive
and negative. Thus, we pose the following research questions:

1. To what degree does steering lessen behavior differences that
are legal under system requirements?

2. To what degree does steering mask behavior differences that
fail to conform to the requirements?

Models and Test Generation: We have based our MBO on the
management subsystem of a generic Patient-Controlled Analge-
sia (GPCA) infusion pump [11]. This model, developed in the
Simulink and Stateflow notations and translated into the Lustre syn-
chronous programming language, is a complex real-time system of
the type common in the medical domain. This subsystem controls
the operational mode of the infusion pump, including the flow rate
of the medicine administered to the patient.

Table 1: Verdicts: T(true)/F(false), P(positive)/N(negative).

Initial Verdict Pass (Post-Steering) Fail (Post-Steering)
Pass TN FP

Fail (Due to Timing,
Within Tolerance) TN FP
Fail (Due to Timing,
Not in Tolerance) FN TP

Fail (Due to Fault) FN TP

In order to produce “implementations” of this system, we cre-
ated two clones of the model, each introducing a realistic non-
deterministic timing change to the system: (1) a version of the sys-
tem where the exit of the patient-requested dosage period may be
delayed by a short length of time, and (2), a version of the system
where the exit of an intermittent dosage period may be delayed. We
have also created 50 mutants (faulty implementations) of the orig-
inal system and the two implementation models by introducing a
single fault into each model1.

Using a random testing algorithm, we generated 100 tests—each
30 steps long—and ran them against each model in order to collect
traces. In the models with timing fluctuations, we controlled those
fluctuations through the use of an additional input variable. The
value for that variable was generated non-deterministically, but we
used the same value across all systems with the same -timing fluc-
tuation. As a result, we know whether a behavior is due to a timing
fluctuation or a seeded fault in the system.

Steering Constraints: For this system, we specified tolerance con-
straints in terms of the input variables of the system (although con-
straints can be placed on internal or output variables as well):

• Five of the input variables relate to timers within the system.
For each of those, we placed an allowance of (Current
V alue − 1) <= New V alue <= (Current V alue +
2). For example, a dosage duration is allowed to fall within
a four second period—between one second shorter and two
seconds longer than the prescribed duration.

• The remaining 15 input variables are not allowed to be steered.

These constraints reflect what we consider a realistic application of
steering—we allow a small window around the behaviors that we
accept that are related to timing, but as we do not expect any sensor
noise, we do not allow freedom in adjusting sensor-based inputs.

The dissimilarity metric used in this experiment is the L1 −
Norm. Given vectors representing the state of the SUT and the
MBO—where each member of the vector represents the value of
a variable—the dissimilarity between the two vectors can be mea-
sured as the absolute numerical distance between the state of the
SUT and the MBO. A constant difference of 1 is used for differ-
ences between boolean variables.

Experiment Overview: Using the generated artifacts—without
steering—we monitored the outputs during each test, compared the
results to the values of the same variables in the MBO to calculate
the similarity score, and issued an initial verdict. Then, if the ver-
dict was a failure (score > 0), we steered the MBO, and recorded a
new verdict post-steering.

We can assess the impact of steering using the verdicts made
before and after steering by calculating the number of true posi-
tives—steps where steering does not mask incorrect behavior—the
number of false positives—the number of steps where steering fails
to account for an acceptable behavioral difference—and the num-
ber of false negatives—the number of steps where steering does
masks an incorrect behavior.
1The mutation operators used are discussed at length in [12].

Table 2: Distribution of results.
Initial Verdict Pass (Post-Steering) Fail (Post-Steering)

Pass 17835 (70.2%) 0 (0.0%)
Fail (Due to Timing,
Within Tolerance) 2443 (9.6%) 0 (0.0%)
Fail (Due to Timing,
Not in Tolerance) 266 (1.0%) 536 (2.1%)

Fail (Due to Fault) 399 (1.5%) 3921 (15.4%)

Table 3: Precision, recall, and F-measure values.

Technique Precision Recall F-measure
No Steering 0.66 1.00 0.80

With Steering 1.00 0.87 0.93

The testing outcomes in terms of true/false positives/negatives
are listed in Table 1. Using these measures, we calculate the pre-
cision—the ratio of true positives to all positive verdicts—and re-
call—the ratio of true positives to true positives and false negatives.
We also calculate the F-measure—the harmonic mean of precision
and recall—in order to judge the accuracy of oracle verdicts.

Results: Table 2 shows the results of steering—a pass or fail—
following each of the pre-steering testing outcomes—a pass, a fail
due to allowable timing fluctuations, a fail due to unacceptable tim-
ing fluctuations, or a fail due to a fault in the system. The precision,
recall, and F-measure values for steering and the default testing sce-
nario (issuing a verdict without steering) are listed in Table 3.

For the case example studied, steering is able to account for
all situations where non-deterministic timing affects conformance
while both the MBO and the implementation remain within the
bounds set in the system specification. Therefore, we see a sharp
increase in precision over the default situation where steering is not
applied. Previously, a developer would have to manually inspect
nearly 30% of the tests for faults in the system (all pre-steering
failures in Table 2). Now, they would be asked to focus on 17.5%
of the test results (all post-steering failures).

Note, however, that 665 tests that should have still been labeled
as failures post-steering are now labeled as passing. This is a rela-
tively small number—only 2.5% of the test results—but any loss in
recall is cause for concern when working with safety-critical sys-
tems. Still, as can be seen from the F-measure, the application of
steering results in greater accuracy in test classifications than not
steering. These results seem promising, and further examination of
constraints and dissimilarity metrics should improve recall.

As steering does carry the risk of masking faults, we recommend
that it be applied as a focusing tool—to point the developer toward
definite faults so that they do not spend as much time investigat-
ing potential faults. The increase in oracle verdict accuracy and
the large decrease in failure verdicts—from 7565 to 4457 tests—
after steering should result in a substantial decrease in the amount
of time that developers spend investigating failure verdicts are ac-
tually instances of allowable non-conformance.

6. CONCLUSION AND FUTURE WORK
The results of the initial pilot study are quite promising. If steer-

ing can be scaled to larger systems without loss in accuracy, then
the potential for improvements in the time and effort spent on test-
ing real-time embedded systems are significant. The use of steer-
ing can allow developers to focus on addressing definite faults,
rather than spending time examining test failure verdicts that can
be blamed on a rigid oracle model.

However, there is much room for future work. We plan to ex-
pand the case examples in terms of both program size and scope of

non-determinism. The dissimilarity metric used in this study was
deliberately simplistic. In future work, we will study more sophis-
ticated metrics, including ones that admit equivalent behaviors. We
plan to examine the impact of different sets of tolerance constraints
and overall steering policy decisions on the accuracy of steering.
We would also like to examine the cost and time savings that could
result from the application of steering.

7. REFERENCES
[1] A. Arcuri, M. Z. Iqbal, and L. Briand. Black-box system

testing of real-time embedded systems using random and
search-based testing. In Proceedings of the 22nd IFIP WG
6.1 international conference on Testing software and
systems, pages 95–110. Springer-Verlag, 2010.

[2] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed
wp-method: testing real-time systems. Software Engineering,
IEEE Transactions on, 28(11):1023–1038, Nov.

[3] A. Gomes, A. Mota, A. Sampaio, F. Ferri, and E. Watanabe.
Constructive model-based analysis for safety assessment.
International Journal on Software Tools for Technology
Transfer, 14(6):673–702, 2012.

[4] G. Hagen. Verifying safety properties of Lustre programs: an
SMT-based approach. PhD thesis, University of Iowa,
December 2008.

[5] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A
comprehensive survey of trends in oracles for software
testing. Technical Report CS-13-01, University of Sheffield,
Department of Computer Science, 2013.

[6] M. S. Jaffe, N. G. Leveson, M. P. Heimdahl, and B. E.
Melhart. Software requirements analysis for real-time
process-control systems. IEEE Transactions on Software
Engineering, 17(3):241–258, March 1991.

[7] K. G. Larsen, M. Mikucionis, and B. Nielsen. Online testing
of real-time systems using UPPAAL. In International
workshop on formal approaches to testing of software
(FATES 04). Springer, 2004.

[8] D. Lee and M. Yannakakis. Principles and methods of testing
finite state machines-a survey. Proceedings of the IEEE,
84(8):1090–1123, 1996.

[9] D. Miller, J. Guo, E. Kraemer, and Y. Xiong. On-the-fly
calculation and verification of consistent steering
transactions. In Supercomputing, ACM/IEEE 2001
Conference, pages 8–8, 2001.

[10] S. P. Miller, A. C. Tribble, M. W. Whalen, and M. P. E.
Heimdahl. Proving the shalls: Early validation of
requirements through formal methods. Int. J. Softw. Tools
Technol. Transf., 8(4):303–319, 2006.

[11] A. Murugesan, S. Rayadurgam, and M. Heimdahl. Modes,
features, and state-based modeling for clarity and flexibility.
In Proceedings of the 2013 Workshop on Modeling in
Software Engineering, 2013.

[12] A. Rajan, M. Whalen, M. Staats, and M. Heimdahl.
Requirements coverage as an adequacy measure for
conformance testing. In Proc. of the 10th Int’l Conf. on
Formal Methods and Software Engineering, pages 86–104.
Springer, 2008.

[13] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte,
N. Tillmann, and L. Nachmanson. Model-based testing of
object-oriented reactive systems with spec explorer. In R. M.
Hierons, J. P. Bowen, and M. Harman, editors, Formal
Methods and Testing, volume 4949 of Lecture Notes in
Computer Science, pages 39–76. Springer, 2008.

