
On Failure Classification: The Impact of “Getting it Wrong”
Davide Falessi
Fraunhofer CESE

College Park, MD USA
dfalessi@fc-md.umd.edu

Bill Kidwell
University of Kentucky

Lexington, KY USA
bill.kidwell@uky.edu

Jane Huffman Hayes
University of Kentucky

Lexington, KY USA
hayes@cs.uky.edu

Forrest Shull
Software Engineering Institute

Arlington, VA USA
fjshull@sei.cmu.edu

ABSTRACT
Bug classification is a well-established practice which supports
important activities such as enhancing verification and validation
(V&V) efficiency and effectiveness. The state of the practice is
manual and hence classification errors occur. This paper
investigates the sensitivity of the value of bug classification
(specifically, failure type classification) to its error rate; i.e., the
degree to which misclassified historic bugs decrease the V&V
effectiveness (i.e., the ability to find bugs of a failure type of
interest). Results from the analysis of an industrial database of
more than 3,000 bugs show that the impact of classification error
rate on V&V effectiveness significantly varies with failure type.
Specifically, there are failure types for which a 5% classification
error can decrease the ability to find them by 66%. Conversely,
there are failure types for which the V&V effectiveness is robust
to very high error rates. These results show the utility of future
research aimed at: 1) providing better tool support for decreasing
human errors in classifying the failure type of bugs, 2) providing
more robust approaches for the selection of V&V techniques, and
3) including robustness as an important criterion when evaluating
technologies.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics-Product Metrics

General Terms
Experimentation, Measurement

Keywords
Bug classification, software quality, testing, metrics, verification
and validation, human factor

1. INTRODUCTION
A best practice and well-established activity in industry is to
classify bugs according to some accepted (and possibly company-
specific) taxonomy or schema. The resulting bug repository, if
mined, supports several important V&V activities such as test
planning, root cause analysis, process improvement planning, bug
location prediction, and resource allocation [1][2]. We are
motivated by our work in an industrial context in which the
company under study has several V&V techniques from which to
choose including peer review, user acceptance testing, and
automated unit testing. In this setting, significant effort is spent in
creating, maintaining, and using a bug classification schema. The
resulting bug repository is used to choose the V&V technique to

be applied by adopting the criterion of maximizing the number of
bugs of certain important failure types. This paper regards the
failure type aspect of a bug to be the incorrect software system
behavior that was observed as a result of the execution of the
software bug (error in the code that led to the failure). In this
scenario, errors in the bug repository can lead to the selection of
inappropriate V&V techniques. We strive to maximize the
effectiveness of the V&V strategy in this context; in other words,
we aim to maximize the number of bugs found, of the specific
failure type of interest, by choosing the V&V technique according
to historical detection rates. Just as ultra-high reliability
developers wonder about the fault tolerance of their software, we
wonder how tolerant our V&V technique selection approach is to
failure misclassifications.

Focusing the V&V strategy on finding specific failure types is an
important topic. Specifically, certain failure types might be highly
undesirable to the customers or more likely than others given the
type of release. For instance, in a release where implementation
focused on changing the user interface, failures related to
formatting are more likely than failures related to accessibility or
security. In software organizations with mature development
processes it becomes important to use bug classification to find
bugs of specific failure types, or that are difficult to find (perhaps
applying V&V techniques that have "Hard Power" as opposed to
"Broad Power" [3]).

The present paper is, to our knowledge, the first investigating the
value of bug classifications (specifically, based on failure type)
for maximizing V&V effectiveness, by examining how sensitive
that value is with respect to failure misclassifications.
Understanding how robust such strategies can be to errors in the
underlying data set is especially important given the increasing
reliance on software analytics; it is not useful to develop and
deploy increasingly sensitive data mining techniques if small
errors in the underlying data can lead to radically wrong
conclusions.

2. RELATED WORK
The general problem of the low quality of data in empirical
software engineering has been already stressed [4][5]. The present
paper sits between two research directions: defect classification
and evaluating bug-fix datasets for bias. Defect classification has
been investigated in past studies [6][7][8][9], where the bug
classification error rate of specific subjects under specific
circumstances was reported and enhanced. However, so far it is
unclear the extent to which a specific error rate (e.g., 10%)
decreases the value of the bug repository and for which uses. Bias
in bug-fix datasets has been studied in some detail [10][11][12]
[13][14] [15]. The main differences between these studies and the
present one include the type of investigated correctness (i.e.,
failure type classification vs. bug-fix link) and the use of the bug
repository (V&V technique selection vs. bug localization
estimation). Moreover, all but one of these studies analyzed only
open source projects whereas we analyze industrial data. Thus,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’14, May 31 – June 7, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2768-8/14/05... $15.00.

this paper differs to these studies in all dependent and independent
variables, and type of adopted dataset.

3. METHODOLOGY
In this section we describe the design of our study, including the
dataset, the variables, and data analysis.

3.1 Dataset
The study reported in this paper analyzes an industrial database of
over 3,000 bugs spanning five years and multiple projects at a
medium sized, CMMI Maturity Level 5, company called
Keymind. Keymind is the technology and creative services
division of Axiom Resource Management, a professional
consulting firm.

At Keymind, the failure that led to detection of the bug can be
classified via one, and only one, of the following nine types:
Accessibility, Incorrect Formatting, Missing Incorrect or
Incomplete Functionality/Results, Non-Compliance of Program
Behavior to Standard, Low Performance, Security/Vulnerability,
Unexpected Termination, Usability, Other. Because the rate of
occurrence of these bug types is company-sensitive, the bug types
are referred to only with a random letter, as Type A through Type
J, in the remainder of this paper.

Bugs can be found in one, and only one, of the following five
phases: Development, Internal System Testing, User Acceptance
Testing, Production, Other. Bugs can be found via one and only
one of the following 11 V&V techniques:
Accessibility/Compliance Testing, Automated UI Testing,
Internal System Testing, Manual Testing, Product Usage,
Usability Testing, User Acceptance Testing, Peer Review, Mixed,
Security Testing, Other.

At Keymind, all categories are mutually exclusive. Moreover, all
aspects have an “Other” category: its use is deprecated, but it is
still useful if the bug classifier is undecided.

Figure 1 summarizes the adopted bug repository, i.e., which
failure types have been found by each V&V technique, on
average. Figure 1 shows that it is important to choose the right
V&V technique in order to find bugs exhibiting a specific failure
type. For instance, if bugs of failure type C are of interest, six
different V&V techniques can be chosen. Per Figure 1, their
effectiveness in finding bugs of that type ranges between 1% (i.e.,
Automated UI Testing) and 42% (i.e., Usability Testing).

Figure 1: Bug profile for each of the different V&V

techniques.

3.2 Variables
In this paper we focus on selecting V&V techniques that
maximize the detection of bugs of a given failure type. For a
given failure type, we define Effectiveness as the percentage of
bugs that are found when choosing the optimal V&V technique
according to the bug repository. For instance, according to Figure
1 if the failure type of interest is J, the effectiveness is 38% based
on the application of the optimal technique, User Acceptance
Testing.

Human errors during failure classification can result in an
erroneous bug repository leading to the selection of a technique
that does not actually find the most bugs of the failure type of
interest and hence may result in some decreased V&V
effectiveness. Thus for a given failure type, we define
EffectivenessWithError as the percentage of bugs with the failure
type of interest that are found when choosing a V&V technique
according to a bug repository with a specific error rate. For
instance, according to Figure 1, if the failure type of interest is J
and, due to misclassifications in the historical data, Manual
Testing is selected instead of User Acceptance Testing, then
EffectivenessWithError is 8%.

Finally, for a given failure type and error rate, we define Loss as
the percentage of bugs, of the failure type of interest, that are lost
when choosing the V&V technique according to a bug repository
with a given error rate; versus choosing the technique according to
a correct repository. Loss is computed as: (Effectiveness -
EffectivenessWithError) / Effectiveness. A Loss of 50% means
that half of the bugs, of the failure type of interest, could have
been found but were not found due to selection of the wrong V&V
technique. For instance (see failure Type J in Figure 1), if the
effectiveness decreases from 38% to 8% due to errors in the bug
repository, then the Loss is 79%. Loss is zero if Error is zero.
Moreover, if the optimal V&V technique is selected, despite there
being misclassified bugs, the loss is 0%. Loss is our dependent
variable and it reliably describes the impact of misclassifications
on the number of bugs found of the failure type of interest.

We note that, given the definition of Loss, the impact of Error on
Loss depends on the degree of difference among V&V technique
detection rates. For a given failure type, if all feasible techniques
have the same detection rate then the Loss is zero regardless of
failure classification error. Counter-intuitively, the number of
bugs of a specific failure type does not influence anything, mainly
because Loss is expressed as a percentage. Thus, our independent
variables are failure type, phase, and error rate.

3.3 Data analysis
Our data analysis procedure consists of three main steps:
preprocessing, error injection, and computation of Loss.

Preprocessing. The 3,000+ bugs were pre-processed to facilitate
analysis and anonymize data. Moreover, unfeasible testing
techniques and failure types were removed from the analysis in
specific phases. For instance, Product usage and Formatting are a
technique and a failure type, respectively, which are unfeasible in
the Development phase. Table 1 reports the number of feasible
V&V techniques and failure types for each of the five phases.

Table 1: Number of feasible V&V techniques and failure types
for each specific phase

Error injection algorithm. The industrial bug repository is used
as the gold standard and random failure misclassifications have
been applied to it. We used the following error rates: 0%, 5%,
10%, 25%, 50%, 75%, 90%, 95%, and 100%. The error rate
describes the percentage of misclassified failure types. Because
phase is a factor (see Preprocessing), each error rate was applied
to one phase at a time. Because preliminary data analysis and past
studies [6] [7] [8] [9] show the absence of correlation among
failure types, the failure misclassification was randomly chosen
from among the other feasible failure types within that phase.
Because specific misclassifications could threaten results validity,
we repeated the error injection algorithm 10,000 times, for each
phase and for each error rate.

Computation of Loss. For each phase, once a specific error rate
was introduced, the V&V technique with the highest effectiveness
was chosen and its effectiveness was computed as the number of
bugs found of the failure type of interest. This value is the
EffectivenessWithError and is used to compute the Loss, as
described in Section 3.2. Afterwards, the value of Loss, for a
specific failure type, phase, and error rate, was computed by
averaging the values of the 10,000 runs.

We implemented this data analysis in a script in R that is available
for download: https://github.com/bill-kidwell-uk/GettingItWrong.

4. RESULTS AND DISCUSSION
Figure 2 reports, for each failure type, the average Loss over all
relevant phases, over the spectrum of Error rates. According to
Figure 2, the impact of Error Rate on Loss clearly depends on the
specific failure type of interest. For instance, the Loss for failure
type E is 0% even in the case of 100% erroneous classification.
This is probably because the feasible techniques for type E have
the same detection rates. Vice versa, the Loss for failure type J is
66% when the error rate is only 5%. We note that according to
past studies [6][7][8][9], the failure classification error is likely
more than 5%. Thus, in a realistic context, bugs of certain failure
types are likely very hard to detect, even when choosing the V&V
technique that historically caught most of them.

Figure 2: Percentage of bugs lost (y-axis) when choosing the
V&V technique in the presence of a specific percentage of

misclassifications (x-axis), on average across phases.

Because we have an average of seven failure types per phase (see
Table 1), then a purely random failure classification approach
would lead to an error rate of 86% (i.e., 6/7). The Loss for an
Error rate of 86% is more than 50% for four failure types. Thus, it
is important to classify failure types to be able to find the bugs of
the failure type of interest.

According to prior work [6] [7] [8] [9], the error rate of humans in
classifying failure types under realistic circumstances is around
10%. Moreover, the impact of Error on Loss, for a given failure
type, depends on the distribution of the detection rate of the V&V
techniques that are feasible in a given phase. Thus it is interesting
to see how a realistic classification error rate (10%) impacts Loss
in specific phases. Figure 3 reports the Loss of the Error rate 10%,
in each specific phase for each failure type. According to Figure
3, there are some phases (i.e., Phase 1 and 5) where the Loss is
very low for all failure types. Vice versa, there are phases such as
2 and 5 where a realistic error rate makes it impossible to find
bugs of a specific failure type (i.e., Failure type J).

Figure 3: Percentage of bugs lost (y-axis) across the different

phases (x-axis) when choosing the V&V technique by having a
realistic error rate (i.e., 10%).

We statistically tested the impact of Error, Phase, and Failure
types on Loss. Table 2 reports the p-value of a 3-way ANOVA
test. Results from Table 2 show that the Loss significantly
depends on all three variables and also on their interaction. The
interaction factor means that the impact of Error on Loss depends
on the specific combination of Failure type and Phase. For
instance, by analyzing Figure 3, Loss is high for Failure type D
only in Phase 2.
Table 2: Statistical test results on the impact on Loss of Phase,

Failure type, Error rate, and their combination

4.1 Threats to validity
Threats to our study fall into four main categories: internal,
external, construct, and conclusion.

Internal. Our study uses the 3,000 bug reports as the gold
standard (we assume that the failure types of bug classifications
are correct). Although there is evidence of the low quality of open
source projects [10][11], we justify this assumption based on a
preliminary analysis of the dataset showing a very low value of
error. Thus, the use of an industrial dataset, rated CMMI Maturity
Level 5, is the best available dataset for our use.

Construct. We assumed the absence of correlation across failure
types, i.e., that the error in a failure classification is random. We

1 2 3 4 5

Number of feasible V&V techniques 8 9 3 9 8

Number of feasible failure types 6 7 6 9 8

Phase

F Ratio p-value

Phase 13.0766 <.0001

Error 40.9353 <.0001

Failure type 45.1572 <.0001

Phase * Error* Failure type 2.3184 0.0005

justify this assumption given the absence of any available data
about correlation among failure types [6][7][8][9] and according
to a preliminary analysis of the dataset. In studies of this type, a
further threat to construct validity is that of experimenter
expectation, i.e., researchers wanting the study to have a certain
outcome may have biased the study to produce that outcome. To
address this threat, we made conservative decisions which in turn
threaten conclusion validity.

External. Our study has a threat to external validity as we only
examined one set of bug reports from one company. However: 1)
the bug reports do represent multiple projects across multiple
domains, and 2) the specific failure types, V&V techniques, and
phases are reported (see Section 2.1) and hence their applicability
to external contexts can be analyzed.

Conclusion. In general, when trying to tradeoff the different
threats to validity we chose to be conservative. For instance,
during error injection, for each specific phase, we considered only
feasible V&V techniques and failure types (see Table 1). Thus,
the main threat to conclusion validity is that the Loss could
actually be more sensitive to Error than what current results show.
This would actually make the case supporting correct failure
classification stronger. Finally, mistakes in data analysis have
been avoided by inspecting the script and making it available.

5. CONCLUSIONS AND FUTURE WORK
Our results show that the impact of classification error on V&V
effectiveness significantly varies with failure type. Most
importantly, there are phases where even a very low classification
error rate (close to what we expect in practice) makes finding
bugs of a specific failure type very hard, even when choosing the
technique with the expected highest detection rate for that type of
bug. Clearly, it is not useful to develop and deploy increasingly
sensitive data mining techniques if small errors in the underlying
data can lead to radically wrong conclusions. We need to adopt
technologies that work well with data of realistic quality.

From an empirical perspective, technologies, including defect
prediction models or information retrieval techniques, should be
evaluated not only according to their accuracy but also according
to their sensitivity to the quality of the underlying data.
Technologies that are robust to inaccuracies in the data may, in
some contexts, provide more benefits than technologies that are
highly accurate but only under ideal conditions.

From a technology development perspective, technologies should
provide as output not only one value (i.e., the value produced by
considering the underlying data as completely correct) but also a
related “confidence interval” which takes into account its
sensitivity to realistic correctness of the underlying data.

From a research perspective, there is no shortage of prior work
that has developed technologies for different uses of the bug
repositories for supporting decisions during software
development. We suggest that promising areas of future work
include: 1) investigating how different uses of bug repositories
(e.g., V&V technique selection vs. bug localization prediction) are
sensitive to the quality of the underlying data, 2) evaluating what
factors can influence sensitivity (e.g., phases or failure type), 3)
studying how to improve data quality (e.g., better bug
classification schema), and 4) investigating mechanisms to make
technologies more robust to data quality.

6. REFERENCES
[1] B. Freimut, “Developing and using defects classification

schema.” Fraunhofer IESE, IESE-report No. 072.01/E,
2001.

[2] M. Felderer and A. Beer, “Using Defect Taxonomies to
Improve the Maturity of the System Test Process: Results
from an Industrial Case Study,” vol. 133, D. Winkler, S.
Biffl, and J. Bergsmann, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013.

[3] L. Miller, S. Mirsky, and J. H. Hayes, “Guidelines for the
Verification and Validation of Expert System Software and
Conventional Software,” 1995.

[4] A. Mockus, “Missing Data in Software Engineering,” in
Guide to Advanced Empirical Software Engineering, F.
Shull, J. Singer, and D. I. K. Sjøberg, Eds. London: Springer
London, 2008.

[5] G. A. Liebchen and M. Shepperd, “Data sets and data
quality in software engineering,” in Proceedings of the 4th
international workshop on Predictor models in software
engineering - PROMISE ’08, 2008, p. 39.

[6] D. Falessi and G. Cantone, “Exploring Feasibility of
Software Defects Orthogonal Classification,” in Software
and Data Technologies, vol. 10, J. Filipe, B. Shishkov, and
M. Helfert, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 136–152.

[7] A. Vetro, N. Zazworka, C. Seaman, and F. Shull, “Using the
ISO/IEC 9126 product quality model to classify defects : a
controlled experiment,” in 16th International Conference on
Evaluation & Assessment in Software Engineering (EASE
2012), 2012, pp. 187–196.

[8] K. El Emam and I. Wieczorek, “The repeatability of code
defect classifications,” in Proceedings Ninth International
Symposium on Software Reliability Engineering (Cat.
No.98TB100257), 1998, pp. 322–333.

[9] K. Henningsson and C. Wohlin, “Assuring fault
classification agreement - an empirical evaluation,” in
Proceedings. 2004 International Symposium on Empirical
Software Engineering, 2004. ISESE ’04., 2004, pp. 95–104.

[10] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement?,” in
Proceedings of the 2008 conference of the center for
advanced studies on collaborative research meeting of
minds - CASCON ’08, 2008, p. 304.

[11] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A.
Bernstein, “The missing links,” in Proceedings of the
eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering - FSE ’10, 2010, p. 97.

[12] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it's a
feature: how misclassification impacts bug prediction,” in
2013 International Conference on Software Engineering
(ICSE ’13), 2013, pp. 392–401.

[13] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample
size vs. bias in defect prediction,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2013, 2013, p. 147.

[14] T. H. D. Nguyen, B. Adams, and A. E. Hassan, “A Case
Study of Bias in Bug-Fix Datasets,” in 2010 17th Working
Conference on Reverse Engineering, 2010, pp. 259–268.

[15] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise
in defect prediction,” in Proceeding of the 33rd
international conference on Software engineering - ICSE
’11, 2011, p. 481.

