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Abstract. We consider a private variant of the classical allocation problem: given k goods and
n agents with private valuation functions over bundles of goods, how can we allocate goods to agents
to maximize social welfare? An important special case is when agents desire at most one good, and
specifies their (private) value for each good: in this case, the problem is exactly the maximum-weight
matching problem in a bipartite graph.

Private matching and allocation problems have not been considered in the differential privacy
literature for a good reason: they are plainly impossible to solve under differential privacy. Informally,
the allocation must match agents to their preferred goods in order to maximize social welfare, but
this preference is exactly what agents wish to hide! Therefore, we consider the problem under the
relaxed constraint of joint differential privacy: for any agent i, no coalition of agents excluding i
should be able to learn about the valuation function of agent i. In this setting, the full allocation is
no longer published—instead, each agent is told what good to receive. We first show that if there are
several identical copies of each good, it is possible to efficiently and accurately solve the matching
problem while guaranteeing joint differential privacy. We then consider the more general allocation
problem where bidder valuations satisfy the gross substitutes condition. Finally, we prove that the
allocation problem cannot be solved to non-trivial accuracy under joint differential privacy without
requiring multiple copies of each type of good.

Key words. Differential Privacy, Matching, Ascending Auction, Gross Substitutes

1. Introduction. In the classic maximum-weight matching problem in bipartite
graphs, there are k goods j ∈ {1, . . . , k} and n buyers i ∈ {1, . . . , n}. Each buyer i
has a value vij ∈ [0, 1] for each good j, and the goal is to find a matching µ between
goods and buyers which maximizes the social welfare SW =

∑n
i=1 vi,µ(i). When the

buyers’ values are sensitive information,1 it is natural to ask for a matching that hides
the reported values of each of the players.

It is not hard to see that this goal is impossible under the standard notion of dif-
ferential privacy, which requires that the allocation must be insensitive to the reported
valuations of each player. We formalize this observation in section 5, but the intuition
is simple. Consider the case with two types of goods with n identical copies each, and
suppose that each buyer has a private preference for one of the two types: value 1 for
the good that he likes, and value 0 for the other good. There is no contention since
the supply of each good is larger than the total number of buyers, so any allocation
achieving social welfare OPT−αn can be used to reconstruct a (1 − α) fraction of
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2 Private Matchings and Allocations

the preferences; this is plainly impossible for non-trivial values of α under differential
privacy.

In light of this obstacle, is there any hope for privately solving maximum-weight
matching problems? In this paper, we show that the answer is yes: it is possible
to solve matching problems (and more general allocation problems) to high accuracy
assuming a small number of identical copies of each good, while still satisfying an
extremely strong variant of differential privacy. We observe that the matching problem
has the following two features:

1. Both the input and solution are naturally partitioned amongst the same n
people: each buyer i receives the item µ(i) they are matched to in the solution.

2. The problem is not solvable privately because the item given to each buyer
must reflect their own private data.

By utilizing these two features, we show that the matching problem can be accurately
solved under the constraint of joint differential privacy [Kearns et al., 2014]. Infor-
mally speaking, this requires that for every buyer i, the joint distribution on items
µ(j) for j 6= i must be differentially private in the reported valuation of buyer i. As a
consequence, buyer i’s privacy is protected even if all other buyers collude, potentially
sharing the identities of the items they receive. As long as buyer i does not reveal
their own item, i’s privacy is protected.

We then show that our techniques generalize beyond the max-matching problem
to the more general allocation problem. Here, each buyer i has a valuation function
defined over subsets of goods vi : 2[k] → [0, 1] from some class of valuations, and
the goal is to find a partition of the goods S1, . . . , Sn maximizing social welfare; note
that the maximum-weight matching problem is the special case when agents are unit
demand, i.e., only want bundles of size 1. More specifically, we consider buyers with
gross substitutes valuations. This is an economically meaningful class of valuation
functions that is a strict subclass of submodular functions and are the most general
class of valuations for which our techniques apply.

1.1. Our Techniques and Results. Our approach makes a novel connection
between market clearing prices and differential privacy. Prices have long been con-
sidered as a low-information way to coordinate markets; our paper formalizes this
intuition in the context of differentially private allocation. Specifically, we will use
Walrasian equilibrium prices: prices under which each buyer is simultaneously able to
buy a most preferred bundle of goods, and no good is over-demanded. Although the
allocation itself cannot be computed under standard differential privacy, we show how
to differentially privately compute the Walrasian equilibrium prices while coordinating
a high welfare allocation under joint differential privacy.

We start from the classic analysis of Kelso and Crawford [1982], who show how to
use ascending price auctions to compute Walrasian equilibrium prices. In the classical
ascending price auction, each good begins with a price of 0 and each agent is initially
unmatched to any good. Unmatched agents i take turns bidding on the good j∗ that
maximizes their utility at the current prices: i.e., j∗ ∈ arg max(vij − pj). When a
bidder bids on a good j∗, they become the new high bidder and the price of j∗ is
incremented. Bidders are tentatively matched to a good as long as they are the high
bidder. The auction continues until there are no unmatched bidders who prefer to be
matched at the current prices. The algorithm converges because each bid increases
the the prices, which are bounded by some finite value.2 Moreover, every bidder ends

2Bidders do not bid on goods for which they have negative utility; in our case, vij ∈ [0, 1].
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up matched to their most preferred good given the prices. Finally, by the first welfare
theorem of Walrasian equilibria, any matching that corresponds to equilibrium prices
maximizes social welfare. We emphasize that this final implication is key: “prices”
play no role in our problem description, nor do we ever actually charge “prices” to
the agents—the prices are purely a device to coordinate the matching.

We give an approximate, private version of Kelso and Crawford’s algorithm based
on several observations. First, in order to implement this algorithm, it is sufficient
to maintain the sequence of prices of the goods privately: given a record of the price
trajectory, each agent can figure out what good they are matched to. Second, in order
to privately maintain the prices, it suffices to maintain a private count of the number
of bids each good has received over the course of the auction; we can accomplish this
task using private counters due to Dwork et al. [2010a], Chan et al. [2011]. Finally, it
is possible to halt the algorithm early without significantly harming the quality of the
final matching. By doing so, we reduce the number of bids from each bidder, enabling
us to bound the sensitivity of the bid counters, reducing the amount of noise needed
for privacy. The result is an algorithm that converges to a matching together with
prices that form an approximate Walrasian equilibrium. We complete our analysis
by proving an approximate version of the first welfare theorem, which shows that the
matching has high weight.

The algorithm of Kelso and Crawford [1982] extends to the general allocation
problem when players have gross substitute preferences, and our private algorithm
does as well. We note that this class of preferences is the natural limit of our approach,
which makes crucial use of equilibrium prices as a coordinating device: in general,
when agents have valuations over bundles of goods that do not satisfy the gross
substitutes condition, Walrasian equilibrium prices may not exist.

We first state our main result informally in the special case of max-matchings,
which we prove in section 3. We prove our more general theorem for allocation
problems with gross substitutes preferences in section 4. Here, privacy is protected
with respect to a single agent i changing their valuations vij for possibly all goods j.

Theorem 1 (Informal). Suppose there are n agents and k types of goods, with
each with s identical copies. There is a computationally efficient ε-joint differentially
private algorithm which computes a matching of weight OPT− αn as long as

s ≥ O
(

1

α3ε
· polylog

(
n, k,

1

α

))
.

For certain parameter ranges, the welfare guarantee can be improved to (1− α) OPT.

Our algorithms actually work in a privacy model that is stronger than joint differ-
ential privacy, called the billboard model. We can view the algorithm as a mechanism
that posts the prices publicly on a billboard as a differentially private signal such that
every player can deduce what object they should be matched to just from their own
private information and the contents of the billboard. As we show, algorithms in the
billboard model automatically satisfy joint differential privacy.

Furthermore, we view implementations in the billboard model as preferable to
arbitrary jointly differentially private implementations. Algorithms in the billboard
model only need the ability to publish sanitized messages to all players, and do not
need a secure channel to communicate the mechanisms’ output to each player (though
of course, there still needs to be a secure channel from the player to the mechanism).
The previous work by McSherry and Mironov [2009] and some of the results by Gupta
et al. [2010] can be viewed as existing examples of algorithms in the billboard model.
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In section 5, we complement our positive results with lower bounds showing that
our results are qualitatively tight. Not only is the problem impossible to solve un-
der the standard differential privacy, assuming multiple copies of each good is also
necessary to get any non-trivial solution even under joint differential privacy.

Theorem 2 (Informal). No joint differentially private algorithm can compute
matchings of weight greater than OPT− αn on instances in which there are n agents
and s copies of each good, when

s ≤ O
(

1√
α

)
.

In particular, no algorithm can compute matchings of weight OPT−o(n) on instances
for which the supply s = O(1). In addition, we show that when goods have supply
only s = O(1), it is not even possible to compute the equilibrium prices privately
under standard differential privacy. Our lower bounds are all reductions to database
reconstruction attacks. Our technique for proving this lower bound may be of general
interest, as the construction may be useful for other lower bounds for joint differential
privacy.

1.2. Related Work. Differential privacy, first defined by Dwork et al. [2006],
has become a standard privacy solution concept in the theoretical computer science
literature. There is far too much work to survey comprehensively; for a textbook
introduction, see Dwork and Roth [2014].

The privacy of our algorithms relies on work by Dwork et al. [2010a] and Chan
et al. [2011], who show how to release a running count of a stream of bits under
continual observation—i.e., report the count as the stream is revealed, provide high
accuracy at every point in time, and keep the transcript differentially private.

Beginning with Dinur and Nissim [2003], much work in differential privacy has
focused on answering numeric valued queries on a private dataset (e.g., Dwork et al.
[2006], Blum et al. [2013], Hardt and Rothblum [2010], among many others). In
contrast, work on private combinatorial optimization problems has been sporadic
(e.g., Nissim et al. [2007], Gupta et al. [2010]). Part of the challenge is that many
combinatorial optimization problems, including the allocation problems we consider
in this paper, are impossible to solve under differential privacy. To sidestep this
problem, we employ the solution concept of joint differential privacy. First formalized
by Kearns et al. [2014], similar ideas are present in the vertex and set-cover algorithms
of Gupta et al. [2010], the private recommendation system of McSherry and Mironov
[2009], and the analyst private data analysis algorithms of Dwork et al. [2012], Hsu
et al. [2013].

Our algorithm is inspired by Kelso and Crawford [1982], who study the problem
of matching firms to workers when the firms have preferences that satisfy the gross
substitutes condition. They give an algorithm based on simulating simultaneous as-
cending auctions that converge to Walrasian equilibrium prices and a corresponding
matching. In some respect, this approach does not generalize to more general valua-
tions: Gul and Stacchetti [1999] show that gross substitutes preferences are precisely
the set of preferences for which Walrasian equilibrium prices are guaranteed to exist.

While our algorithm achieves good approximation to the optimal welfare at the
expense of certain incentive properties, our work is closely related to recent work on
privately computing various kinds of equilibrium in games (e.g., correlated equilib-
rium [Kearns et al., 2014], Nash equilibrium [Rogers and Roth, 2014], and minmax
equilibrium [Hsu et al., 2013]). These works belong to a growing literature studying
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the interface of game theory and differential privacy; Pai and Roth [2013] provide a
recent survey.

2. Preliminaries.

2.1. The Allocation Problem. We consider allocation problems defined by
a set of goods G, and a set of n agents [n]. Each agent i ∈ [n] has a valuation
function vi : 2G → [0, 1] mapping bundles of goods to values. A feasible allocation
is a collection of sets S1, . . . , Sn ⊆ G such that Si ∩ Sj = ∅ for each i 6= j: i.e., a
partition of goods among the agents. The social welfare of an allocation S1, . . . , Sn is∑n
i=1 vi(Si), the sum of the agent’s valuations for the allocation; we are interested in

finding allocations which maximize this quantity. Given an instance of an allocation
problem, we write OPT = maxS1,...,Sn

∑n
i=1 vi(Si) to denote the social welfare of the

optimal feasible allocation.
A particularly simple valuation function is a unit demand valuation, where bid-

ders demand at most one item. Such valuation functions take the form vi(S) =
maxj∈S vi({j}) and can be specified by numbers vi,j = vi({j}) ∈ [0, 1], which repre-
sent the value that bidder i places on good j. When bidders have unit demand valua-
tions, the allocation problem corresponds to computing a maximum weight matching
in a bipartite graph.

Our results will also hold for gross substitute valuations, which include unit de-
mand valuations as a special case. Informally, for gross substitute valuations, any set
of goods S′ that are in a most-demanded bundle at some set of prices p remain in a
most-demanded bundle if the prices of other goods are raised, keeping the prices of
goods in S′ fixed. Gross substitute valuations are a standard class of valuation func-
tions: they are a strict subclass of submodular functions, and they are precisely the
valuation functions with Walrasian equilibria in markets with indivisible goods [Gul
and Stacchetti, 1999]. Two other simple examples of gross substitute valuations are
(1) additive functions, which takes the form v(S) =

∑
j∈S v({j}) and (2) symmetric

submodular functions, such that v(S) = f(|S|) for some monotone concave function
f : R+ → R+.

To give the formal definition, we will need some notation. Given a vector of prices
{pg}g∈G, the (quasi-linear) utility that player i has for a bundle of goods Si is defined
to be ui(Si, p) = vi(Si) −

∑
j∈Si

pj .
3 Given a vector of prices p, for each agent i we

can define the set of most demanded bundles: ω(p) = arg maxS⊆G ui(S, p). Given two
price vectors p, p′, we write p � p′ if pg ≤ p′g for all g.

Definition 3. A valuation function vi : 2G → [0, 1] satisfies the gross substitutes
condition if for every two price vectors p � p′ and for every bundle S ∈ ω(p), if S′ ⊆ S
satisfies p′g = pg for every g ∈ S′, then there is a bundle S∗ ∈ ω(p′) with S′ ⊆ S∗.
Finally, we will typically consider markets with multiple copies of each type of good.
Two goods g1, g2 ∈ G are identical if for every bidder i and for every bundle S ⊆ G,
vi(S ∪ {g1}) = vi(S ∪ {g2}): i.e., the two goods are indistinguishable according to
every valuation function. Formally, we say that a set of goods G consists of k types
of goods with s supply if there are k representative goods g1, . . . , gk ∈ G such that
every good g′ ∈ G is identical to one of g1, . . . , gk, and for each representative good gi,
there are s goods identical to gi in G. For simplicity of presentation we will assume

3This is a natural definition of utility if agents must pay for the bundles they buy at the given
prices. In this paper we are concerned with the purely algorithmic allocation problem, so our algo-
rithm will not actually charge prices. However, prices will be a convenient abstraction throughout
our work.
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that the supply of each good is the same, but this is not necessary; all of our results
continue to hold when the supply s denotes the minimum supply of any type of good.

2.2. Differential Privacy Preliminaries. Although it is impossible to solve
the allocation problem under standard differential privacy (see section 5), standard
differential privacy plays an essential role in our analysis. We will introduce this
concept before seeing its generalization, joint differential privacy.

Suppose agents have valuation functions vi from a class of functions C. A database
D ∈ Cn is a vector of valuation functions, one for each of the n bidders. Two databases
D,D′ are i-neighbors if they differ in only their i’th index: that is, if Dj = D′j for
all j 6= i. If two databases D,D′ are i-neighbors for some i, we say that they are
neighboring databases. We will be interested in randomized algorithms that take a
database as input, and output an element from some range R. Our final mechanisms
will output sets of n bundles (so R = (2G)n), but intermediate components of our
algorithms will have different ranges.

Definition 4 (Dwork et al. [2006]). An algorithm M : Cn → R is
(ε, δ)-differentially private if for every pair of neighboring databases D,D′ ∈ Cn and
for every set of subset of outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

If δ = 0, we say that M is ε-differentially private.

When the range of a mechanism is also a vector with n components (e.g., R = (2G)n),
we can define joint differential privacy : this requires that simultaneously for all i, the
joint distribution on outputs given to players j 6= i is differentially private in the input
of agent i. Given a vector x = (x1, . . . , xn), we write x−i = (x1, . . . , xi−1, xi+1, . . . , xn)
to denote the vector of length n − 1 which contains all coordinates of x except the
i’th coordinate.

Definition 5 (Kearns et al. [2014]). An algorithm M : Cn → (2G)n is (ε, δ)-
joint differentially private if for every i, for every pair of i-neighbors D,D′ ∈ Cn, and
for every subset of outputs S ⊆ (2G)n−1,

Pr[M(D)−i ∈ S] ≤ eε Pr[M(D′)−i ∈ S] + δ.

If δ = 0, we say that M is ε-joint differentially private.

Note that this is still an extremely strong definition that protects i from arbitrary
coalitions of adversaries—it weakens the constraint of differential privacy only in that
the output given specifically to agent i may be sensitive in the input of agent i.

2.3. Differentially Private Counters. The central tool in our algorithm is the
private streaming counter proposed by Chan et al. [2011] and Dwork et al. [2010a].
Given a bit stream σ = (σ1, . . . , σT ) ∈ {0, 1}T , a streaming counterM(σ) releases an
approximation to cσ(t) =

∑t
i=1 σi at every time step t. The counters release accurate

approximations to the running count at every time step.

Definition 6. A streaming counter M is (α, β)-useful if with probability at least
1− β, for each time t ∈ [T ],

|M(σ)(t)− cσ(t)| ≤ α.

For the rest of this paper, let Counter(ε, T ) denote the Binary mechanism of
Chan et al. [2011], instantiated with parameters ε and T . The mechanism produces a
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monotonically increasing count, and satisfies the following accuracy guarantee. Fur-
ther details may be found in Appendix A.

Theorem 7 (Chan et al. [2011]). For β > 0, Counter(ε, T ) is ε-differentially
private with respect to a single bit change in the stream, and (α, β)-useful for

α =
2
√

2

ε
ln (2/β) log(T )5/2.

3. Private Max-Weight Matching. In this section, we study the special case
of unit demand valuations. Though our later algorithm for gross substitutes valuations
generalizes this case, we first present our algorithm in this simpler setting to highlight
the key features of our approach.

Consider a matching market with n bidders and k different types of goods, where
each good has supply s and bidder i has valuation vij ∈ [0, 1] for good j. Some agents
may not end up being matched to a good: to simplify notation, we will say that
unmatched agents are matched to a special dummy good ⊥.

To reach a maximum weight matching, we first aim to privately compute prices
p ∈ [0, 1]k and an allocation of the goods µ : [n] → [k] ∪ {⊥} such that most bidders
are matched with their approximately favorite goods given the prices and each over-
demanded good almost clears, where a good is over-demanded if its price is strictly
positive.4 We will show that if we can achieve this intermediate goal, then in fact we
have computed an approximate maximum weight matching.

Definition 8. A price vector p ∈ [0, 1]k and an assignment µ : [n] → [k] ∪ {⊥}
of bidders to goods is an (α, β, ρ)-approximate matching equilibrium if:

1. all but a ρ fraction of bidders i are matched to an α-approximate favorite
good: i.e.,viµ(i) − pµ(i) ≥ vij − pj − α for every good j, for at least (1 − ρ)n
bidders i (we call these bidders satisfied);

2. the number of bidders assigned to any type of good is below its supply; and
3. each over-demanded good clears except for at most β supply.

3.1. Overview of the Algorithm. Our algorithm takes the valuations as input,
and outputs a trajectory of prices that can be used by the agents to figure out what
they are matched to. For the presentation, we will sometimes speak as if the bidders
are performing some action, but this actually means that our algorithm simulates the
actions of the bidders internally—the actual agents do not interact with our algorithm.

Algorithm 1 (PMatch) is a variant of a deferred acceptance algorithm first pro-
posed and analyzed by Kelso and Crawford [1982], which runs k simultaneous as-
cending price auctions: one for each type of good. At any given moment each type
of good has a proposal price pj . In a sequence of rounds where the algorithm passes
through each bidder once in some fixed, publicly known order, unsatisfied bidders bid
on a good that maximizes their utility at the current prices: that is, a good j that
maximizes vij − pj . (This is the Propose function.)

The s most recent bidders for a type of good are tentatively matched to that
type of good; these are the current high bidders. A bidder tentatively matched to a
good with supply s becomes unmatched once the good receives s subsequent bids; we
say this bidder has has been outbid. Every s bids on a good increases its price by a
fixed increment α. Bidders keep track of which good they are matched to, if any, and
determine whether they are currently matched or unmatched by looking at a count
of the number of bids received by the last good they bid on.

4This is the notion of approximate Walrasian equilibrium we will use.
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To implement this algorithm privately, we count the number of bids each good
has received using private counters. Unsatisfied bidders can infer the prices of all
goods based on the number of bids each has received, and from this information, they
determine their favorite good at the given prices. Their bid is recorded by sending
the bit 1 to the appropriate counter. (This is the Bid function.) Matched bidders
store the reading of the bid counter on the good they are matched to at the time
that they last bid (in the variable di); when the counter ticks s bids past this initial
count, bidders conclude that they have been outbid and become unmatched. The
final matching is communicated implicitly: the real agents observe the full published
price trajectory and simulate what good they would have been matched to had they
bid according to the published prices.

Since the private counters are noisy, more than s bidders may be matched to a
good. To maintain feasibility, the algorithm reserves some supply m: i.e., it treats the
supply of each good as s−m, rather than s. The reserved supply m is used to satisfy
the demand of excess bidders who believe themselves to be matched to a good; the
number of such bidders is at most s, with high probability.

Our algorithm stops as soon as fewer than ρn bidders place bids in a round. We
show that this early stopping condition does not significantly harm the welfare guar-
antee of the matching, while it substantially reduces the sensitivity of the counters:
no bidder ever bids more than O(1/(αρ)) times in total. Crucially, this bound is
independent of both the number of types of goods k and the number of bidders n.
By stopping early, we greatly improve the accuracy of the prices since the amount we
must perturb the bid counts to protect privacy increases with the sensitivity of the
counters.

To privately implement the stopping condition, the algorithm maintains a sepa-
rate counter (counter0) which counts the number of unsatisfied bidders throughout
the run of the algorithm. At the end of each round, bidders who are unsatisfied will
send the bit 1 to this counter, while bidders who are matched will send the bit 0.
If this counter increases by less than roughly ρn in any round, the algorithm halts.
(This is the CountUnsatisfied function.)

3.2. Privacy Analysis. In this section, we show that the allocation output
by our algorithm satisfies joint differential privacy with respect to any single bidder
changing all of their valuations. We will use a basic but useful lemma: to show joint
differential privacy, it is sufficient to show that the output sent to each agent i is
an arbitrary function of (i) some global signal that is computed under the standard
constraint of differential privacy, and (ii) agent i’s private data. We call this model the
billboard model: agents can compute their output by combining a common signal—as
if posted on a public billboard—with their own private data. In our case, the price
history over the course of the auction is the differentially private message posted
on the billboard. Combined with their personal private valuation, each agent can
compute their personal allocation.

Lemma 9 (Billboard Lemma). Suppose M : D → R is (ε, δ)-differentially pri-
vate. Consider any set of functions fi : Di × R → R′, where Di is the portion of
the database containing i’s data. The composition {fi(ΠiD,M(D))} is (ε, δ)-joint
differentially private, where Πi : D → Di is the projection to i’s data.

Proof. We need to show that for any agent i, the view of the other agents is
(ε, δ)-differentially private when i’s private data is changed. Suppose databases D,D′

are i-neighbors, so ΠjD = ΠjD
′ for j 6= i. Let R−i be a set of possible outputs to
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Algorithm 1 PMatch(α, ρ, ε)

Input: Bidders’ valuations ({v1j}kj=1, . . . , {vnj}kj=1)
Initialize: for bidder i and good j,

T =
8

αρ
, ε′ =

ε

2T
, E =

2
√

2

ε′
(log nT )5/2 log

(
4k

γ

)
, m = 2E + 1

counterj = Counter(ε′, nT ) pj = cj = 0,

µ(i) = ∅, di = 0, counter0 = Counter(ε′, nT )

Propose T times; Output: prices p and allocation µ.

Propose:
for all bidders i do

if µ(i) = ∅ then
Let µ(i) ∈ argmaxj vij − pj , breaking ties arbitrarily
if viµ(i) − pµ(i) ≤ 0 then

Let µ(i) :=⊥ and Bid(0).
else Save di := cµ(i) and Bid(eµ(i)).

else Bid(0)
CountUnsatisfied

Bid: On input bid vector b
for all goods j do

Feed bj to counterj .
Update count cj := counterj .
if cj ≥ (pj/α+ 1)(s−m) then

Update pj := pj + α.

CountUnsatisfied:
for all bidders i do

if µ(i) 6=⊥ and cµ(i) − di ≥ s−m then
Feed 1 to counter0.
Let µ(i) := ⊥.

else Feed 0 to counter0.
if counter0 increases by less than ρn− 2E then

Halt and output µ.

the bidders besides i. Let R∗ = {r ∈ R | {fj(ΠjD, r)}−i ∈ R−i}. Then, we need

Pr[{fj(ΠjD,M(D))}−i ∈ R−i] ≤ eε Pr[{fj(ΠjD
′,M(D′))}−i ∈ R−i] + δ

= eε Pr[{fj(ΠjD,M(D′))}−i ∈ R−i] + δ

so Pr[M(D) ∈ R∗] ≤ eε Pr[M(D′) ∈ R∗] + δ,

but this is true since M is (ε, δ)-differentially private.

Theorem 10. The sequence of prices and counts of unsatisfied bidders released
by PMatch(α, ρ, ε) satisfies ε-differential privacy.
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Proof (Sketch). We give a rough intuition here, and defer the full proof to Ap-
pendix A. Note that the prices can be computed from the noisy counts, so it suffices to
show that the counts are private. Since no bidder bids more than T ≈ 1/(αρ) times
in total, the total sensitivity of the k price streams to a single bidder’s valuations
is only O(1/(αρ)) (independent of k) even though a single bidder could in principle
bid Ω(1/α) times on each of the k streams. Hence the analysis of these k simultane-
ously running counters is akin to the analysis of answering histogram queries, multiple
queries whose joint sensitivity is substantially smaller than the sum of their individual
sensitivities.

By setting the counter for each good with privacy parameter ε′ = ε/2T , the prices
are ε/2 differentially private. By the same reasoning, setting the unsatisfied bidders
counter with privacy parameter ε′ = ε/2T also makes the unsatisfied bidders count
ε/2 private. Thus, these outputs together satisfy ε-differential privacy.

While this intuition is roughly correct, there are some technical details. Namely,
Chan et al. [2011] show privacy for a single counter with sensitivity 1 on a non-
adaptively chosen stream. Since intermediate outputs (i.e., prices) from our counters
will affect the future streams (i.e., future bids) for other counters, this is not sufficient.
In fact, it is possible to prove privacy for multiple counters running on adaptively
chosen streams, where the privacy parameter depends only on the joint sensitivity
of the streams and not on the number of streams. We show this result using largely
routine arguments; details can be found in Appendix A.

Theorem 11. PMatch(α, ρ, ε) is ε-joint differentially private.

Proof (Sketch). Note that given the sequence of prices, counts of unsatisfied bid-
ders, and the private valuation of any bidder i, the final allocation to that bidder
can be computed by simulating the sequence of bids made by bidder i, since the bids
are determined by the price when bidder i is slotted to bid and by whether the auc-
tion has halted or not. Bidder i’s final allocation is simply the final item that i bids
on. The prices and halting condition are computed as a deterministic function of the
noisy counts, which are ε-differentially private by Theorem 7. So, Lemma 9 shows
that PMatch is ε-joint differentially private.

3.3. Utility Analysis. In this section, we compare the weight of the matching
produced by PMatch with OPT. As an intermediate step, we first show that the
resulting matching paired with the prices computed by the algorithm forms an ap-
proximate matching equilibrium. We next show that any such matching must be an
approximately max-weight matching.

The so-called first welfare theorem from general equilibrium theory guarantees
that an exact (i.e., a (0, 0, 0)-) matching equilibrium gives an exact maximum weight
matching. Compared to this ideal, PMatch loses welfare in three ways. First, a
ρ fraction of bidders may end up unsatisfied. Second, the matched bidders are not
necessarily matched to goods that maximize their utility given the prices, but only
to goods that do so approximately (up to additive α). Finally, the auction sets aside
part of the supply to handle over-allocation from the noisy counters. This reserved
supply may end up unused, say, if the counters are accurate or actually under-allocate.
In other words, we compute an equilibrium of a market with reduced supply, so
our welfare guarantee holds if the supply s is significantly larger than the necessary
reserved supply m.

The key performance metric is how much supply is needed to achieve a given
welfare approximation in the final matching. On the one hand, we will show later
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that the problem is impossible to solve privately if s = O(1) (section 5). On the
other hand, the problem is trivial if s ≥ n: agents can be simultaneously matched to
their favorite good with no coordination; this allocation is trivially both optimal and
private. Our algorithm will achieve positive results in the intermediate supply range,
when s ≥ polylog(n).

Theorem 12. Let α > 0, and µ be the matching computed by PMatch(α/3, α/3, ε).
Let OPT denote the weight of the optimal matching. Then, if the supply satisfies

s ≥ 16E′ + 4

α
= O

(
1

α3ε
· polylog

(
n, k,

1

α
,

1

γ

))
,

and n > s, the matching µ has social welfare at least OPT−αn with probability
≥ 1− γ, where

E′ =
288
√

2

α2ε

(
log

(
72n

α2

))5/2

log

(
4k

γ

)
.

Remark 13. Our approximation guarantee here is additive. Later in this section,
we show that if we are in the unweighted case—vij ∈ {0, 1}—we can find a matching
µ with welfare at least (1 − α)OPT. This multiplicative guarantee is unusual for a
differentially private algorithm.

The proof follows from the following lemmas.

Lemma 14. We call a bidder who wants to continue bidding unsatisfied; otherwise
bidder i is satisfied. At termination of PMatch(α, ρ, ε), all satisfied bidders i are
matched to a good µ(i) such that

vi,µ(i) − pµ(i) ≥ max
j

(vi,j − pj)− α.

Proof. Fix any satisfied bidder i matched to j∗ = µ(i). At the time that bidder i
last bid on j∗, by construction, vij∗−pj∗ ≥ maxj(vij−pj). Since i remained matched
to j∗, its price could only have increased by at most α, and the prices of other goods
j 6= j∗ could only have increased. Hence, at completion of the algorithm,

vi,µ(i) − pµ(i) ≥ max
j

(vij − pj)− α

for all matched bidders i.

Lemma 15. Assume all counters have error at most E throughout the run of
PMatch(α, ρ, ε). Then the number of bidders assigned to any good is at most s and
each over-demanded good clears except for at most β supply, where

β = 4E + 1 = O

(
1

αρε
· polylog

(
1

α
,

1

ρ
,

1

γ
, k, n

))
.

Proof. Since the counter for each under-demanded good never exceeds s−m, we
know that each under-demanded good is matched to no more than s − m + E < s
bidders. Consider any counter c for an over-demanded good. Let t be a time step
such that

c(nT )− c(t+ 1) ≤ s−m < c(nT )− c(t),

where c(t) denotes the output of the counter at time t. Note that the bidders who bid
after time t are the only bidders matched to this good at time nT . Let σ be the true
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bid stream for this good and let the sum of bids in σ up to time t be h(σ, t). Then,
the total number of bidders allocated to this good at time nT is

h(σ, nT )− h(σ, t) ≤ h(σ, nT )− h(σ, t+ 1) + 1

≤ (c(nT ) + E)− (c(t+ 1)− E) + 1

≤ s−m+ 2E + 1 = s.

Similarly, we can lower bound the number of bidders allocated to this good:

h(σ, nT )− h(σ, t) = (h(σ, nT )− c(nT )) + (c(nT )− c(t)) + (c(t)− h(σ, t))

> s−m− 2E > s− 4E − 1.

Therefore, every over-demanded good clears except for at most β = 4E + 1 supply,
which gives

β =
16
√

2

αρε

(
log

(
6n

αρ

))5/2

log

(
4k

γ

)
+ 1

= O

(
1

αρε
· polylog

(
1

α
,

1

ρ
,

1

γ
, k, n

))
.

Lemma 16. Assume all counters have error at most E throughout the run of
PMatch(α, ρ, ε). Then at termination all but a ρ fraction of bidders are satisfied, so
long as s ≥ 8E + 1 and n ≥ 8E/ρ.

Proof. First, we show that the total number of bids made over the course of
the algorithm is bounded by 3n/α. We account separately for the under-demanded
goods (those with price 0 at the end of the auction) and the over-demanded goods
(those with positive price). For the under-demanded goods, since their prices remain 0
throughout the algorithm, their corresponding noisy counters never exceeded (s−m).
Since no bidder is ever unmatched after having been matched to an under-demanded
good, the set of under-demanded goods can receive at most one bid from each agent;
together the under-demanded goods can receive at most n bids.

Next, we account for the over-demanded goods. Note that the bidders matched
to these goods are precisely the bidders who bid within s−m ticks of the final counter
reading. Since the counter has error bounded by E at each time step, this means at
least s − m − 2E bidders end up matched to each over-demanded good. Since no
agent can be matched to more than one good there can be at most n/(s −m − 2E)
over-demanded goods in total.

Likewise, we can account for the number of price increases per over-demanded
good. Prices never rise above 1 (because any bidder would prefer to be unmatched
than to be matched to a good with price higher than 1). Therefore, since prices are
raised in increments of α, the price of every over-demanded good increases at most
1/α times. Since there can be at most (s−m+ 2E) bids between each price update
(again, corresponding to s−m ticks of the counter), the total number of bids received
by all of the over-demanded goods in total is at most

n

s−m− 2E
· 1

α
· (s−m+ 2E).

Since each bid is either on an under or over-demanded good, we can upper bound the
total number of bids B by

B ≤ n+
n

α

(
s−m+ 2E

s−m− 2E

)
=
n

α

(
α+

s−m+ 2E

s−m− 2E

)
.
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The algorithm sets the reserved supply to be m = 2E+1 and by assumption, we have
s ≥ 8E + 1. Since we are only interested in cases where α < 1, we conclude

(1) B ≤ n+
n

α

(
s−m+ α

s−m− α

)
≤ 3n

α
.

Now, consider the halting condition. Either the algorithm halts early, or it does
not. We claim that at termination, at most ρn bidders are unsatisfied. The algorithm
halts early if at any round of CountUnsatisfied, counter0 (which counts the number
of unsatisfied bidders) increases by less than ρn − 2E, when there are at most ρn −
2E + 2E = ρn unsatisfied bidders.

Otherwise, suppose the algorithm does not halt early. At the start of each round
there must be at least ρn− 4E unsatisfied bidders. Not all of these bidders must bid
during the Propose round since price increases while they are waiting to bid might
cause them to no longer demand any item, but this only happens if bidders prefer
to be unmatched at the new prices. Since prices only increase, these bidders remain
satisfied for the rest of the algorithm. If the algorithm runs for R rounds and there
are B true bids,

B ≥ R(ρn− 4E)− n.
Combined with our upper bound on the number of bids ((1)) and our assumption
ρn ≥ 8E, we can upper bound the number of rounds R:

R ≤
(

3n

α
+ n

)
·
(

1

ρn− 2E

)
≤
(

4n

α

)(
2

ρn

)
=

8

αρ
:= T.

Thus, running the algorithm for T rounds leads to all but ρn bidders satisfied.

Lemma 17. With probability at least 1−γ, PMatch(α, ρ, ε) computes an (α, β, ρ)-
matching equilibrium, where

β = 4E + 1 = O

(
1

αρε
· polylog

(
1

α
,

1

ρ
,

1

γ
, k, n

))
so long as s ≥ 8E + 1 and n ≥ 8E/ρ.

Proof. By Theorem 7, counter0 is (λ1, γ/2)-useful, and each of the k good counters
is (λ2, γ/2)-useful, where

λ1 =
2
√

2

ε′
(log nT )5/2 log

(
4

γ

)
and λ2 =

2
√

2

ε′
(log nT )5/2 log

(
4k

γ

)
.

Since we set E = λ2 > λ1, all counters are (E, γ/2)-useful, and thus with probability
at least 1 − γ, all counters have error at most E. The theorem then follows by
Lemmas 14 to 16.

With these lemmas in place, it is straightforward to prove the welfare theorem
(Theorem 12).

Proof (Theorem 12). By Lemma 17, PMatch(α/3, α/3, ε) calculates a matching
µ that is an (α/3, β, α/3)-approximate matching equilibrium with probability at least
1 − γ, where β = 4E′ + 1. Let p be the prices at the end of the algorithm, and
S be the set of satisfied bidders. Let µ∗ be the optimal matching achieving welfare∑n
i=1 vi,µ∗(i) = OPT. We know that |S| ≥ (1− α/3)n and∑

i∈S
(viµ(i) − pµ(i)) ≥

∑
i∈S

(viµ∗(i) − pµ∗(i))− α|S|/3.
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Let N∗j and Nj be the number of goods of type j matched in µ∗ and µ respectively,
and let G be the set of over-demanded goods at prices p.

Since each over-demanded good clears except for at most β supply, and since each
of the n agents can be matched to at most one good, we know that |G| ≤ n/(s− β).
Since the true supply in OPT is at most s, we also know that N∗j −Nj ≤ β for each
over-demanded good j. Finally, by definition, under-demanded goods j have price
pj = 0. So, ∑

i∈S
viµ∗(i) −

∑
i∈S

viµ(i) ≤
∑
i∈S

pµ∗(i) −
∑
i∈S

pµ(i) + α|S|/3

=
∑
j∈G

pj(N
∗
j −Nj) + α|S|/3

≤
∑
j∈G

β + α|S|/3 ≤ nβ

s− β
+ α|S|/3.

If s ≥ 4β/α, the first term is at most αn/3. Finally, since all but αn/3 of the bidders
are matched with goods in S, and their valuations are upper bounded by 1, so∑

i

viµ(i) −
∑
i

viµ∗(i) ≤ αn/3 + α|S|/3 + αn/3 ≤ αn.

Unpacking β from Lemma 17, we get the stated bound on supply.

3.4. Multiplicative Approximation to Welfare. In certain situations, a
slight variant of PMatch (Algorithm 1) can give a multiplicative welfare guaran-
tee. In this section, we will assume that the value of the maximum weight matching
OPT is known; it is often possible to privately estimate this quantity to high accuracy.
Our algorithm is PMatch with a different halting condition: rather than count the
number of unmatched bidders each round, count the number of bids per round. Once
this count drops below a certain threshold, halt the algorithm.

More precisely, we use a function CountBids (Algorithm 2) in place of
CountUnsatisfied in Algorithm 1.

Algorithm 2 Modified Halting Condition CountBids

CountBids:
for all bidders i do

if µ(i) 6=⊥ and cµ(i) − di ≥ s−m then
Let µ(i) := ∅

if i bid this round then
Feed 1 to counter0.

else Feed 0 to counter0.
if counter0 increases by less than αOPT

2λ − 2E then
Halt; For each i with µ(i) = ∅, let µ(i) =⊥

Theorem 18. Suppose bidders have valuations {vij} over goods such that

min
vij>0

vij ≥ λ.

Then Algorithm 1, with

T =
24

α2
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rounds, using stopping condition CountBids (Algorithm 2) in place of
CountUnsatisfied and stopped once the total bid counter increases by less than

αOPT

2λ
− 2E

bids in a round, satisfies ε-joint differential privacy and outputs a matching that has
welfare at least O((1− α/λ) OPT), so long as

s = Ω

(
1

α3ε
· polylog

(
n, k,

1

α
,

1

γ

))
and OPT = Ω

(
λ

α3ε
· polylog

(
n, k,

1

α
,

1

γ

))
.

Proof. Privacy follows exactly like Theorem 11. We first show that at termination,
all but αOPT /λ bidders are matched to an α-approximate favorite item. The analysis
is very similar to Lemma 17. Note that every matched bidder is matched to an
α-approximate favorite good, since it was an exactly favorite good at the time of
matching, and the price increases by at most α. Thus, it remains to bound the
number of unsatisfied bidders at termination.

Condition on all counters having error bounded by E at all time steps; by Theo-
rem 7 and a union bound over counters, this happens with probability at least 1− γ.
Like above, we write s′ = s − m for the effective supply of each good. Let us first
consider the case where the algorithm stops early. If the total bid counter changes by
less than αOPT

2λ − 2E, the true number of bids that round is at most

Q =
αOPT

2λ
.

We will upper bound the number of unsatisfied bidders at the end of the round.
Note that the number of unsatisfied bidders at the end of the round is the number of
bidders who have been rejected in the current round. Suppose there are N goods that
reject bidders during this round. The total count on these goods must be at least

(s′ − 2E) ·N −Q

at the start of the round, since each counter will increase by at most 2E due to error,
and there were at most Q bids this round. By our conditioning, there were at least

(s′ − 2E) ·N −Q− 2EN

bidders matched at the beginning of the round. Since bidders are only matched when
their valuation is at least λ, and the optimal weight matching is OPT, at most OPT

λ
bidders can be matched at any time. Hence,

N ≤
(

OPT

λ
+Q

)
· 1

s′ − 4E
.

Then, the total number of bidders rejected this round is at most 2EN+Q. Simplifying,

2EN +Q ≤ 2E

s′ − 4E
·
(

OPT

λ
+Q

)
+Q

≤
(

6E

s′ − 4E

)(
OPT

λ

)
+
αOPT

2λ
.
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To make the first term at most αOPT
2λ , it suffices to take

6E

s′ − 4E
≤ α

2

s′ ≥ 12E

α
+ 4E

s ≥ 12E

α
+ 6E + 1,

or s ≥ 18E/α. In this case, the algorithm terminates with at most αOPT
λ unsatisfied

bidders, as desired.
On the other hand, suppose the algorithm does not terminate early, the bid count

increasing by at least Q− 2E every round. By our conditioning, this means there are
at least Q− 4E bids each round; let us bound the number of possible bids.

Since bidders only bid if they have valuation greater than λ for a good, and since
the maximum weight matching has total valuation OPT, at most OPT /λ bidders can
be matched. Like before, we say goods are under-demanded or over-demanded: they
either have final price 0, or positive final price.

There are at most OPT /λ true bids on the goods of the first type; this is because
bidders are never rejected from these goods. Like before, write s′ = s − m. Each
counter of a over-demanded good shows s′ people matched, so at least s′−2E bidders
end up matched. Thus, there are at most

OPT

λ(s′ − 2E)

over-demanded goods. Each such good takes at most s′+2E bids at each of 1/α price
levels. Putting these two estimates together, the total number of bids B is upper
bounded by

B ≤ OPT

λ
·
(

1 +
s′ + 2E

s′ − 2E

)
≤ 6 OPT

λα

if s′ ≥ 4E, which holds since we are already assuming s′ ≥ 4E+ 12E
α . Hence, we know

the number of bids is at most

T · (Q− 4E) ≤ B ≤ 6 OPT

λα

T ≤ 6 OPT

λ
·
(

2λ

αOPT−8λE

)
.

Assuming αOPT ≥ 16λE, we find T ≤ 24/α2.
With this choice of T , the supply requirement is

(2) s ≥ 18E

α
= Ω

(
1

α3ε
· polylog

(
n, k,

1

α
,

1

γ

))
.

Likewise, the requirement on OPT is

OPT ≥ 16λE

α
= Ω

(
λ

α3ε
· polylog

(
n, k,

1

α
,

1

γ

))
.

Now, we can follow the analysis from Theorem 12 to bound the welfare. Suppose
the algorithm produces a matching µ, and consider any other matching µ∗. For each
bidder who is matched to an α-approximate favorite good,

viµ(i) − pµ(i) ≥ viµ∗(i) − pµ∗(i) − α.
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Each such bidder is matched to a good with value at least λ, so there are at most
OPT /λ such bidders. Summing over these bidders (call them S),∑

i∈S
viµ(i) − pµ(i) ≥

∑
i∈S

viµ∗(i) − pµ∗(i) −
αOPT

λ
.

Letting Nj , N
∗
j be the number of goods of type j matched in µ, µ∗ and rearranging,

∑
i∈S

viµ∗(i) − viµ(i) ≤
∑
j∈S

pj(N
∗
j −Nj) +

αOPT

λ
.

Exactly the same as in Theorem 12, each over-demanded good (pj > 0) clears except
for at most β = 4E + 1 supply. Since at most OPT

λ bidders can be matched, the
number of goods with pj > 0 is at most

OPT

λ(s− β)
.

Like before, N∗j − Nj ≤ β. Since there are at most αOPT /λ bidders not in S and
each has valuation in [0, 1], when summing over all bidders,∑

i

viµ∗(i) − viµ(i) ≤
OPTβ

λ(s− β)
+
αOPT

λ
+
αOPT

λ
.

The first term is at most αOPT /λ for s ≥ β(1 + 1/α), when the algorithm calculates
a matching with weight O((1 − α/λ) OPT). Since β = 4E + 1, this reduces to the
supply constraint (2).

Remark 19. For a comparison with Theorem 12 and PMatch, consider the “un-
weighted” case where bidders have valuations in {0, 1} (i.e., λ = 1). Note that both
PMatch and the multiplicative version require the same lower bound on supply. Ig-
noring log factors, PMatch requires n = Ω̃(1/α3ε) for an additive αn approximation,

while Theorem 18 shows OPT = Ω̃(1/α3ε) is necessary for a multiplicative α, hence
additive αOPT, approximation. Hence, Theorem 18 gives a stronger guarantee if
OPT = õ(n) in the unweighted case, ignoring log factors.

4. Extension to Gross Substitute Valuations. While Kelso and Crawford’s
algorithm is simplest in the unit demand setting, it can also compute allocations when
bidders have gross substitutes valuations. Before we discuss our analogous extension,
we will first introduce some notation for gross substitutes valuations. Unlike unit
demand valuations, bidders with gross substitute valuations may demand more than
one good. Let Ω = 2G denote the space of bundles (i.e., subsets of goods). Like
previous sections, let k be number of types of goods, and let s be the supply of each
type of good. Let d denote the market size—the total number of goods, including
identical goods, so d = ks.5 We assume that each bidder has a valuation function
on bundles, vi : Ω → [0, 1], and that this valuation satisfies the gross substitutes
condition (Definition 3).

Like before, we simulate k ascending price auctions in rounds. Bidders now main-
tain a bundle of goods that they are currently allocated to, and bid on one new good

5In general, goods may have different supplies, if s denotes the minimum supply of any good.
Hence, d is not necessarily dependent on s.



18 Private Matchings and Allocations

each round. For each good in a bidder’s bundle, the bidder keeps track of the count
of bids on that good when it was added to the bundle. When the current count ticks
past the supply, the bidder knows that they have been outbid.

The main subtlety is in how bidders decide which goods to bid on. Namely, each
bidder treat goods in their bundle as fixed in price (i.e., bidders ignore the price
increment of at most α that might have occurred after winning the item). Goods
outside of their bundle (even if identical to goods in their bundle) are evaluated at
the true price. We call these prices the bidder’s effective prices, so each bidder bids
on an arbitrary good in his most-preferred bundle at the effective prices. The full
algorithm is given in Algorithm 3.

Privacy is very similar to the case for matchings.

Theorem 20. PAlloc(α, ρ, ε) satisfies ε-joint differential privacy.

Proof. Essentially the same proof as Theorem 11.

Theorem 21. Let 0 < α < n/d, and g be the allocation computed by PAlloc(α/3, α/3, ε),
and let OPT be the optimum max welfare. Then, if d ≥ n and

s ≥ 12E′ + 3

α
= O

(
1

α3ε
· polylog

(
n, k,

1

α
,

1

γ

))
,

the allocation g has social welfare at least

n∑
i=1

vi(g(i)) ≥ OPT−αd

with probability at least 1− γ, where

E′ =
360
√

2

α2ε

(
log

(
90n

α2

))5/2

log

(
4k

γ

)
+ 1.

Remark 22. In comparison with Theorem 12, Theorem 21 requires a similar
constraint on supply but promises welfare OPT−αd rather than OPT−αn. Since
OPT ≤ n this guarantee is only non-trivial for α ≤ n/d, so the supply has a polynomial
dependence on the total size of the market d. In contrast, Theorem 12 guarantees good
welfare when the supply has a logarithmic dependence on the total number of goods
in the market.

We note that if bidders demand bundles of size at most b, then we can improve
the above welfare bound to OPT−αnb. Note that this is independent of the market
size d and smoothly generalizes the matching case where b = 1.

Similar to Definition 8, we define an approximate allocation equilibrium as a pre-
requisite for showing our welfare guarantee.

Definition 23. A price vector p ∈ [0, 1]k and an assignment g : [n] → Ω of
bidders to goods is an (α, β, ρ)-approximate allocation equilibrium if

1. for all but ρd bidders, vi(g(i))− p(g(i)) ≥ maxω∈Ω vi(ω)− p(ω)− α|g(i)|;
2. the number of bidders assigned to any good is at most s; and
3. each over-demanded good clears except for at most β supply.

The following lemmas show that our algorithm finds an approximate allocation equi-
librium. We prove the last two requirements first.
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Algorithm 3 PAlloc(α, ρ, ε) (with Gross Substitute Valuations)

Input: Bidders’ gross substitute valuations on the bundles {vi : Ω→ [0, 1]}
Initialize: for bidder i and good j,

T =
10

αρ
, ε′ =

ε

2T
, E =

2
√

2

ε′
(log nT )5/2 log

(
4k

γ

)
+ 1, m = 2E + 1,

counter0 = Counter(ε′, nT ), counterj = Counter(ε′, nT ), pj = cj = 0,

dg = 0, g(i) = {∅} for every bidder i

Propose T times; Output: prices p and allocation g.

Propose:
for all bidders i do

for all goods g ∈ g(i) do
if ctype(g) − dg ≥ s−m then

Remove g(i) := g(i) \ g
Let p0 be the original cost of g(i).
Let ω∗ ∈ argmax

ω)g(i)
vi(ω)− p(ω \ g(i))− p0 arbitrary.

if vi(ω
∗)− p(ω \ g(i))− p0 ≥ vi(g(i))− p0 then

Let j ∈ ω∗ \ g(i) arbitrary.
Save dj := ctype(j)
Add g(i) := g(i) ∪ j and Bid(ej)

else Bid(0)
CountUnsatisfied

Bid: On input bid vector b
for all goods j do

Feed bj to counterj .
Update count cj := counterj .
if cj ≥ (pj/α+ 1)(s−m) then

Update pj := pj + α.

CountUnsatisfied:
for all bidders i do

if i wants continue bidding then
Feed 1 to counter0.

else Feed 0 to counter0.
if counter0 increases by less than ρd− 2E then

Halt and output µ.

Lemma 24. Assume all counters have error at most E throughout the run of
PAlloc(α, ρ, ε). Then, the number of bidders assigned to any good is at most s and
each over-demanded good clears except for at most β supply, where

β = 4E + 1 = O

(
1

αρε
· polylog

(
n, k,

1

α
,

1

ρ
,

1

γ

))
.
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Proof. Consider any good j. If it is under-demanded, the counter corresponding to
j never rise above s−m. Hence by our conditioning, at most s−m+E < s bidders are
assigned to j. If j is over-demanded, the same reasoning as in Lemma 17 shows that
the number of bidders matched to j lies in the range [s−m−2E, s−m+2E+1]. By the
choice of m, the upper bound is at most s. Likewise, at least s−m+E = s− (4E+1)
bidders are assigned to j. Setting β = 4E + 1 gives the desired bound.

Lemma 25. We call a bidder who wants to bid more unsatisfied; otherwise, a
bidder is satisfied. At termination of PAlloc(α, ρ, ε), all satisfied bidders are matched
to a bundle g(i) that is an α · |g(i)|-most preferred bundle.

Proof. We first show that a bidder’s bundle g(i) remains a subset of their most
preferred bundle at the effective prices, i.e., with prices of goods in g(i) set to their
price at time of assignment, and all other goods taking current prices.

This claim follows by induction on the number of timesteps (ranging from 1 to
nT ). The base case is clear. Now, assume that the claim holds up to time t. There
are three possible cases:

1. If the price of a good outside g(i) is increased, g(i) remains part of a most-
preferred bundle by the gross substitutes condition.

2. If the price of a good in g(i) is increased, some goods may be removed from
the bundle leading to a new bundle g′(i). The only goods that experience
an effective price increase lie outside of g′(i), so g′(i) remains a subset of a
most-preferred bundle at the effective prices.

3. If a bidder adds to their bundle, g(i) is a subset of the most-preferred bundle
by definition.

Hence, a bidder becomes satisfied precisely when g(i) is equal to the most-preferred
bundle at the effective prices. The true price is at most α more than the effective
price, so the bidder must have an α|g(i)|-most preferred bundle at the true prices.

Lemma 26. Suppose all counters have error at most E throughout the run of
PAlloc(α, ρ, ε). Then at termination, all but ρd bidders are satisfied if

n ≤ d and d ≥ 8E

ρ
= Ω

(
1

αρ2ε
· polylog

(
n, k,

1

α
,

1

ρ
,

1

γ

))
.

Proof. Note that as long as the algorithm does not halt, at least ρd− 4E bidders
are unsatisfied at the beginning of the round. They may not actually bid when their
turn comes, because the prices may have changed. Let the number of bids among all
bidders be B, and suppose we run for R rounds. We expect at least ρd − 4E bids
per round, so R(ρd − 4E) − B is a lower bound on the number of times a bidder is
unsatisfied but fails to bid.

In the matching case, if a bidder is unsatisfied at the beginning of the round but
fails to bid during their turn, this must be because the prices have risen too high.
Since prices are monotonic increasing, such a bidder will never be unsatisfied again.

In contrast, the gross substitutes case is slightly more subtle. Bidders who are
unsatisfied at the beginning of a round and don’t bid on their turn may later become
unsatisfied again. Clearly, this happens only when the bidder loses at least one good
after they decline to bid: if they don’t lose any goods, then the prices can only increase
after they decline to bid. Thus, they will have no inclination to bid in the future.

There are at most n cases of the bidder dropping out entirely. Thus, the number
of times bidders report wanting to reenter the bidding is at least R(ρd− 4E)−n−B.
Since a bidder loses at least one good each time they reenter, the number of reentries
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is at most the number of bids B. Hence, the number of bids in R rounds is at least

(3) B ≥ R(ρd− 4E)− n
2

.

Now, let s′ = s−m = s− (2E+1) be the effective supply and consider how many
bids are possible. Each of the k types of goods will accept at most s′ + 2E = s + 1
bids at each of 1/α price levels, so there are at most k(s+ 1)/α = (d+ k)/α possible
bids. Setting the left side of (3) equal to (d+ k)/α, we find

R ≤ 1

α

(
2(d+ k) + αn

ρd− 4E

)
:= T0,

so taking T ≥ T0 suffices to ensure that the algorithm halts with no more than ρd
bidders unsatisfied. Assuming ρd ≥ 8E and d ≥ n,

T0 ≤
10d

αρd
=

10

αρ
= T.

The requirement on n and d is then

d ≥ 8E

ρ
= Ω

(
1

αρ2ε
· polylog

(
n, k,

1

α
,

1

ρ
,

1

γ

))
and n ≤ d,

as desired.

Lemma 27. With probability at least 1−γ, PAlloc(α, ρ, ε) computes an (α, β, ρ)-
approximate allocation equilibrium where

β = O

(
1

αρε
· polylog

(
n, k,

1

α
,

1

ρ
,

1

γ

))
,

so long as

d ≥ 8E

ρ
= Ω

(
1

αρ2ε
· polylog

(
n, k,

1

α
,

1

ρ
,

1

γ

))
and n ≤ d.

Proof. Condition on the error for each counter being at most E throughout the
run of the algorithm. By Theorem 7, this holds for any single counter with probability
at least 1 − γ/2k. By a union bound, this holds for all counters with probability at
least 1− γ. The theorem follows by Lemmas 24 to 26.

Now, it is straightforward to prove the welfare theorem (Theorem 21).

Proof. The proof follows the matching case (Theorem 12) closely. By Lemma 27,
(g, p) is a (α/3, β, α/3)-approximate allocation equilibrium, where β = 4E′+ 1. Then
all but αd/3 bidders are satisfied and get a bundle g(i) that is α|g(i)| optimal; let this
set of bidders be B. Note that

∑
i |g(i)| ≤ d. Let g∗ be any other allocation. Then,∑

i∈B
vi(g(i))− p(g(i)) ≥

∑
i∈B

vi(g
∗(i))− p(g∗(i))− α

3
|g(i)|∑

i∈B
vi(g

∗(i))− vi(g(i)) ≤
∑
i∈B

p(g∗(i))− p(g(i)) + αd/3 =
∑
j∈G

pj(N
∗
j −Nj) + αd/3
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where the Nj is the number of good j sold in g and N∗j is the number of good j sold
in g∗. If pj > 0, we know Nj ≥ s − β, hence N∗j −Nj ≤ β ≤ αs/3. Since pj ≤ 1 for
each good j, we have∑

j∈G
pj(N

∗
j −Nj) ≤

∑
j

pj(N
∗
j −Nj) ≤ α

∑
j

s = αd/3.

Furthermore, at most αd/3 bidders are left unsatisfied in the end; these bidders
contribute at most αd/3 welfare to the optimal matching since valuations are bounded
by 1. Putting it all together,∑

i

vi(g
∗(i))− vi(g(i)) ≤ αd/3 + αd/3 + αd/3 = αd.

The stated supply bound s follows directly from Lemma 27.

5. Lower Bounds. Our lower bounds all reduce to a basic database reconstruc-
tion lower bound for differential privacy.

Theorem 28. Let mechanism M : {0, 1}n → {0, 1}n be (ε, δ)-differentially pri-
vate, and suppose that for all database D, with probability at least 1 − β, ‖M(D) −
D‖1 ≤ αn. Then,

α ≥ 1− eε + δ

(1 + eε)(1− β)
:= θ(ε, δ, β).

In other words, no (ε, δ)-private mechanism can reconstruct more than a fixed
constant fraction of its input database. For ε, δ, β small, θ(ε, δ, β) ∼ 1/2. Informally,
this theorem states that a private reconstruction mechanism can’t do much better
than guessing a random database. Note that this holds even if the adversary doesn’t
know which fraction was correctly reconstructed. This theorem is folklore; a proof
can be found in Appendix B.

Our lower bounds will all be proved using the following pattern.
• First, we describe how to convert a database D ∈ {0, 1}n to a market, by

specifying the bidders, the goods, and the valuations vij ∈ [0, 1] on goods.
• Next, we analyze how these valuations change when a single bit in D is

changed. This will control how private the matching algorithm is with respect
to the original database, when applied to this market.

• Finally, we show how to output a database guess D̂ from the matching pro-
duced by the private matching algorithm.

This composition of three steps will be a private function from {0, 1}n → {0, 1}n, so
we can apply Theorem 28 to lower bound the error, implying a lower bound on the
error of the matching algorithm.

5.1. Standard Differential Privacy. Note that Algorithm 1 produces market
clearing prices under standard differential privacy. We will first show that this is not
possible if each good has unit supply. Recall that prices correspond to an (α, β, ρ)-
approximate matching equilibrium if all but ρ bidders can be allocated to a good such
that their utility is within α of their favorite good (Definition 8). We will ignore the
β parameter, which controls how many goods are left unsold.

Theorem 29. Let n bidders have valuations vij ∈ [0, 1] for n goods. Suppose that
mechanismM is (ε, δ)-differentially private, and calculates prices corresponding to an
(α, β, ρ)-approximate matching equilibrium for α < 1/2 and some β with probability
1− γ. Then,

ρ ≥ 1

2
θ(2ε, δ(1 + eε), γ).
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Note that this is independent of α.

Proof. Let D ∈ {0, 1}n/2 be a private database and construct the following mar-
ket. For each bit i we construct the following gadget, consisting of two goods 0i,1i
and two bidders, bi, bi. Both bidders have valuation Di for good 1i, 1−Di for good
0i, and valuation 0 for the other goods. Evidently, there are n bidders and n goods.

Note that changing a bit i in D changes the valuation of exactly two bidders in
the market: bi and bi. Therefore, mechanismM is (2ε, δ(1+eε))-differentially private

with respect to D. Let the prices be p0i, p1i. To guess the database D̂, we let D̂i = 1
if p1i > 1/2, otherwise D̂i = 0.

By assumption, M produces prices corresponding to an (α, β, ρ)-approximate
matching equilibrium with probability 1− γ. We do not have access to the matching,
but we know the prices must correspond to some matching µ. Then, for all but ρn
gadgets, µ matches both bidders to their α-approximate favorite good and both goods
are matched to bidders who receive α-approximate favorite goods.

Consider such a gadget i. We will show that exactly one of p0i or p1i is greater
than 1/2, and this expensive good corresponds to bit Di. Consider one of the bidders
in this gadget, and suppose she prefers good g+ with price p+, while he received good
g− with price p−. Since she receives an α-approximate favorite good,

(1− p+)− (0− p−) ≤ α, so p+ − p− ≥ 1− α > 1/2.

So p+ > 1/2 and p− < 1/2. Note that good g+ is in the gadget, while good g−
may not be. So, one of the goods in the gadget has price strictly greater than 1/2.
The other good in the gadget is an α-approximate favorite good for some bidder. All
bidders have valuation 0 for the good, hence its price must be strictly less than 1/2.

Thus, the reconstruction procedure will correctly produce bit for each such gadget,
and so will miss at most ρn bits with probability at least 1 − γ. The combined
reconstruction algorithm is a map from {0, 1}n/2 → {0, 1}n/2, and (2ε, δ(1 + eε))-
differentially private. By Theorem 28,

2ρ ≥ θ(2ε, δ(1 + eε), γ).

5.2. Separation Between Standard and Joint Differential Privacy. While
we can compute an approximate maximum-weight matching under joint privacy when
the supply of each good is large (Lemma 17), this is not possible under standard dif-
ferential privacy even with infinite supply.

Theorem 30. Let n bidders have valuations vij ∈ {0, 1} for 2 goods with infinite
supply. Suppose that mechanism M is (ε, δ)-differentially private, and computes a
matching with weight at least OPT−αn with probability 1− γ. Then,

α ≥ θ(ε, δ, γ).

Proof. Let D ∈ {0, 1}n. We assume two goods, 0 and 1. We have one bidder bi
for each bit i ∈ [n], who has valuation Di for 1, and valuation 1 − Di for 0. Since
changing a bit changes a single bidder’s valuation, applyingM to this market is (ε, δ)-

private with respect to D. To guess the database D̂, we let D̂i be 0 if bi is matched
to 0, 1 if bi is matched to 1, and arbitrary otherwise.

Note that the maximum welfare matching assigns each bi the good corresponding
to Di, and achieves social welfare OPT = n. IfM computes an matching with welfare
OPT−αn, it must give all but an α fraction of bidders bi the good corresponding to
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Di. So, the reconstructed database will miss at most αn bits with probability 1− γ,
and by Theorem 28,

α ≥ θ(ε, δ, γ).

Note that this gives a separation: under joint differential privacy, Algorithm 1 can
release a matching with welfare OPT−αn for any α, provided supply s is large enough
(by Theorem 12), while this is not possible under standard differential privacy even
with infinite supply.

5.3. Joint Differential Privacy. Finally, we show that a large supply assump-
tion is necessary in order to compute an additive α maximum welfare matching under
joint differential privacy.

Theorem 31. Let n bidders have valuations vij ∈ [0, 1] for k types of goods with
supply s each. Suppose mechanism M is (ε, δ)-joint differentially private for ε, δ <
0.1, and calculates a matching with welfare at least OPT−αn with probability 1 − γ
for γ < 0.01, and all n, k, s. Then, s = Ω(

√
1/α).

Proof. Let k = n/(s + 1). Given a private database D ∈ {0, 1}k, construct the
following market. For each bit i, we construct a gadget with two goods 0i,1i, each
with supply s. Each gadget has a distinguished bidder bi and s identical bidders, all
labeled bi. Let bidder bi, who we call the real bidder, have valuation Di for 1i, and
1−Di for 0i. Bidders bi, which we call the spy bidders, all have the same valuation:
η = 1

4s for 0i or 1i drawn at random, and 0 for all other goods (in and out of the
gadget). We say a bidder prefers a good if they have positive valuation for the good.

Note that changing a bit in D changes a single bidder’s valuation. Also note that
the spy bidders’ valuations do not depend on D. Hence, by joint differential privacy
of M, the function that maps the above market through M to the allocation of just
the spy bidders is (ε, δ)-differentially private with respect to an entry change in D.

We will describe how to guess D̂ based on just the spy bidders’ joint view,
i.e., the goods they are assigned. This reconstruction procedure will then be (ε, δ)-
differentially private, and we can apply Theorem 28 to lower bound the error of M .
For every bit i ∈ [k], let D̂i be 1 if the spy bidders in gadget i are all assigned to 0i, 0
if the spy bidders in gadget i are all assigned to 1i, and uniformly random otherwise.

We’ll say that a gadget agrees if the spy bidders and real bidder prefer the same
good. Gadgets that don’t agree, disagree. Let w be the number of gadgets that agree.
By construction, gadgets agree independently with probability 1/2 each. Hence, Ho-
effding’s inequality gives

Pr

[∣∣∣∣w − k

2

∣∣∣∣ ≤ λk] ≥ 1− 2 exp(−2λ2k)

for some λ to be specified later; condition on this event. With probability at least 1−γ,
mechanismM computes a matching with welfare at least OPT−αn; condition on this
event as well. Note that the optimum welfare is 1 + (s − 1)η for gadgets that agree,
and 1 + sη for gadgets that disagree, hence OPT = w(1 + (s− 1)η) + (k−w)(1 + sη)
in total.

For each gadget, there are several possible allocations. Intuitively, an assignment
gives social welfare, but may also lead to a bit being reconstructed. Let RB(µ) =

‖D − D̂‖1 be the error of the reconstruction when the matching is µ. We’ll argue
that any matching µ with nearly optimal social welfare must result in large expected
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reconstruction E[RB(µ)]. By linearity,

E[RB(µ)] =
∑
i∈[k]

Pr
[
Di = D̂i

]
,

so it suffices to focus on gadget at a time.
First, suppose the gadget i agrees. The matching µ can give the preferred good

to the bidder, the spies, or neither. If the preferred good goes to the bidder, this gives
at most 1 + (s− 1)η social welfare. Not all the spies get the same good, so

Pr
[
Di = D̂i

]
=

1

2
.

If the preferred good goes to the spies, then this contributes sη to social welfare, and

Pr
[
Di = D̂i

]
= 0.

Note that it doesn’t matter whether the bidder is assigned in µ, since the social welfare
is unchanged and the reconstruction algorithm doesn’t have access to the bidder’s
allocation. There are other possible allocations, but they are dominated by these two
choices since they get less social welfare for higher reconstruction probability.

Now, suppose gadget i disagrees. There are several possible allocations. First,
both the bidder and the spies may get their favorite good. This gives 1 + sη welfare,
and

Pr
[
Di = D̂i

]
= 1.

Second, the bidder may be assigned their favorite good, and at most s− 1 spies may
be assigned their favorite good. This leads to 1 + (s− 1)η welfare, with

Pr
[
Di = D̂i

]
=

1

2
.

Again, there are other possible allocations, but they lead to less social welfare or
higher reconstruction probability. We say the four allocations above are optimal.

Let a1, a2 be the fractions of agreeing gadgets with the two optimal agreeing
allocations, and d1, d2 be the fractions of disagreeing gadgets with the two optimal
disagreeing allocations. Let t be the fraction of agreeing pairs. The following linear
program minimizes (1/k)E[RB(µ)] over all matchings µ achieving an α-approximate
maximum welfare matching for supply s.

LPs := minimize:
1

2
a1 + d1 +

1

2
d2

such that: a1 + a2 ≤ t
d1 + d2 ≤ 1− t
1

2
− λ ≤ t ≤ 1

2
+ λ

(1 + (s− 1)η)a1 + sηa2 + (1 + sη)d1 + (1 + (s− 1)η)d2

≥ t(1 + (s− 1)η) + (1− t)(1 + sη)− αn

k

The last constraint is the welfare requirement, the second to last constraint is from
conditioning on the number of agreeing gadgets, and the objective is (1/k)E[RB(µ)].
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Plugging in η = 1
4s , λ = 1/128, α = k

16ns and solving, we find

(a1, a2, d1, d2, t) =

(
65

128
, 0,

31

128
,

1

4
,

65

128

)
is a feasible solution for all s with objective α′ = 159/256. To show that this is
optimal, consider the dual problem:

DUALs := maximize: − ρ2 +

(
1

2
− λ
)
ρ3 −

(
1

2
+ λ

)
ρ4 +

(
1 + sη − αn

k

)
ρ5

such that: − ρ1 + (1 + (s− 1)η)ρ5 ≤
1

2
− ρ1 + sηρ5 ≤ 0

− ρ2 + (1 + sη)ρ5 ≤ 1

− ρ2 + (1 + (s− 1)η)ρ5 ≤
1

2
ρ1 − ρ2 + ρ3 − ρ4 + ηρ5 ≤ 0

We can directly verify that

(ρ1, ρ2, ρ3, ρ4, ρ5) =

(
5

2
s− 1,

5

2
s− 1, 0,

1

2
, 2s

)
is a dual feasible solution with objective α′ = 159/256.

We know thatM calculates an additive α-approximate maximum welfare match-
ing. While the allocations to each gadget may not be an optimal allocation, subopti-
mal allocations all have less social welfare and larger RB. So, we know the objective
of LPm is a lower bound for RB(M).

Thus, E[RB(M)] ≥ kα′ for any supply s. Since RB is the sum of k independent,
0/1 random variables, another Hoeffding bound yields

Pr [RB(M)/k ≥ α′ − λ′] ≥ 1− 2 exp(−2λ′2k).

Set λ′ = 1/256, and condition on this event. All together, any matching mechanism
M which finds a matching with weight at least OPT−αn failing with at most γ
probability gives an (ε, δ)-private mechanism mapping D to D̂ such that

1

k
· ‖D − D̂‖1 ≥ α′ − λ′ = 79/128.

with probability at least 1− γ − 2 exp(−2λ2k)− 2 exp(−2λ′2k).
For ε, δ < 0.1 and γ < 0.01, this contradicts Theorem 28 for large k. Note that

the failure probability and accuracy do not depend directly on s since λ, λ′, α′ are
constants. Hence

α� k

16ns
=

1

16s(s+ 1)

uniformly for all s, and s = Ω(
√

1/α) as desired.
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6. Conclusion and Open Problems. In this paper we gave algorithms to
accurately solve the private allocation problem when bidders have gross substitute
valuations, achieving joint differential privacy when the supply of each good is growing
at least logarithmically in the number of agents. Our results are qualitatively tight:
it is not possible to strengthen our approach to standard differential privacy (from
joint differential privacy), nor is it possible to solve even max-matching problems to
non-trivial accuracy under joint differential privacy with constant supply. Moreover,
it is not clear how to extend our approach to more general valuations: our algorithm
fundamentally relies on computing Walrasian equilibrium prices for the underlying
market, and such prices are not guaranteed to exist for valuation functions beyond
the gross substitutes class. This does not mean that the allocation problem cannot
be solved for more general valuation functions—rather, new ideas seem to be needed.

Along with Kearns et al. [2014] and other works in the joint privacy model, our
work adds compelling evidence that substantially more is possible under the relaxation
of joint differential privacy compared to the standard notion of differential privacy.
For both the allocation problem studied here, and the equilibrium computation prob-
lem studied in Kearns et al. [2014], non-trivial results are impossible under differential
privacy while strong results can be derived under joint-differential privacy. Character-
izing the power of joint differential privacy, compared to standard differential privacy,
is a fascinating direction for future work.

More specifically, in this paper we achieved joint differential privacy via the bill-
board lemma: we showed that the allocation given to each player can be derived as a
deterministic function only of 1) a differentially private message revealed to all play-
ers, and 2) their own private data. However, this isn’t necessarily the only way to
achieve joint differential privacy. How much further does the power of joint differential
privacy extend beyond the billboard model?

Appendix A. Privacy Analysis for Counters.
Chan et al. [2011] show that Counter(ε, T ) is ε-differentially private with respect

to single changes in the input stream, when the stream is generated non-adaptively.
For our application we require privacy to hold for a large number of streams whose
joint-sensitivity can nevertheless be bounded, and whose entries can be chosen adap-
tively. To show that Counter is also private in this setting (when ε is set appropri-
ately), we first introduce some differential privacy notions.

We will make use of a basic differentially private mechanism originally due to
Dwork et al. [2006].

Theorem 32 (Dwork et al. [2006]). For a function f : D → R, let

∆1 = max
D,D′∈D

|f(D)− f(D′)|
|{i : Di 6= D′i}|

denote the `1 sensitivity of f . Then the Laplace mechanism which on input D outputs
f(D) + Lap(∆1/ε) is ε-differentially private. Here, Lap(b) denotes a random variable
drawn from the Laplace distribution with parameter b.

A.1. Composition. An important property of differential privacy is that it de-
grades gracefully when private mechanisms are composed together, even adaptively.
We recall the definition of an adaptive composition experiment [Dwork et al., 2010b].

Definition 33 (Adaptive composition experiment).
• Fix a bit b ∈ {0, 1} and a class of mechanisms M.
• For t = 1 . . . T :
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– The adversary selects databases Dt,0, Dt,1 and a mechanism Mt ∈M.
– The adversary receives yt =Mt(D

t,b)

The output of an adaptive composition experiment is the view of the adversary over
the course of the experiment. The experiment is said to be ε-differentially private if

max
S⊆R

Pr[V 0 ∈ S]

Pr[V 1 ∈ S]
≤ exp(ε),

where V 0 is the view of the adversary with b = 0, V 1 is the view of the adversary
with b = 1, and R is the range of outputs.

Any algorithm that can be described as an instance of this adaptive composition
experiment for some adversary is said to be an instance of the class of mechanisms
M under adaptive T -fold composition. We now state a straightforward consequence
of a composition theorem by Dwork et al. [2010b].

Lemma 34 (Dwork et al. [2010b]). Let ∆1 ≥ 0. The class of ε
∆1

-private mech-
anisms satisfies ε-differential privacy under adaptive composition, if the adversary
always selects databases satisfying

T∑
t=1

∣∣Dt,0 −Dt,1
∣∣ ≤ ∆1.

In other words, the privacy parameter of each mechanism should be calibrated for the
total distance between the databases over the whole composition (the `1 sensitivity).

A.2. Binary mechanism. We reproduce the Binary mechanism here in order to
refer to its internal workings in our privacy proof. First, it is worth explaining the in-
tuition of the Counter. Given a bit stream σ : [T ]→ {0, 1}, the algorithm releases the

counts
∑t
i=1 σ(i) for each t by maintaining a set of partial sums

∑
[i, j] :=

∑j
t=i σ(t).

More precisely, each partial sum has the form Σ[2i + 1, 2i + 2i−1], corresponding to
powers of 2.

In this way, we can calculate the count
∑t
i=1 σ(i) by summing at most log t partial

sums: let i1 < i2 . . . < im be the indices of non-zero bits in the binary representation
of t, so that

t∑
i=1

σ(i) =
∑

[1, 2im ] +
∑

[2im + 1, 2im + 2im−1 ] + . . .+
∑

[t− 2i1 + 1, t].

Therefore, we can view the algorithm as releasing partial sums of different ranges at
each time step t and computing the counts is simply a post-processing of the partial
sums. The core algorithm is presented in Algorithm 4.

A.3. Counter Privacy Under Adaptive Composition. We can now show
that the prices released by our mechanism satisfy ε-differential privacy.

Theorem 10. The sequence of prices and counts of unsatisfied bidders released
by PMatch(α, ρ, ε) satisfies ε-differential privacy.

Proof. Chan et al. [2011] show this for a single sensitivity 1 counter for a non-
adaptively chosen stream. We here show the generalization to multiple counters run on
adaptively chosen streams with bounded `1 sensitivity, and bound the `1 sensitivity of
the set of streams produced by our algorithm. We will actually show that the sequence
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Algorithm 4 Counter(ε, T )

Input: A stream σ ∈ {0, 1}T
Output: B(t) as estimate for

∑t
i=1 σ(i) for each time t ∈ [T ]

for all t ∈ [T ] do

Express t =

log t∑
j=0

2jBinj(t).

Let i← minj{Binj(t) 6= 0}
ai ←

∑
j<i aj + σ(t), (ai =

∑
[t− 2i + 1, t])

for 0 ≤ j ≤ i− 1 do
Let aj ← 0 and âj ← 0

Let âj = aj + Lap(log(T )/ε)

Let B(t) =
∑

i:Bini(t)6=0

âi

of noisy partial sums released by Counter satisfy ε-differential privacy. This is only
stronger: the running counts are computed as a function of these noisy partial sums.

To do so, we first define an adversary for the adaptive composition experiment
(Definition 33) and then show that the view of this adversary is precisely the sequence
of noisy partial sums. The composition theorem (Lemma 34) will then show that the
sequence of noisy partial sums are differentially private with respect to a change in a
bidder’s valuation.

Let the two runs b = 0, 1 correspond to any two neighboring valuations (vi, v−i)
and (v′i, v−i) that differ only in bidder i’s valuation. We first analyze the view on all
of the counter(j) for j = 1, . . . , k.

The adversary will operate in phases. There are two kinds of phases, which we
label Pt and P ′t : one phase per step of the good counters, and one phase per step of
the halting condition counter. Both counters run from time 1 to nT , so there are 2nT
phases in total.

At each point in time, the adversary maintains histories {bi}, {b′i} of all the bids
prior to the current phase and histories {ei}, {e′i} of all prior reports to the halting
counter counter0, when bidder i has valuation vi, v

′
i respectively.

Let us consider the first kind of phase. One bidder bids per step of the counter,
so one bidder bids in each of these phases. Each step of the experiment the adversary
will observe a partial sum. Suppose the adversary is in phase Pt. Having observed
the previous partial sums, the adversary can simulate the action of the current bidder
q from the histories of previous bids by first computing the prices indicated by the
previous partial sums. The adversary will compute q’s bid when the valuations are
(vi, v−i), and when the valuations are (v′i, v−i). Call these two bids bt, b

′
t (which may

be ⊥ if q is already matched in one or both of the histories).
Note that for bidders q 6= i, it is always the case that bt = b′t. This holds by

induction: it is clearly true when no one has bid, and bidder q’s decision depends
only on her past bids, the prices, and her valuation. Since these are all independent
of bidder i’s valuation, bidder q behaves identically.

After the adversary calculates bt, b
′
t, the adversary simulates update and release

of the counters. More precisely, the adversary spends phase Pt requesting a set of
partial sums

Σ = {σjI | j ∈ [k], I ∈ St},
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where St ⊆ [1, nT ] is a set of intervals ending at t, corresponding to partial sums that
Counter releases at step t.

For each σjI ∈ Σ, D0, D1 ∈ {0, 1}I are defined by

D0
k =

{
1 : if bk = j
0 : otherwise

and similarly for D1, with bid history {b′i}. Informally, a database D for σjI encodes
whether a bidder bid on good j at every timestep in I. The adversary will define M
to sum the bits in the database and add noise Lap(1/ε0), an ε0-differentially private
operation. Once the partial sums for Pt are released, the adversary advances to the
next phase.

Now, suppose the adversary is in the second kind of phase, say P ′t . This cor-
responds to a step of the halting condition counter. We use exactly the same con-
struction as above: the adversary will request the partial sums corresponding to each
timestep. The adversary will simulate each bidder’s action by examining the history
of bids and prices. Now suppose the two runs differ in bidder i’s valuation. Following
the same analysis, the reports to this halting condition counter differ only in bidder
i’s reports.

With this definition, the view of the adversary on database {D0} and {D1} is
precisely the noisy partial sums when the valuations are (vi, v−i) and (v′i, v−i), re-
spectively. So, it suffices to show that these views have almost the same probability.

We apply Lemma 34 by bounding the distance between the databases for counter(1)
to counter(k). Note that the sequence of databases {D0}, {D1} chosen correspond to
streams of bids that differ only in bidder i’s bid, or streams of reports to counter(0)
that differ only in bidder i’s report. This is because the bid histories {bt}, {b′t} and
report histories {et}, {e′t} differ only on timesteps where i acts. Thus, it suffices to
focus on bidder i when bounding the distance between these databases.

Consider a single good j, and suppose cj of i’s bids on good j differ between the
histories. Each of bidder i’s bids on j show up in log(nT ) databases, so∑

|D0
j −D1

j | ≤ cj log nT,

where the sum is taken over all databases corresponding to good j. The same is
true for the halting condition counter: if there are c0 reports that differ between the
histories, then ∑

|D0
0 −D1

0| ≤ c0 log nT.

Since we know that a bidder can bid at most T times over T proposing rounds,
and will report at most T times, we have `1 sensitivity bounded by

∆1 ≤ c0 log nT +
∑
j

cj log nT ≤ 2T log nT.

By Lemma 34, setting

ε0 =
ε

2T log nT

suffices for ε-differential privacy, and this is precisely running each Counter with
privacy level ε′ = ε/2T .

Appendix B. Reconstruction Lower Bound. Here, we detail a basic
lower bound about differential privacy. Intuitively, it is impossible for an adversary
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to recover a database better than random guessing from observing the output of a
private mechanism. The theorem is folklore.

Theorem 28. Let mechanism M : {0, 1}n → {0, 1}n be (ε, δ)-differentially pri-
vate, and suppose that for all database D, with probability at least 1 − β, ‖M(D) −
D‖1 ≤ αn. Then,

α ≥ 1− eε + δ

(1 + eε)(1− β)
:= θ(ε, δ, β).

Proof. Fix a database D ∈ {0, 1}n and sample an index i uniformly at random
from [n]. Let D′ be a neighboring database of D that differs at the i-th bit. By
assumption, we have that with probability at least 1− β

‖M(D)−D‖1 ≤ αn, ‖M(D′)−D′‖1 ≤ αn.

Since i is chosen uniformly, we then have

Pr[M(D)i = Di] ≥ (1− α)(1− β), Pr[M(D′)i = D′i] ≥ (1− α)(1− β).

It follows that Pr[M(D′)i = Di] ≤ 1− (1−α)(1− β) because Di 6= D′i. By definition
of (ε, δ)-differential privacy, we get

(1−α)(1−β) ≤ Pr[M(D)i = Di] ≤ eε Pr[M(D′)i = Di]+δ ≤ eε(1−(1−α)(1−β))+δ.

Then we have

1− α ≤ eε + δ

(1 + eε)(1− β)

as desired.
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