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ABSTRACT
We present an algorithm for computing shortest paths on
polyhedral surfaces under convex distance functions. Let
n be the total number of vertices, edges and faces of the
surface. Our algorithm can be used to compute L1 and
L∞ shortest paths on a polyhedral surface in O(n2 log4 n)
time. Given an ε ∈ (0, 1), our algorithm can find (1 + ε)-
approximate shortest paths on a terrain with gradient con-
straints and under cost functions that are linear combina-
tions of path length and total ascent. The running time is

O
(

1√
ε
n2 logn+ n2 log4 n

)
. This is the first efficient PTAS

for such a general setting of terrain navigation.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
shortest path, convex distance function, polyhedral surface,
terrain

1. INTRODUCTION
Finding shortest paths is a classical geometric optimiza-

tion problem. In recent years, the spatial database and geo-
graphical information system communities show interest in
the shortest path problem on terrains under anisotropic cost
models, i.e., the path cost at any point on the terrain de-
pends on the travel direction [10, 12, 15, 17]. The moti-
vations are two-fold. First, when planning a roadway or
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hiking on a terrain, it is impossible to ascend or descend
along slopes that are too steep. Second, the cost of a sub-
path may depend on the its slope. Anisotropic cost models
on polyhedral surfaces also relate to or generalize previous
results in the algorithm community: the shortest path prob-
lem on polyhedral surfaces [6, 13, 16], the weighted region
problem [4, 14], the anisotropic shortest path problem in the
plane [8, 9], and the consideration of total ascent or descent
of paths on a terrain [5]. The shortest descending path prob-
lem [1, 2, 7] and the shortest gently descending path prob-
lem [3] are special cases obtained by enforcing particular
gradient constraints.

For Euclidean shortest paths on a polyhedral surface of
n vertices, edges and faces, Mitchell et al. [13] presented an
algorithm that runs in O(n2 logn) time, which was subse-
quently improved by Chen and Han [6] to O(n2). Varadara-
jan and Agarwal [16] proposed two approximation algorithms
that run in subquadratic time: 7(1 + ε)- and 15(1 + ε)-

approximate shortest paths can be found in O(n5/3 log5/3 n)

and O(n8/5 log8/3 n) time, respectively.
In the weighted region problem, each face f has a weight

wf and the subpath cost within f is wf times the sub-
path length. A shortest path may bend when crossing edges
(which also happens under anisotropic cost models). Mitchell
and Papadimitriou [14] presented an algorithm for planar
weighted regions that runs in O(n8 log(NW/δ)) time, where
N is the largest integer coordinate, W is the ratio of the
maximum weight to the minimum weight, and δ is a pre-
cision parameter. Aleksandrov et al. [4] developed an algo-
rithm for polyhedral surfaces that has a running time linear
in n and dependent on some geometric parameters.

Cheng et al. [8] proposed a (1 + ε)-approximation algo-
rithm for the anisotropic shortest path problem in a pla-
nar subdivision in which every face has a convex distance
function. Later, a data structure was developed to answer
(1 + ε)-approximate anisotropic shortest path queries [9].

De Berg and van Kreveld [5] studied some path query
problems on terrains with height constraints, and they posed
the optimization of path length and total ascent as an open
problem. There are (1 + ε)-approximate algorithms for the
shortest descending path problem [1] and the shortest gently
descending path problem [3] that have running times depen-
dent on some geometric parameters. Recently, we developed
a (1 + ε)-approximate shortest descending path algorithm
that runs in O(n4 log(n/ε)) time [7].

This paper presents an algorithm for a shortest path prob-
lem on a polyhedral surface, which we call the PolyPath
problem. Each face f is associated with a convex polygon
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Hf that induces a convex distance function df . The length
of a subpath in f is measured using df . Given two points s
and t on the polyhedral surface and an integer m, the goal is
to find a shortest one among all paths that have at most m
links and no critical refraction at any surface edge.1 The lat-
ter constraint can be removed if df (p, q) = dg(p, q) for every
two adjacent faces f and g and every two points p, q ∈ f ∩g.
Our algorithm runs in O(hmn logmn+mn log2m log2 hm)
time, where h is the maximum size of the convex polygons
associated with the faces. It follows that an L1 or L∞
shortest path on a polyhedral surface can be computed in
O(n2 log4 n) time.

On terrains, for every constant c1 > 0 and every con-
stant c2 ≥ 0, we can optimize c1 · Euclidean path length
plus c2 · total ascent with a relative error ε under gradient
constraints. The total ascent is the total increase in heights
of all ascending subpaths, which measures the energy spent
in increasing the potential energy. The weighted sum of
the path length and its total ascent gives rise to a convex
distance function, which can be approximately induced by
a convex polygon of size O(1/

√
ε). This allows us to re-

duce the problem to an instance of PolyPath such that
m = O(n) and h = O(1/

√
ε). Gradient constraints are

specified by the maximum ascent and descent gradients al-
lowed in T .2 This only changes the convex distance function
slightly. Section 4 describes these reductions. In all, our
algorithm can return a (1 + ε)-approximate shortest path

in O
(

1√
ε
n2 logn+ n2 log4 n

)
time, which makes it the first

PTAS for such a general setting of terrain navigation. A
(1 + ε)-approximate shortest descending path can thus be

computed in O
(

1√
ε
n2 logn+ n2 log4 n

)
time.

Our results address the problems in the applications [10,
12, 15, 17] mentioned earlier. A shortest path that satisfies
gradient constraints is sought on a terrain in [12]. So our
terrain algorithm is directly applicable. A main problem
treated in [10, 15, 17] is to optimize path length and penalize
large slopes. As illustrated in Figure 5 in [10], one may
model the cost function as a convex function in slope. Such
a convex function translates to a convex distance function
in a face. Therefore, if an upper bound m on the number of
links can be specified, our PolyPath algorithm can be used
to obtain a (1 + ε)-approximation after approximating the
convex distance function as in our terrain algorithm.

There are several difficulties in solving the PolyPath
problem. A locally shortest path (LSP) for a sequence σ
of edges is a shortest path that crosses the edges in σ. An
algorithm needs to extend an LSP from one face to the next.
In the Euclidean and weighted region cases, the extension
is determined locally by unfolding to a straight line and fol-
lowing Snell’s law, respectively. In our case, we first discover
how an LSP bends at a surface edge. In fact, an LSP may
bend in various ways, and we focus on a special LSP in order
to characterize the bending. However, the extension is not
determined locally. In the Euclidean and weighted region
cases, the local extension allows to construct a function to
describe the costs of the LSPs that start from an interval on
an edge, cross the edges in σ, and end at an interval on the

1A path makes a critical refraction at an edge e if there are
two non-collinear links such that one lies on e and these two
links meet at a node in the interior of e.
2The ascent and descent gradient bounds may be different,
but they are the same for all faces.

last edge in σ. This is important as an algorithm cannot ex-
tend an infinite number of LSPs. We show that such a func-
tion can be constructed in our case by proving that LSPs are
preserved under sliding, i.e. translating each segment of the
path while keeping it parallel with the original one. Thus,
after constructing one LSP for some edge sequence, the cost
of another LSP with the same edge sequence is a function of
the amount of sliding. Our third contribution is to compose
a shortest path by combining shorter LSPs in a hierarchical
fashion using Chen and Han’s sequence tree [6], which yields
the claimed running time.

2. PRELIMINARIES
Let T denote the input polyhedral surface with n ver-

tices, edges and faces. Without loss of generality, assume
that each face of T is a triangle, and the source s and the
destination t are vertices of T . Each face f of T is asso-
ciated with a convex polygon Hf , which contains the ori-
gin, lies in a plane parallel to f , and induces the distance
function df . We allow the origin to be on the boundary of
Hf . The cost of a directed segment pq ⊂ f is cost(pq) =
df (p, q) = inf

{
λ > 0 : 1

λ
(q − p) ∈ Hf

}
, which can be com-

puted in O(log |Hf |) time by binary search.
We use ~u to denote a vector and û to denote the unit

vector in the same direction as ~u. Given ~u and ~v, θ(~u,~v)
denotes the angle measured from ~u to ~v in counter-clockwise
direction, which takes value in [0, 2π). The inner product of
~u and ~v is denoted by 〈~u,~v 〉.

All polygonal paths in this paper are oriented from their
sources to their destinations. A link of a polygonal path is
a maximal segment in a face or on an edge of T , and its
endpoints are called nodes. We assume that every node is
either a vertex or a point in the interior of an edge because a
node in the interior of a face can be removed by shortcutting
without increasing the path cost. By the requirement of the
PolyPath problem, we can further assume that every node
in the interior of an edge is a transversal node, that is, its
two incident links lie in the interiors of two distinct faces.

Let pi, i ∈ [0, k], be the nodes in order along a path P .
Let ~vi = pi − pi−1 for i ∈ [1, k]. The direction vector of
P is (v̂1, . . . , v̂k). We can specify P as (p0, p1, . . . , pk) or
as (p0, (v̂1, . . . , v̂k)). The subpath of P from a point x to
another point y is denoted by P [x, y]. Define cost(P ) =∑

face f cost(P ∩ f) and ‖P‖ to be the length of P .
The edges that P crosses in order is its edge sequence.

It includes the edge containing P ’s destination but not the
edge containing P ’s source. A path may have multiple edge
sequences if its interior passes though a vertex. Suppose that
the edges e1, e2, . . . , ek are incident to a vertex ν in circular
order. If a path moves from the face bounded by e1 and ek to
ν onward to the face bounded by ei and ei+1, then one edge
sequence contains the substring e1e2 . . . ei, and another edge
sequence contains the substring ekek−1 . . . ei+1. A shortest
path from s to t is a shortest LSP over all edge sequences.

3. SOLVING POLYPATH

We first characterize the LSPs by their direction vectors
in Section 3.1. Then we propose an algorithm in Section 3.2
to solve the PolyPath problem.

3.1 Properties of LSPs
Let σ = (e1, e2, . . . , ek) be the edge sequence of some LSP
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that starts from a point p0 on some face boundary and ends
at a point pk on some other face boundary. Thus, ei and
ei+1 are distinct edges of the same face, and ei and ei+2 do
not bound the same face. Let e0 denote an edge adjacent to
e1 that contains the source of the LSP. For i ∈ [1, k], let fi
denote the face bounded by ei−1 and ei.

For i ∈ [1, k], define the positive and negative sides of a
point on ei as follows. Orient ei to obtain a directed segment
aibi so that fi and fi+1 are on the left and right of aibi,
respectively. Let ~ei denote the vector bi − ai. Given two
points p, q ∈ ei, we say that q lies on the positive or negative
side of p if 〈q−p,~ei 〉 > 0 or 〈q−p,~ei 〉 < 0, respectively. The
head and tail of the oriented ei are the positive and negative
endpoints of ei, respectively.

There may be multiple LSPs that start from p0, end at pk,
and share an edge sequence σ. Let P = (p0, (v̂1, . . . , v̂k)) and
let Q = (p0, (ŵ1, . . . , ŵk)) be two such LSPs. We say that
v̂i is smaller than ŵi if θ(~ei, v̂i) < θ(~ei, ŵi). The canonical
LSP from p0 to pk with edge sequence σ is the LSP that has
the lexicographically smallest direction vector. Intuitively,
the canonical LSP hits every oriented ei at a point closest
to its negative endpoint.

Lemma 3.1. Let P = (p0, p1, . . . , pk) and Q = (q0 =
p0, q1, . . . , qk = pk) be two LSPs from p0 to pk with the same
edge sequence. If P is a canonical LSP, then for i ∈ [1, k−1],
qi does not lie on the negative side of pi.

Proof. Let j be the smallest integer such that pj 6= qj .
Since P is the canonical LSP and P [p0, pj−1] = Q[q0, qj−1],
pj must be on the negative side of qj . If for all i > j,
pi = qi or pi is on the negative side of qi, then we are done.
Otherwise, let i be the smallest integer such that pi is on
the positive side of qi. Then pi−1pi must cross qi−1qi, say
at x. Since both P and Q are LSPs, P [x, pk] and Q[x, pk]
are both LSPs and have the same cost, implying that

cost(P [p0, pi−1]) + dfi(pi−1qi) + cost(Q[qi, pk])

≤ cost(P [p0, x]) + cost(Q[x, pk]) = cost(P ).

We obtain a new LSP R = (p0, p1, . . . , pi−1, qi, qi+1, . . . , qk),
where θ(~ei, qi− pi−1) < θ(~ei, pi− pi−1). But then the direc-
tion vector of R is lexicographically smaller than that of P ,
contradicting the assumption that P is a canonical LSP.

We will characterize a canonical LSP via the derivative of
its cost, which may not change smoothly as its destination
moves. Thus, we define the derivative using limit and it
depends on how the limit is approached. Recall that σ =
(e1, . . . , ek) and e0 is an edge adjacent to e1 containing the
source p0 of P . Let σij = (ei+1, . . . , ej). For every point
p ∈ ei, define a function Cp,σij (x) to be the cost of an LSP
with edge sequence σij from p to a point x ∈ ej . For every
point q ∈ ej , define the function Dq,σij (x) be the cost of an
LSP with edge sequence σij from a point x ∈ ei to q. We
use x′ → x+ and x′ → x− to denote x′ approaching x from
the positive and negative sides of x, respectively. Define:

∂C+
p,σij (x) = limx′→x+

Cp,σij (x
′)−Cp,σij (x)
‖xx′‖ ,

∂C−p,σij (x) = limx′→x−
Cσij (p,x)−Cp,σij (x

′)

‖xx′‖ ,

∂D+
q,σij (x) = limx′→x+

Dq,σij (x
′)−Dq,σij (x)
‖xx′‖ , and

∂D−q,σij (x) = limx′→x−
Dq,σij (x)−Dq,σij (x

′)

‖xx′‖ .

Lemma 3.2. Cp,σij (x) and Dq,σij (x) are convex piecewise
linear functions in x. If y is on the positive side of x in ej,
then ∂C+

p,σij (y) ≥ ∂C−p,σij (y) ≥ ∂C+
p,σij (x) ≥ ∂C−p,σij (x).

If y is on the positive side of x in ei, then ∂D+
q,σij (y) ≥

∂D−q,σij (y) ≥ ∂D+
q,σij (x) ≥ ∂D−q,σij (x).

Proof. Cp,σij (x) is the minimum of
∑j
`=i+1 cost(x`−1x`),

where xi = p, xj = x, x` ∈ e` for ` ∈ (i, j). The function
cost(x`−1x`) is convex and piecewise linear in x`−1 and x`,
so Cp,σij (x) is the minimization of the cross-section of a con-
vex piecewise linear function. This implies the properties of
Cp,σij , ∂C

+
p,σij and ∂C−p,σij stated in the lemma. The same

argument works for Dq,σij (x).

Our algorithm will form new LSP by concatenating shorter
ones. It is clear that if we split a canonical LSP (p0, . . . , pk)
at pi, we obtain two shorter canonical LSPs. Lemma 3.3 be-
low shows that the converse is true under some conditions.

Lemma 3.3. If a path P = (p0, p1, . . . , pk) is a canonical
LSP with edge sequence σ, where pi ∈ ei, then the following
conditions hold for every i ∈ [1, k − 1].

(i) P [p0, pi] and P [pi, pk] are canonical LSPs with edge
sequences σ0i and σik, respectively.

(ii) pi is the positive endpoint of ei or
∂C+

p0,σ0i(pi) + ∂D+
pk,σik (pi) ≥ 0.

(iii) pi is the negative endpoint of ei or
∂C−p0,σ0i(pi) + ∂D−pk,σik (pi) < 0.

Conversely, if the conditions above hold for some i ∈ [1, k−
1], then P is a canonical LSP from p0 to pk with edge se-
quence σ.

Proof. Suppose that P is a canonical LSP. Then P [p0, pi]
and P [pi, pk] are canonical LSPs as well. If pi is not the pos-
itive endpoint of ei, pick a point p′i on the positive side of pi
and arbitrarily close to pi. By the definition of the functions
∂C+

p0,σ0i and ∂D+
pk,σik , we obtain

Cp0,σ0i(p
′
i) +Dpk,σik (p′i)− Cp0,σ0i(pi)−Dpk,σik (pi)

=
(
∂C+

p0,σ0i(pi) + ∂D+
pk,σik (pi)

)
· ‖p′ipi‖.

Since P is an LSP, Cp0,σ0i(p
′
i) +Dpk,σik (p′i) ≥ Cp0,σ0i(pi) +

Dpk,σik (pi), which implies that ∂C+
p0,σ0i(pi)+∂D

+
pk,σik (pi) ≥

0. If pi is not the negative endpoint of ei, we pick p′i ∈ ei
on the negative side of pi and sufficiently close to pi. Then,

Cp0,σ0i(pi) +Dpk,σik (pi)− Cp0,σ0i(p′i) +Dpk,σik (p′i)

=
(
∂C−p0,σ0i(pi) + ∂D−pk,σik (pi)

)
· ‖p′ipi‖.

By Lemma 3.1, Cp0,σ0i(p
′
i) + Dpk,σik (p′i) > Cp0,σ0i(pi) +

Dpk,σik (pi), and therefore, ∂C−p0,σ0i(pi) + ∂D−pk,σik (pi) < 0.
Conversely, suppose that the three conditions are satisfied

for some i ∈ [1, k − 1]. Let p′i be the intersection point
between ei and the canonical LSP from p0 to pk with edge
sequence σ. If p′i = pi, we are done. Suppose that p′i 6= pi.

Consider the case of p′i lying on the positive side of pi.
By Lemma 3.2, Cp0,σ0i and Dpk,σik are convex functions.
Therefore,

Cp0,σ0i(p
′
i) ≥ Cp0,σ0i(pi) + ∂C+

p0,σ0,i(pi) · ‖pip
′
i‖

Dpk,σik (p′i) ≥ Dpk,σik (pi) + ∂D+
pk,σik (pi) · ‖pip′i‖
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Combining these two inequalities and condition (ii) in the
lemma gives

Cp0,σ0i(p
′
i) +Dp0,σ0i(p

′
i) ≥ Cp0,σ0i(pi) +Dp0,σ0i(pi),

which shows that P is also an LSP. However, pi is on the
negative side of p′i, which is a contradiction to Lemma 3.1.

Consider the case of p′i lying on the negative side of pi.
By the convexity argument again, we obtain

Cp0,σ0i(p
′
i) ≥ Cp0,σ0i(pi) + ∂C−p0,σ0,i(pi) · ‖pip

′
i‖

Dpk,σik (p′i) ≥ Dpk,σik (pi) + ∂D−pk,σik (pi) · ‖pip′i‖
But then these two inequalities and condition (iii) in the
lemma imply that

Cp0,σ0i(p
′
i) +Dp0,σ0i(p

′
i) > Cp0,σ0i(pi) +Dp0,σ0i(pi).

But P cannot be shorter than an LSP, a contradiction.

Lemma 3.4 below shows that when we slide an LSP, the
path cost changes linearly.

Lemma 3.4. Let P = (p0, . . . , pk) be an LSP with edge
sequence σ, where pi lies in the interior of ei for i ∈ [1, k].
Let Q = (q0, . . . , qk) be another path such that qi ∈ ei for
i ∈ [0, k] and qi−1qi is parallel to pi−1pi for i ∈ [1, k]. For
i, j ∈ [0, k] such that i < j, define δij and γij by the relations
‖piqi‖ = δij · ‖pjqj‖ and cost(Q[qi, qj ]) = cost(P [pi, pj ]) +
γij · 〈qj − pj , êj 〉. Then, δij and γij depend on the direction
vector of P [pi, pj ] only, δi−1,i and γi−1,i can be computed in
O(1) time, and for all ` ∈ [i + 1, j − 1], δij = δi`δ`j and
γij = δ`jγi` + γ`j.

Proof. Let v̂i be the direction of pi−1pi. By the sine
law, δi−1,i = sin(θ(v̂i, êi−1))/ sin(θ(v̂i, êi)). The edges ei−1

and ei share a negative endpoint a or a positive endpoint b,
and ‖qi−1qi‖ = sin(θ(êi, êi−1)) · ‖aqi‖/ sin(θ(v̂i, êi−1)) and
‖qi−1qi‖ = sin(θ(êi−1, êi)) · ‖qib‖/ sin(θ(v̂i, êi−1)), respec-
tively. Similar identities hold for ‖pi−1pi‖. Thus, γi−1,i =
ci · sin(θ(êi, êi−1))/ sin(θ(v̂i, êi−1)), where ci is the cost of a
unit segment with direction v̂i in the face bounded by ei−1

and ei. So δi−1,i and γi−1,i depend on v̂i only. Assume
that i < j − 1. For all ` ∈ (i, j), ‖piqi‖ = δi` · ‖p`q`‖ =
δi`δ`j · ‖pjqj‖, and

cost(Q[qi, qj ])

= cost(Q[qi, q`]) + cost(Q[q`, qj ])

= cost(P [pi, p`]) + γi` · 〈q` − p`, ê` 〉
+ cost(P [p`, pj ]) + γ`j · 〈qj − pj , êj 〉

= cost(P [pi, pj ]) + (δ`jγi` + γ`j) · 〈qj − pj , êj 〉.
So δij = δi`δ`j and γij = δ`jγi` + γ`j . Inductively, δij and
γij depend on the direction vector of P [i, j] only.

We want to show that ∂C+
p0,σ0k , ∂C−p0,σ0k , ∂D+

pk,σ0k , and

∂D−pk,σ0k depend on the direction vector only, i.e., not on the
location of p0 and pk. Then, Lemmas 3.3 and 3.4 allow us
to form canonical LSPs by sliding and concatenating shorter
ones. The first step is a conditional version of this result.

Lemma 3.5. Let P = (p0, . . . , pk) be an LSP with edge
sequence σ, where pi lies in the interior of ei for i ∈ [1, k].
Define δij and γij as in Lemma 3.4. If there exists i ∈
[1, k − 1] such that ∂C+

p0,σ0i and ∂C−p0,σ0i depend only on

the director vector of P [p0, pi], and ∂D+
pk,σik and ∂D−pk,σik

depend only on the direction vector of P [pi, pk], then:

(a)

ei

ek

pi

pk p′k

p′i
r

p0

(b)

ei

ek

pi

pk p′k

p′i

p0

r ei

ek

pi

pk p′k
(c)

p′i

p0

r

Figure 1: Three cases depending on the position of
r relative to pi and p′i.

(i) ∂C+
p0,σ0k (pk) = min{∂C+

pi,σik (pk), δik · ∂C+
p0,σ0i(pi) +

γik} and
∂C−p0,σ0k (pk) = min{∂C−pi,σik (pk), δik · ∂C−p0,σ0i(pi) +
γik}.

(ii) ∂D+
pk,σ0k (p0) = min{∂D+

pi,σ0i(p0), 1
δ0i
∂D+

pk,σik (pi) +
γ0i
δ0i
} and

∂D−pk,σ0k (p0) = min{∂D−pi,σ0i(p0), 1
δ0i
∂D−p0,σ0i(pi) +

γ0i
δ0i
}.

Proof. Consider the derivation of ∂C+
p0,σ0k (pk) in (i).

The derivation of ∂C−p0,σ0k (pk) is symmetric. Take a point
p′k ∈ ek on the positive side of pk and arbitrarily close to pk.
For j ∈ [i, k], let p′j be the point in ej such that p′jp

′
j+1 is

parallel to pjpj+1. Since p′k is arbitrarily close to pk, p′i is
also arbitrarily close to pi. Therefore,

Cp0,σ0i(pi) + Cpi,σik (p′k)

= Cp0,σ0i(pi) + Cpi,σik (pk) + ∂C+
pi,σik (pk) · ‖pkp′k‖

= Cp0,σ0k (pk) + ∂C+
pi,σik (pk) · ‖pkp′k‖, and

Cp0,σ0i(p
′
i) + Cp′i,σik (p′k)

= Cp0,σ0i(pi) + ∂C+
p0,σ0i(pi) · ‖pip

′
i‖+

Cpi,σik (pk) + γik · ‖pkp′k‖
= Cp0,σ0k (pk) +

(
δik · ∂C+

p0,σ0k (pk) + γik
)
· ‖pkp′k‖.

The correctness of (i) follows if we can show that Cp0,σ0k (p′k)
equals Cp0,σ0i(pi) +Cpi,σik (p′k) or Cp0,σ0i(p

′
i) +Cp′i,σik (p′k).

Let Q be an LSP from p0 to p′k with edge sequence σ0k =
σ. Let r be the node of Q on ei. There are three cases as
shown in Figure 1 depending on the position of r.

Suppose that r is on the negative side of pi. See Fig-
ure 1(a). Q[r, p′k] and P [pi, pk] cross in this case, say at point
x. Since P and Q are LSPs, their subpaths are also LSPs.
Thus, cost(P [p0, x]) = cost(Q[p0, x]), and so Cp0,σ0k (p′k) =
cost(Q) = cost(P [p0, x]) + cost(Q[x, p′k]) ≥ Cp0,σ0i(pi) +
Cpi,σik (p′k). An LSP to p′k cannot cost more than any path
to p′k via pi. Thus, Cp0,σ0k (p′k) = Cp0,σ0i(pi) + Cpi,σik (p′k).

Suppose that r is on the positive side of p′i. See Fig-
ure 1(b). Since Cp0,σ0i is a convex function by Lemma 3.2,
Cp0,σ0i(r) ≥ Cp0,σ0i(pi)+∂C+

p0,σ0i(pi)·‖pir‖ = Cp0,σ0i(p
′
i)+

∂C+
p0,σ0i(pi) · ‖p′ir‖, where the last equality follows from the

fact that p′i is arbitrarily close to pi. Because p′jp
′
j+1 is par-

allel to pjpj+1 for all j ∈ [i, k−1], we obtain ∂D+
p′
k
,σik

(p′i) =

∂D+
pk,σik (pi) by the assumption that ∂D+

pk,σik depends on
the direction vector of P [i, j] only. Thus, Dp′

k
,σik

(r) ≥
Dp′

k
,σik

(p′i)+∂D
+
p′
k
,σik

(p′i)·‖p′ir‖ = Cp′i,σik (p′k)+∂D+
pk,σik (pi)·

‖p′ir‖. By combining the two inequalities above, we ob-
tain Cp0,σ0k (p′k) = Cp0,σ0i(r) + Dp′

k
,σik

(r) ≥ Cp0,σ0i(p
′
i) +
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pi − pi−1

~wi,+

= ~wi,−

pi − pi−1

~wi,+ ~wi,−

O O

Figure 2: Left: The ray in the direction of pi − pi−1

crosses the boundary of Hfi at a point that is not a
vertex. ~wi,− = ~wi,+. Right: The ray in the direction
of pi−pi−1 crosses the boundary of Hfi at a vertex, so
~wi,− and ~wi,+ are defined by the edges of Hfi incident
to that vertex.

Cp′iσik (p′k)+
(
∂C+

p0,σik (pi) + ∂D+
pk,σik (pi)

)
‖p′ir‖, which is at

least Cp0,σ0i(p
′
i) + Cp′iσik (p′k) by Lemma 3.3.

Suppose that r ∈ pip
′
i. See Figure 1(c). Since ‖pir‖

and ‖rp′i‖ are arbitrarily small, Cp0,σ0k (p′k) = Cp0,σ0i(r) +
Dp′

k
,σik

(r) = Cp0,σ0i(pi)+∂C+
p0,σ0i(pi)·‖pir‖+Dp′k,σik (p′i)−

∂D+
p′
k
,σik

(p′i) · ‖p′ir‖, which is linear in ‖pir‖ by our assump-

tion that ∂C+
p0,σ0i and ∂D+

pk,σik depend only on the direc-

tion vectors of P [p0, pi] and P [i, k] (hence ∂D+
p′
k
,σik

(p′i) =

∂D+
pk,σik (pi)). Thus, Cp0,σ0k (p′k) is minimized when r =

pi or r = p′i. which means Cp0,σ0k (p′k) = Cp0,σ0i(pi) +
Dp′

k
,σik

(pi) = Cp0,σ0i(pi) + Cpi,σik (p′k) or Cp0,σ0k (p′k) =

Cp0,σ0i(p
′
i) +Dp′

k
,σik

(p′i) = Cp0,σ0i(p
′
i) + Cp′i,σik (p′k).

The correctness of (ii) can be proved in a similar way.

Lemma 3.5 lends itself to an inductive proof to establish
the same result unconditionally, as stated in Lemma 3.6.

Lemma 3.6. Let P = (p0, . . . , pk) be an LSP with edge
sequence σ, where pi lies in the interior of ei for i ∈ [1, k].
Let δij and γij be defined as in Lemma 3.4. Then ∂C+

p0,σ0k ,

∂C−p0,σ0k , ∂D+
pk,σ0k , and ∂D−pk,σ0k depend only on the direc-

tion vector of P . Moreover, the formulae in Lemma 3.5 hold
for all i ∈ [1, k − 1].

Proof. We first show that ∂C+
pi−1,(ei)

(pi) depends only

on the direction of pi−pi−1. Divide all directions into cones,
each being the set of directions from the origin to all points
in one edge of the polygon Hfi defining the distance function
for the face f bound by ei−1 and ei.

If pi − pi−1 points to a vertex of Hfi , there are two cones
that contain pi − pi−1. We use `− to denote the support
line of the edge of Hfi defining the cone that comes first
in anticlockwise order among these two cones, and `+ de-
notes the support line of the edge of Hfi that defines the
other cone. If pi − pi−1 points to the interior of an edge
of Hfi , then both `+ and `− denote the support line of
this edge. Let ~wi,+ and ~wi,− be the vectors that are or-
thogonal to `+ and `−, respectively. See Figure 2. It fol-

lows that cost(pi−1p
′
i) =

〈p′i−pi−1, ~wi,+ 〉
‖~wi,+‖2 and cost(pi−1pi) =

〈pi−pi−1, ~wi,+ 〉
‖~wi,+‖2 . So ∂C+

pi−1,(ei)
(pi) =

〈êi, ~wi,+ 〉
‖~wi,+‖2 , which only

depends on the direction of pi − pi−1. Similarly, one can

verify that ∂C−pi−1,(ei)
(pi) =

〈êi, ~wi,− 〉
‖~wi,−‖2 , ∂D+

pi,(ei)
(pi−1) =

− 〈êi−1, ~wi,+ 〉
‖~wi,+‖2 , ∂D−pi,(ei)(pi−1) = − 〈êi−1, ~wi,− 〉

‖~wi,−‖2 . They all de-

pend on the direction of pi − pi−1 only.
∂C+

p0,σ01(p1) and ∂C−p0,σ01(p1) depend only on the direc-
tion of p1 − p0 as discussed above. Applying Lemma 3.5(i)

ei−1

ei

ei+1

piqi

pi+1

qi+1

p0

x

q′ip′i

ei−1

ei

ei+1

piqi

pi+1

qi+1

p0

Figure 3: Illustration for the proof of Lemma 3.7.

with i = 1 and k = 2 shows that ∂C+
p0,σ02(p2) and ∂C−p0,σ02(p2)

depend only on the directions of p1 − p0 and p2 − p1. By
repeatedly applying Lemma 3.5(i) with k = i + 1, one can
show that ∂C+

p0,σ0i(pi) and ∂C−p0,σ0i(pi) depend only on the
direction vector of P [p0, pi] for all i ∈ [1, k − 1].

By Lemma 3.5(ii), one can similarly show that ∂D+
pk,σik (pi)

and ∂D−pk,σik (pi) depend only on the direction vector of
P [pi, pk]. Thus, the conditions on Lemma 3.5(i) and (ii)
can be removed.

Lemma 3.7 below follows from Lemmas 3.2, 3.3, and 3.6.
It implies that once two canonical LSPs diverge, they cannot
cross afterward.

Lemma 3.7. Let P = (p0, . . . , pk) and Q = (q0, . . . , qk) be
two canonical LSPs with edge sequence σ such that pi and qi
lie in the interior of ei for i ∈ [1, k−1]. If θ(pi−pi−1, ~ei) >
θ(qi−qi−1, ~ei) for some i ∈ [1, k−1], then θ(pj−pj−1, ~ej) ≥
θ(qj − qj−1, ~ej) for all j > i.

Proof. It suffices to show that if θ(p`−p`−1, ~e`) ≥ θ(q`−
q`−1, ~e`) for all ` ∈ [1, i] and θ(p`−p`−1, ~e`) > θ(q`−q`−1, ~e`)
for some ` ∈ [1, i], then θ(pi+1−pi, ~ei+1) ≥ θ(qi+1−qi, ~ei+1).
By Lemma 3.6, we can assume that p0 = q0. So qi is on the
positive side of pi. Assume that pipi+1 and qiqi+1 are not
parallel because we are done otherwise.

Translate the segments pipi+1 and qiqi+1 to obtain parallel
segments p′ix and q′ix, respectively, that meet at some point
x ∈ ei+1. Refer to Figure 3. The choices of p′i, q

′
i and x are

quite arbitrary as long as pipi+1 and qiqi+1 are parallel to
p′ix and q′ix, respectively.

We claim that ∂D+
x,(ei+1)

(q′i) < ∂D+
x,(ei+1)

(p′i). Suppose

not. Then, ∂D+
x,(ei+1)

(q′i) ≥ ∂D−x,(ei+1)
(q′i) ≥ ∂D+

x,(ei+1)
(p′i)

as Dx,(ei+1) is convex and p′i 6= q′i. Lemma 3.6 implies

that ∂D−qi+1,(ei+1)
(qi) = ∂D−x,(ei+1)

(q′i) ≥ ∂D+
x,(ei+1)

(p′i) =

∂D+
pi+1,(ei+1)

(pi). Since qi is on the positive side of pi, by

Lemma 3.2, ∂C−p0,σ0i(qi) ≥ ∂C+
p0,σ0i(pi). Then ∂C−p0,σ0i(qi)+

∂D−qi+1,(ei+1)
(qi) ≥ ∂C+

p0,σ0i(pi)+∂D+
pi+1,(ei+1)

(pi), which is

non-negative by Lemma 3.3(ii). This is a contradiction be-
cause ∂C−p0,σ0i(qi) + ∂D−qi+1,(ei+1)

(qi) should be negative by

Lemma 3.3(iii).
By our claim, q′i lies on the negative side of p′i. Since qi

is on the positive side of pi, the relation θ(pi+1− pi, ~ei+1) ≥
θ(qi+1−qi, ~ei+1) must hold in order that the sliding switches
the order of pi and qi to align pi+1 and qi+1.

3.2 Algorithm
Chen and Han introduced the sequence tree to capture the

edge sequences of LSPs in the L2 case [6]. The tree is grown
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until the number of tree levels meets the input upper bound
on the number of links allowed in the solution path. The
best path discovered from s to t is the shortest path desired.
Constructing a new tree node involves finding a new shortest
path with a particular edge sequence. The key is to use the
structural properties in the last subsection to carry out this
step and do it fast.

A sequence tree node α is a vertex-node or an edge-node
which represents a vertex, denoted να, or an edge of T ,
denoted eα. A face corner (f, ν) is the corner at a vertex
ν of a face f . An edge-node α annexes a face corner (f, ν)
if eα is the edge of f opposite ν and the parent of α does
not correspond to another vertex or edge of f . (Since eα is
opposite two face corners, the second condition ensures that
α annexes the face corner just included by the growing tree.)

The root corresponds to the source s. The nodes on the
tree path from the root to α correspond to an edge sequence,
denoted σα. Let α0 be the nearest ancestor vertex-node of
α. The edge-nodes on the tree path from α0 to α correspond
to a suffix of σα, denoted σ̃α. The edge sequences σα and σ̃α
are used in the analysis, but they are not stored at α. If α
is a vertex-node, Pα denotes the canonical LSP from s to να
that passes through the edges in σα. We compute cost(Pα)
and store it at α, but Pα is used in the analysis only.

The sequence tree is grown in a breadth-first manner un-
til the number of tree levels meets the input upper bound
m. When an edge-node annexing a face corner (f, ν) is ex-
panded, it gains at most one vertex-node corresponding to
ν and two edge-nodes corresponding to the edges of f in-
cident to ν. When a vertex-node α is expanded, it gains
at most one vertex-node for each vertex adjacent to να and
one edge-node for each edge opposite να. Multiple nodes
may correspond to the same edge or vertex. To control the
tree size, Chan and Han introduced the one-corner one-split
property : at any time, at most one vertex-node correspond-
ing to the same vertex is allowed to have any child node; at
most one edge-node annexing the same face corner is allowed
to have two child edge-nodes. This property ensures that at
most O(n) tree nodes are ever created at each level [6, Theo-
rem 8]. This is the reason why we forbid critical refractions.
If they are allowed, the one-corner one-split property cannot
be enforced and the sequence tree may be much larger.

A notion of dominance is needed to maintain the one-
corner one-split property. Let α and β be two vertex-nodes
corresponding to the same vertex ν or two edge-nodes annex-
ing the same face corner (f, ν). Let α0 and β0 be the nearest
ancestor vertex-nodes of α and β, respectively. Let P and
Q be the canonical LSPs from να0 and νβ0 to ν that pass
through the edges in σ̃α and σ̃β , respectively. We say that α
dominates β if cost(Pα0)+cost(P ) < cost(Pβ0)+cost(Q), or
cost(Pα0)+cost(P ) = cost(Pβ0)+cost(Q) but α is expanded
before β in growing the tree. Assume that α dominates β.
Suppose they are vertex-nodes. If β has been expanded,
we remove all tree nodes descending from it; otherwise, we
will not expand β. Suppose that α and β are edge-nodes.
There is an edge e incident to ν such that every LSP from
νβ0 to e through the edges in σ̃β crosses P . If β has been
expanded, we prune the child node of β corresponding to e;
otherwise, when we expand β, we will not generate a child
node corresponding to e.

After we construct a new leaf α of the sequence tree, it
takes O(logmn) amortized time to test the dominance and
prune the tree, modulo the time to compute the costs of

LSPs: cost(Pα) if α is a vertex-node, or the costs of LSPs
from να0 to eα with edge sequence σ̃α if α is an edge-node.
In the rest of this subsection, we describe the dominance
testing, the pruning, and the computation of the costs of
LSPs when constructing a new leaf.

3.2.1 Dominance checking and tree pruning

The vertex-node case is easy. For each vertex of T , we
record the current corresponding vertex-node β that domi-
nates all other vertex-nodes corresponding to νβ . When a
new vertex-node α corresponding to νβ is created, we com-
pare α and β to see which of the two dominates the other.
If β is dominated, we delete all descendants of β. A node
can only be deleted at most once. We charge the pruning
work to the creation of the pruned nodes. Thus, it takes
only O(1) amortized time modulo the time for computing
the cost of the LSP from s to να with edge sequence σα.

It takes more time to handle edge-nodes. For every face
corner (f, ν), we record the edge-node β that annexes (f, ν)
and dominates all other edge-nodes annexing (f, ν). We say
that β occupies (f, ν). Suppose that a new edge-node α
annexing (f, ν) is generated. Let α′ and β′ be the nearest
proper ancestor vertex-nodes of α and β, respectively. Let
P and Q be the LSPs from να′ and νβ′ to ν through the
edges in σ̃σ and σ̃β , respectively. We must have computed
and recorded cost(Pβ′) + cost(Q) beforehand as β occupies
(f, ν). Therefore, modulo the time to compute cost(P ), we
can compare cost(Pα′) + cost(P ) with cost(Pβ′) + cost(Q)
to decide the dominance in O(1) time. Without loss of gen-
erality, assume that α dominates β. Then, α replaces β as
the edge-node that occupies (f, ν).

To decide which child edge-node of β to prune, we need
to refine the notion of dominance. Consider the two edge
sequences σα and σβ . Let e denote the first edge in the
longest common suffix of σα and σβ .

• If σα is not a suffix of σβ , let eα be the edge in σα
before e. Then α dominates β on the positive side
(resp. negative side) if eα and e share the positive (resp.
negative) endpoint. Refer to Figure 4(top).

• If σα is a suffix of σβ , let eβ be the edge in σβ before e,
and α dominates β on the positive side (resp. negative
side) if eβ and e share the negative (resp. positive)
endpoint. Refer to Figure 4(bottom).

We use e+ and e− to denote the two edges of f incident to ν
such that ν is the negative and positive endpoints of e+ and
e−, respectively. Suppose that α dominates β on the positive
side. If β has been expanded, we delete the child node of β
corresponding to e+ as well as its descendants. Again, this
pruning takes O(1) amortized time. If β has not yet been
expanded, we will not let β gain a child node corresponding
to e+. The pruning is symmetric if α dominates β on the
negative side.

Tracing σα and σβ to decide whether α dominates β on the
positive or negative side would take Θ(min{|σα|, |σβ |}) time.
Instead, we use some data structures for making this deci-
sion. For every face corner (f, ν), we maintain an ordered
list of edge-nodes annexing it. These edge-nodes correspond
to the same edge e of f . Let u+ and u− be the positive and
negative endpoints of e, respectively. Let g = wu+u− be the
face of T that shares e with f . The ordering of two edge-
nodes α and β in the ordered list for (f, ν) is determined
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Figure 4: α dominates β on the positive side. The
child-node of β corresponding to e+ will have no de-
scendant in the sequence tree.

as follows. Let α′ and β′ be the parent nodes of α and β,
respectively.

• Suppose that α′ and β′ are edge-nodes annexing differ-
ent corners of g. If eα′ and e share the common positive
endpoint u+, then α precedes β in the ordered list for
(f, ν); otherwise, β precedes α.

• If α′ and β′ are edge-nodes annexing the same corner
of g, and α′ precedes β′ in the ordered list for that face
corner, then α precedes β in the ordered list for (f, ν).

• If β′ is an edge-node annexing (g, u+) and α′ is a
vertex-node corresponding to w, then α precedes β in
the ordered list for (f, ν).

• If β′ is a vertex-node corresponding to w and α′ is an
edge-node annexing (g, u−), then α precedes β in the
ordered list for (f, ν).

Assume that α dominates β. If α precedes β in the ordered
list for (f, ν), then α dominates β on the positive side; oth-
erwise, α dominates β on the negative side. The rules above
are based on the information at the parents of α and β in
such a way that the decision process is equivalent to tracing
σα and σβ . This explains the correctness. Since an edge-
node annexing (f, ν) can change, we need to represent the
sorted list for (f, ν) with a balanced binary search tree. The
total size of such sorted lists is at most the sequence tree
size which is O(mn). Therefore, the dominance testing can
be done in O(logmn) time.

The following lemma was originally proved for L∞ metric.
Since the proof only uses the triangle inequality, the result
can be generalized to our case.

Lemma 3.8 ([7, Lemma 3.1]). Let α and β be two edge-
nodes annexing the same face corner (f, ν) such that α dom-
inates β on the positive side (resp. negative side). Let e be
the edge in f whose negative (resp. positive) endpoint is ν.

(i) α is not a descendant of β.

(ii) Let α0 and β0 be the nearest proper ancestor vertex-
nodes of α and β, respectively. For every point x ∈ e
and every LSP Q with edge sequence σ̃β · (e) from νβ0
to ν, the LSP P with edge sequence σ̃α ·(e) from να0 to

ν satisfies cost(Pα0) + cost(P ) ≤ cost(Pβ0) + cost(Q),
and if they are equal, then α is expanded before β.

3.2.2 Edge-node creation

Let α be a new edge-node created at tree level `. Let α0

be the nearest ancestor vertex-node of α at tree level `0 < `.
For j ∈ (`0, `], let ej be the edge corresponding to the edge-
node at tree level j on the tree path from α0 to α. Let e`0
denote the edge incident to να0 and adjacent to e`0+1 in σα.
We do some processing at α to aid the future growth of the
subtree rooted at α. For all i ≥ 0 such that 2i divides `,
we compute a data structure Liα to represent the canonical
LSPs from any point in e`−2i to some point in e`, which can
be represented by their direction vectors by Lemmas 3.3
and 3.6. The insight is that only some critical direction
vectors matter, and the rest can be linearly interpolated
from them.

Let Iα,v ⊆ e`−2i be the interval of origins of canonical
LSPs that reach e` with direction vector v and edge sequence
(e`−2i+1, . . . , e`).

3 Let Aα,v : Iα,v → R and aα,v : Iα,v → e`
be functions such that Aα,v(p) is the cost of the canonical
LSP from p to e` with direction vector v and edge sequence
(e`−2i+1, . . . , e`), and aα,v(p) is the destination of this LSP.
Let Bα,v : aα,v[Iα,v] → R and bα,v : aα,v[Iα,v] → e`−2i be
functions such that Bα,v(q) is the cost of the canonical LSP
from e`−2i to q with direction vector v and edge sequence
(e`−2i+1, . . . , e`), and bα,v(q) is the source of this LSP. These
four functions are affine and they can be stored in O(1) space
and evaluated in O(1) time. The direction vectors in Liα are
stored in lexicographic order: two directions v̂i and ŵi for
the links hitting ei are ordered by comparing θ(êi, v̂i) and
θ(êi, ŵi). The following properties are enforced on Liα.

P1: Each direction vector in Liα is the direction vector of
some canonical LSP from e`−2i to e`.

P2: Any two adjacent direction vectors differ in exactly
one entry. These two different directions point to the
same edge of the convex polygon defining the distance
function for the corresponding face.

P3: Let v and w be two adjacent direction vectors. For
every p ∈ Iα,v ∩ Iα,w and every t ∈ [0, 1], the cost of
an LSP from p to t aα,v(p)+(1−t)aα,w(p) is tAα,v(p)+
(1− t)Aα,w(p).4

P4: Let v and w be two adjacent direction vectors. For
every q ∈ aα,v[Iα,v] ∩ aα,w[Iα,w] and every t ∈ [0, 1],
the cost of an LSP from t bα,v(q) + (1− t)bα,w(q) to q
is tBα,v(q) + (1− t)Bα,w(q).

The first direction vector in Liα is stored in its full form.
For any other direction vector, we only store the directions of
the first and last links and the difference from its predecessor
in Liα. By P2, the storage required by Liα is O(2i) plus the
number of direction vectors in the list.

3Let P be the canonical LSP from Iα,v to e` with di-
rection vector v and edge sequence (e`−2i+1, . . . , e`). By
Lemma 3.6, we can slide P until it is stuck, and the path
remains a canonical LSP during the sliding. Thus, Iα,v is
an interval, and so is aα,v[Iα,v].
4By Lemma 3.3, given two canonical LSPs from p to e` with
adjacent direction vectors v and w, any linearly interpola-
tion of the two different directions yield another direction
vector for which there is a canonical LSP from p to e`. The
same holds for two canonical LSPs with adjacent direction
vectors v and w from e`−2i to the same point in e`.
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The construction of Liα proceeds in increasing i. The base
case is L0

α. Let H` denote the convex polygon that induces
the distance function for the face bounded by e`−1 and e`.
L0
α consists of the direction vector (−̂e`−1, ê`) or (ê`−1, −̂e`)

depending on whether e`−1 and e` share a negative or pos-
itive endpoint, respectively, and every vector consisting of
a single direction that points to a vertex of H` and can be
used to go from e`−1 to e`. For i > 0, let β be the ancestor
edge-node of α at level ` − 2i−1, and let (u1, . . . ,ur) and
(v1, . . . ,vr′) be the sequences of direction vectors in Li−1

β

and Li−1
α , respectively. Li−1

β has been computed as β is at

tree level ` − 2i−1 and 2i divides `. Choose an arbitrary
point p ∈ Iβ,uk ∩ Iβ,uk+1 .

For all k ∈ [1, r− 1], take an arbitrary p ∈ Iβ,uk ∩ Iβ,uk+1

and compute λβ,k =
Aβ,uk+1

(p)−Aβ,uk (p)∥∥∥aβ,uk (p) aβ,uk+1
(p)

∥∥∥ . By P3, λβ,k

equals ∂C+
p,σ at aβ,uk (p), where σ = (e`−2i+1, . . . , e`−2i−1),

which is consistent with Lemma 3.6: ∂C+
p,σ is independent of

the source p and the destination. Similarly, for k ∈ [1, r′−1],
take an arbitrary q ∈ aα,vk [Iα,vk ] ∩ aα,vk+1 [Iα,vk+1 ] and

compute πα,k =
Bα,vk+1

(q)−Bα,vk (q)∥∥∥bα,vk (q) bα,vk+1
(q)

∥∥∥ , which equals ∂D+
q,σ at

bα,vk (q). By Lemma 3.3, Liα consists of every concatenation
ujvk such that λβ,j + πα,k ≥ 0 and λβ,j−1 + πα,k−1 < 0.
By Lemma 3.2, λβ,j ≤ λβ,j+1 and πα,k ≤ πα,k+1, so we can
scan λβ,j in increasing j and πα,k in decreasing k to iden-
tify the good concatenations. We first find k0 ∈ [1, r′] such
that λβ,1 + πα,k0 ≥ 0 and λβ,1 + πα,k0−1 < 0, and so u1vk0
is a good concatenation. Note that λβ,1 + πα,k < 0 for all
k < k0. Next, we find k1 ≤ k0 such that λβ,2+πα,k1 ≥ 0 and
λβ,2+πα,k1−1 < 0. Thus, λβ,2+πα,k ≥ 0 and λβ,1+πα,k−1 <
0 for all k ∈ [k1, k0], which makes u2vk a good concate-
nation for all k ∈ [k1, k0]. Repeating the above gives Liα.
When adding a concatenation uv, we compute in O(1) time
Iα,uv = bβ,u[aβ,u[Iβ,u] ∩ Iα,v], Aα,uv = Aβ,u + Aα,v ◦ aβ,u,
aα,uv = aα,v ◦aβ,u, Bα,uv = Bα,v +Bβ,u ◦ bα,v, and bα,uv =
bβ,u ◦ bα,v, where the operator ◦ composes two functions.

Lemma 3.9. For every i ≥ 0, Liα satisfies P1–P4.

Proof. Consider the base case of i = 0. P1 holds because
any direction vector added has only one link. P2 holds by
the choices of directions picked by the algorithm. Suppose
that vj = (v̂j) and vj+1 = (v̂j+1) are two adjacent direction
vectors. The direction of the oriented segment from p to any
point between aα,vj (p) and aα,vj+1(p) lies between v̂j and
v̂j+1. Since v̂j and v̂j+1 point to the same edge of the convex
polygon that defines the distance function, the cost of the
segment from p to a point between aα,vj (p) and aα,vj+1(p)
is a linear interpolation of Aα,vj (p) and Aα,vj+1(p). Thus,
P3 holds. P4 can be proved similarly.

Consider the case of i > 0. Let ` be the level of α. Let
β be the ancestor edge-node of α at level `− 2i−1. Assume
that P1–P4 hold for both Li−1

α and Li−1
β . P1 holds for Liα

by our method to identify good concatenations.
Consider P2. Any two successive concatenations added to
Liα share either a prefix, i.e. uv and uv′, or a suffix, i.e. uv
and u′v. By P2, u and u′ differ in exactly one entry, and
so do v and v′. It follows that Liα satisfies P2.

Consider P3. Take any two adjacent direction vectors in
Li−1
α and Li−1

β . They differ in one entry by P2 and we can

write them as u = w (ŵ0) w′ and v = w (ŵ1) w′. Let P
and Q be the canonical LSPs from p to aα,u(p) and aα,v(p)
respectively. Consider the canonical LSP R from p to a

point q = (1 − t)aα,u(p) + t aα,v(p) for some t ∈ [0, 1]. By
Lemma 3.3, the direction vector of R is w (ŵ) w′, where
ŵ lies between ŵ0 and ŵ1. Let rx, ry and rz be the seg-
ments of P , R and Q, respectively, that have directions ŵ0,
ŵ and ŵ1, respectively. Because R[y, q], P [x, aα,u(p)] and
Q[z, aα,v(p)] have the same direction vector, we get y =
(1− t)x+ tz, and cost(R[y, q]) = (1− t) cost(P [x, aα,u(p)])+
t cost(Q[z, aα,v(p)]). By P2, cost(ry) = (1 − t) cost(rx) +
t cost(rz). Therefore, cost(R) = (1− t) cost(P ) + t cost(Q).

P4 can be proved similarly.

Lemma 3.10. An edge-node at level ` takes O(2ih) time
to create, where 2i is the largest power of 2 that divides `,
and h is the maximum size of the convex polygons associated
with the faces.

Proof. Let α be a new edge-node at level `. L0
α stores

O(h) direction vectors. For i > 0, let β be the edge-node
at level ` − 2i−1, the size of Liα is at most the total size
of Li−1

α and Li−1
β . Inductively, we obtain a time bound of∑i−1

j=0O(2jh) = O(2ih).

3.2.3 Compute an LSP to a vertex

Suppose that we expand an edge-node α at tree level ` that
annexes a face corner (f, ν). Let α0 be the nearest ancestor
vertex-node of α at tree level `0 < `. Let (e`0+1, . . . , e`) be
the edge sequence corresponding to the edge-nodes on the
tree path from α0 to α. We are to create a vertex-node β
for ν and compute the cost of the canonical LSP Pβ from s
to ν through the edges (e`0+1, . . . , e`).

For i = 1, 2, . . . , find the largest `i such that `i ≤ ` and
`i − `i−1 is a power of 2 that divides both `i and `i−1. This
gives a sequence `0 < `1 < . . . < `r = `, where r = O(log `).
For i ≥ 1, let ki = `i− `i−1 and let αi be the ancestor edge-
node of α at level `i. We also use αr to denote α. Let σi
denote the edge sequence (e`0+1, . . . , e`i) for i ∈ [1, r]. Pβ
is the concatenation of Pα0 and the canonical LSP P from
να0 to ν through the edges (e`0+1, . . . , e`). We already know
cost(Pα0). We compute cost(P ) by combining the Lkiαi ’s in
at most r + 1 stages. At the end of the i-th stage, i ∈ [1, r],
we fix the prefix Qi of P up to e`i .

5

Assume that Qi−1 is fixed. Let xi−1 denote its destina-
tion. Assume that we have computed ∂C+

να0 ,σi−1
(xi−1) and

∂C−να0
,σi−1

(xi−1). Consider the canonical LSPs from να0

through (e`i−1+1, . . . , e`) with Qi−1 as a common prefix. By
Lemmas 3.2 and 3.7, these LSPs spread out from xi−1 to e`
and form a fan that contains να. We want to construct a
path R from xi−1 to a point y ∈ e`i such that Qi = Qi−1R
and the canonical LSPs that spread out from y to e` form
a fan that contains να. Let ui−1 be the direction vector of
Qi−1. The idea is to find the direction vector v in Lkiαi by
binary search such that uv is the direction vector of Qi.

The binary search works as follows. Let v be the“median”
direction vector in the sublist of Lkiαi that we are working

on. If xi−1 6∈ Iαi,v, we remove half of the sublist of Lkiαi and
recurse. Suppose that xi−1 ∈ Iαi,v. We find the smallest
direction vector w and the largest direction vector w′ such
that ui−1vw and ui−1vw′ extend Qi−1 to two canonical
LSPs through (e`i−1+1, . . . , e`) and the face f . (We will

5We define the prefix Qr of P only up to e`r = e` instead
of an edge of f incident to ν. It is because we will apply
Lemmas 3.4–3.6, which require the nodes the path other
than its source to be in the interior of edges.
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describe how to find w and w′ shortly.) If these two LSPs
lie on the same side of να, by Lemma 3.7, we can remove half
of the sublist of Lkiαi and recurse. If these two LSPs sandwich
να, then ui−1v extends Qi−1 to Qi. The destination of Qi
is y = aαi,v(xi−1) and cost(Qi) = cost(Qi−1)+Aαi,v(xi−1).
By Lemmas 3.4–3.6, ∂C+

να0
,σi(y) and ∂C−να0

,σi(y) can be

computed in O(1) time. Then we fix the next prefix Qi+1. If
we proceed all the way to stage r and fix Qr, then cost(P ) =
cost(Qr)+cost(xrν), where xr is the destination of Qr. The
binary search may also finish with two adjacent direction
vectors in Lkiαi without fixing Qi, a terminating case that we
discuss after the next paragraph.

How do we find the smallest and largest direction vec-
tors w and w′? By Lemma 3.3, we find the smallest di-

rection vector wi+1 in Lki+1
αi+1 by binary search such that

vwi+1 is the direction vector of some canonical LSP from
xi−1 through (e`i−1+1, . . . , e`i+1). Let y = aαi,v(xi−1) and
let z = aαi+1,wi+1(y). We apply Lemmas 3.4–3.6 to com-

pute ∂C+
να0 ,σi+1

(z) and ∂C−να0 ,σi+1
(z) in O(1) time. Then,

we find the smallest direction vector wi+2 in Lki+2
αi+2 by binary

search and extend to vwi+1wi+2. Repeating the above gives
wi+1wi+2 . . .wr. Finally, we pick the smallest direction
ŵr+1 according to Lemma 3.3 that extends wi+1wi+2 . . .wr

through f , and wi+1wi+2 . . .wr (ŵr+1) is the desired w.
The largest direction vector w′ is obtained symmetrically.

Recall the terminating case that Qi cannot be fixed and
the binary search finishes with two adjacent direction vectors
v and v′ in Lkiαi . We find the largest direction vector w
as before to extend v through (e`i+1, . . . , e`) and f . Note
that vw and v′w extend Qi−1 to two canonical LSPs that
sandwich ν, so w is the direction vector of the subpath of P
from e`i to ν. The last direction ŵr+1 in w brings us from
ν to a point z ∈ e`, and the cost is cost(zν). We continue
to bαr,wr (z) ∈ e`r−1 and the cost accumulates to cost(zν) +
Bαi,wr (z), and so on to a point y ∈ e`i between aαi,v(xi−1)
and aαi,v′(xi−1), where xi−1 is the destination of Qi−1. Let
C be the cost of the path that we have retraced from ν to e`i .
Suppose that y = (1− t)aαi,v(xi−1) + t aαi,v′(xi−1). By P3
and Lemma 3.3, cost(P ) = cost(Qi−1)+(1−t)Aαi,v(xi−1)+
tAαi,v′(xi−1) + C.

Theorem 3.1. Let T be a polyhedral surface with n ver-
tices in an instance of PolyPath. Given a source s, a desti-
nation t and an integer m, the shortest path from s to t on T
with no more than m links can be found in O(hmn logmn+
mn log2m log2 hm) time, where h is the maximize size of
the convex polygons that define the distance functions in the
faces of T .

Proof. Consider the correctness of the algorithm. Let
P0 be the shortest path from s to t with no more than m
links. By the requirement of the PolyPath problem, we can
assume that every node of P0 is either a transversal node or
a vertex of T . If there are multiple choices for P0, we pick
P0 to be one that has the fewest nodes.

The sequence tree is grown to contain the prefix of P0 until
the vertex-node corresponding to t is reached or an edge-
node α0 is dominated by some other edge-node β such that
the child node of α0 that would contain a longer prefix of
P0 is pruned. In the former case, the sequence tree captures
the edge sequence of P0, and the algorithm computes the
cost of the LSP with respect to that edge sequence, so we
are done. Consider the latter case. Let x be the intersection

point between P0 and the edge corresponding to α0 and
β. By Lemma 3.8, there exists a path Q from s to x with
edge sequence σβ that is at least as good as P [s, x]. Let
P1 = Q · P [x, t]. By our choice of P0, cost(P1) = cost(P0),
P1 has the same number of nodes as P0, and β is at the
same depth as α0 but expanded earlier. Note that β cannot
be dominated by any other edge-node. The subtree of β
grows to contain P1, or a descendant α1 of β is dominated
by some other edge-node and the child of α1 that would
contain a longer prefix of P1 is pruned. We can then repeat
the analysis above, which can happen at most m times. The
correctness thus follows.

Consider the running time. We spend O(logmn) amor-
tized time in each invocation of dominance testing and prun-
ing. So we create O(mn) tree nodes in O(mn logmn) time.

Divide the edge-nodes into O(logm) groups such that
an edge-node is in group i if its level is a multiple of 2i

but not 2i+1. Group i contains O(mn/2i) edge-nodes. By
Lemma 3.10, creating a node in group i takes O(2ih) time.
So it takes O(hnm logm) time to create all the edge-nodes.

To compute the cost of an LSP for a vertex-node, we
fix O(logm) prefixes Qi’s. To extend Qi−1 to Qi, we bi-
nary search in Lkiαi in O(log 2ih) = O(log `h) = O(log hm)
probes by Lemma 3.10. Each probe requires O(log `) =

O(logm) binary searches among the lists Lki+1
αi+1 , Lki+2

αi+2 , . . ..

So it takes O(log2m log2 hm) time to compute the cost of
an LSP. The total time spent on all vertex-nodes is thus
O(mn log2m log2 hm). We can reconstruct the direction
vector of the shortest path in a similar way as in dealing
with the terminating case of not fixing some Qi. So con-
structing the path takes only O(m) time.

4. APPLICATIONS
Under the L1 and L∞ metrics, h = O(1). Under the

Lp metric for some p ≥ 2, Dudley’s result [11] allows us to
approximate the “unit disk” by a polygon of O(1/

√
ε) ver-

tices such that the polygon diameter is approximated with
an ε relative error, i.e., h = O(1/

√
ε). In the above cases,

m = O(n) because there exists a shortest path that visits a
face no more than once.

Theorem 4.1. Given a polyhedral surface of size n, the
L1 and L∞ shortest paths between two vertices can be com-
puted in O(n2 log4 n) time, and for every constant p ≥ 2 and
every ε ∈ (0, 1), a (1 + ε)-approximate Lp shortest path can

be computed in O
(

1√
ε
n2 logn+ n2 log4 n

)
time.

ϕφf

len
Sf

Figure 5: Left: The face f makes an angle φf
with the horizontal, and the ascent is len · sinϕ sinφf .
Right: The bold segment represents the clipping.

Consider path planning on a terrain with the cost function
c1 · Euclidean length + c2 · total ascent for some constants
c1 > 0 and c2 ≥ 0. Refer to the left image in Figure 5.
The ascent within a face f is len · sinϕ sinφf , where len
is the distance travelled in f , φf is the gradient of a face
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f , and ϕ is the angle between the travel direction and the
horizontal. Let Sf denote the “unit disk” induced. On the
uphill side, the boundary of Sf satisfies the equation 1 =
(c1 + c2 sinϕ sinφf ) len; on the downhill side, the boundary
of Sf is the half-circle with radius 1/c1. Sf is convex with
bounded aspect ratio, so we can approximate it by Dudley’s
result [11] to obtain a PolyPath problem instance with h =
O(1/

√
ε) and m = O(n).

We can incorporate uphill gradient constraints. Let ψ be
the input limit on the uphill path gradient. Let pq be an
oriented segment in the interior of f that makes an angle
larger than ψ with the horizontal. We can traverse a zigzag
path within f from p to q in which each segment makes an
angle ψ with the horizontal. The path length is equal to
the height difference between p and q divided by sinψ, irre-
spective of the exact zigzag pattern. Under this constraint,
the top part of Sf that makes an angle at least ψ with the
horizontal should be clipped. Refer to the right image in
Figure 5. We can similarly handle downhill gradient con-
straints. Note that such a zigzag is treated as a “single”
link.

There are some technical issues. Let P be a shortest path
from s to t that satisfies the gradient constraints. Consider
the intersections between P and a face f . Let p be the first
point of entry. Let q be the last point of exit. Suppose that
neither p nor q is a vertex of f . Without loss of generality,
assume that q is higher than p. Let ψ be the ascent gradient
bound. We assume that the gradient of pq exceeds ψ; oth-
erwise, we can connect p and q directly. Let p0 and q0 be
in the interior of f arbitrarily close to p and q, respectively,
such that pp0 and q0q satisfy the gradient constraints. We
can follow pp0, then a zigzag path from p0 to q0 and then
q0q to reach q from p with constant ascent gradient ψ. The
lengths of segments pp0 and q0q are negligible, so the length
of this path is H/(sinψ), where H is the height difference
between p and q. The subpath of P from p to q cannot be
shorter because the same height difference H is covered with
a ascent gradient no greater than ψ. At the same time, the
ascent of the zigzag path is the smallest possible because it
goes monotonically upward. If q is a vertex of f , it may be
impossible to move from any point in f straight to q. After
O(n)-time preprocessing, for every vertex, we can determine
if it can be reached from some point in its close neighbor-
hood under the gradient constraints. If there is a point q′′

in a face f ′′ incident to q such that q′′q satisfies the gradient
constraints, then we can first move from p to a point q′ ∈ f
near q using a zigzag path such that every segment of the
zigzag path has uphill gradient ψ, then to q′′ and then to
q. We can make q′ and q′′ arbitrarily close to q, so the de-
tour cost can be made negligible. A similar detour may be
needed for p if it is also a vertex.

This gives an instance of PolyPath with h = O(1/
√
ε)

and m = O(n). The algorithm need to be slightly modified
due to the technical issues we mentioned earlier. If a vertex
cannot be reached locally, then we never create the corre-
sponding vertex-node in the sequence tree. If no path can
be extended from from a vertex, then we do not expand the
corresponding vertex-node.

Theorem 4.2. Given a source s and a destination t on a
polyhedral terrain of size n, we can find a (1+ε)-approximate
shortest path under the cost function of c1 length + c2 ascent
for some constants c1 > 0 and c2 ≥ 0, where length is
the Euclidean path length and ascent is the total ascent.

Gradient constraints can be imposed. The running time is

O
(

1√
ε
n2 logn+ n2 log4 n

)
.
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