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ABSTRACT 
Bug classification is a well-established practice which supports 
important activities such as enhancing verification and validation 
(V&V) efficiency and effectiveness. The state of the practice is 
manual and hence classification errors occur. This paper 
investigates the sensitivity of the value of bug classification 
(specifically, failure type classification) to its error rate; i.e., the 
degree to which misclassified historic bugs decrease the V&V 
effectiveness (i.e., the ability to find bugs of a failure type of 
interest).  Results from the analysis of an industrial database of 
more than 3,000 bugs show that the impact of classification error 
rate on V&V effectiveness significantly varies with failure type. 
Specifically, there are failure types for which a 5% classification 
error can decrease the ability to find them by 66%. Conversely, 
there are failure types for which the V&V effectiveness is robust 
to very high error rates. These results show the utility of future 
research aimed at: 1) providing better tool support for decreasing 
human errors in classifying the failure type of bugs, 2) providing 
more robust approaches for the selection of V&V techniques, and 
3) including robustness as an important criterion when evaluating 
technologies. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics-Product Metrics 

General Terms 
Experimentation, Measurement 

Keywords 
Bug classification, software quality, testing, metrics, verification 
and validation, human factor 

1. INTRODUCTION 
A best practice and well-established activity in industry is to 
classify bugs according to some accepted (and possibly company-
specific) taxonomy or schema. The resulting bug repository, if 
mined, supports several important V&V activities such as test 
planning, root cause analysis, process improvement planning, bug 
location prediction, and resource allocation [1][2]. We are 
motivated by our work in an industrial context in which the 
company under study has several V&V techniques from which to 
choose including peer review, user acceptance testing, and 
automated unit testing. In this setting, significant effort is spent in 
creating, maintaining, and using a bug classification schema. The 
resulting bug repository is used to choose the V&V technique to 

be applied by adopting the criterion of maximizing the number of 
bugs of certain important failure types. This paper regards the 
failure type aspect of a bug to be the incorrect software system 
behavior that was observed as a result of the execution of the 
software bug (error in the code that led to the failure). In this 
scenario, errors in the bug repository can lead to the selection of 
inappropriate V&V techniques. We strive to maximize the 
effectiveness of the V&V strategy in this context; in other words, 
we aim to maximize the number of bugs found, of the specific 
failure type of interest, by choosing the V&V technique according 
to historical detection rates. Just as ultra-high reliability 
developers wonder about the fault tolerance of their software, we 
wonder how tolerant our V&V technique selection approach is to 
failure misclassifications. 

Focusing the V&V strategy on finding specific failure types is an 
important topic. Specifically, certain failure types might be highly 
undesirable to the customers or more likely than others given the 
type of release. For instance, in a release where implementation 
focused on changing the user interface, failures related to 
formatting are more likely than failures related to accessibility or 
security. In software organizations with mature development 
processes it becomes important to use bug classification to find 
bugs of specific failure types, or that are difficult to find (perhaps  
applying V&V techniques that have "Hard Power" as opposed to 
"Broad Power" [3]).  

The present paper is, to our knowledge, the first investigating the 
value of bug classifications (specifically, based on failure type) 
for maximizing V&V effectiveness, by examining how sensitive 
that value is with respect to failure misclassifications. 
Understanding how robust such strategies can be to errors in the 
underlying data set is especially important given the increasing 
reliance on software analytics; it is not useful to develop and 
deploy increasingly sensitive data mining techniques if small 
errors in the underlying data can lead to radically wrong 
conclusions.  

2. RELATED WORK 
The general problem of the low quality of data in empirical 
software engineering has been already stressed [4][5]. The present 
paper sits between two research directions: defect classification 
and evaluating bug-fix datasets for bias. Defect classification has 
been investigated in past studies [6][7][8][9], where the bug 
classification error rate of specific subjects under specific 
circumstances was reported and enhanced.  However, so far it is 
unclear the extent to which a specific error rate (e.g., 10%) 
decreases the value of the bug repository and for which uses. Bias 
in bug-fix datasets has been studied in some detail [10][11][12] 
[13][14] [15]. The main differences between these studies and the 
present one include the type of investigated correctness (i.e., 
failure type classification vs. bug-fix link) and the use of the bug 
repository (V&V technique selection vs. bug localization 
estimation).   Moreover, all but one of these studies analyzed only 
open source projects whereas we analyze industrial data. Thus, 
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this paper differs to these studies in all dependent and independent 
variables, and type of adopted dataset. 

3. METHODOLOGY 
In this section we describe the design of our study, including the 
dataset, the variables, and data analysis. 

3.1 Dataset 
The study reported in this paper analyzes an industrial database of 
over 3,000 bugs spanning five years and multiple projects at a 
medium sized, CMMI Maturity Level 5, company called 
Keymind. Keymind is the technology and creative services 
division of Axiom Resource Management, a professional 
consulting firm.  

At Keymind, the failure that led to detection of the bug can be 
classified via one, and only one, of the following nine types: 
Accessibility, Incorrect Formatting, Missing Incorrect or 
Incomplete Functionality/Results, Non-Compliance of Program 
Behavior to Standard, Low Performance, Security/Vulnerability, 
Unexpected Termination, Usability, Other. Because the rate of 
occurrence of these bug types is company-sensitive, the bug types 
are referred to only with a random letter, as Type A through Type 
J, in the remainder of this paper.  

Bugs can be found in one, and only one, of the following five 
phases: Development, Internal System Testing, User Acceptance 
Testing, Production, Other. Bugs can be found via one and only 
one of the following 11 V&V techniques: 
Accessibility/Compliance Testing, Automated UI Testing, 
Internal System Testing, Manual Testing, Product Usage, 
Usability Testing, User Acceptance Testing, Peer Review, Mixed, 
Security Testing, Other. 

At Keymind, all categories are mutually exclusive. Moreover, all 
aspects have an “Other” category:  its use is deprecated, but it is 
still useful if the bug classifier is undecided.  

Figure 1 summarizes the adopted bug repository, i.e., which 
failure types have been found by each V&V technique, on 
average. Figure 1 shows that it is important to choose the right 
V&V technique in order to find bugs exhibiting a specific failure 
type. For instance, if bugs of failure type C are of interest, six 
different V&V techniques can be chosen.  Per Figure 1, their 
effectiveness in finding bugs of that type ranges between 1% (i.e., 
Automated UI Testing) and 42% (i.e., Usability Testing). 

 
Figure 1: Bug profile for each of the different V&V 

techniques.  

 

3.2 Variables 
In this paper we focus on selecting V&V techniques that 
maximize the detection of bugs of a given failure type. For a 
given failure type, we define Effectiveness as the percentage of 
bugs that are found when choosing the optimal V&V technique 
according to the bug repository. For instance, according to Figure 
1 if the failure type of interest is J, the effectiveness is 38% based 
on the application of the optimal technique, User Acceptance 
Testing. 

Human errors during failure classification can result in an 
erroneous bug repository leading to the selection of a technique 
that does not actually find the most bugs of the failure type of 
interest and hence may result in some decreased V&V 
effectiveness. Thus for a given failure type, we define 
EffectivenessWithError as the percentage of bugs with the failure 
type of interest that are found when choosing a V&V technique 
according to a bug repository with a specific error rate. For 
instance, according to Figure 1, if the failure type of interest is J 
and, due to misclassifications in the historical data, Manual 
Testing is selected instead of User Acceptance Testing, then 
EffectivenessWithError is 8%.  

Finally, for a given failure type and error rate, we define Loss as 
the percentage of bugs, of the failure type of interest, that are lost 
when choosing the V&V technique according to a bug repository 
with a given error rate; versus choosing the technique according to 
a  correct repository. Loss is computed as: (Effectiveness - 
EffectivenessWithError) / Effectiveness. A Loss of 50% means 
that half of the bugs, of the failure type of interest, could have 
been found but were not found due to selection of the wrong V&V 
technique. For instance (see failure Type J in Figure 1), if the 
effectiveness decreases from 38% to 8% due to errors in the bug 
repository, then the Loss is 79%. Loss is zero if Error is zero. 
Moreover, if the optimal V&V technique is selected, despite there 
being misclassified bugs, the loss is 0%. Loss is our dependent 
variable and it reliably describes the impact of misclassifications 
on the number of bugs found of the failure type of interest. 

We note that, given the definition of Loss, the impact of Error on 
Loss depends on the degree of difference among V&V technique 
detection rates. For a given failure type, if all feasible techniques 
have the same detection rate then the Loss is zero regardless of 
failure classification error.  Counter-intuitively, the number of 
bugs of a specific failure type does not influence anything, mainly 
because Loss is expressed as a percentage. Thus, our independent 
variables are failure type, phase, and error rate. 

3.3 Data analysis  
Our data analysis procedure consists of three main steps: 
preprocessing, error injection, and computation of Loss. 

Preprocessing. The 3,000+ bugs were pre-processed to facilitate 
analysis and anonymize data. Moreover, unfeasible testing 
techniques and failure types were removed from the analysis in 
specific phases. For instance, Product usage and Formatting are a 
technique and a failure type, respectively, which are unfeasible in 
the Development phase. Table 1 reports the number of feasible 
V&V techniques and failure types for each of the five phases. 



Table 1: Number of feasible V&V techniques and failure types 
for each specific phase 

 
Error injection algorithm. The industrial bug repository is used 
as the gold standard and random failure misclassifications have 
been applied to it. We used the following error rates: 0%, 5%, 
10%, 25%, 50%, 75%, 90%, 95%, and 100%. The error rate 
describes the percentage of misclassified failure types. Because 
phase is a factor (see Preprocessing), each error rate was applied 
to one phase at a time. Because preliminary data analysis and past 
studies [6] [7] [8] [9] show the absence of correlation among 
failure types, the failure misclassification was randomly chosen 
from among the other feasible failure types within that phase. 
Because specific misclassifications could threaten results validity, 
we repeated the error injection algorithm 10,000 times, for each 
phase and for each error rate. 

Computation of Loss. For each phase, once a specific error rate 
was introduced, the V&V technique with the highest effectiveness 
was chosen and its effectiveness was computed as the number of 
bugs found of the failure type of interest. This value is the 
EffectivenessWithError and is used to compute the Loss, as 
described in Section 3.2. Afterwards, the value of Loss, for a 
specific failure type, phase, and error rate, was computed by 
averaging the values of the 10,000 runs. 

We implemented this data analysis in a script in R that is available 
for download: https://github.com/bill-kidwell-uk/GettingItWrong. 

4. RESULTS AND DISCUSSION 
Figure 2 reports, for each failure type, the average Loss over all 
relevant phases, over the spectrum of Error rates. According to 
Figure 2, the impact of Error Rate on Loss clearly depends on the 
specific failure type of interest. For instance, the Loss for failure 
type E is 0% even in the case of 100% erroneous classification. 
This is probably because the feasible techniques for type E have 
the same detection rates. Vice versa, the Loss for failure type J is 
66% when the error rate is only 5%. We note that according to 
past studies [6][7][8][9], the failure classification error is likely 
more than 5%. Thus, in a realistic context, bugs of certain failure 
types are likely very hard to detect, even when choosing the V&V 
technique that historically caught most of them.  

 
Figure 2: Percentage of bugs lost (y-axis) when choosing the 
V&V technique in the presence of a specific percentage of 

misclassifications (x-axis), on average across phases.  

Because we have an average of seven failure types per phase (see 
Table 1), then a purely random failure classification approach 
would lead to an error rate of 86% (i.e., 6/7). The Loss for an 
Error rate of 86% is more than 50% for four failure types. Thus, it 
is important to classify failure types to be able to find the bugs of 
the failure type of interest. 

According to prior work [6] [7] [8] [9], the error rate of humans in 
classifying failure types under realistic circumstances is around 
10%. Moreover, the impact of Error on Loss, for a given failure 
type, depends on the distribution of the detection rate of the V&V 
techniques that are feasible in a given phase. Thus it is interesting 
to see how a realistic classification error rate (10%) impacts Loss 
in specific phases. Figure 3 reports the Loss of the Error rate 10%, 
in each specific phase for each failure type. According to Figure 
3, there are some phases (i.e., Phase 1 and 5) where the Loss is 
very low for all failure types. Vice versa, there are phases such as 
2 and 5 where a realistic error rate makes it impossible to find 
bugs of a specific failure type (i.e., Failure type J). 

 
Figure 3: Percentage of bugs lost (y-axis) across the different 

phases (x-axis) when choosing the V&V technique by having a 
realistic error rate (i.e., 10%). 

We statistically tested the impact of Error, Phase, and Failure 
types on Loss.  Table 2 reports the p-value of a 3-way ANOVA 
test. Results from Table 2 show that the Loss significantly 
depends on all three variables and also on their interaction. The 
interaction factor means that the impact of Error on Loss depends 
on the specific combination of Failure type and Phase. For 
instance, by analyzing Figure 3, Loss is high for Failure type D 
only in Phase 2. 
Table 2: Statistical test results on the impact on Loss of Phase, 

Failure type, Error rate, and their combination  

 

4.1 Threats to validity 
Threats to our study fall into four main categories:  internal, 
external, construct, and conclusion.   

Internal. Our study uses the 3,000 bug reports as the gold 
standard (we assume that the failure types of bug classifications 
are correct). Although there is evidence of the low quality of open 
source projects [10][11], we justify this assumption based on a 
preliminary analysis of the dataset showing a very low value of 
error. Thus, the use of an industrial dataset, rated CMMI Maturity 
Level 5, is the best available dataset for our use.   

Construct. We assumed the absence of correlation across failure 
types, i.e., that the error in a failure classification is random. We 

1 2 3 4 5

Number of feasible V&V techniques 8 9 3 9 8

Number of feasible failure types 6 7 6 9 8

Phase

F Ratio p-value

Phase 13.0766 <.0001

Error 40.9353 <.0001

Failure type 45.1572 <.0001

Phase * Error* Failure type 2.3184 0.0005



justify this assumption given the absence of any available data 
about correlation among failure types [6][7][8][9] and according 
to a preliminary analysis of the dataset. In studies of this type, a 
further threat to construct validity is that of experimenter 
expectation, i.e., researchers wanting the study to have a certain 
outcome may have biased the study to produce that outcome. To 
address this threat, we made conservative decisions which in turn 
threaten conclusion validity.  

External. Our study has a threat to external validity as we only 
examined one set of bug reports from one company.  However: 1) 
the bug reports do represent multiple projects across multiple 
domains, and 2) the specific failure types, V&V techniques, and 
phases are reported (see Section 2.1) and hence their applicability 
to external contexts can be analyzed.  

Conclusion. In general, when trying to tradeoff the different 
threats to validity we chose to be conservative. For instance, 
during error injection, for each specific phase, we considered only 
feasible V&V techniques and failure types (see Table 1). Thus, 
the main threat to conclusion validity is that the Loss could 
actually be more sensitive to Error than what current results show. 
This would actually make the case supporting correct failure 
classification stronger. Finally, mistakes in data analysis have 
been avoided by inspecting the script and making it available. 

5. CONCLUSIONS AND FUTURE WORK 
Our results show that the impact of classification error on V&V 
effectiveness significantly varies with failure type. Most 
importantly, there are phases where even a very low classification 
error rate (close to what we expect in practice) makes finding 
bugs of a specific failure type very hard, even when choosing the 
technique with the expected highest detection rate for that type of 
bug. Clearly, it is not useful to develop and deploy increasingly 
sensitive data mining techniques if small errors in the underlying 
data can lead to radically wrong conclusions. We need to adopt 
technologies that work well with data of realistic quality.  

From an empirical perspective, technologies, including defect 
prediction models or information retrieval techniques, should be 
evaluated not only according to their accuracy but also according 
to their sensitivity to the quality of the underlying data. 
Technologies that are robust to inaccuracies in the data may, in 
some contexts, provide more benefits than technologies that are 
highly accurate but only under ideal conditions.   

From a technology development perspective, technologies should 
provide as output not only one value (i.e., the value produced by 
considering the underlying data as completely correct) but also a 
related “confidence interval” which takes into account its 
sensitivity to realistic correctness of the underlying data.  

From a research perspective, there is no shortage of prior work 
that has developed technologies for different uses of the bug 
repositories for supporting decisions during software 
development. We suggest that promising areas of future work 
include: 1) investigating how different uses of bug repositories 
(e.g., V&V technique selection vs. bug localization prediction) are 
sensitive to the quality of the underlying data, 2) evaluating what 
factors can influence sensitivity (e.g., phases or failure type), 3) 
studying how to improve data quality (e.g., better bug 
classification schema), and 4) investigating mechanisms to make 
technologies more robust to data quality. 
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