
Zig-zag Sort: A Simple Deterministic Data-Oblivious
Sorting Algorithm Running in O(n log n) Time

Michael T. Goodrich

Department of Computer Science
University of California, Irvine

Irvine, CA 92697 USA
goodrich@acm.org

Abstract

We describe and analyze Zig-zag Sort—a deterministic data-oblivious sorting algorithm running in
O(n log n) time that is arguably simpler than previously known algorithms with similar properties, which
are based on the AKS sorting network. Because it is data-oblivious and deterministic, Zig-zag Sort can
be implemented as a simple O(n log n)-size sorting network, thereby providing a solution to an open
problem posed by Incerpi and Sedgewick in 1985. In addition, Zig-zag Sort is a variant of Shellsort,
and is, in fact, the first deterministic Shellsort variant running in O(n log n) time. The existence of
such an algorithm was posed as an open problem by Plaxton et al. in 1992 and also by Sedgewick
in 1996. More relevant for today, however, is the fact that the existence of a simple data-oblivious
deterministic sorting algorithm running in O(n log n) time simplifies the “inner-loop” computation in
several proposed oblivious-RAM simulation methods (which utilize AKS sorting networks), and this, in
turn, implies simplified mechanisms for privacy-preserving data outsourcing in several cloud computing
applications. We provide both constructive and non-constructive implementations of Zig-zag Sort, based
on the existence of a circuit known as an ε-halver, such that the constant factors in our constructive
implementations are orders of magnitude smaller than those for constructive variants of the AKS sorting
network, which are also based on the use of ε-halvers.

1 Introduction

An algorithm is data-oblivious if its sequence of possible memory accesses is independent of its input
values. Thus, a deterministic algorithm is data-oblivious if it makes the same sequence of memory accesses
for all its possible inputs of a given size, n, with the only variations being the outputs of atomic primitive
operations that are performed. For example, a data-oblivious sorting algorithm may make “black-box” use of
a compare-exchange operation, which is given an ordered pair of two input values, (x, y), and returns (x, y)
if x ≤ y and returns (y, x) otherwise. A sorting algorithm that uses only compare-exchange operations is
also known as a sorting network (e.g., see [4,17]), since it can be viewed as a pipelined sequence of compare-
exchange gates performed on pairs of n input wires, each of which is initially provided with an input item.
The study of data-oblivious sorting networks is classic in algorithm design, including such vintage methods
as bubble sort, Batcher’s odd-even and bitonic sorting networks [5], and the AKS sorting network [1,2] and
its variations [6, 18, 21, 22, 28]. In addition, Shellsort and all its variations (e.g., see [27]) are data-oblivious
sorting algorithms, which trace their origins to a classic 1959 paper by the algorithm’s namesake [29]. More
recently, examples of randomized data-oblivious sorting algorithms running in O(n log n) time that sort
with high probability include constructions by Goodrich [11, 12] and Leighton and Plaxton [19].

1

ar
X

iv
:1

40
3.

27
77

v1
 [

cs
.D

S]
 1

1
M

ar
 2

01
4

One frustrating feature of previous work on deterministic data-oblivious sorting is that all known algo-
rithms running inO(n log n) time [1,2,6,18,21,22,28], which are based on the AKS sorting network, are ar-
guably quite complicated, while many of the known algorithms running in ω(n log n) time are conceptually
simple. For instance, given an unsorted array, A, of n comparable items, the Shellsort paradigm is based on
the simple approach of making several passes up and/or down A, performing compare-exchange operations
between pairs of items stored at obliviously-defined index intervals. Typically, the compare-exchanges are
initially between pairs that are far apart in A and the distances between such pairs are gradually reduced
from one pass to the next until one is certain that A is sorted. In terms of asymptotic performance, the best
previous Shellsort variant is due to Pratt [26], which runs in Θ(n log2 n) time and is based on the elegant
idea of comparing pairs of items separated by intervals that determined by a monotonic sequence of the
products of powers of 2 and 3 less than n. There has subsequently been a considerable amount of work on
the Shellsort algorithm [29] since its publication over 50 years ago (e.g., see [27]), but none of this previous
work has led to a simple deterministic data-oblivious sorting algorithm running in O(n log n) time.

Independent of their historical appeal, data-oblivious algorithms are having a resurgence of interest of
late, due to their applications to privacy-preserving cloud computing. In such applications, a client, Alice,
outsources her data to an honest-but-curious server, Bob, who processes read/write requests for Alice. In
order to protect her privacy, Alice must both encrypt her data and obfuscate any data-dependent access
patterns for her data. Fortunately, she can achieve these two goals through any of a number of recent
results for simulating arbitrary RAM algorithms in a privacy-preserving manner in a cloud-computing
environment using data-oblivious sorting as an “inner-loop” computation (e.g., see [8–10,13,14]). A modern
challenge, however, is that these simulation results either use the AKS sorting network for this inner loop
or compromise on asymptotic performance. Thus, there is a modern motivation for a simple deterministic
data-oblivious sorting algorithm running in O(n log n) time.

In this paper, we provide a simple deterministic data-oblivious sorting algorithm running in O(n log n)
time, which we call Zig-zag Sort. This result solves the well-known (but admittedly vague) open problem
of designing a “simple” sorting network of size O(n log n), posed by Incerpi and Sedgewick [16]. Zig-zag
Sort is a variant of Shellsort, and is, in fact, the first deterministic Shellsort variant running in O(n log n)
time, which also solves open problems of Sedgewick [27] and Plaxton et al. [23, 24]. Zig-zag Sort differs
from previous deterministic Shellsort variants in that the increments used in each its passes are not fixed,
but instead vary according to ranges that are halved in each of dlog ne phases. As it turns out, such varying
increments are actually necessary to achieve an O(n log n) running time, since any Shellsort algorithm
with fixed increments and O(log n) phases must have a running time of at least Ω(n log2 n/(log log n)2),
and any such algorithm with monotonically decreasing increments must run in Ω(n log2 n/ log log n) time,
according to known lower bounds [7, 23–25].

In this paper, we concentrate primarily on conceptual simplicity, with the result that the constant factors
in our analysis of Zig-zag Sort are admittedly not small. These constant factors are nevertheless orders
of magnitude smaller than those for constructive versions of the AKS sorting network [1, 2] and its recent
optimization by Seiferas [28], and are on par with the best non-constructive variants of the AKS sorting
network [6, 21, 22]. Thus, for several oblivious-RAM simulation methods (e.g., see [8–10, 13, 14]), Zig-zag
Sort provides a conceptually simple alternative to the previous O(n log n)-time deterministic data-oblivious
sorting algorithms, which are all based on the AKS sorting network.1 The conceptual simplicity of Zig-zag
Sort is not matched by a simplicity in proving it is correct, however. Instead, its proof of correctness is based
on a fairly intricate analysis involving the tuning of several parameters with respect to a family of potential
functions. Thus, while the Zig-zag Sort algorithm can be described in a few lines of pseudocode, our proof
of correctness consumes much of this paper, with most of the details relegated to an appendix.

1We should stress, however, that Zig-zag Sort is not a parallel algorithm, like the AKS sorting network, which has O(logn)
depth. Even when Zig-zag Sort is implemented as a parallel sorting network, it still runs in O(n logn) time.

2

2 The Zig-zag Sort Algorithm

The Zig-zag Sort algorithm is based on repeated use of a procedure known as an ε-halver [1–3, 20], which
incidentally also forms the basis for the AKS sorting network and its variants.

• An ε-halver is a data-oblivious procedure that takes a pair, (A,B), of arrays of comparable items,
with each array being of size n, and performs a sequence of compare-exchanges, such that, for any
k ≤ n, at most εk of the largest k elements of A ∪ B will be in A and at most εk of the smallest k
elements of A ∪B will be in B, where ε ≥ 0.

In addition, there is a relaxation of this definition, which is known as an (ε, λ)-halver [3]:

• An (ε, λ)-halver satisfies the above definition for being an ε-halver for k ≤ λn, where 0 < λ < 1.

We introduce a new construct, which we call a (δ, λ)-attenuator, which takes this concept further:

• A (δ, λ)-attenuator is a data-oblivious procedure that takes a pair, (A,B), of arrays of comparable
items, with each array being of size n, such that k1 of the largest k elements of A∪B are in A and k2
of the smallest k elements of A ∪ B are in B, and performs a sequence of compare-exchanges such
that at most δk1 of the largest k elements will be in A and at most δk2 of the smallest k elements will
be in B, with k ≤ λn, 0 < λ < 1, and δ ≥ 0.

We give a pseudo-code description of Zig-zag Sort in Figure 1. The name “Zig-zag Sort” is derived
from two places that involve procedures that could be called “zig-zags.” The first is in the computations
performed in the outer loops, where we make a Shellsort-style pass up a partitioning of the input array
into subarrays (in what we call the “outer zig” phase) that we follow with a Shellsort-style pass down the
sequence of subarrays (in what we call the “outer zag” phase). The second place is inside each such loop,
where we preface the set of compare-exchanges for each pair of consecutive subarrays by first swapping the
elements in the two subarrays, in a step we call the “inner zig-zag” step. Of course, such a swapping inverts
the ordering of the elements in these two subarrays, which were presumably put into nearly sorted order in
the previous iteration. Nevertheless, in spite of the counter-intuitive nature of this inner zig-zag step, we
show in the analysis section below that this step is, in fact, quite useful.

Algorithm ZigZagSort(A)

1: A
(0)
1 ← A

2: for j ← 1 to k do
3: for i← 1 to 2j−1 do {splitting step}
4: Partition A(j−1)

i into halves, defining subarrays, A(j)
2i−1 and A(j)

2i , of size n/2j each

5: Reduce(A
(j)
2i−1, A

(j)
2i)

6: for i← 1 to 2j − 1 do {outer zig}
7: Swap the items in A(j)

i and A(j)
i+1 {inner zig-zag}

8: Reduce(A
(j)
i , A

(j)
i+1)

9: for i← 2j downto 2 do {outer zag}
10: Swap the items in A(j)

i and A(j)
i−1 {inner zig-zag}

11: Reduce(A
(j)
i−1, A

(j)
i)

Figure 1: Zig-zag Sort (where n = 2k). The algorithm, Reduce(A,B), is simultaneously an ε-halver, a
(β, 5/6)-halver, and a (δ, 5/6)-attenuator, for appropriate values of ε, δ, and β. Assuming that Reduce runs
in O(n) time, Zig-zag Sort clearly runs in O(n log n) time.

We illustrate, in Figure 2, how an outer zig phase would look as a sorting network.

3

Reduce	

Reduce	

Reduce	

Figure 2: An outer zig phase drawn as a sorting network, for j = 2 and n = 16. The inner zig-zag step is
shown inside a dashed rounded rectangle. Note: the inner zig-zag step could alternatively be implemented
as a compare-exchange of each element in the lower half with a unique element of the upper half; we
implement it as a swap, however, to reduce the total number of comparisons.

3 Halvers and Attenuators

In this section, we give the details for Reduce, which is simultaneously an ε-halver, (β, 5/6)-halver, and
(δ, 5/6)-attenuator, where the parameters, ε, β, and δ, are functions of a single input parameter, α > 0,
determined in the analysis section (§4) of this paper. In particular, let us assume that we have a linear-time
α-halver procedure, Halver, which operates on a pair of equal-sized arrays whose size is a power of 2. There
are several published results for constructing such procedures (e.g., see [15, 30]), so we assume the use of
one of these algorithms. The algorithm, Reduce, involves a call to this Halver procedure and then to a
recursive algorithm, Attenuate, which makes additional calls to Halver. See Figure 3.

4

Algorithm Attenuate(A,B):
1: if n ≤ 8 then
2: Sort A ∪B and return
3: Partition A into halves, defining A(1)

1 and A(1)
2 , and partition B into halves, defining B(1)

1 and B(1)
2

4: Halver(A(1)
1 , A

(1)
2)

5: Halver(B(1)
1 , B

(1)
2)

6: Halver(A(1)
2 , B

(1)
1)

7: Attenuate(A
(1)
2 , B

(1)
1) {first recursive call}

8: Partition A(1)
2 into halves, defining A(2)

1 and A(2)
2 , and partition B(1)

1 into halves, defining B(2)
1 and B(2)

2

9: Halver(A(2)
1 , A

(2)
2)

10: Halver(B(2)
1 , B

(2)
2)

11: Halver(A(2)
2 , B

(2)
1)

12: Attenuate(A
(2)
2 , B

(2)
1) {second recursive call}

Algorithm Reduce(A,B):
1: if n ≤ 8 then
2: Sort A ∪B and return
3: Halver(A,B)
4: Attenuate(A,B)

Figure 3: The Attenuate and Reduce algorithms. We assume the existence of an O(n)-time data-
oblivious procedure, Halver(C,D), which performs an α-halver operation on two subarrays, C and D,
each of the same power-of-2 size. We also use a partition operation, which is just a way of viewing a
subarray, E, as two subarrays, F and G, where F is the first half of E and G is the second half of E.

We illustrate the data flow for the Attenuate algorithm in Figure 4.

4 An Analysis of Zig-Zag Sort

Modulo the construction of a linear-time α-halver procedure, Halver, which we discuss in more detail in
Section 5, the above discussion is a complete description of the Zig-zag Sort algorithm. Note, therefore,
that the Reduce algorithm runs in O(n) time, since the running time for the general case of the recursive
algorithm, Attenuate, can be characterized by the recurrence equation,

T (n) = T (n/2) + T (n/4) + bn,

for some constant b ≥ 1. In terms of the running time of Zig-zag Sort, then, it should be clear from the above
description that the Zig-zag Sort algorithm runs in O(n log n) time, since it performs O(log n) iterations,
with each iteration requiring O(n) time. Proving that Zig-zag Sort is correct is less obvious, however, and
doing so consumes the bulk of the remainder of this paper.

4.1 The 0-1 Principle

As is common in the analysis of sorting networks (e.g., see [4, 17]), our proof of correctness makes use of a
well-known concept known as the 0-1 principle.

5

B1
(2)

B2
(2)

B2
(1)

A2
(2)

A1
(2)

A1
(1)

A2
(1)

B1
(1)

B1
(2)

A2
(2)

B1
(2)

A2
(2)

B1
(1)

A2
(1)

B1
(1)

A2
(1)

B2
(1)

B1
(1)

A2
(1)

A1
(1)

Halver

Halver

Halver Attenuate

B2
(2)

B1
(2)

A2
(2)

A1
(2)

Halver

Halver

Halver Attenuate

Figure 4: Data flow in the Attenuate algorithm.

Theorem 1 (The 0-1 Principle [4, 17]). A deterministic data-oblivious (comparison-based) sorting algo-
rithm correctly sorts any input array if and only if it correctly sorts a binary array of 0’s and 1’s.

Thus, for the remainder of our proof of correctness, let us assume we are operating on items whose keys
are either 0 or 1. For instance, we use this principle in the following lemma, which we use repeatedly in our
analysis, since there are several points when we reason about the effects of an ε-halver in contexts beyond
its normal limits.

Lemma 2 (Overflow Lemma). Suppose an ε-halver is applied to two arrays, A and B, of size n each, and
let a parameter, k > n, be given. Then at most εn+ (1− ε) · (k−n) of the k largest elements in A∪B will
be in A and at most εn+ (1− ε) · (k − n) of the k smallest elements in A ∪B will be in B.

Proof: Let us focus on the bound for the k largest elements, as the argument for the k smallest is similar.
By the 0-1 principle, suppose A and B are binary arrays, and there are k 1’s and 2n− k 0’s in A∪B. Since
2n− k < n, in this case, after performing an ε-halver operation, at most ε(2n− k) of the 0’s will remain in
B. That is, the number of 1’s in B is at least n− ε(2n− k), which implies that the number of 1’s in A is at
most

k − (n− ε(2n− k)) = k − n+ 2εn− εk
= εn+ k − n+ εn− εk
= εn+ (1− ε) · (k − n).

Because of the 0-1 principle, we can characterize the distance of a subarray from being sorted by
counting the number of 0’s and 1’s it contains. Specifically, we define the dirtiness, D(A

(j)
i), of a subarray,

A
(j)
i , to be the absolute value of the difference between the number of 1’s currently in A(j)

i and the number
that should be in A(j)

i in a final sorting of A. Thus, D(A
(j)
i) counts the number of 1’s in a subarray that

should be all 0’s and the number of 0’s in a subarray that should be all 1’s. Any subarray of a sorted array
would have a dirtiness of 0.

6

4.2 Establishing the Correctness of the Reduce Method

Since the Reduce algorithm comprises the main component of the Zig-zag Sort algorithm, let us begin our
detailed discussion of the correctness of Zig-zag Sort by establishing essential properties of this algorithm.

Theorem 3. Given an α-halver procedure, Halver, for α ≤ 1/6, which operates on arrays whose size, n,
is a power of 2, then Reduce is a (δ, 5/6)-attenuator, for δ ≥ α+ αδ + δ2.

Proof: W.l.o.g., let us analyze the number of 1’s that end up in A; the arguments bounding the number of
0’s that end up in B are similar. Let k ≤ (5/6)n denote the number of 1’s in A ∪ B. Also, just after the
first call to Halver in Reduce, let k1 denote the number of 1’s in A and let k2 denote the number in B, so
k = k1 + k2. Moreover, because we preface our call to Attenuate in Reduce with the above-mentioned
α-halver operation, k1 ≤ αk ≤ (5α/6)n. Also, note that if we let k′1 denote the number of 1’s in A before
we perform this first α-halver operation, then k1 ≤ k′1, since any α-halver operation with A as the first
argument can only decrease the number of 1’s in A. Note that if n ≤ 8, then we satisfy the claimed bound,
since we reduce the number of 1’s in A to 0 in this case.

Suppose, inductively, that the recursive calls to Attenuate perform (δ, 5/6)-attenuator operations, under
the assumption that the number of 1’s passed to the first recursive call in Attenuate is at most (5/6)n/2
and that there are at most (5/6)n/4 passed to the second. If α ≤ 1/6, then the results of lines 4 and 6
give us D(A

(1)
1) ≤ αk1 and D(A

(1)
2) ≤ k1. Thus, inductively, after the first call to Attenuate, we have

D(A
(1)
2) ≤ δk1. The results of lines 9 and 11 give us D(A

(2)
1) ≤ αδk1 and D(A

(2)
2) ≤ δk1. Thus,

inductively, after the second call to Attenuate, we have D(A
(2)
2) ≤ δ2k1. Therefore, if we can show that

the number of 1’s passed to each call of Attenuate is 5/6 of the size of the input subarrays, then we will
establish the lemma, provided that

δ ≥ α+ αδ + δ2.

To bound the number of 1’s passed to each recursive call to Attenuate, we establish the following claim.
Claim: The number of 1’s passed to the first recursive call in Attenuate is at most 5n/12.
Since the structure of the Attenuate algorithm involves the same kinds of α-halver operations from the

first recursive call to the second, this will also imply that the number of 1’s passed to the second recursive call
is at most 5n/24, provided it holds for the first call. To keep the constant factors reasonable, we distinguish
three cases to prove the above claim:

1. Suppose k2 ≤ n/2. Since k1 ≤ αk, in this case, k ≤ n/(2 − 2α), since k = k1 + k2 ≤ αk + n/2.
Here, the number of 1’s passed to the recursive call is at most 2αk + αn/2, since we start with
k1 ≤ αk and k2 ≤ k, and Halver(B(1)

1 , B
(1)
2) reduces the number of 1’s in B(1)

1 in this case to be at
most αk + αn/2, by Lemma 2. Thus, since, in this case,

2αk + αn/2 ≤ αn/(1− α) + αn/2,

the number of 1’s passed to the recursive call is at most 5n/12 if α ≤ 1/4.5.

2. Suppose n/2 < k2 ≤ 2n/3. Since k1 ≤ αk, in this case, k ≤ 2n/(3 − 3α), since k = k1 + k2 ≤
αk+ 2n/3. Here, the number of 0’s in B is n−k2 < n/2; hence, the number of 0’s in B(1)

2 is at most
α(n− k2), which means that the number of 1’s in B(1)

2 is at least n/2 − α(n− k2), and this, in turn,
implies that the number of 1’s in B(1)

1 is at most k2−n/2 +α(n−k2). Thus, the number of 1’s in the
first recursive call is at most k−n/2 +α(n− k2). That is, it has at most 2n/(3− 3α)−n/2 +αn/2
1’s in total, which is at most 5n/12 if α ≤ 1/6.

7

3. Suppose 2n/3 < k2 ≤ 5n/6. Of course, we also know that k ≤ 5n/6 in this case. Here, the number
of 0’s in B is n− k2 < n/3; hence, the number of 0’s in B(1)

2 is at most α(n− k2), which means that
the number of 1’s in B(1)

2 is at least n/2 − α(n − k2), and this, in turn, implies that the number of
1’s in B(1)

1 is at most k2 − n/2 + α(n− k2). Thus, the number of ones in the first recursive call is at
most k − n/2 + α(n− k2). That is, it has at most 5n/6− n/2 + αn/3 1’s in total, which is at most
5n/12 if α ≤ 1/4.

Thus, we have established the claim, which in turn, establishes that Reduce is a (δ, 5/6)-attenuator, for
δ ≥ α+ αδ + δ2, assuming α ≤ 1/6, since k1 ≤ k′1.

So, for example, using a (1/15)-halver as the Halver procedure implies that Reduce is a (1/12, 5/6)-
attenuator. In addition, we have the following.

Theorem 4. Given an α-halver procedure, Halver, for α ≤ 1/6, which operates on arrays whose size, n,
is a power of 2, then the Reduce algorithm is an (αδ, 5/6)-halver, for δ ≥ α+ αδ + δ2.

Proof: Let us analyze the number of 1’s that may remain in the first array, A, in a call to Reduce(A,B),
as the method for bounding the number of 0’s in B is similar. After the first call to the Halver procedure,
the number of 1’s in A is at most αk, where k ≤ (5/6)n is the number of 1’s in A ∪ B. Then, since the
Attenuate algorithm prefaced by an α-halver is a (δ, 5/6)-attenuator, by Theorem 3, it will further reduce
the number of 1’s in A to be at most αδk, where δ ≥ α+αδ+ δ2. Thus, this process is an (αδ, 5/6)-halver.

So, for example, if we construct the Halver procedure to be a (1/15)-halver, then Reduce is a (1/180, 5/6)-
halver, by Theorems 3 and 4. In addition, we have the following.

Theorem 5. Given an α-halver procedure, Halver, for α ≤ 1/8, which operates on arrays whose size, n,
is a power of 2, then, when prefaced by an α-halver operation, the Attenuate algorithm is an ε-halver for
ε = α2(dlog(1/α)e+ 3).

Proof: Manos [20] provides an algorithm for leveraging an α-halver to construct an ε-halver, for

ε = α2(dlog(1/α)e+ 3),

and every call to an α-halver made in the algorithm by Manos is also made in Reduce. In addition, all
the other calls to the α-halver procedure made in Reduce either keep the number of 1’s in A unchanged or
possibly make it even smaller, since they involve compare-exchanges between subarrays of A and B or they
involve compare-exchanges done after the same ones as in Manos’ algorithm (and the compare-exchanges
in the Reduce algorithm never involve zig-zag swaps). Thus, the bound derived by Manos [20] for his
algorithm also applies to Reduce.

So, for example, if we take α = 1/15, then Reduce is a (1/32)-halver.

4.3 The Correctness of the Main Zig-zag Sort Algorithm

The main theorem that establishes the correctness of the Zig-zag Sort algorithm, given in Figure 1, is the
following.

Theorem 6. If it is implemented using a linear-time α-halver, Halver, for α ≤ 1/15, Zig-zag Sort correctly
sorts an array of n comparable items in O(n log n) time.

8

The details of the proof of Theorem 6 are given in the appendix, but let us nevertheless provide a sketch
of the main ideas behind the proof here.

Recall that in each iteration, j, of Zig-zag Sort, we divide the array, A, into 2j subarrays, A(j)
1 , . . . , A

(j)

2j
.

Applying the 0-1 principle, let us assume that A stores some number, K, of 0’s and n −K 1’s; hence, in a
final sorting of A, a subarray, A(j)

i , should contain all 0’s if i < bK/2jc and all 1’s if i > dK/2je. Without
loss of generality, let us assume 0 < K < n, and let us define the index K to be the cross-over point in A,
so that in a final sorting of A, we should have A[K] = 0 and A[K + 1] = 1, by the 0-1 principle.

The overall strategy of our proof of correctness is to define a set of potential functions upper-bounding
the dirtiness of the subarrays in iteration j while satisfying the following constraints:

1. The potential for any subarray, other than the one containing the cross-over point, should be less than
its size, with the potential of any subarray being a function of its distance from the cross-over point.

2. The potential for any subarray should be reduced in an iteration of Zig-zag Sort by an amount
sufficient for its two “children” subarrays to satisfy their dirtiness potentials for the next iteration.

3. The total potential of all subarrays that should contain only 0’s (respectively, 1’s) should be bounded
by the size of a single subarray.

The first constraint ensures that A will be sorted when we are done, since the size of each subarray at the
end is 1. The second constraint is needed in order to maintain bounds on the potential functions from one
iteration to the next. And the third constraint is needed in order to argue that the dirtiness inA is concentrated
around the cross-over point.

Defining a set of potential functions that satisfy these constraints turned out to be the main challenge
of our correctness proof, and there are several candidates that don’t seem to work. For example, dirtiness
bounds as an exponential function of distance from the cross-over (in terms of the number of subarrays) seem
inappropriate, since the capacity of the Reduce algorithm to move elements is halved with each iteration,
while distance from the cross-over point is doubled, which limits our ability to reason about how much
dirtiness is removed in an outer zig or zag phase. Alternatively, dirtiness bounds that are linear functions of
distance from the cross-over seem to leave too much dirtiness in “outer” subarrays, thereby compromising
arguments that A will become sorted after dlog ne iterations. The particular set of potential functions that
we use in our proof of correctness, instead, can be seen as a compromise between these two approaches.

So as to prepare for defining the particular set of dirtiness invariants for iteration j that we will show
inductively holds after the splitting step in each iteration j, let us introduce a few additional definitions.
Define the uncertainty interval to be the set of indices for cells in A with indices in the interval,

[K − nj/2, K + 1 + nj/2],

where nj = n/2j is the size of each subarray,A(j)
i , andK is the cross-over point inA. Note that this implies

that there are exactly two subarrays that intersect the uncertainty interval in iteration j of Zig-zag Sort. In
addition, for any subarray, A(j)

i , define di,j to be the number of iterations since this subarray has had an
ancestor that was intersecting the uncertainty interval for that level. Also, let m0 denote the smallest index,
i, such that A(j)

i has a cell in the uncertainty interval and let m1 denote the largest index, i, such that A(j)
i

has a cell in the uncertainty interval (we omit an implied dependence on j here). Note that these indices are
defined for the sake of simplifying our notation, since m1 = m0 + 1.

Then, given that the Reduce algorithm is simultaneously an ε-halver, a (β, 5/6)-halver, and a (δ, 5/6)-
attenuator, with the parameters, ε, β, and δ, depending on α, the parameter for the α-halver, Halver, as
discussed in the previous section, our potential functions and dirtiness invariants are as follows:

9

1. After the splitting step, for any subarray, A(j)
i , for i ≤ m0 − 1 or i ≥ m1 + 1,

D(A
(j)
i) ≤ 4di,jδdi,j−1βnj .

2. If the cross-over point, K, indexes a cell in A(j)
m0 , then D(A

(j)
m1) ≤ nj/6.

3. If the cross-over point, K, indexes a cell in A(j)
m1 , then D(A

(j)
m0) ≤ nj/6.

Our proof of correctness, then, is based on arguing how the outer-zig and outer-zag phases of Zig-zag
Sort reduce the dirtiness of each subarray sufficiently to allow the dirtiness invariants to hold for the next
iteration. Intuitively, the main idea of the arguments is to show that dirtiness will continue to be concentrated
near the cross-over point, because the outer-zig phase “pushes” 1’s out of subarrays that should contain all
0’s and the outer-zag phase pushes 0’s out of subarrays that should contain all 1’s. This pushing intuition
also provides the motivation behind the inner zig-zag step, since it provides a way to “shovel” 1’s right in
the outer-zig phase and shovel 0’s left in the outer-zag phase, where we view the subarrays of A as being
indexed left-to-right. One complication in our proof of correctness is that this “shoveling” introduces some
error terms in our bounds for dirtiness during the outer-zig and outer-zag phases, so some care is needed to
argue that these error terms do not overwhelm our desired invariants. The details are given in the appendix.

5 Some Words About Constant Factors

In this section, we discuss the constant factors in the running time of Zig-zag Sort relative to the AKS sorting
network and its variants.

An essential building block for Zig-zag Sort is the existence of α-halvers for moderately small constant
values of α, with α ≤ 1/15 being sufficient for correctness, based on the analysis. Suppose such an
algorithm uses cn compare-exchange operations, for two subarrays whose combined size is n. Then the
number of compare-exchange operations performed by the Attenuate algorithm is characterized by the
recurrence,

T (n) = T (n/2) + T (n/4) + 2.25cn,

where n is the total combined size of the arrays, A and B; hence, T (n) = 9cn. Thus, the running time,
in terms of compare-exchange operations, for Reduce, is 10cn, which implies that the running time for
Zig-zag Sort, in terms of compare-exchange operations, is at most 50cn log n.

An algorithm for performing a data-oblivious α-halver operation running in O(n) time can be built
from constructions for bipartite (γ, t)-expander graphs (e.g., see [1, 2, 15, 30]), where such a graph, G =
(X,Y,E), has the property that any subset S ⊂ X of size at most t|X| has at least γ|S| neighbors in
Y , and similarly for going from Y to X . Thus, if set A = X and B = Y and we use the edges for
compare-exchange operations, then we can build an α-halver from a ((1 − α)/α, α)-expander graph with
|X| = |Y | = n. Also, notice that such a bipartite graph, G′, can be constructed from a non-bipartite
expander graph, G, on n vertices, simply by making two copies, v′ and v′′, in G′, for every vertex v in G,
and replacing each edge (v, w) in G with the edge (v′, w′′). Note, in addition, that G and G′ have the same
number of edges.

The original AKS sorting network [1, 2] is based on the use of ε-halvers for very small constant values
of ε and is estimated to have a depth of roughly 2100 log n, meaning that the running time for simulating it
sequentially would run in roughly 299n log n time in terms of compare-exchange operations (since imple-
menting an ε-halver sequentially halves the constant factor in the depth, given that every compare-exchange
is between two items). Seiferas [28] describes an improved scheme for building a variant of the AKS sorting
network to have 6.05 log n iterations, each seven (1/402.15)-halvers deep.

10

By several known results (e.g., see [15, 30]), one can construct an expander graph, as above, which can
be used as an ε-halver, using a k-regular graph with

k =
2(1− ε)(1− ε+

√
1− 2ε)

ε2
.

So, for example, if ε = 1/15, then we can construct an ε-halver with cn edges, where c = 392. Using
this construction results in a running time for Zig-zag Sort of 19 600n log n, in terms of compare-exchange
operations. For the sorting network of Seiferas [28], on the other hand, using such an ε-halver construction,
one can design such a (1/402.15)-halver to have degree k = 642 883; hence, the running time of the
resulting sorting algorithm would have an upper bound of 13 613 047n log n, in terms of compare-exchange
operations. Therefore, this constructive version of Zig-zag Sort has an upper bound that is three orders of
magnitude smaller than this bound for an optimized constructive version of the AKS sorting network.

There are also non-constructive results for proving the existence of ε-halvers and sorting networks.
Paterson [21] shows non-constructively that k-regular ε-halvers exist with

k = d(2 log ε)/ log(1− ε) + 2/ε− 1e.

So, for example, there is a (1/15)-halver with 54n edges, which would imply a running time of 2700n log n
for Zig-zag Sort. Using the above existence bound for the (1/402.15)-halvers used in the network of
Seiferas [28], on the other hand, results in a running time of 119 025n log n. Alternatively, Paterson [21]
shows non-constructively that there exists a sorting network of depth roughly 6100 log n and Chvátal [6]
shows that there exists a sorting network of depth 1830 log n, for n ≥ 278. Therefore, a non-constructive
version of Zig-zag Sort is competitive with these non-constructive versions of the AKS sorting network,
while also being simpler.

6 Conclusion

We have given a simple deterministic data-oblivious sorting algorithm, Zig-zag Sort, which is a variant of
Shellsort running in O(n log n) time. This solves open problems stated by Incerpi and Sedgewick [16],
Sedgewick [27], and Plaxton et al. [23,24]. Zig-zag Sort provides a competitive sequential alternative to the
AKS sorting network, particularly for applications where an explicit construction of a data-oblivious sorting
algorithm is desired, such as in applications to oblivious RAM simulations (e.g., see [8–10, 13, 14]).

Acknowledgments

This research was supported in part by the National Science Foundation under grants 1011840, 1217322,
0916181 and 1228639, and by the Office of Naval Research under MURI grant N00014-08-1-1015. We
would like to thank Daniel Hirschberg for several helpful comments regarding an earlier version of this
paper.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In 15th ACM Symposium on
Theory of Computing (STOC), pages 1–9. ACM, 1983.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n parallel steps. Combinatorica, 3(1):1–19,
1983.

11

[3] M. Ajtai, J. Komlós, and E. Szemerédi. Halvers and expanders. In 33rd IEEE Symp. on Foundations
of Computer Science (FOCS), pages 686–692, 1992.

[4] S. W. Al-Haj Baddar and K. E. Batcher. Designing Sorting Networks. Springer, 2011.

[5] K. E. Batcher. Sorting networks and their applications. In Proc. of the Spring Joint Computer
Conference (AFIPS), pages 307–314. ACM, 1968.

[6] V. Chvátal. Lecture notes on the new AKS sorting network. Technical report, Rutgers Univ., 1992.
ftp://ftp.cs.rutgers.edu/pub/technical-reports/dcs-tr-294.ps.Z.

[7] R. Cypher. A lower bound on the size of Shellsort sorting networks. SIAM Journal on Computing,
22(1):62–71, 1993.

[8] I. Damgøard, S. Meldgaard, and J. Nielsen. Perfectly secure oblivious RAM without random oracles.
In Y. Ishai, editor, Theory of Cryptography (CRYPTO), volume 6597 of LNCS, pages 144–163.
Springer, 2011.

[9] D. Eppstein, M. T. Goodrich, and R. Tamassia. Privacy-preserving data-oblivious geometric
algorithms for geographic data. In 18th SIGSPATIAL Int. Conf. on Advances in Geographic
Information Systems (ACM GIS), pages 13–22, 2010.

[10] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. J. ACM,
43(3):431–473, May 1996.

[11] M. T. Goodrich. Randomized shellsort: A simple data-oblivious sorting algorithm. J. ACM,
58(6):27:1–27:26, Dec. 2011.

[12] M. T. Goodrich. Spin-the-bottle sort and annealing sort: Oblivious sorting via round-robin random
comparisons. Algorithmica, pages 1–24, 2012.

[13] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced data via oblivious
RAM simulation. In L. Aceto, M. Henzinger, and J. Sgall, editors, Int. Conf. on Automata, Languages
and Programming (ICALP), volume 6756 of LNCS, pages 576–587. Springer, 2011.

[14] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-preserving group data
access via stateless oblivious RAM simulation. In 23rd ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 157–167, 2012.

[15] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull. Amer. Math.
Soc., 43:439–561, 2006.

[16] J. Incerpi and R. Sedgewick. Improved upper bounds on Shellsort. Journal of Computer and System
Sciences, 31(2):210 – 224, 1985.

[17] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley,
second edition, 1998.

[18] T. Leighton. Tight bounds on the complexity of parallel sorting. In 16th ACM Symposium on Theory
of Computing (STOC), pages 71–80. ACM, 1984.

[19] T. Leighton and C. Plaxton. Hypercubic sorting networks. SIAM Journal on Computing, 27(1):1–47,
1998.

12

[20] H. Manos. Construction of halvers. Information Processing Letters, 69(6):303–307, 1999.

[21] M. S. Paterson. Improved sorting networks with O(logN) depth. Algorithmica, 5(1-4):75–92, 1990.

[22] N. Pippenger. Communication networks. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science (vol. A), pages 805–833. MIT Press, 1990.

[23] C. Plaxton, B. Poonen, and T. Suel. Improved lower bounds for Shellsort. In 33rd Symp. on
Foundations of Computer Science (FOCS), pages 226–235, 1992.

[24] C. Plaxton and T. Suel. Lower bounds for Shellsort. Journal of Algorithms, 23(2):221–240, 1997.

[25] B. Poonen. The worst case in Shellsort and related algorithms. Journal of Algorithms,
15(1):101–124, 1993.

[26] V. R. Pratt. Shellsort and sorting networks. PhD thesis, Stanford University, Stanford, CA, USA,
1972. AAI7216773.

[27] R. Sedgewick. Analysis of Shellsort and related algorithms. In J. Diaz and M. Serna, editors,
European Symp. on Algorithms (ESA), volume 1136 of LNCS, pages 1–11. Springer, 1996.

[28] J. Seiferas. Sorting networks of logarithmic depth, further simplified. Algorithmica, 53(3):374–384,
2009.

[29] D. L. Shell. A high-speed sorting procedure. Comm. ACM, 2(7):30–32, July 1959.

[30] H. Xie. Studies on sorting networks and expanders, 1998. Thesis, Ohio University, retrieved from
https://etd.ohiolink.edu/.

13

A The Proof of Theorem 6, Establishing the Correctness of Zig-zag Sort

As outlined above, our proof of Theorem 6, establishing the correctness of Zig-zag Sort, is based on our
characterizing the dirtiness invariant for the subarrays in A, from one iteration of Zig-zag Sort to the next.
Let us therefore assume we have satisfied the dirtiness invariants for a given iteration and let us now consider
how the compare-exchange operations in a given iteration impact the dirtiness bounds for each subarray. We
establish such bounds by considering how the Reduce algorithm impacts various subarrays in the outer-
zig and outer-zag steps, according to the order in which Reduce is called and the distance of the different
subarrays from the cross-over point.

Recall the potential functions for our dirtiness invariants, with nj = n/2j :

1. After the splitting step, for any subarray, A(j)
i , for i ≤ m0 − 1 or i ≥ m1 + 1,

D(A
(j)
i) ≤ 4di,jδdi,j−1βnj .

2. If the cross-over point, K, indexes a cell in A(j)
m0 , then

D(A(j)
m1

) ≤ nj/6.

3. If the cross-over point, K, indexes a cell in A(j)
m1 , then

D(A(j)
m0

) ≤ nj/6.

One immediate consequence of these bounds is the following.

Lemma 7 (Concentration of Dirtiness Lemma). The total dirtiness of all the subarrays from the subarray,
A

(j)
1 , to the subarray A(j)

m0−1, or from the subarray, A(j)
m1+1, to the subarray A(j)

2j
, after the splitting step, is

at most
8βnj

1− 8δ
,

provided δ < 1/8.

Proof: Note that, since we divide each subarray in two in each iteration of Zig-zag Sort, there are 2k

subarrays, A(j)
i , with depth k = di,j . Thus, by the dirtiness invariants, the total dirtiness of all the subarrays

from the first subarray, A(j)
1 , to the subarray A(j)

i+1, after the splitting step, for j < m0, is at most

j∑
k=1

2k4kδk−1βnj < 8βnj

∞∑
k=0

(8δ)k

=
8βnj

1− 8δ
,

provided δ < 1/8. A similar argument establishes the bound for the total dirtiness from the subarray,
A

(j)
m1+1, to the subarray A(j)

2j
.

For any subarray, B, of A, define
−→
D(B) to be the dirtiness of B after the outer-zig step and

←−
D(B) to

be the dirtiness of B after the outer-zag step. Using this notation, we begin our analysis with the following
lemma, which establishes a dirtiness bound for subarrays far to the left of the cross-over point.

14

Lemma 8 (Low-side Zig Lemma). Suppose the dirtiness invariants are satisfied after the splitting step in
iteration j. Then, for i ≤ m0 − 2, after the first (outer zig) phase in iteration j,

−→
D(A

(j)
i) ≤ δD(A

(j)
i+1) ≤ 4di+1,jδdi+1,jβnj ,

provided δ ≤ 1/12 and β ≤ 1/180.

Proof: Suppose i ≤ m0 − 2. Assuming that the dirtiness invariants are satisfied after the splitting step in
iteration j, then, prior to the swaps done in the inner zig-zag step for the subarrays A(j)

i and A(j)
i+1, we have

D(A
(j)
i+1) ≤ 4di+1,jδdi+1,j−1βnj .

In addition, by Lemma 7, the total dirtiness of all the subarrays from the first subarray, A(j)
1 , to the subarray

A
(j)
i , after the splitting step, is at most

8βnj
1− 8δ

≤ nj
6
,

provided δ ≤ 1/12 and β ≤ 1/180. Moreover, the cumulative way that we process the subarrays from the
first subarray to A(j)

i implies that the total amount of dirtiness brought rightward from these subarrays to
A

(j)
i is at most the above value. Therefore, after the swap of A(j)

i and A(j)
i+1 in the inner zig-zag step, the

(δ, 5/6)-attenuator, Reduce, will be effective to reduce the dirtiness for A(j)
i so that

−→
D(A

(j)
i) ≤ δD(A

(j)
i+1) ≤ 4di+1,jδdi+1,jβnj .

As discussed at a high level earlier, the above proof provides a motivation for the inner zig-zag step,
which might at first seem counter-intuitive, since it swaps many pairs of items that are likely to be in the
correct order already. The reason we perform the inner zig-zag step, though, is that, as we reasoned in the
above proof, it provides a way to “shovel” relatively large amounts of dirtiness, while reducing the dirtiness
of all the subarrays along the way, starting with the first subarray in A. In addition to the above Low-side
Zig Lemma, we have the following for a subarray close to the uncertainty interval.

Lemma 9 (Left-neighbor Zig Lemma). Suppose the dirtiness invariants are satisfied after the splitting step
in iteration j. If i = m0 − 1, then, after the first (outer zig) phase in iteration j,

−→
D(A

(j)
i) ≤ βnj ,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180.

Proof: Since i+ 1 = m0, we are considering in this lemma impact of calling Reduce on A(j)
i and A(j)

i+1 =

A
(j)
m0 , that is, A(j)

i and the left subarray that intersects the uncertainty interval. There are two cases.
Case 1: The cross-over point, K, is in A(j)

m1 . In this case, by the dirtiness invariant, and Lemma 7, even
if this outer zig step has brought all the 1’s from the left rightward, the total number of 1’s in A(j)

i ∪A
(j)
m0 at

this point is at most

nj
6

+
8βnj

1− 8δ
≤ nj

3
,

15

provided δ ≤ 1/12 and β ≤ 1/180. The above dirtiness is clearly less than 5nj/6 in this case. Thus, the
Reduce algorithm, which is an (β, 5/6)-halver, is effective in this case to give us

−→
D(A

(j)
i) ≤ βnj .

Case 2: The cross-over point, K, is in A(j)
m0 . Suppose we were to sort the items currently in A(j)

i ∪A
(j)
m0 .

Then, restricted to the current state of these two subarrays, we would get current cross-over point,K ′, which
could be to the left, right, or possibly equal to the real one, K. Note that each 0 that is currently to the right
of A(j)

m0 implies there must be a corresponding 1 currently placed somewhere from A
(j)
1 to A(j)

m0 , possibly
even in A(j)

i ∪A
(j)
m0 . By the dirtiness invariants for iteration j, the number of such additional 1’s is bounded

by

nj
6

+
8βnj

1− 8δ
≤ nj

3
,

provided δ ≤ 1/12 and β ≤ 1/180. Thus, since there the number of 1’s in A(j)
m0 is supposed to be at

most nj/2, based on the location of the cross-over point for this case (if the cross-over was closer than
nj/2 to the ith subarray, then i would be m0), the total number of 1’s currently in A(j)

i ∪ A
(j)
m0 is at most

nj/3 + nj/2 = 5nj/6. Therefore, the Reduce algorithm, which is a (β, 5/6)-halver, is effective in this
case to give us

−→
D(A

(j)
i) ≤ βnj .

There is also the following.

Lemma 10 (Straddling Zig Lemma). Suppose the dirtiness invariants are satisfied after the splitting step in
iteration j. Provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180, then after the step in first (outer zig) phase in
iteration j, comparing A(j)

m0 and A(j)
m1 , we have the following:

1. If K is in A(j)
m0 , then

−→
D(A(j)

m1
) ≤ nj/6− βnj .

2. If K is in A(j)
m1 , then

−→
D(A(j)

m0
) ≤ nj/6.

Proof: There are two cases.
Case 1: The cross-over point, K, is in A(j)

m0 . In this case, dirtiness for A(j)
m1 is caused by 0’s in this

subarray. By a simple conservation argument, such 0’s can be matched with 1’s that at this point in the
algorithm remain to the left ofA(j)

m0 . LetKm0 be the index inA(j)
m0 for the cross-over point,K. By Lemmas 8

and 9, and the fact that there are 2k subarrays,A(j)
i , with depth k = di,j , the total number of 0’s inA(j)

m0∪A
(j)
m1

is therefore bounded by

n′ = Km0 + βnj +

j∑
k=1

2k4kδkβnj

< Km0 + βnj

∞∑
k=0

(8δ)k

= Km0 +
βnj

1− 8δ
,

provided δ < 1/8. There are two subcases:

16

1. n′ ≤ nj . In this case, the Reduce algorithm, which is an ε-halver, will be effective to reduce the
dirtiness of A(j)

m1 to εnj , which is at most nj/6− βnj if ε ≤ 1/8 and β ≤ 1/180.

2. n′ > nj . In this case, note that, by the Overflow Lemma (Lemma 2), the Reduce algorithm, which
is an ε-halver, will be effective to reduce the number of 0’s in A(j)

m1 , which is its dirtiness, to at most

εnj + (1− ε) · (n′ − nj) = εnj + (1− ε) ·
(
Km0 +

βnj
1− 8δ

− nj
)

≤ εnj + (1− ε) ·
(

βnj
1− 8δ

)
≤ nj

6
− βnj ,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180.

Case 2: The cross-over point, K, is in A(j)
m1 . Let Km1 denote the index in A(j)

m1 of the cross-over point,
K. In this case, dirtiness for A(j)

m0 is determined by 1’s in this subarray. By a simple conservation argument,
such 1’s can come from 0’s that at this point in the algorithm remain to the right of A(j)

m1 . Thus, since there
are suppose to be (nj −Km1) 1’s in A(j)

m0 ∪A
(j)
m1 , the number of 1’s in these two subarrays is bounded by

n′ = (nj −Km1) +
8βnj

1− 8δ
,

by Lemma 7. There are two subcases:

1. n′ ≤ nj . In this case, the Reduce algorithm, which is an ε-halver, will be effective to reduce the
dirtiness of A(j)

m0 to εnj , which is at most nj/6 if ε ≤ 1/6.

2. n′ > nj . In this case, note that, by the Overflow Lemma (Lemma 2), the Reduce algorithm, which
is an ε-halver, will be effective to reduce the number of 1’s in A(j)

m0 , which is its dirtiness, to at most

εnj + (1− ε) · (n′ − nj) = εnj + (1− ε) ·
(
nj −Km1 +

8βnj
1− 8δ

− nj
)

≤ εnj + (1− ε) ·
(

8βnj
1− 8δ

)
≤ nj

6
,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180.

In addition, we have the following.

Lemma 11 (Right-neighbor Zig Lemma). Suppose the dirtiness invariant is satisfied after the splitting step
in iteration j. If i = m1 + 1, then, after the step comparing subarray A(j)

m1 and subarray A(j)
i in the first

(outer zig) phase in iteration j,
−→
D(A

(j)
i) ≤ βnj ,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Also, if the cross-over is in A(j)
m0 , then

−→
D(A

(j)
m1) ≤ nj/6.

17

Proof: Since i − 1 = m1, we are considering in this lemma the result of calling Reduce on A(j)
i−1 = A

(j)
m1

and A(j)
i . There are two cases.

Case 1: The cross-over point, K, is in A(j)
m0 . In this case, by the dirtiness invariant for A(j)

i and the
previous lemma, the total number of 0’s inA(j)

i ∪A
(j)
m1 at this point is at most nj/6; hence,

−→
D(A

(j)
m1) ≤ nj/6

after this comparison. In addition, in this case, the (β, 5/6)-halver algorithm, Reduce, is effective to give
us −→

D(A
(j)
i) ≤ βnj .

Case 2: The cross-over point, K, is in A(j)
m1 . Suppose we were to sort the items currently in A(j)

m1 ∪A
(j)
i .

Then, restricted to these two subarrays, we would get a cross-over point, K ′, which could be to the left,
right, or possibly equal to the real one, K. Note that each 1 that is currently to the left of A(j)

m1 implies there
must be a corresponding 0 currently placed somewhere from A

(j)
m1 to A(j)

2j
, possibly even in A(j)

m1 ∪A
(j)
i . The

bad scenario with respect to dirtiness for A(j)
i is when 0’s are moved into A(j)

m1 ∪A
(j)
i .

By Lemmas 8, 9, and 10, and a counting argument similar to that made in the proof of Lemma 10, the
number of such additional 0’s is bounded by

βnj
1− 8δ

+
nj
6
.

Thus, since the number of 0’s in A(j)
m1 , based on the location of the cross-over point, is supposed to be at

most nj/2, the total number of 0’s currently in A(j)
i ∪A

(j)
m1 is at most

βnj
1− 8δ

+
2nj
3
≤ 5nj/6,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Therefore, the (β, 5/6)-halver algorithm, Reduce, is
effective in this case to give us

−→
D(A

(j)
i) ≤ βnj .

Note that the above lemma covers the case just before we do the next inner zig-zag step involving the
subarrays A(j)

i and A(j)
i+1. For bounding the dirtiness after this inner zig-zag step we have the following.

Lemma 12 (High-side Zig Lemma). Suppose the dirtiness invariant is satisfied after the splitting step in
iteration j. Provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180, then, for m1 + 1 ≤ i < 2j , after the first (outer
zig) phase in iteration j,

−→
D(A

(j)
i) ≤ D(A

(j)
i+1) + δi−m1−1βnj .

Proof: The proof is by induction, using Lemma 11 as the base case. We assume inductively that before we
do the swaps for the inner zig-zag step, D(A

(j)
i) ≤ δi−m1−1βnj . So after we do the swapping for the inner

zig-zag step and an (δ, 5/6)-attenuator algorithm, Reduce, we have
−→
D(A

(j)
i) ≤ D(A

(j)
i+1) + δi−m1−1βnj

and
−→
D(A

(j)
i+1) ≤ δi−m1βnj .

In addition, by the induction from the proof of Lemma 12,
−→
D(A

(j)

2j
) ≤ δ2j−m1−1βnj , after we complete

the outer zig phase. So let us consider the changes caused by the outer zag phase.

18

Lemma 13 (High-side Zag Lemma). Suppose the dirtiness invariant is satisfied after the splitting step in
iteration j. Then, for m1 + 2 ≤ i ≤ 2j , after the second (outer zag) phase in iteration j,

←−
D(A

(j)
i) ≤ δ

−→
D(A

(j)
i−1) ≤ δD(A

(j)
i) + δi−m1−1βnj ≤ 4di,jδdi,jβnj + δi−m1−1βnj ,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180.

Proof: By Lemmas 7 and 12, and a simple induction argument, just before we do the swaps for the inner
zig-zag step,

−→
D(A

(j)
i−1) ≤ D(A

(j)
i) + δi−m1−2βnj

and
−→
D(A

(j)
i) ≤ 8βnj

1− 8δ
.

We then do the inner zig-zag swaps and, provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180, we have a small
enough dirtiness to apply the (δ, 5/6)-attenuator, Reduce, effectively, which completes the proof.

In addition, we have the following.

Lemma 14 (Right-neighbor Zag Lemma). Suppose the dirtiness invariant is satisfied after the splitting step
in iteration j. If i = m1 + 1, then, after the second (outer zag) phase in iteration j,

←−
D(A

(j)
i) ≤ βnj .

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180.

Proof: Since i − 1 = m1, we are considering in this lemma the result of calling Reduce on A(j)
i and

A
(j)
i−1 = A

(j)
m1 . There are two cases.

Case 1: The cross-over point, K, is in A(j)
m0 . In this case, by the previous lemmas, bounding the number

of 0’s that could have come to to this place from previously being in or to the right of A(j)
m1 , the total number

of 0’s in A(j)
i ∪A

(j)
m1 at this point is at most

8βnj
1− 8δ

+ nj/6 <
5nj
6
,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Thus, the (β, 5/6)-halver algorithm, Reduce, is effective
in this case to give us

←−
D(A

(j)
i) ≤ βnj .

Case 2: The cross-over point, K, is in A(j)
m1 . Suppose we were to sort the items currently in A(j)

i ∪A
(j)
m1 .

Then, restricted to these two subarrays, we would get a cross-over point, K ′, which could be to the left,
right, or possibly equal to the real one, c. Note that each 1 that is currently in or to the left of A(j)

m0 implies
there must be a corresponding 0 currently placed somewhere fromA

(j)
m1 toA(j)

2j
, possibly even inA(j)

m1∪A
(j)
i .

The bad scenario with respect to dirtiness for A(j)
i is when 0’s are moved into A(j)

i ∪A
(j)
m1 . By the previous

lemmas, the number of such additional 0’s (that is, 1’s currently in or to the left of A(j)
m0) is bounded by

βnj
1− 8δ

+ nj/6.

19

Thus, since the number of 0’s that are supposed to be in A(j)
m1 is at most nj/2 based on the location of the

cross-over point, the total number of 0’s currently in A(j)
i ∪A

(j)
m1 is at most

βnj
1− 8δ

+ nj/6 + nj/2 ≤ 5nj/6,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Therefore, the (β, 5/6)-halver algorithm, Reduce, is
effective in this case to give us

←−
D(A

(j)
i) ≤ βnj .

Next, we have the following.

Lemma 15 (Straddling Zag Lemma). Suppose the dirtiness invariant is satisfied after the splitting step in
iteration j and δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Then, after the comparison of A(j)

m0 and A(j)
m1 ,

1. If K + nj/4 indexes a cell in A(j)
m0 , then after the second (outer zag) phase,

←−
D(A

(j)
m1) ≤ βnj .

2. If K − nj/4 indexes a cell in A(j)
m1 , then after the second (outer zag) phase,

←−
D(A

(j)
m0) ≤ βnj .

3. Else, if K is in A(j)
m1 , then

←−
D(A

(j)
m0) ≤ nj/12− βnj , and if K is in A(j)

m0 , then
←−
D(A

(j)
m1) ≤ nj/12.

Proof: Let us consider each case.

1. K + nj/4 indexes a cell in A(j)
m0 . Let Km0 denote the index of K in A(j)

m0 ; hence, Km0 < 3nj/4. In
this case, the number of 0’s in A(j)

m0 ∪A
(j)
m1 is at most Km0 plus at most the number of 1’s that remain

left of A(j)
m0 , which is at most

Km0 +
βnj

1− 8δ
≤ 5nj/6,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Thus, the (β, 5/6)-halver, Reduce, is effective to
give us

←−
D(A

(j)
m1) ≤ βnj .

2. K − nj/4 indexes a cell in A(j)
m1 . Let Km1 denote the index of K in A(j)

m1 ; hence, Km1 ≥ nj/4. In
this case, the number of 1’s in A(j)

m0 ∪ A
(j)
m1 is at most nj −Km1 plus the number of 0’s that remain

right of A(j)
m1 , which is at most

nj −Km1 +
βnj

1− 8δ
+
δβnj
1− δ

≤ 3nj/4 +
βnj

1− 8δ
+
δβnj
1− δ

≤ 5nj/6,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Thus, the (β, 5/6)-halver, Reduce, is effective to
give us

←−
D(A

(j)
m0) ≤ βnj .

3. Suppose neither of the above two conditions are met. There are two cases.

Case 1: The cross-over point, K, is in A(j)
m0 . Let Km0 denote the index for K in A(j)

m0 . In this case,
dirtiness for A(j)

m1 is caused by 0’s coming into A(j)
m0 ∪ A

(j)
m1 . Such 0’s can come from 1’s that at this

point in the algorithm remain to the left of A(j)
m0 . Thus, the total number of 0’s in A(j)

m0 ∪ A
(j)
m1 is

bounded by

n′ = Km0 +
βnj

1− 8δ
.

There are two subcases:

20

(a) n′ ≤ nj . In this case, the ε-halver algorithm, Reduce, will be effective to reduce the dirtiness
of A(j)

m1 to εnj , which is at most nj/12, if ε ≤ 1/12.

(b) n′ > nj . By Lemma 2, the ε-halver is effective to reduce the number of 0’s in A(j)
m1 , which is its

dirtiness, to be at most

εnj + (1− ε) · (n′ − nj) = εnj + (1 + ε) · (Km0 +
βnj

1− 8δ
− nj)

≤ εnj + (1− ε) ·
(

βnj
1− 8δ

)
≤ nj

12
,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180.

Case 2: The cross-over point, K, is in A(j)
m1 . Let Km1 denote the index for K in A(j)

m1 . In this case,
dirtiness for A(j)

m0 is determined by 1’s in A(j)
m0 ∪A

(j)
m1 . Such 1’s can come from 0’s that at this point in

the algorithm remain to the right of A(j)
m1 . Thus, since there are suppose to be (nj −Km1) 1’s in these

two subarrays, the total number of 1’s in A(j)
m0 ∪A

(j)
m1 is bounded by

n′ = (nj −Km1) +
δβnj
1− δ

+
βnj

1− 8δ
.

There are two subcases:

(a) n′ ≤ nj . In this case, the ε-halver, Reduce, will be effective to reduce the dirtiness of A(j)
m0 to

εnj , which is at most nj/12− βnj , if ε ≤ 1/16 and β ≤ 1/180.

(b) n′ > nj . In this case, by Lemma 2, the ε-halver will be effective to reduce the number of 1’s in
A

(j)
m0 , which is its dirtiness, to be at most

εnj + (1− ε) · (n′ − nj) = εnj + (1− ε) ·
(

(nj −Km1) +
δβnj
1− δ

+
βnj

1− 8δ
− nj

)
≤ εnj + (1− ε) ·

(
δβnj
1− δ

+
βnj

1− 8δ

)
≤ nj

12
− βnj ,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180.

Next, we have the following.

Lemma 16 (Left-neighbor Zag Lemma). Suppose the dirtiness invariant is satisfied after the splitting step
in iteration j. Then, after the call to the (β, 5/6)-halver, Reduce, comparing A(j)

i , for i = m0 − 1, and
A

(j)
m0 in the second (outer zag) phase in iteration j,

←−
D(A

(j)
i) ≤ βnj ,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Also, if the cross-over point, K, is in A(j)
m1 , then

←−
D(A

(j)
m0) ≤

2βnj , if K − nj/4 indexes a cell in A(j)
m1 , and

←−
D(A

(j)
m0) ≤ nj/12, if K − nj/4 indexes a cell in A(j)

m0 .

21

Proof: Since i = m0 − 1, we are considering in this lemma the result of calling Reduce on A(j)
i+1 = A

(j)
m0

and A(j)
i . Also, note that by previous lemmas,

−→
D(A

(j)
i) ≤ βnj . There are two cases.

Case 1: The cross-over point, K, is in A(j)
m1 . In this case, by the dirtiness invariant and Lemma 10, the

total number of 1’s in A(j)
i ∪ A

(j)
m0 at this point is either nj/12 or 2βnj , depending respectively on whether

K − nj/4 indexes a cell in A(j)
m0 or not. Thus, in this case,

←−
D(A

(j)
m0) is bounded by the appropriate such

bound and the (β, 5/6)-halver algorithm, Reduce, is effective to give us

←−
D(A

(j)
i) ≤ βnj .

Case 2: The cross-over point, K, is in A(j)
m0 . Suppose we were to sort the items currently in A(j)

m0 ∪A
(j)
i .

Then, restricted to these two subarrays, we would get a cross-over point, K ′, which could be to the left,
right, or possibly equal to the real one, K. Let Km0 denote the index of K in A(j)

m0 . Note that each 0 that
is currently to the right of A(j)

m0 implies there must be a corresponding 1 currently placed somewhere from
A

(j)
1 to A(j)

m0 , possibly even in A(j)
i ∪ A

(j)
m0 . The bad scenario with respect to dirtiness for A(j)

i is when 1’s
are moved into A(j)

i ∪A
(j)
m0 . By previous lemmas, the number of such additional 1’s is bounded by

βnj
1− 8δ

+
δβnj
1− δ

+ nj/12.

Thus, since the number of 1’s in A(j)
m0 , based on the location of the cross-over point, is supposed to be

nj −Km0 ≤ nj/2, the total number of 1’s currently in A(j)
i ∪A

(j)
m0 is at most

βnj
1− 8δ

+
δβnj
1− δ

+ 7nj/12 ≤ 5nj/6,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Therefore, the (β, 5/6)-halver algorithm, Reduce, is
effective in this case to give us

←−
D(A

(j)
i) ≤ βnj .

Finally, we have the following.

Lemma 17 (Low-side Zag Lemma). Suppose the dirtiness invariant is satisfied after the splitting step in
iteration j. If δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180, then, for i ≤ m0− 1, after the second (outer zag) phase
in iteration j, ←−

D(A
(j)
i) ≤ δD(A

(j)
i) + δm0−i−1βnj .

Proof: The proof is by induction on m0 − i, starting with Lemma 16 as the basis of the induction. Before
doing the swapping for the inner zig-zag step for subarray i, by Lemma 8,

−→
D(A

(j)
i−1) ≤ δD(A

(j)
i)

and ←−
D(A

(j)
i) ≤ δm0−i−1βnj .

Thus, after the swaps for the inner zig-zag and the (δ, 5/6)-attenuator algorithm, Reduce,

←−
D(A

(j)
i) ≤ δD(A

(j)
i) + δm0−i−1βnj .

22

and ←−
D(A

(j)
i−1) ≤ δ

m0−iβnj .

This completes all the lemmas we need in order to calculate bounds for ε and δ that will allow us to
satisfy the dirtiness invariant for iteration j + 1 if it is satisfied for iteration j.

Lemma 18. Provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180, if the dirtiness invariant for iteration j is
satisfied after the splitting step for iteration j, then the dirtiness invariant for iteration j is satisfied after the
splitting step for iteration j + 1.

Proof: Let us consider each subarray, A(j)
i , and its two children, A(j+1)

2i−1 and A(j+1)
2i , at the point in the

algorithm when we perform the splitting step. Let m′0 denote the index of the lowest-indexed subarray on
level j + 1 that intersects the uncertainty interval, and let m′1 (= m′0 + 1) denote the index of the highest-
indexed subarray on level j + 1 that intersects the uncertainty interval. Note that we either have m′0 and m′1
both being children of m0, m′0 and m′1 both being children of m1, or m′0 is a child of m0 and m′1 is a child
of m1. That is, m′0 = 2m0 − 1, m′0 = 2m0, or m′0 = 2m1 − 1 = 2m0 + 1, and m′1 = 2m0 = 2m1 − 2,
m′1 = 2m1 − 1, or m′1 = 2m1,

1. i ≤ m0 − 1. In the worst case, based on the three possibilities for m′0 and m′1, we need

D(A
(j+1)
2i−1) ≤ 4d2i−1,j+1δd2i−1,j+1−1βnj = 4di,j+1δdi,jβnj

and
D(A

(j+1)
2i) ≤ 4d2i,j+1δd2i,j+1−1βnj = 4di,j+1δdi,jβnj .

By Lemma 17, just before the splitting step for A(j)
i , we have

←−
D(A

(j)
i) ≤ δD(A

(j)
i) + δm0−i−1βnj ≤ 4di,jδdi,jβnj + δm0−i−1βnj ≤ (4di,j + 1)δdi,jβnj ,

and we then partition A(j)
i , so that nj+1 = nj/2. Thus, for either k = 2i− 1 or k = 2i, we have

D(A
(j+1)
k) ≤ 2(4di,j + 1)δdi,jβnj+1

≤ 4di,j+1δdi,jβnj+1,

which satisfies the dirtiness invariant for the next iteration.

2. i ≥ m1 + 1. In the worst case, based on the three possibilities for m′0 and m′1, we need

D(A
(j+1)
2i−1) ≤ 4d2i−1,j+1δd2i−1,j+1−1βnj = 4di,j+1δdi,jβnj

and
D(A

(j+1)
2i) ≤ 4d2i,j+1δd2i,j+1−1βnj = 4di,j+1δdi,jβnj .

By Lemma 13, just before the splitting step for A(j)
i , we have

←−
D(A

(j)
i) ≤ δD(A

(j)
i) + δi−m1−1βnj ≤ 4di,jδdi,jβnj + δi−m1−1βnj ≤ (4di,j + 1)δdi,jβnj ,

and we then partition A(j)
i , so that nj+1 = nj/2. Thus, for either k = 2i− 1 or k = 2i, we have

D(A
(j+1)
k) ≤ 2(4di,j + 1)δdi,jβnj+1

≤ 4di,j+1δdi,jβnj+1,

which satisfies the dirtiness invariant for the next iteration.

23

3. i = m0. In this case, there are subcases.

(a) SupposeK+nj/4 indexes a cell inA(j)
m0 . Then, by Lemma 15,

←−
D(A

(j)
m1) ≤ βnj . In this case,m′0

and m′1 are both children of m0 and we need A(j+1)
2i−1 to have dirtiness at most nj+1/6 = nj/12.

The number of 1’s in A
(j)
i is bounded by nj/2 (or otherwise, i = m1) plus the number of

additional 1’s that may be here because of 0’s that remain to the right, which is bounded by

n′ = nj/2 + βnj +
βnj

1− 8δ
+
δβnj
1− δ

,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. If n′ ≤ nj/2, then an ε-halver operation applied
after the split, with ε ≤ 1/6, will satisfy the dirtiness invariants for m′0 and m′1. If, on the other
hand, n′ > nj/2, then an ε-halver operation applied after the split will give us

D(A
(j+1)
2i−1) ≤ εnj+1 + (1− ε) · (n′ − nj+1)

≤ εnj+1 + (1− ε) ·
(

2βnj+1 +
2βnj+1

1− 8δ
+

2δβnj+1

1− δ

)
≤ nj+1/6,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180.

(b) Suppose K − nj/4 indexes a cell in A(j)
m1 . Then, by Lemma 16,

←−
D(A

(j)
m0) ≤ 2βnj . In this case,

we need D(A
(j+1)
2i) ≤ 4βnj+1 and D(A

(j+1)
2i−1) ≤ 4βnj+1, both of which which follow from the

above bound.

(c) Suppose neither of the previous subcases hold. Then we have two possibilities:

i. Suppose K indexes a cell in A(j)
m1 . Then

←−
D(A

(j)
m0) ≤ nj/12, by Lemma 16. In this case,

we need D(A
(j+1)
2i) ≤ nj+1/6, which follows immediately from this bound, and we also

need D(A
(j+1)
2i−1) ≤ 4βnj+1, which follows by our performing a Reduce step, which is a

(β, 5/6)-halver, after we do our split.

ii. SupposeK indexes a cell inA(j)
m0 (butK+nj/4 indexes a cell inA(j)

m1). Then, by Lemma 15,
←−
D(A

(j)
m1) ≤ nj/12. In this case, we need D(A

(j+1)
2i−1) ≤ 4βnj+1. Here, the dirtiness of

A
(j+1)
2i−1 is determined by the number of 1’s it contains, which is bounded by the intended

number of 1’s, which itself is bounded by nj/4 = nj+1/2, plus the number of 0’s currently
to the right of A(j)

m0 , which, all together, is at most

nj+1/2 + nj+1/6 +
2βnj+1

1− 8δ
+

2δβnj+1

1− δ
≤ 5nj+1/6,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Thus, the Reduce algorithm, which is a
(β, 5/6)-halver, we perform after the split will give us D(A

(j+1)
2i−1) ≤ βnj+1.

4. i = m1. In this case, there are subcases.

(a) SupposeK+nj/4 indexes a cell inA(j)
m0 . Then, by Lemma 15,

←−
D(A

(j)
m1) ≤ βnj . In this case, we

need D(A
(j+1)
2i−1) ≤ 4βnj+1, and D(A

(j+1)
2i) ≤ 4βnj+1, which follows from the above bound.

(b) Suppose K − nj/4 indexes a cell in A(j)
m1 . Then, by Lemma 16,

←−
D(A

(j)
m0) ≤ 2βnj . In this case,

m′0 and m′1 are both children of m1, and the cross-over is in A(j+1)
m′0

. We therefore need A(j+1)
2i

24

to have dirtiness at most nj+1/6 = nj/12. The number of 0’s in A(j)
i is at most nj/2 (or this

wouldn’t be m1), plus the number of additional 0’s that are here because of 1’s to the left of m1,
which is bounded by

n′ = nj/2 + βnj +
βnj

1− 8δ
+
δβnj
1− δ

.

If c′ ≤ nj+1 = nj/2, then the ε-halver will reduce the dirtiness so that D(A
(j+1)
m′1

) ≤ εnj+1 ≤

nj+1/6, if ε ≤ 1/6. If, on the other hand, n′ > nj+1, then, by Lemma 2, D(A
(j+1)
m′1

) will be
reduced to be at most

εnj+1 + (1− ε) · (n′ − nj+1) ≤ εnj+1 + (1− ε) ·
(

2βnj+1 +
2βnj+1

1− 8δ
+

2δβnj+1

1− δ

)
≤ nj+1

6
,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180.

(c) Suppose neither of the previous subcases hold. Then we have two possibilities:

i. Suppose K indexes a cell in A(j)
m0 . Then

←−
D(A

(j)
m1) ≤ nj/12, by Lemma 15. In this case,

we need D(A
(j+1)
2i−1) ≤ nj+1/6, which follows immediately from this bound, and we also

need D(A
(j+1)
2i) ≤ 4βnj+1, which follows by our performing a Reduce step after we do

our split.

ii. Suppose K indexes a cell in A(j)
m1 . Then, by Lemma 16,

←−
D(A

(j)
m0) ≤ nj/12. In this case,

we need D(A
(j+1)
2i) ≤ 4βnj+1. Here, the dirtiness of A(j+1)

2i−1 is determined by the number
of 0’s it contains, which is bounded by the proper number of 0’s, which is at most nj/4 =

nj+1/2, plus the number of 1’s currently to the left of A(j)
m1 , which, all together, is at most

nj+1/2 + nj+1/6 +
2βnj+1

1− 8δ
+

2δβnj+1

1− δ
≤ 5nj/6,

provided δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Thus, the Reduce algorithm we perform
after the split will give us D(A

(j+1)
2i−1) ≤ βnj+1.

Putting everything together, we establish the following.

Theorem 6: If it is implemented using a linear-time α-halver, Halver, for α ≤ 1/15, Zig-zag Sort correctly
sorts an array of n comparable items in O(n log n) time.

Proof: Take α ≤ 1/15, for Halver being an α-halver, so that Reduce is simultaneously an ε-halver, a
(β, 5/6)-halver, and a (δ, 5/6)-attenuator, for δ ≤ 1/12, ε ≤ 1/32, and β ≤ 1/180. Such bounds achieve
the necessary constraints for Lemmas 8 to 18, given above, which establishes the dirtiness invariants for each
iteration of Zig-zag Sort. The correctness follows, then, by noticing that satisfying the dirtiness invariant
after the last iteration of Zig-zag Sort implies that the array A is sorted.

25

	1 Introduction
	2 The Zig-zag Sort Algorithm
	3 Halvers and Attenuators
	4 An Analysis of Zig-Zag Sort
	4.1 The 0-1 Principle
	4.2 Establishing the Correctness of the Reduce Method
	4.3 The Correctness of the Main Zig-zag Sort Algorithm

	5 Some Words About Constant Factors
	6 Conclusion
	A The Proof of Theorem ??, Establishing the Correctness of Zig-zag Sort

