
OCV-Aware Top-Level Clock Tree Optimization
Tuck-Boon Chan‡, Kwangsoo Han‡, Andrew B. Kahng†‡,

Jae-Gon Lee§ and Siddhartha Nath†
†CSE and ‡ECE Departments, UC San Diego, §Samsung Electronics Co., Ltd.

tbchan@ucsd.edu, kwhan@eng.ucsd.edu, abk@cs.ucsd.edu,
altair.lee@samsung.com, sinath@cs.ucsd.edu

ABSTRACT
The clock trees of high-performance synchronous circuits have
many clock logic cells (e.g., clock gating cells, multiplexers
and dividers) in order to achieve aggressive clock gating and
required performance across a wide range of operating modes
and conditions. As a result, clock tree structures have become
very complex and difficult to optimize with automatic clock tree
synthesis (CTS) tools. In advanced process nodes, CTS becomes
even more challenging due to on-chip variation (OCV) effects. In
this paper, we present a new CTS methodology that optimizes clock
logic cell placements and buffer insertions in the top level of a clock
tree. We formulate the top-level clock tree optimization problem
as a linear program that minimizes a weighted sum of timing
slacks, clock uncertainty and wirelength. Experimental results in
a commercial 28nm FDSOI technology show that our method can
improve post-CTS worst negative slack across all modes/corners
by up to 320ps compared to a leading commercial provider’s CTS
flow.

1. INTRODUCTION
In a modern SOC, clock logic cells (CLCs), such as clock

gating cells (CGCs), multiplexers (MUXes) and dividers (DIVs),
are required in the clock tree to achieve different performance
and power saving requirements. To enable multi-mode operation
and dynamic voltage frequency scaling (DVFS), large numbers
of clocks are generated to drive flip-flops (FFs) in an SOC.1
Balancing the clock trees of multiple clocks is challenging because
timing constraints depend on clock periods, and on the process,
voltage and temperature (PVT) corners. Furthermore, as on-chip
variation (OCV) increases, clock uncertainties (derates) on the
launch and capture paths can increase. Clock tree synthesis (CTS)
must find optimal branching points in the clock tree to minimize
clock uncertainties due to OCV on non-common paths [9][16][17].
Figure 1 (left) illustrates the clock balancing problem due to CLCs
in a clock tree and the impact due to OCV. Due to the CLCs, the
clock arrival times at FF groups are skewed. Moreover, the clock
tree splits near the clock source; this leads to long non-common
paths between the FF groups. As shown in Figure 1 (right), we can
insert buffers to balance the clock, and optimize placement of the
CLCs to reduce the non-common paths.

1.1 Motivation for Clock Tree Optimization
Given a clock tree, we represent the top-level clock tree as a

hypergraph, Gtop(Vtop,Etop), in which Vtop is a set of CLCs and
the transitive fanin cells of the CLCs. Etop is a set of nets that
connect the cells in Vtop. Figure 2 shows a top-level clock tree

1Both synchronous and asynchronous clocks can exist in an SOC. Our work focuses
on balancing synchronous clocks in an SOC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI’14, May 21–23, 2014, Houston, Texas, USA.
Copyright 2014 ACM 978-1-4503-2816-6/14/05 ...$15.00..

CGC

Sink
group1

DIV

MUX

Sink
group2

CGC

DIV

MUX

Sink
group1

Sink
group2

Figure 1: Clock tree synthesis problems.

with a CLC and three bottom-level buffered clock trees. In most
cases, sophisticated EDA tools and CTS algorithms are able to
achieve good solutions for the bottom-level clock trees. However,
achieving a good solution for the top-level clock tree can be
problematic when there are critical paths across the FF groups
between different bottom-level clock trees. The requirements to
balance the top-level clock are not obvious due to the complex
structure of the tree (see Figure 6). Fixing the critical paths across
the FF groups can be difficult at the bottom-level clock trees due
to tight timing constraints among FFs within the same group. To
optimize timing across FF groups, we propose to balance the top-
level clock tree while preserving the bottom-level clock trees.
For example, in Figure 2, if we increase the delay d(1,2) on the
net between pins 1 and 2 from 2ns to 4ns, we can change the skew
between FF groups 1 and 2 from 2ns to 0ns, thereby meeting the
timing target of critical path A which has a clock period of 3ns.
Note that varying the delay on the top-level clock tree does not
affect critical path B (but, the OCV derating on a longer top-level
path will be larger), which has both its launch and capture FFs in the
same group. Therefore, we only need to consider the requirements
to balance clock across FF groups, thereby simplifying the top-
level clock tree optimization problem. Since problems arise in the
top-level tree due to CLCs, our work focuses on optimizing the
placement of CLCs and insertion of buffers in the top-level clock
tree.

1.2 Previous Work
Rajaram and Pan [16] propose CTS algorithms to optimize the

chip-level clock tree across different PVT corners. They use
quadratic programming to reallocate clock pins of IP blocks to
reduce non-common paths in the chip-level clock tree. After
clock pins are reallocated, buffers are inserted up to each pin,
and subtrees are merged recursively in the same manner as the
deferred-merge embedding (DME) algorithm [6]. The algorithm
only inserts buffers that minimize the difference in clock latency
among subtrees across PVT corners. Although the chip-level CTS
work in [16] accounts for delay variation across PVT corners and
timing penalty on non-common paths, it does not consider CLCs,
timing between FF groups, or wirelength, all of which make CTS
a challenging task. As illustrated in Figure 1, the placement of
CLCs should also be considered during CTS as it can significantly
affect the non-common paths in the tree. Other works [20][18]
seek to minimize the effect of OCV during CTS, but do not address
the issues of CTS with CLCs across multi-corner and multi-mode
(MCMM) scenarios. Lung et al. [12] propose a linear programming
(LP) based clock skew optimization [8] which accounts for delay
variation across PVT corners. They also present a method to
map the required delays obtained from the LP to actual circuits.
While mapping delays, they use updated timing information to
dynamically adjust buffer delays. Although this work addresses

the MCMM clock skew minimization problem, it does not consider
the effects of non-common paths and CLC placement. There are
many previous works on buffer insertion for CTS (e.g., [1][4]), but
they do not consider clock trees with CLCs which have different
timing requirements depending on the operating modes and FF
groups. Papa et al. [15] minimize worst negative slack (WNS)
at a single PVT corner by optimizing the placement and buffering
of datapaths. They do not consider multiple PVT corners and they
do not balance the top-level clock trees.

cgc

Sink
group1

div

Mux

Sink
group2

cgc

div

mux

Sink
group1

Sink
group2

d (1,2)
=2ns

t1

t3

t4

t5

Top level

Bottom level

source

CLC

FF group 1

1ns

Critical path A
(delay = 3ns) FF group 2

Critical path B

d (1,3)=0.5ns

d (4,5)
=1nst2

3ns

FF group 3

Root of a
bottom tree

d (3,4)=0.5ns

Figure 2: Example of balancing a clock
tree by varying d(i, j).

Placed design

CTS

Extract and remove buffers
from top‐level clock

CLCs placement & buffer
insertion

Extract critical paths

Placement legalization

Routing

dk(1,2)
=2ns

t1

t3

t4

t5

Top level

Bottom level

source

CLC

FF group 1

1ns

Critical path A
(delay = 3ns) FF group 2

FF group 3

Critical path B

dk(1,3)
=1ns

dk(4,5)
=1nst2

3ns

Figure 3: Overview of
our CTS flow.

1.3 Our Work
To address the top-level CTS problem mentioned above, we

propose a new CTS flow that accounts for the effects of CLCs as
well as delay variations due to MCMM and OCV. The basic idea
of our approach is to automatically identify the requirements to
balance clocks based on the timing critical paths and use them to
drive the CTS. The flow shown in Figure 3 starts with a placed
design and performs conventional CTS to obtain a clock tree. We
then extract the top-level clock tree (see Algorithm 1) and remove
buffers in the top-level clock tree. Within the remaining (bottom-
level) clock trees, we extract timing-critical FF-to-FF paths to
identify the timing requirements for clock balancing. Based on
these requirements, we construct a linear program (LP) to optimize
the placement of CLCs and the delay on nets (achieved by inserting
buffers) in the top-level clock tree. Unlike the routing algorithm
proposed by Oh et al. [13] which minimizes the total wirelength
of a routing tree, we include CLCs and Steiner point locations as
variables in the LP, so that the LP-based optimization can account
for the cost of non-common paths. With the physical locations of
CLCs and Steiner points of the routes, we insert buffers in the top-
level clock tree, legalize the placement and route the clock tree.
The advantages of our methodology are as follows.
• Preserving the bottom-level clock trees affords more accurate

timing information for the top-level clock tree optimization.2

• Since the top-level clock tree has many fewer instances, we
can perform runtime-intensive optimizations which cannot
be practically applied to the bottom-level clock tree.
• Introducing our new top-level clock tree placement

optimization enables fixing of suboptimal CLC placements
which have already been determined during the preceding
placement stage.
• Buffer insertion and CLC placement optimization

can achieve reductions of non-common path timing
penalties, which are not achievable using local/incremental
optimizations.

The key contributions of our work are summarized as follows.
• We propose a new automated clock tree synthesis

methodology that optimizes the CLC placements and buffer
insertion in the top-level clock tree.
• We propose an LP-based clock tree optimization method

which accounts for routing resources (i.e., wirelength),
circuit timing and the impact of non-common paths.

2In this work, we optimize only the top-level clock tree. Joint optimization of the top-
and bottom-level trees is a direction of ongoing work.

• Our method improves WNS by up to 320ps, and reduce
the top-level clock wirelength by up to 50% compared to a
default CTS flow.
• As part of our validation process, we develop generators for

testcases that represent clock tree structures typically found
in high-speed IPs (e.g., graphics accelerators) and real-world
SOCs.

In the remainder of this paper, Section II describes our top-
level clock tree optimization methodology. Section III describes
experimental setup and our experimental results. In Section IV, we
summarize our work and outline directions for future research.

2. CLOCK TREE OPTIMIZATION
We now explain the top-level clock tree optimization problem

and our approach. In the following, we use condition, k, to denote
that a timing value is specific to a PVT corner, clock group and
timing analysis type (setup or hold). For example, with two PVT
corners, two operating modes, two clock groups and two timing
analysis types, k will range from 1,2, ...,16.

2.1 Problem Statement
Formally, the top-level CTS problem is defined as follows.
Objective: Minimize the weighted sum of (i) worst negative
slack, (ii) total negative slack (TNS), (iii) clock uncertainty and
(iv) wirelength of a clock tree [16].
Input: Placed design; list of CLCs; timing constraints (.sdc).
Output: An optimized placement of CLCs and clock buffers,
clock routing of the top-level clock tree.

We model the cost of clock uncertainty Zk(a,b) on a critical path
between FFs a and b as the sum of delays of the non-common
launch and capture clock paths in the critical path. The non-
common path delays are normalized to the clock period (CP) of
the path using factor αk.

Zk(a,b) = αk{ ∑
i∈ha, j∈hb

dk(i, j)− ∑
i, j∈(ha∩hb)

2dk(i, j)}

αk = 1/CP at condition k
(1)

where ha denotes a launch/capture path from a clock source to FF
a, and dk(i, j) is the delay between pin i and j.

2.2 Our Approach
We formulate the top-level clock tree balancing problem as a

linear program by assuming that we can vary (i) the delay dre f (i, j)
from an output pin i to its fanout input pin j at a reference
condition;3 (ii) locations of CLCs; and (iii) Steiner points in the
clock net (for a given topology). Although wire delay is normally
nonlinear with respect to wirelength, we approximate dre f (i, j) as
a linear function of distance between pin i and j assuming buffer
insertion (as noted in, e.g., [15], the delay of a net with uniformly
spaced buffers is linearly proportional to the number of stages).4

The main objective of the LP is to minimize the weighted sum
of worst negative slack Swns, the total negative slack Stns, non-
common paths, Zk(a,b), and total wirelength U(i, j).5 Note that
we weight the Zk(a,b) proportional to its original negative slack
(i.e., 1− s0

k(a,b)) such that the LP focuses on reducing the non-
common path delay on timing paths. The critical paths and their
original slacks s0

k(a,b) are extracted after the buffer removal step
in Figure 3 by performing static timing analysis (STA).

To represent negative slack sk
′(a,b) in the LP, we use Constraints

(3) and (4) such that sk
′(a,b) = 0 when sk(a,b) > 0. Swns and Stns

are defined in Constraints (5) and (6), respectively. Since circuit
designers may treat hold and setup slacks differently, we use a
3The reference condition is {SS process corner, 0.85V,125◦C}.
4A buffered net has relatively linear delay vs. distance even in advanced technology
nodes. For example, the stage delay in a uniformly buffered-chain is almost the same
except for the first few stages. Adding an additional stage will increase the delay by a
fixed amount. To account for the non-linearity within a single stage delay, our buffer
insertion algorithm detour wires to match the required delay obtained from our LP.
5Our objective function is different from [16]. They do not consider wirelength and
the timing between FF groups.

weight γk ≥ 0 to set the ratio of importance (i.e., normalization
ratio) of setup and hold slacks. The value of γk can be different for
hold or setup analysis, as indicated by the condition k. We represent
the timing slacks sk(a,b) for each timing-critical path between FFs
a and b as a function of the original slack, original clock skew
λk(a,b), and the clock arrival times (tre f (a)) in Constraint (7).
Because delay and slack vary according to PVT corners and timing
analysis type, we normalize the slacks across different conditions
to a reference corner by using scaling factors ηk, following the
approach in [12]. ζ = 1 if the path is a setup-critical path and
ζ = −1 if the path is a hold-critical path. tre f (a) is the sum of
delays along the path ha (Constraint (8)).

Objective:

Min −wwns ·Swns−wtns ·Stns +wwl · ∑
e(i, j)∈Etop

U(i, j)

+wncp · ∑
k,a,b

(1− s0
k(a,b)) ·Zk(a,b)+wdis ·∑

i
M(i, i0)

(2)
Subject to:

sk
′(a,b)≤ αk · sk(a,b), ∀a,b,k (3)

sk
′(a,b)≤ 0, ∀a,b,k (4)

Swns ≤ γk · sk
′(a,b),∀a,b,k (5)

Stns = ∑a,b,kγk · sk
′(a,b) (6)

ηk · sk(a,b) = ηk · (so
k(a,b)−λk(a,b))+ζ(tre f (a)− tre f (b))

(7)

tre f (a) = ∑
i, j∈ha

dre f (i, j) (8)

dre f (i, j)≥ βre f ·U(i, j) (9)

Zk(a,b) = αk{ ∑
i∈ha, j∈hb

dk(i, j)− ∑
i, j∈(ha∩hb)

2dk(i, j)} (10)

M(i, j) = mx(i, j)+my(i, j) (11)
mx(i, j)≥ (px(j)− px(i)),mx(i, j)≥ 0 (12)
my(i, j)≥ (py(j)− py(i)),my(i, j)≥ 0 (13)
M(i, i0) = mx(i, i0)+my(i, i0) (14)

mx(i, i0)≥ (px(i)− px(i0)),mx(i, i0)≥ 0 (15)
my(i, i0)≥ (py(i)− py(i0)),my(i, i0)≥ 0 (16)

0≤ p{x,y}(i)≤ F{x,y} (17)

The values of λk(a,b) and the cell delays in dre f (i, j) are
constants in the LP, and are extracted from STA reports after the
buffer removal step in our flow. In Constraint (9), we model the
delay dre f (i, j) between pins i and j as a linear function of the
Manhattan distance U(i, j) between the pins. βre f is a conversion
factor to convert the Manhattan distance to delay at the reference
condition. We obtain the value of βre f using the optimal repeater
length method in [2]. The value of βre f is 30ps per 100µm for a 8X
buffer in the 28nm foundry FDSOI standard cell library that we use
in our experiments. We calculate Zk(a,b) in Constraint (10). The
Manhattan distances are calculated by using Constraints (11)–(13).
The location of a pin i is specified by variables px(i) and py(i),
which represent the x and y coordinates of the pin. The bounds for
px(i) and py(i) are specified in Constraint (17). Fx and Fy are the
upper bounds for the pin coordinates along the x and y axes, i.e.,
the dimensions of the design’s floorplan.

To avoid unnecessary cell displacements, we add a displacement
cost M(i, i0) in the objective function [15]. The displacement
cost is defined as the sum of Manhattan distances between the
original cell locations ([px(i0), py(i0)]) and their corresponding cell
locations ([px(i), py(i)]) after optimization. M(i, i0) is calculated
using Constraints (14)–(16). Since the displacement cost will force
the LP to “pull” the cells to their original locations, we use a very
small weighting factor (wdis = 0.001) as the cell displacement cost.

‐2.5

‐2

‐1.5

‐1

‐0.5

0
0.0 5.0 10.0

N
or
m
al
ize

d
ho

ld
 W

N
S

1000

1500

2000

2500
‐3.5
‐3

‐2.5
‐2

‐1.5
‐1

‐0.5
0
0.0 5.0 10.0

N
or
m
al
ize

d
se
tu
p
W
N
S WNS / TNS

weight ratio

(a) (b)Setup WNS Hold WNS

Figure 4: Normalized (a) setup WNS and (b) hold WNS obtained by
solving the LP for different γk and wwns/wtns.

We apply uniform weights for TNS and non-common path delays,
i.e., wtns = 1, wncp = 1. Since the typical values of total wirelength
in a top-level clock tree is much larger than the timing slacks we
set wwl = 0.001 such that the cost in the LP is not dominated by the
wirelength.

Figures 4(a) and 4(b) respectively show the setup and hold WNS
(both normalized to their corresponding clock periods) obtained by
solving the LP for different values of γk. As we sweep γk from 1
to 10, the setup WNS obtained from the LP improves but the hold
WNS worsens. When we sweep the wwns/wtns ratio, the setup and
hold WNS are not affected when γk ≤ 3. However, when γk > 3,
the cost in the LP is dominated by the setup WNS and increasing
the wwns/wtns ratio will improve the setup WNS. Since the hold
time violations are relatively easy to fix by inserting buffers, we
prioritize setup slacks when we select the γk and wwns/wtns weight
ratios. In our experiments, we use γk = 5 and wwns/wtns = 2000
because we experimentally observe that by increasing γk further
does not improve the setup WNS but makes hold WNS worse
(black arrow in Figure 4(b)). We use the same values of the
weighting factors across all testcases. It is also possible to apply
different combinations of values of weighting factors, run the flows
in parallel, and choose the best CTS solution.

2.3 Implementation Heuristics
Given a design with an initial clock tree, G(V,E), and a subset

of vertices VCLC ⊆ V corresponding to CLCs, we extract the top-
level clock net using Algorithm 1.6 First, we create a list Vtop of
all transitive fanin cells of the CLCs. In Lines 2–4, we remove all
the clock routes connected to the fanin cells. In Lines 5–12, we
check each cell in Vtop, remove all the buffers and reconnect the
nets accordingly.

Algorithm 1 Extract top-level clock tree
Procedure Extract_top()
Input : G(V,E), VCLC
Output: G(Vtop,Etop)

1: Vtop← transitive fanins of all v ∈VCLC ;
2: for all e(u,v) ∈ E; u,v ∈Vtop do
3: Remove clock routing for e(u,v);
4: end for
5: Etop← /0

6: for v ∈Vtop do
7: if v is a buffer then
8: (v.parent).children← v.children;
9: Vtop←Vtop \{v};
10: Etop← Etop ∪{e(v.parent,v.children)};
11: end if
12: end for
13: Return G(Vtop,Etop);

In the top-level clock balancing problem, the LP optimizes the
delays from an output pin to input pins in every net. For nets
with more than one fanout, we modify the net into a binary tree
by inserting Steiner points. The purpose of this step is to include
the locations of the Steiner points as variables in the LP so as to
optimize the non-common paths. Given a net, Gnet(V,E), and its
driving pin, vr, we apply Algorithm 2 to obtain a binary tree. In
Lines 8–16, we find the pin pair that minimize the metric ∆L′ which
is defined as the sum of the difference in sink latency7 and the delay
6We obtain VCLC by assuming all CLCs are in the top-level clock tree.
7The sink latency L(u) of a pin u is the maximum latency from u to any FF in the
transitive fanout of u.

due to the Manhattan distance between these pins.8 In Lines 17–
25, we merge the pin pair that has minimum ∆L′ by creating a new
Steiner point. We define the x and y coordinates of the new Steiner
point as the average of the x and y coordinates of the merged pins
(Lines 21–22). The sink latency of the Steiner point is defined
as the maximum sink latency of the merged pins (Line 20). The
procedure split_net() is invoked repeatedly until all driving pins
have a single connection (to a Steiner point). Figure 5 illustrates our
Steiner point insertion algorithm. In the first iteration, we merge
pins j2 and j3 because they have the smallest ∆L and Manhattan
distance. Pins j2 and j3 are then connected to Steiner point j2′
(red square). The location of j2′ is defined by the average of the
x and y coordinates of pins j2 and j3. In the second iteration, we
merge pins j1 with j2′ because they have a smaller ∆L′ even though
the Manhattan distance between pins j1 and j2′ is larger than the
Manhattan distance between pins j4 and j2′ . In the last iteration,
we merge j4 and j1′ . Note that our algorithm selects the pins to
merge based on the sum of Manhattan distance and the difference
in sink latency. This is different from the algorithm in [7] which
selects the pins based on Manhattan distance only. For example,
the algorithm in [7] will merge j2 and j3, followed by j4 and j1.
As shown in Figure 5 (the upper-right clock tree), the algorithm
in [7] will lead to a clock tree that will require more buffers to be
inserted (red arrows) to balance the clock latencies (green arrows)
compared to the tree produced by our algorithm (the lower-right
clock tree).

Algorithm 2 Create Steiner points
Procedure split_net()
Input : Gnet (V,E),vr ∈V
Output: G′net (V

′,E ′)
1: V ′←V ;
2: if (|vr .child|< 2) then
3: E ′← E;
4: else
5: E ′← /0;
6: while (|vr .child| ≥ 2) do
7: min_∆L′← ∞;
8: for (u1,u2 ∈ vr .child) do
9: ∆L(u1,u2)← |u1.L−u2.L|;
10: ∆L′(u1,u2)← βk ·M(u1,u2)+∆L(u1,u2);
11: if (∆L′(u1,u2)≤ min_∆L′) then
12: umin1← u1;
13: umin2← u2;
14: min_∆L′← ∆L′(u1,u2);
15: end if
16: end for
17: Create a new Steiner point u′ 6∈V ;
18: vr .child← vr .child \{umin1,umin2};
19: u′.child←{umin1,umin2};
20: u′.L← max(umin1.L,umin2.L);
21: px(u′)← (px(umin1)+ px(umin2))/2;
22: py(u′)← (py(umin1)+ py(umin2))/2;
23: vr .child← vr .child∪{u′};
24: V ′←V ′ ∪{u′};
25: E ′← E ′ ∪{e(u′,umin1),e(u′,umin2)};
26: end while
27: E ′← E ′ ∪{e(vr ,u′)};
28: end if
29: Return G′net (V

′,E ′);

By solving the LP, we obtain cell locations, clock routes (Steiner
point locations) and net delays in the top-level clock tree. Next,
we insert buffers in the top-level clock tree to guide clock routing
and control clock skews. For each two-pin net in the optimized top-
level clock tree, we insert buffers according to the steps described in
Algorithm 3. In Line 1, we initialize the variable n, which indicates
the number of inserted buffers, to 1. In Lines 2–14, we calculate the
number of buffers required to meet the delay target as a function
of net delays and buffer delays. Mbu f is the minimum required
spacing between two buffers.9 The while loop exits when the sum

8We convert the Manhattan distance to delay by a conversion factor βk at the reference
condition.
9We use Mbu f = 5µm in our experiments.

i

i i

j1 j2 j3

j4

i

j1
j2 j3

j4

j1
j2 j3

j4

j1
j2 j3

j4

j1.L = j2.L = j3.L << j4.L

j2'

j2'j2'j1' j1'

j4'

i

j1.Lj3.Lj2.L j4.L

j4.Lj3.Lj2.L j1.L

iManhattan
distance
only

Manhattan
distance &
sink
latency

Figure 5: Steiner point creation. In each iteration, we find a pair of
pins (black circles) or Steiner points with the minimum ∆L′ (sum of scaled
Manhattan distance and difference in sink latency) and connect them to a
new Steiner point (red square).

of net and buffer delays (dest) exceeds the required delay between
the pins i and j (dreq). In Lines 15–21, we calculate the minimum
wirelength required to insert n buffers. If this wirelength is less than
or equal to the Manhattan distance between pins i and j, M(i, j), we
place the buffers in an L-shaped (y-axis first, followed by x-axis)
manner. Otherwise, we place the buffers in a U-shaped manner
because total wirelength is > M(i, j). U-shaped placement is the
general case, and L-shaped is a special case of U-shape when total
wirelength is ≤M(i, j).

Algorithm 3 Insert buffers
Procedure insert_buffers()
Input : pins i and j, dreq(i, j)
Output: inserted buffers

1: n← 1;
// calculate number of buffers to meet required delay

2: while (1) do
3: l←M(i, j)/(n+1);
4: if (l < Mbu f) then
5: l←Mbu f ;
6: end if
7: dest ← (n+1)×dw(l)+(n−1)×dg(cin_bu f + cw(l))+dg(cin(j)+ cw(l));
8: if (dest > dreq(i, j)) then
9: n← n−1;
10: break;
11: else
12: n← n+1;
13: end if
14: end while
15: if (n > 0) then
16: if (Mbu f ×n > M(i, j)) then
17: Detour wire and place n buffers in U-shape;
18: else
19: Place n buffers in L-shape;
20: end if
21: end if

3. EXPERIMENTS
To test the effectiveness of our methodology, we require testcases

with complex top-level clock trees. Since existing benchmarks
[10][23] typically lack complex top-level clock trees, we generate
testcases based on common clock tree structures typically found
in high-speed SOCs and IPs [21][22]. The clock structures of
our testcases are shown in Figures 6(a)–(f). We use dual-Vt
28nm foundry FDSOI libraries and implement each testcase at two
operating modes – {1.25GHz at 0.95V} and {1.667GHz at 1.20V}.
We perform placement and routing (P&R) using a commercial
tool and use Synopsys PrimeTime vH-2013.06-SP2 [25] for timing
analysis. Table 1 shows the timing analysis parameters in our
experiments.

3.1 Testcase Description and Generation
Testcases from Tsay [19], Kahng and Tsao [10] and ISPD-

2009/2010 [23] CNS contest benchmarks lack CLCs and are
insufficient to create complex top-level clock hierarchies. Kahng
et al. [11] improve CTS testcases by adding CLCs (Figures 3(a)
and 3(b) in [11]) but two key elements ignored: (1) combinational

SIN
KS

SIN
KS

SIN
KS

SIN
KS

CG
C

CG
C

CG
C

DIV2

clk_A

clk_Bscan_clk

DIV8

DIV4

DIV2

SIN
KS

SIN
KS

SIN
KS

CG
C

CG
C

DIV4

DIV2

DIV8

CG
C

CG
C

CG
C

scan_clk

DIV8

clk_A

clk_B

(a) T1

SIN
KS

SIN
KS

SIN
KS

SIN
KS

CG
C

CG
C

CG
C

DIV2

clk_A

clk_Bscan_clk

DIV8

DIV4

DIV2

SIN
KS

SIN
KS

SIN
KS

CG
C

CG
C

DIV4

DIV2

DIV8

CG
C

CG
C

CG
C

scan_clk

DIV8

clk_A

clk_B

(b) T2

SIN
KS

SIN
KS

SIN
KS

SIN
KS

DIV4DIV8

CGCCGCCGC CGC

CGC

scan_clk

clk_A

clk_B

(c) T3

SIN
KS

SIN
KS

SIN
KS

SIN
KS

DIV4DIV8

CGCCGCCGC CGC

SIN
KS

SIN
KS

CGCCGC

CGC
CGC

scan_clk

clk_A

clk_B

(d) T4

SIN
KS

SIN
KS

SIN
KS

SIN
KS

CGCCGCCGC CGC

SIN
KS

SIN
KS

CGCCGC

CGC

scan_clk

clk_A

clk_B

(e) T5

SIN
KS

SIN
KS

SIN
KS

SIN
KS

SIN
KS

CGC

scan_clk

clk_A

clk_B

(f) T6

Figure 6: Clock structures of our testcases.
Table 1: Timing analysis setup.

Parameter Value
PVT corner for setup analysis at the 1.250GHz mode SS, 0.85V, 125C
PVT corner for hold analysis at the 1.250GHz mode FF, 1.05V, 125C
PVT corner for setup analysis at the 1.667GHz mode SS, 1.10V, 125C
PVT corner for hold analysis at the 1.667GHz mode FF, 1.30V, 125C

Clock uncertainty 0.15 × clock period
Maximum transition for clock paths 0.055ns
Maximum transition for data paths 0.125 × clock period

Timing derate on net delay (early/late) 0.90 / 1.19
Timing derate on cell delay (early/late) 0.90 / 1.05
Timing derate on cell check (early/late) 1.10 / 1.10

logic between FF groups and hence critical paths between FF
groups; and (2) multiple clock sources. The CTS problem becomes
difficult when synchronous and asynchronous clocks need to be
balanced across multiple FF groups. We improve over [11] by (1)
adding combinational logic with varying number of stages between
FF groups, (2) adding multiple synchronous and asynchronous
clocks, (3) using CLCs at different hierarchies to make the clock
balancing problem very complex, (4) creating multiple top-level
clock hierarchies, and (5) performing CTS with MCMM and OCV
constraints.

Figures 6(a)–(f) show the six testcases T1–T6 used in our
experiments. These testcases use three clock sources typically seen
in SOC designs [21] and can have large fanouts (e.g., >1000 FFs).
The clock source m_clk is from the crystal oscillator, clk is the
output of a PLL and scan_clk is the test clock. Clock sources m_clk
and clk are used to implement low-power modes of operation, such
as DVFS. The testcases use three kinds of dividers (DIV2, DIV4,
DIV8 in figures), a glitch-free clock MUX, and integrated clock
gating cells (CGCs) as CLCs. Outputs of all dividers are sources
of generated clocks; the generated clocks typically drive FFs for
debug/tracing, IO and other peripheral logic.

To implement variable stages of combinational logic, we use
NetGen [26] and vary #stages from 15 to 30. To model different
critical paths, we connect FFs across groups as well as within
the same group using these logic stages. To obtain floorplan
dimensions that resemble SOCs, we use multiple instantiations of
an interface logic module (ILM) of the jpeg_encoder design from
OpenCores [24]. We create a netlist with the top module x5_jpeg, in
which we instantiate the jpeg_encoder design five times, perform
SP&R and generate an ILM. Note that in this paper, we do not
optimize the bottom-level clock tree. Therefore, instantiation of the
same x5_jpeg multiple times (instead of using different modules)
does not change the outcome of our experiments. We connect
multiple instances of the ILM using combinational logic stages.
For all CLCs, we implement custom netlists in the 28nm foundry
FDSOI technology, and group FFs within the CLCs into their
own skew groups so that these FFs do not affect global skew
and latencies. The path latencies of FF groups are controlled
by changing timing constraints and the number of stages of
combinational logic between the groups. To allow a blockage-free
placement region for the CLCs, we place ILM blocks (hard macros
for the CTS tools) in an L-shaped manner along the periphery of
the core as shown in Figure 7(a).

All testcases contain bidirectional paths, i.e., both launch and
capture FFs appear in FF groups that are driven by the fastest
clock and other slower clocks. In addition, the fastest clock drives
around 90% of the FFs that do not belong to the ILMs. Table 2
shows #CLCs, #cells, the FFs not in ILM, FFs in the ILM, FFs at

the ILM boundary, and the area of each testcase (design in table).
Testcases T2, T3 and T6 contain critical paths between FFs from
two different clocks, one with large latency and the other with small
latency. The CTS problem is complicated by the need to balance
skew between these FF groups. Testcases T1–T4 contain multiple
generated clocks and reconvergent paths between these clocks.
These testcases make the CTS problem complex because skew
needs to be balanced between fast and slow clocks. In testcases
T3–T5, the control signals of CGCs are generated by clk, which
makes the latency of the signal to the enable pin of the CGCs very
critical. Besides balancing skews, CTS also needs to balance the
critical path delays of the enable signal to the CGCs along with the
clock latency. To report timing paths across clocks accurately, we
set the path multiplier in the Synopsys Design Constraint (SDC)
[3] file for paths between all clocks.

Table 2: Benchmark designs.

Design #CLCs #Cells #Flip-flops Area
6∈ ILM ∈ ILM Boundary (mm2)

T1 17 1.93M 10K 202.7K 1.7K 3.75×3.00
T2 12 1.93M 10K 202.7K 1.7K 3.75×3.00
T3 18 1.93M 12K 202.7K 1.7K 3.75×3.00
T4 24 1.93M 12K 202.7K 1.7K 3.75×3.00
T5 18 1.93M 8K 202.7K 1.7K 3.75×3.00
T6 13 1.92M 7K 202.7K 1.7K 3.75×3.00

3.2 Experimental Results
Table 3 summarizes the key metrics of the clock tree before (I =

Initial, produced by a commercial tool) and after (O = Optimized)
applying our top-level clock tree optimization. Rows 1–14 in
Table 3 show the results at the post-CTS stage, while Rows 15-
28 show the results at the end of the implementation flow (after
datapath routing).10

Post-CTS stage: Our optimization flow reduces the total
wirelength of the top-level clock tree by 53% to 68% across all
six testcases. Figure 7 shows that wirelength reduces because our
flow clusters the CLCs such that the clock tree does not split near
the clock entry points. The large wirelength reduction suggests that
the initial CLC placements by EDA tools may not be aware of the
CTS requirements. The smaller wirelength enables the optimized
clock tree to also reduce the number of buffers. In testcases T4 and
T5, the number of buffers is larger, as our optimization flow inserts
more buffers in the clock tree to improve timing slack. To estimate
switching power, we extract gate and wire capacitances of the top-
level clock tree. Rows 5–6 in Table 3 show that our flow can reduce
the switching power in the top-level clock tree by 12% to 40% for
all testcases, including testcases T4 and T5, where the number of
buffers increases.

Our flow also improves the setup WNS and TNS by up to 550ps
and 255ns, respectively (Rows 7–10). Hold WNS and TNS are
also improved except for testcase T6, in which the hold WNS and
TNS worsen by 110ps and 780ps, respectively (Rows 11–14). Our
optimization flow can worsen hold WNS and TNS because we
focus on improving the setup slacks (γk = 5). The tradeoff between
setup and hold slacks is based on the following assumptions: (1)
hold time violations are easier to fix in post-CTS implementation

10We apply the default clock tree optimization, routing and design optimization
commands in the EDA tool after CTS. We do not compare our work with previous
work as their algorithms cannot be applied to our testcases.

(a) Initial clock tree. (b) Optimized clock tree.
Figure 7: Initial (a) and optimized (b) clock trees for testcase T6. Wiring
of the top-level clock trees is shown in black. Our flow splits common paths
farther from the clock root compared to the initial clock tree. As a result, the
total wirelength in the top-level clock tree is reduced from 45mm to 22mm.

Table 3: Post-CTS results. I: Initial, O: Optimized.
Testcase: T1 T2 T3 T4 T5 T6

Post-CTS
1 Top-level I (um) 18086 19261 41476 38830 34009 36052
2 wirelength O (um) 8442 8614 13193 14389 14186 15104
3 Total-level I 163 210 361 298 322 253
4 buffers O 152 167 242 301 421 226
5 Switching I (uW) 875 1018 1639 1515 1557 1315
6 power O (uW) 590 692 969 1210 1360 987
7 Worst I (ns) -0.05 -0.10 -0.37 -0.65 -0.55 -0.32
8 setup WNS O (ns) -0.04 0.00 -0.36 -0.55 0.00 -0.20
9 Total I (ns) -0.41 -0.25 -48.47 -1034.38 -8.39 -40.56
10 setup TNS O (ns) -0.17 0.00 -45.47 -779.46 0.00 -12.78
11 Worst I (ns) 0.00 0.00 -0.40 -0.04 0.00 -0.04
12 hold WNS O (ns) 0.00 0.00 -0.40 -0.01 0.00 -0.15
13 Total I (ns) 0.00 0.00 -130.12 -0.21 0.00 -0.09
14 hold TNS O (ns) 0.00 0.00 -128.23 -0.05 0.00 -0.87

Post-datapath routing
15 Top-level I (um) 26261 30779 58223 50432 48761 44794
16 wirelength O (um) 15750 19097 33982 27342 28570 22051
17 Total-level I 163 215 357 300 322 252
18 buffers O 152 170 248 306 427 226
19 Switching I (uW) 885 1100 1748 1592 1616 1337
20 power O (uW) 638 729 1042 1220 1374 968
21 Worst I (ns) -0.03 0.00 -0.05 -0.58 -0.32 -0.19
22 setup WNS O (ns) 0.00 0.00 0.00 -0.46 0.00 -0.18
23 Total I (ns) -0.05 0.00 -0.06 -883.50 -3.03 -10.81
24 setup TNS O (ns) 0.00 0.00 0.00 -609.28 0.00 -1.10
25 Worst I (ns) 0.00 0.00 -0.37 -0.04 0.00 0.00
26 hold WNS O (ns) 0.00 0.00 -0.10 -0.11 -0.04 -0.05
27 Total I (ns) 0.00 0.00 -19.82 -0.14 0.00 0.00
28 hold TNS O (ns) 0.00 0.00 -5.46 -0.78 -0.08 -0.33
29 Total timing paths in LP 16K 20K 72K 40K 28K 11K

Runtime (minutes)
30 Extract timing 45 37 176 71 71 25
31 Formulate LP 36 26 165 51 36 9
32 Place & legalization 8 4 6 5 6 5
33 Clock routing 7 4 5 4 5 5
34 Total 96 71 352 131 118 44

stages, and (2) some of the hold time violations are fixed by the
increased wire delays in the routing stage.

In Rows 30–34 of Table 3, we report runtimes of the main
procedures in our optimization flow. We spend most of the time
to extract timing information and to formulate the LP.11 CLC
placement, buffer insertion, legalization and routing only take 10
minutes in total because there are not many cells in the top-level
clock tree. The total runtime is 135 minutes on average. Testcase
T3 has a higher runtime because it has more timing-critical paths
than other testcases (Row 29).

Post-datapath routing stage: To study the benefits of
our optimization flow, we also compare the post-routing results
between the initial and the optimized clock trees. The results
in Table 3 show that all designs with the optimized clock tree
have the same or improved setup WNS compared to the designs
with the initial clock tree (Rows 21–24). The improvement in
setup WNS at the post-routing stage is up to 320ps. Although
some testcases with the optimized clock tree have worse hold
slacks (i.e., testcases T4, T5 and T6), the differences are less than
100ps. The results in Rows 15–16 shows that our optimization flow
reduces the total wirelength by 38% to 51% across all six testcases.
The improvements are smaller as compared to the post-CTS stage
because the total wirelength of the initial and optimized clock trees

11Solving the LP takes less than 30 seconds.

both increase at the post-routing stage due to wiring of the signal
nets. Total number of buffers and switching power at the post-
routing stage are similar to values seen at the post-CTS stage.

4. CONCLUSIONS
Designing a balanced top-level clock tree with multiple clock

sources is very complex as we need to consider MCMM, OCV
and timing constraints across FF groups. We develop a CTS
methodology that optimizes CLC placement and buffer insertion,
and that minimizes non-common paths between FF groups. We
formulate the top-level CTS problem as the minimization of a
weighted sum of WNS, TNS, clock uncertainty due to OCV
and wirelength. We solve this problem using LP and develop
heuristic flows to insert Steiner points and buffers, which are
required elements of a top-level CTS solution. We also develop
generators for testcases that resemble clock tree structures typically
found in high-speed SOCs. We validate our optimization flow on
testcases from our generators and achieve up to 51% reduction in
wirelength for the top-level clock tree, and 320ps improvement
in WNS, compared to a leading commercial CTS tool. Our
future work includes (i) handling obstacles, (ii) accounting for
optimal buffering solutions, (iii) creating testcases to capture
other important SOC elements such as memory controller and
multimedia blocks, and (iv) joint optimization of the top- and
bottom-level clock trees.

5. REFERENCES
[1] C. J. Alpert, M. Hrkic, J. Hu, A. B. Kahng, J. Lillis, B. Liu, S. T. Quay, S. S.

Sapatnekar, A. J. Sullivan and P. Villarrubia, “Buffered Steiner Trees for
Difficult Instances”, Proc. ISPD, 2001, pp. 4-9.

[2] H. B. Bakoglu, Circuits, Interconnects, and Packaging for VLSI. Reading,
MA: Addison-Wesley, 1990.

[3] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A
Practical Approach, Springer, 2009.

[4] Y.-Y. Chen, C. Dong and D. Chen, “Clock Tree Synthesis Under Aggressive
Buffer Insertion”, Proc. DAC, 2010, pp. 86-89.

[5] C. Chen, C. Kang and M. Sarrafzadeh, “Activity-Sensitive Clock Tree
Construction for Low Power”, Proc. ISLPED, 2002, pp. 279-282.

[6] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese and A. B. Kahng, “Zero Skew
Clock Routing with Minimum Wirelength”, IEEE Trans. on Circuits and
Systems 39(11) (1992), pp. 799-814.

[7] M. Edahiro, “A Clustering-Based Optimization Algorithm in Zero-Skew
Routings”, Proc. DAC, 1993, pp. 612-616.

[8] J. P. Fishburn, “Clock Skew Optimization”, IEEE Trans. on Computers 39(7)
(1990), pp. 945-951.

[9] E. G. Friedman, “Clock Distribution Networks in Synchronous Digital
Integrated Circuits”, IEEE Proceedings, 89(5) (2001), pp. 665-692.

[10] A. B. Kahng and C.-W. A. Tsao, “VLSI CAD Software Bookshelf:
Bounded-Skew Clock Tree Routing”, Version 1.0, 2000.
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/

[11] A. B. Kahng, B. Lin and S. Nath, “High-Dimensional Metamodeling for
Prediction of Clock Tree Synthesis Outcomes”, Proc. SLIP, 2013.

[12] C.-L. Lung, H.-C. Hsiao, Z.-Y. Zeng and S.-C. Chang, “LP-Based Multi-Mode
Multi-Corner Clock Skew Optimization”, Proc. VLSI-DAT, 2010, pp. 335-338.

[13] J. Oh, I. Pyo and M. Pedram, “Constructing Lower and Upper Bounded Delay
Routing Trees Using Linear Programming”, Proc. DAC, 1996, pp. 401-404.

[14] U. Padmanabhan, J. M. Wang and J. Hu, “Robust Clock Tree Routing in the
Presence of Process Variations”, IEEE Trans. on CAD 27(8) (2008), pp.
1385-1397.

[15] D. A. Papa, T. Luo, M. D. Moffitt, C. N. Sze, Z. Li, G.-J. Nam, C. J. Alpert and
I. L. Markov, “RUMBLE: An Incremental Timing-Driven Physical-Synthesis
Optimization Algorithm”, IEEE Trans. on CAD 27(12) (2008), pp. 2156-2168.

[16] A. Rajaram and D. Z. Pan, “Robust Chip-Level Clock Tree Synthesis”, IEEE
Trans. on CAD 30(6) (2011), pp. 877-890.

[17] V. Ramachandran, “Construction of Minimal Functional Skew Clock Trees”,
Proc. ISPD, 2012, pp. 119-120.

[18] J.-L. Tsai, “Clock Tree Synthesis for Timing Convergence and Timing Yield
Improvement in Nanometer Technologies”, Ph.D. Thesis, Electrical and
Computer Engineering, University of Wisconsin-Madison, 2005.

[19] R.-S. Tsay, “Exact Zero-Skew”, Proc. ICCAD, 1991, pp. 336-339.
[20] D. Velenis, M. C. Papaefthymiou and E. G. Friedman, “Reduced Delay

Uncertainty in High Performance Clock Distribution Networks”, Proc. DATE,
2003, pp. 68-73.

[21] Broadcom Corporation (networking infrastructure physical design principal
engineer), personal communication, November 2013.

[22] Samsung Electronics Corporation (System LSI application processor principal
engineer), personal communication, November 2013.

[23] ISPD CNS Contest. http://ispd.cc/contests/09/ispd09cts.html
[24] OpenCores. http://opencores.org
[25] Synopsys PrimeTime User’s Manual. http://www.synopsys.com/Tools/

Implementation/Signoff/PrimeTime/Pages/
[26] UC Benchmark Suite for Gate Sizing. http://vlsicad.ucsd.edu/

SIZING/bench/artificial.html

