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Abstract

We consider vehicle-routing problems (VRPs) that incorporate the notion of regret of a client, which
is a measure of the waiting time of a client relative to its shortest-path distance from the depot. Formally,
we consider both the additive and multiplicative versions of, what we call, the regret-bounded vehicle
routing problem (RVRP). In these problems, we are given an undirected complete graphG = ({r}∪V,E)
on n nodes with a distinguished root (depot) node r, edge costs {cuv} that form a metric, and a regret
bound R. Given a path P rooted at r and a node v ∈ P , let cP (v) be the distance from r to v along P .
The goal is to find the fewest number of paths rooted at r that cover all the nodes so that for every node
v covered by (say) path P : (i) its additive regret cP (v)− crv, with respect to P is at most R in additive-
RVRP; or (ii) its multiplicative regret, cP (c)/crv, with respect to P is at most R in multiplicative-RVRP.

Our main result is the first constant-factor approximation algorithm for additive-RVRP. This is a
substantial improvement over the previous-best O(log n)-approximation. Additive-RVRP turns out be a
rather central vehicle-routing problem, whose study reveals insights into a variety of other regret-related
problems as well as the classical distance-constrained VRP (DVRP), enabling us to obtain guarantees for
these various problems by leveraging our algorithm for additive-RVRP and the underlying techniques.
We obtain approximation ratios ofO

(
log( R

R−1 )
)

for multiplicative-RVRP, andO
(
min

{
OPT , logD

log logD

})
for DVRP with distance boundD via reductions to additive-RVRP; the latter improves upon the previous-
best approximation for DVRP.

A noteworthy aspect of our results is that they are obtained by devising rounding techniques for a
natural configuration-style LP. This furthers our understanding of LP-relaxations for VRPs and enriches
the toolkit of techniques that have been utilized for configuration LPs.

1 Introduction

Vehicle-routing problems (VRPs) constitute a broad class of combinatorial-optimization problems that find a
wide range of applications and have been widely studied in the Operations Research and Computer Science
communities (see, e.g., [24, 28, 37, 10, 6, 4, 30, 11] and the references therein). These problems are typically
described as follows. There are one or more vehicles that start at some depot and provide service to an
underlying set of of clients, and the goal is to design routes for the vehicles that visit the clients as quickly
as possible. The most common way of formalizing the objective of minimizing client delays is to seek a
route of minimum length, or equivalently, a route that minimizes the maximum client delay, which gives
rise to (the path variant of) the celebrated traveling salesman problem (TSP). However, this objective does
not differentiate between clients located at different distances from the depot, and a client closer to the depot
may end up incurring a larger delay than a client that is further away, which can be considered a source of
unfairness and hence, client dissatisfaction. Adopting a client-centric approach, we consider an alternate
objective that addresses this unfairness and seeks to design routes that promote customer satisfaction.
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Symmetric metrics Asymmetric metrics
RVRP kRVRP Multiplicative-RVRP Multiplicative-kRVRP DVRP RVRP kRVRP
31 O(k2) O

(
log( R

R−1 )
)

O(1) O
(
min

{
OPT , logD

log logD

})
O(log n) O(k2 log n)

Table 1: Summary of our results. Our main result, for RVRP, yields guarantees for other symmetric-metric problems.

Noting that the delay of a client is inevitably at least the shortest-path distance from the depot to the client
location, following [35, 32], we seek to ensure that the regret of a client, which is a measure of its waiting
time relative to its shortest-path distance from the depot, is bounded. More precisely, we consider the
following genre of vehicle-routing problems. We are given an undirected complete graph G = ({r}∪V,E)
on n nodes with a distinguished root (depot) node r, and metric edge costs or distances {cuv}. Given a path
P rooted at r and a node v ∈ P , let cP (v) be the distance from r to v along P (i.e., the length of the r-v
subpath of P ). There are two natural ways of comparing cP (v) and crv to define the regret of a node v
on path P . We define the additive regret of v with respect to P to be cP (v) − crv,1 and the multiplicative
regret of v with respect to P to be cP (v)/crv. We are also given a regret bound R. Fixing a regret measure,
a feasible solution is a collection of paths rooted at r that cover all the nodes in G such that the regret of
every node with respect to the path covering it is at most R. Thus, a feasible solution to: (i) the additive-
regret problem yields the satisfaction guarantee that every client v is visited by time crv + R; and (ii) the
multiplicative-regret problem ensures that every client v is visited by time crv · R. The goal is to find a
feasible solution that uses the fewest number of paths. We refer to these two problems as additive-regret-
bounded VRP (additive-RVRP) and multiplicative-regret-bounded VRP (multiplicative-RVRP) respectively.

Additive-RVRP has been sometimes referred to as the schoolbus problem in the literature [35, 32, 7].
However, this term is used to refer to an umbrella of vehicle-routing problems, some of which do not involve
regret, so we use the more descriptive name of additive-RVRP. Both versions of RVRP are APX-hard via
simple reductions from TSP and TSP-path (Theorem 7.1), so we focus on approximation algorithms.

Our results. We undertake a systematic study of regret-related vehicle-routing problems from the perspec-
tive of approximation algorithms. As we illustrate below, additive-RVRP turns out to be the more fundamen-
tal of the above two problems and a rather useful problem to investigate, and our study yields insights and
techniques that can be applied, often in a black-box fashion, to derive algorithms for various vehicle-routing
problems, which include both regret-related problems, and classical problems such as distance-constrained
vehicle routing. We therefore focus on additive regret; unless otherwise stated, regret refers to additive
regret, and a regret-related problem refers to the problem under the additive-regret measure.

Our main result is the first constant-factor approximation algorithm for (additive) RVRP (Theorem 3.2).
This is a substantial improvement over the previous-best O(log n)-approximation ratio for RVRP obtained
in [7] via the standard set-cover greedy algorithm and analysis.

A noteworthy aspect of our result is that we develop linear-programming (LP) based techniques for
the problem. While LP-relaxations have been exploited with striking success in the design and analysis
of approximation algorithms, our understanding of LP-relaxations for VRPs is quite limited (with TSP,
and the minimum-latency problem to a lesser extent, being the exceptions), and this has been a stumbling
block in the design of approximation algorithms for many of these problems. Notably, we develop LP-
rounding techniques for a natural configuration-style LP-relaxation for RVRP, which is an example of the
set-partitioning model for vehicle routing with time windows (see [37]). While it is not difficult to come
up with such (approximately-solvable) configuration LPs for vehicle-routing problems, and they have been
observed computationally to provide excellent lower bounds on the optimal value [13], there are few theoret-
ical bounds on the effectiveness of these LPs. Moreover, the limited known guarantees (for general metrics)

1The distinction between the delay and additive regret of a client is akin to the distinction between the completion time and flow
time of a job in scheduling problems.
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typically only establish logarithmic bounds [29, 7], which follow from the observation that the configura-
tion LP can be viewed as a standard set-cover LP. In contrast, we exploit the structure of our configuration
LP for RVRP using novel methods and prove a constant integrality gap for the relaxation, which serves to
better justify the good empirical performance of these LPs. Although configuration LPs are often believed
to be powerful, they have been leveraged only sporadically in the design of approximation algorithms; some
notable exceptions are [25, 5, 36, 33, 14, 15]. Our work contributes to the toolkit of techniques that have
been utilized for configuration LPs, and our techniques may find wider applicability.

We use our algorithm for additive-RVRP to obtain an O
(
log( R

R−1)
)
-approximation for multiplicative-

RVRP with regret-boundR (Theorem 4.2). Thus, we obtain a constant-factor approximation for any fixed R.
Interestingly, our algorithm for RVRP yields improved guarantees for (the path-variant of) the classical

distance-constrained vehicle-routing problem (DVRP) [26, 28, 29, 30]—find the fewest number of rooted
paths of length at most D that cover all the nodes—via a reduction to RVRP. (DVRP usually refers to the
version where we seek tours containing the root; [29] shows that the path- and tour-versions are within
a factor of 2 in terms of approximability.) We obtain an O

( logRmax

log logRmax

)
-approximation for DVRP (Theo-

rem 5.1), where Rmax ≤ D is the maximum regret of a node in an optimal solution, which improves upon
the previous-best O(logD)-guarantee for DVRP [29]. We believe that this reduction is of independent inter-
est. Exploiting our LP-based guarantee for RVRP, we obtain the same integrality-gap bound for the natural
configuration LP for DVRP. We also show that the integrality gap of the configuration LP is O(OPTLP),
where OPTLP is the optimal value of the LP. This is interesting because for the standard set-cover LP, there
are O(log n)-integrality-gap examples even when the optimal LP-value is a constant; although the DVRP-
LP is also a set-cover LP, our result precludes such an integrality-gap construction for this LP and raises the
enticing possibility that the additional structure in DVRP can be further exploited, perhaps by refining our
methods, to derive improved guarantees.

We leverage our techniques to obtain guarantees for various variants and generalizations of RVRP (Sec-
tion 6), including, most notably, (i) the variants where we fix the number k of rooted paths (used to cover
the nodes) and seek to minimize the maximum additive/multiplicative regret of a node, which we refer to as
additive/multiplicative- kRVRP; and (ii) (additive) RVRP and kRVRP in asymmetric metrics.

We obtain anO(k2)-approximation for additive-kRVRP (Theorem 6.2), which is the first approximation
guarantee for kRVRP. Previously, the only approximation results known for kRVRP were for the special
cases where we have a tree metric [7] (note that the O(log n)-distortion embedding of general metrics into
tree metrics does not approximate regret), and when k = 1 [6]. In particular, no approximation guarantees
were known previously even when k = 2; in contrast, we achieve a constant-factor approximation for
any fixed k. Partially complementing this result, we show that the integrality gap of the configuration LP
for kRVRP is Ω(k) (Theorem 7.4). Multiplicative-kRVRP turns out to be an easier problem, and the LP-
rounding ideas in [9] yield an O(1)-approximation for this problem (Theorem 6.3).

For asymmetric metrics, we exploit the simple but key observation that regret can be captured via a
suitable asymmetric metric that we call the regret metric creg (see Fact 2.1). This alternative view of regret
yields surprising dividends, since we can directly plug in results for asymmetric metrics to obtain results
for regret problems. In particular, results for k-person asymmetric s-t TSP-path [17, 16] translate to results
for asymmetric RVRP and kRVRP, and we achieve approximation ratios of O(log n) and O(k2 log n) re-
spectively for these two problems. Although regret metrics form a strict subclass of asymmetric metrics, we
uncover an interesting connection between the approximability of asymmetric RVRP and ATSP. We show
that an α-approximation for asymmetric RVRP implies a 2α-approximation for ATSP (Theorem 7.2); thus
an ω(log log n)-improvement to the approximation we achieve for asymmetric RVRP would improve the
current best O

( logn
log logn

)
-approximation for ATSP [3].

Our techniques. Our algorithm for additive-RVRP (see Section 3) is based on rounding a fractional so-
lution to a natural configuration LP (P), where we have a variable for every path of regret at most R and
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we enforce that every node is covered to an extent of 1 by such paths. Although this LP has an exponential
number of variables, we can obtain a near-optimal solution x∗ by using an approximation algorithm for
orienteering [6, 11] (see “Related work”) to provide an approximate separation oracle for the dual LP.

Let k∗ =
∑

P x
∗
P . To round x∗, we first observe that it suffices to obtain O(k∗) paths of total regret

O(k∗R) (see Lemma 2.2). At a high level, we would ideally like to ensure that directing the paths in the
support of x∗ away from the root yields a directed acyclic graph H . If we have this, then by viewing x∗

as the path decomposition of a flow in H , and by the integrality property of flows, we can round x∗ to an
integral flow that covers all the nodes, has value at most dk∗e, and whose cost in the regret metric is at most
the creg-cost of x∗, which is at most k∗R. This integral flow decomposes into a collection of dk∗e paths that
cover V (since H is acyclic), which yields the desired rounding.

Of course, in general, we will not be in this ideal situation. Our goal will be to identify a subset W
of “witness nodes” such that: (a) x∗ can be converted into a fractional solution that covers W and has the
above acyclicity-property without blowing up the creg-cost by much; and (b) nodes in V \W can be attached
to W incurring only an O(k∗R) cost. The new fractional solution can then be rounded to obtain integral
paths that cover W , which in turn can be extended so that they cover V . In achieving this goal, we gain
significant leverage from the fact that the configuration LP yields a collection of fractional simple paths that
cover all the nodes, which is a stronger property than having a flow where every node has at least one unit
of incoming flow. We build a forest F of cost O(k∗R) and select one node from each component of F as a
witness node; this immediately satisfies (b). The construction ensures that: first, every witness node w has
an associated collection of “witness paths” that cover it to a large extent, say, 1

2 ; and second, for every path
P , the witness nodes that use P as a witness path have strictly increasing distances from the root r and occur
on P in order of their distance from r. It follows that by shortcutting each path to only contain the witness
nodes that use the path as a witness path, and blowing up the x∗ values by 2, we achieve property (a).

Our algorithms for multiplicative-RVRP and DVRP capitalize on the following insight. Suppose there
exist k paths covering a given set S of nodes and incurring additive regret at most ρ for these nodes. Then,
for any ε > 0, one can use our algorithm for RVRP to find O

(
k
ε

)
paths covering S such that the nodes in

S have additive regret at most ερ (Lemma 4.1). For multiplicative-RVRP with regret bound R, we apply
this observation to every “ring” Vi := {v : crv ∈ [2i−1, 2i)} to obtain O(OPT ) paths covering Vi such that
the Vi-nodes face at most (R − 1) · 2i−2 additive regret. This follows since the optimal solution covers Vi
inducing additive regret at most (R − 1) · 2i for these nodes. Concatenating the paths obtained for the Vis
whose indices are O

(
log( R

R−1)
)

apart yields the O
(
log( R

R−1)
)
-approximation.

For DVRP, we build upon the above insight. Rather than fixing beforehand, as above, the regret
bounds and the corresponding node-sets to cover via paths ensuring that regret bound, we use a dynamic-
programming approach. Crucially, in the analysis, we bound the number of paths needed to cover a set of
nodes with a given regret bound by suitably modifying the paths of a structured near-optimal solution O.
We argue that a specific choice (depending on O) of regret bounds and node-sets yields an O

( logRmax

log logRmax

)
-

approximation. In doing so, we argue that each choice of regret-bound is such that we make progress by
decreasing substantially either the regret-bound or number of paths needed. Since our RVRP-algorithm is
in fact LP-based, this also yields a bound on the integrality gap of the natural configuration LP for DVRP.

For the O(OPTLP) integrality-gap result for DVRP, we show that one can partition the nodes so that
for each part S, there is a distinct node tS such that the paths ending at tS cover the S-nodes to an extent
of Ω

(
1

OPTLP

)
. Multiplying the LP-solution by O(OPTLP) then yields a fractional solution that covers the

S-nodes incurring regret at most D − crtS , which we can round using our RVRP-algorithm.

Related work. There is a wealth of literature on vehicle routing problems (see, e.g., [37]), and the sur-
vey [32] discusses a variety of problems under the umbrella of schoolbus-routing problems; we limit our-
selves to the work that is relevant to our problems. The use of regret as a vehicle-routing objective seems to
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have been first considered in [35], who present various heuristics and empirical results.
Bock et al. [7] developed the first approximation algorithms for RVRP, but focus mainly on tree met-

rics, for which they achieve a 3-approximation. For general metrics, they observe that RVRP can be cast
as a covering problem, and finding a minimum-density set is an orienteering problem [21, 6]: given node
rewards, end points s, t, and a length bound B, find an s-t path of length at most B that gathers maximum
total node-reward. Thus, the greedy set-cover algorithm combined with a suitable O(1)-approximation for
orienteering [6, 11] immediately yields an O(lnn)-approximation for RVRP. Previously, this was the best
approximation algorithm for RVRP in general metrics. For kRVRP, no previous results were known for gen-
eral metrics, even when k = 2. (Note that we obtain a constant approximation for kRVRP for any fixed k.)
[7] obtain a 12.5-approximation for kRVRP in tree metrics. When k = 1, kRVRP becomes as a special case
of the min-excess path problem introduced by [6], who devised a (2 + ε)-approximation for this problem.

To the best of our knowledge, multiplicative regret, and the asymmetric versions of RVRP and kRVRP
have not been considered previously. Our algorithm for multiplicative-kRVRP uses the LP-based tech-
niques developed by [9] for the minimum latency problem. The set-cover greedy algorithm can also be
applied to asymmetric RVRP. This yields approximation ratios of O

( log3 n
log logn

)
in polytime, and O(log2 n) in

quasi-polytime using theO
( log2 n
log logn

)
- andO(logOPT )- approximation algorithms for directed orienteering

in [31] and [12] respectively. Both factors are significantly worse than the O(log n)-approximation that we
obtain via an easy reduction to kATSPP (find k s-t paths of minimum total cost that cover all nodes). Frig-
gstad et al. [17] obtained the first results for kATSPP which were later improved by [16] to an O(k log n)-
approximation and a bicriteria result that achieves O(log n)-approximation using at most 2k paths.

Replacing the notion of client-regret in our problems with client-delay gives rise to some well-known
vehicle-routing and TSP problems. The client-delay version of RVRP corresponds to (path-) DVRP. Na-
garajan and Ravi [29] give an O(log min{D,n})-approximation for general metrics, and a 2-approximation
for trees. Obtaining a constant-factor approximation for DVRP in general metrics has been a long-standing
open problem. As noted earlier, regret can be captured by the asymmetric regret metric and thus RVRP is
precisely (path-) DVRP in the regret metric. Thus, our work yields an O(1)-approximation for DVRP in this
specific asymmetric metric. We find this to be quite interesting and surprising since one would normally
expect that DVRP would become harder in an asymmetric metric.

The client-delay version of kRVRP yields the kTSP problem of finding k rooted paths of minimum
maximum cost that cover all nodes, which admits a constant-factor approximation via a reduction to TSP.

The orienteering problem plays a key role in vehicle-routing problems, including our algorithm for
RVRP where it yields an approximate separation oracle for the dual LP. Blum et al. [6] obtained the first
constant-factor approximation algorithm for orienteering, and the current best approximation is 2 + ε due to
Chekuri et al. [11]. [31, 11] study (among other problems) directed orienteering and obtain approximation
ratios of O

( log2 n
log logn

)
and O(log2OPT ) respectively. The backbone of all of these algorithms is the min-

regret K-path problem (called the min-excess path problem in [6])—choose a min-regret path covering at
least K nodes—which captures kRVRP when k = 1.2 [12] used a different approach and gave a quasi-
polytime O(logOPT )-approximation for directed orienteering. Finally, Bansal et al. [4] and Chekuri et
al. [11] consider orienteering with time windows, where nodes have time windows and we seek to maximize
the number of nodes that are visited in their time windows, and its special case where nodes have deadlines,
both of which generalize orienteering. They obtain polylogarithmic approximation ratios for these problems.

2Viewed from the perspective of the regret metric, the min-regret K-path problem trivially reduces to the min-cost K-path
problem (choose a min-cost path covering at least K nodes) in asymmetric metrics. This allows one to slightly improve Theorem
8 in [31] and Lemma 2.4 in [11].
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2 Preliminaries

Recall that an instance of RVRP is specified by a complete undirected graph G = ({r} ∪ V,E), where r is
a distinguished root node, with metric edge costs {cuv}, and a regret-bound R. Let n = |V | + 1. We call
a path in G rooted if it begins at r. Unless otherwise stated, we think of the nodes on P as being ordered
in increasing order of their distance along P from r, and directing P away from r means that we direct
each edge (u, v) ∈ P from u to v if u precedes v (under this ordering). We use Dv to denote crv for all
v ∈ V ∪ {r}. For a set S of edges, we sometimes use c(S) to denote

∑
e∈S ce. By scaling, and merging

all nodes at distance 0 from each other, we may assume that cuv is a positive integer for all u, v ∈ V ∪ {r}.
Thus, Dv ≥ 1 for all v ∈ V . Unless otherwise qualified, regret refers to additive regret in the sequel.

It will be convenient to assume that R > 0: if R = 0 then we can determine whether an edge (u, v) lies
on a shortest rooted path, and if so direct (u, v) as u → v if Dv = Du + cuv, to obtain a directed acyclic
graph (DAG) H . Our problem then reduces to finding the minimum number of directed rooted paths in H
to cover all the nodes, which can be solved efficiently using network-flow techniques.

The following equivalent way of viewing regret will be convenient. For every ordered pair of nodes
u, v ∈ V ∪ {r}, define the regret distance (with respect to r) to be creguv := Du + cuv −Dv.

Fact 2.1 (i) The regret distances creguv are nonnegative and satisfy the triangle inequality: creguv ≤ creguw + cregwv
for all u, v, w ∈ V ∪ {r}. Hence, {creguv } forms an asymmetric metric that we call the regret metric.
(ii) For a u  v path P , we have creg(P ) :=

∑
e∈P c

reg
e = Du + c(P ) −Dv, and for a cycle Z, we have

creg(Z) = c(Z). Properties (i) and (ii) hold even when the underlying {cuv} metric is asymmetric.

We infer from Fact 2.1 that if P is a rooted path and v ∈ P , then the regret of v with respect to P is
simply the creg-distance to v along P , which we denote by cregP (v), and the regret of nodes on P cannot
decrease as one moves away from the root (since creg ≥ 0). We define the regret of P to be the regret of the
end-node of P , which by part (ii) of Fact 2.1 is given by creg(P ) =

∑
e∈P c

reg
e .

Lemma 2.2 makes the key observation that one can always convert a collection of paths with average
regret at most αR into one where every path has regret at most R by blowing up the number of paths by an
(α+ 1) factor, and hence, it suffices to obtain a near-optimal solution with average regret O(R).

Lemma 2.2 Given rooted paths P1, . . . , Pk with total regret αkR, we can efficiently find at most (α+ 1) ·k
rooted paths, each regret at most R, that cover

⋃k
i=1 Pi.

Proof : Let α1R, . . . , αkR be the regrets of P1, . . . , Pk respectively. We show that for each path Pi, we can
obtain max{dαie , 1} rooted paths of regret at most R that cover the nodes of Pi. Applying this to each path
Pi, we obtain at most

∑k
i=1(αi + 1) = (α+ 1) · k rooted paths with regret at most R that cover

⋃k
i=1 Pi.

Fix a path Pi. If αi ≤ 1, there is nothing to be done, so assume otherwise. The idea is to simply break Pi
at each point where the regret exceeds a multiple of R, and connect the starting point of each such segment
directly to r. More formally, for ` = 1, . . . , βi := dαie − 1, let v` be the first node on P with cregP (v) > `R,
and let u`−1 be its (immediate) predecessor on P . Let v0 = r and uβi be the end point of Pi. We create the
dαie paths given by r, v`  u` for ` = 0, . . . , βi, which clearly together cover the nodes of Pi. The regret
of each such path is cregrv` + cregP (u`)− cregP (v`) = cregP (u`)− cregP (v`) ≤ (`+ 1)R− `R = R, where the last
inequality follows from the definitions of v`, v`+1 and u` (which precedes v`+1).

Approximation algorithms for symmetric TSP variants often exploit the fact that edges may be traversed
in any direction, to convert a connected subgraph into an Eulerian tour while losing a factor of 2 in the cost.
This does not work for RVRP since creg is an asymmetric metric. Instead, we exploit a key observation of
Blum et al. [6], who identify portions of a rooted path P whose total c-cost can be charged to creg(P ).
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Definition 2.3 Let P be a rooted path ending at w. Consider an edge (u, v) of P , where u precedes v on P .
We call this a red edge of P if there exist nodes x and y on the r-u portion and v-w portion of P respectively
such that Dx ≥ Dy; otherwise, we call this a blue edge of P . For a node x ∈ P , let red(x, P ) denote the
maximal subpath Q of P containing x consisting of only red edges (which might be the trivial path {x}).

We call a maximal blue/red subpath of a rooted path P a blue/red interval of P . The blue and red
intervals of P correspond roughly to the type-1 and type-2 segments of P , as defined in [6]. Distinguishing
the edges on P as red or blue serves two main purposes. First, the total cost of the red edges is proportional
to the regret of P (Lemma 2.4). Second, if we shortcut P so that it contains only one node from each red
interval, then the resulting edges must all be distance increasing (Lemma 2.5). Consequently, if we perform
this operation on a collection of paths and direct edges away from the root, then we obtain a DAG.

Lemma 2.4 (Blum et al. [6]) For any rooted path P , we have
∑

e red on P ce ≤
3
2c

reg(P ).

Proof : Each red edge is contained in a “type-2 segment”, as defined in [6], and Corollary 3.2 in [6] proves
that the total length of type-2 segments is at most 3

2 · c
reg(P ).

Lemma 2.5 (i) Suppose u, v are nodes on a rooted path P such that u precedes v on P and red(u, P ) 6=
red(v, P ), thenDu < Dv. (ii) Hence, if P ′ is obtained by shortcutting P so that it contains at most one node
from each red interval of P , then for every edge (x, y) of P ′ with x preceding y on P ′, we have Dx < Dy.

Proof : Since u precedes v on P and red(u, P ) 6= red(v, P ), there must be some edge (a, b) ∈ P such that
(a, b) is blue on P , and a, b lie on the u-v portion of P (note that it could be that a = u and/or b = v). So if
Du ≥ Dv then (a, b) would be classified as red. Part (ii) follows immediately from part (i).

Orienteering. Our algorithms are based on rounding the solution to an exponential-size LP-relaxation of
the problem. A near-optimal solution to this LP can be obtained by solving the dual LP approximately. The
separation oracle for the dual LP corresponds to a point-to-point orienteering problem, which is defined
as follows. We are given an undirected complete graph with nonnegative node-rewards, edge lengths that
form a metric, origin and destination nodes s, t, and a length bound B. The goal is to find an s-t path P
of total length at most B that gathers maximum total reward. In the rooted orienteering problem, we only
specify the origin s, and a path rooted at s. Unless otherwise stated, we use orienteering to mean point-to-
point orienteering. Clearly, an algorithm for orienteering can also be used for rooted orienteering. A related
problem is the min-excess path (MEP) problem defined by [6], where we are given s, t, and a target reward
Π, and we seek to find an s-t path of minimum regret that gathers reward at least Π.

In the unweighted version of these problems, all node rewards are 0 or 1. Observe that the weighted
versions of these problems can be reduced to their unweighted version in pseudopolynomial time by making
co-located copies of a node. For orienteering, by suitably scaling and rounding the node-rewards, one can
obtain a poly

(
input size, 1ε

)
-time reduction where we lose a (1 + ε)-factor in approximation. For MEP, this

data rounding yields a bicriteria approximation where we obtain an s-t path with reward at least Π/(1 +
ε). Both the unweighted and weighted versions of orienteering and MEP are NP-hard. The current best
approximation factors for these problems are (2 + ε) for orienteering due to Chekuri et al. [11], and (2 + ε)
for unweighted MEP due to Blum et al. [6], for any positive constant ε.

3 An LP-rounding constant-factor approximation for (additive) RVRP

We consider the following configuration-style LP-relaxation for RVRP, which was also mentioned in [7].
Let CR denote the collection of all rooted paths with regret at most R. We introduce a variable xP for each
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path P ∈ CR to denote if path P is chosen. Throughout, we use P to index paths in CR.

min
∑
P

xP s.t.
∑
P :v∈P

xP ≥ 1 for all v ∈ V, xP ≥ 0 for all P. (P)

Let OPT denote the optimal value of (P). Note that OPT ≥ 1. It is easy to give a reduction from TSP
showing that it is NP-complete to decide if there is a feasible solution that uses only 1 path; hence, it is
NP-hard to achieve an approximation factor better than 2 (Theorem 7.1). Complementing this, we devise an
algorithm for RVRP based on LP-rounding that achieves a constant approximation ratio (and thus yields a
corresponding integrality-gap bound), which is a significant improvement over the previous-best O(log n)-
approximation ratio obtained by [7]. Although (P) has an exponential number of variables, one can obtain
a near-optimal solution x∗ by solving the dual LP (which has an exponential number of constraints) to
near-optimality, which can be achieved by using an approximation algorithm for orienteering to obtain an
approximate separation oracle for the dual. We prove the following lemma in Section 8.

Lemma 3.1 We can use a γorient-approximation algorithm for orienteering to efficiently compute a feasible
solution x∗ to (P) of value at most γorient ·OPT .

Let k∗ =
∑

P x
∗
P (so k∗ ≤ γorient · OPT ). Our goal is to round x∗ to a solution using at most O(k∗)

paths that have average regret O(R). We can then apply Lemma 2.2 to obtain O(k∗) paths, each having
regret at most R, and thereby obtain an O(1)-approximate solution. We prove the following theorem.

Theorem 3.2 We can efficiently round x∗ to a solution using at most (8 + 4
√

3)k∗ + 1 rooted paths. This
yields (8 + 4

√
3)γorientOPT + 1 ≤ 30.86 · OPT rooted paths by taking γorient = 2 + ε [11], and shows

that the integrality gap of (P) is at most 9 + 4
√

3 ≤ 15.93.

We first give an overview on the rounding procedure that obtains a slightly worse approximation ratio.
We show in Section 3.1 how to refine this to obtain the guarantee stated above. Let supp(x∗) := {P : x∗P >
0} be the paths in the support of x∗. To gain some intuition, suppose first that it happens that when we direct
every path P ∈ supp(x∗) away from r, we obtain a directed graph H that is acyclic. We can then set up
a network-flow problem to find a minimum creg-cost flow in H of value at most dk∗e such that every node
has at least one unit of flow entering it. Since x∗ can be viewed as a path decomposition of a feasible flow
of creg-cost at most k∗R, by the integrality property of flows, there is an integral flow of creg-cost at most
k∗R. Since H is acyclic, this flow may be decomposed into at most dk∗e paths that cover all the nodes, and
the average regret of this path collection is at most R, so we obtain the desired rounding.

Of course, in general H will not be acyclic and rounding x∗ as above may yield an integral flow that
does not decompose into a collection of only paths. So we seek to identify a subset W ⊆ V of “witness”
nodes and a collection of O(k∗) fractional paths from CR covering W such that: (a) directing each path in
this collection away from r yields a DAG; and (b) given any collection of integral paths coveringW , one can
graft the nodes of V \W into these paths (to obtain new paths covering V ) incurring an additional creg-cost
ofO(k∗R). Property (a) allows one to use the aforementioned network-flow argument to obtainO(k∗) paths
coveringW with total regretO(k∗R), and property (b) enables one to modify this to obtainO(k∗) (integral)
paths covering V while keeping the total regret to O(k∗R) (so that one can then apply Lemma 2.2).

To obtain W , we carefully construct a forest F of cost O(k∗R) (step A1 below) with the property that
for every component Z of F , we can associate a single node w ∈ Z, which we include in W , such that
there is a total x∗-weight of at least 0.5 in paths P containing w for which red(w,P ) ⊆ Z. Notably, we
achieve this in a rather clean and simple way by defining a downwards-monotone cut-requirement function
based on the fractional solution x∗ that encodes the above requirement, an idea that we believe has wider
applicability, especially for network-design problems.3

3We point out that the LP-rounding algorithms of [22, 23] for stochastic Steiner tree problems use the LP-solution to guide
a primal-dual process for constructing a suitable forest, which is in fact precisely the primal-dual process of [1, 20] applied to a
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Once we have such a forest, property (b) holds by construction since the total cost of F is O(k∗R)
(Lemma 3.3). Moreover (step A2), if we shortcut each path P ∈ supp(x∗) so that it only contains nodes
w ∈ W for which red(w,P ) is contained in some component of F , then the resulting paths cover each
node in W to an extent of at least 0.5 and satisfy the conditions of part (ii) of Lemma 2.5 (see Lemma 3.4).
So by doubling the fractional values of the resulting paths, we obtain a fractional-path collection satisfying
property (a). Hence, we can obtainO(k∗) integral paths coveringW (step A3) and attach the nodes of V \W
to these paths (step A4) while ensuring that the total regret remains O(k∗R) (Lemma 3.5), and then apply
Lemma 2.2. We prove in Theorem 3.6 that the resulting solution uses at most 16k∗+1 ≤ 16γorient ·OPT +1
paths. In Section 3.1, we show how to obtain the improved guarantee stated in Theorem 3.2 by fine-tuning
the threshold used to form the forest F . We now describe the algorithm in detail and proceed to analyze it.

Algorithm 1 Input: A fractional solution x∗ to (P) obtained via Lemma 3.1; k∗ =
∑
P x
∗
P .

Output: O(k∗) paths, each having regret at most R, covering all the nodes.

A1. Finding a low-cost forest F . For a subset S ⊆ V ∪ {r} and a node v, define τ(v, S) :=
∑
P :red(v,P )⊆S x

∗
P ;

define f(S) = 1 if τ(v, S) < 1
2 for all v ∈ S, and 0 otherwise. Note that f is a downwards-monotone cut-

requirement function: if ∅ 6= A ⊆ B then f(A) ≥ f(B). We call a set S with f(S) = 1, an active set.

A1.1 Use the 2-approximation algorithm for {0, 1} downwards-monotone functions in [19] to obtain a forest F
such that |δ(S) ∩ F | ≥ f(S) for every set S ⊆ V ∪ {r}.

A1.2 For every component Z of F with r /∈ Z, choose a node w ∈ Z such that τ(w,Z) ≥ 1
2 (which exists since

f(Z) = 0). Call w the witness node for Z, and denote Z by Zw. Obtain a tour h(Z) traversing all nodes
of Z by doubling the edges of Z and shortcutting. Let W ⊆ V be the set of all witness nodes.

A2. Obtaining a fractional acyclic flow covering W .

A2.1 For every path P ∈ supp(x∗) we do the following. Let PW ⊆ P ∩W be the set of witness nodes w ∈ P
such that red(w,P ) is contained in Zw. We shortcut P past the nodes in P \ (PW ∪ {r}) to obtain a
rooted path φ(P ) spanning the nodes in PW . Note that shortcutting does not increase the creg-cost. Let
C′ ⊆ CR = {φ(P ) : P ∈ supp(x∗), φ(P ) 6= {r}} denote this new collection of non-trivial paths.

A2.2 Let H = ({r} ∪ V,AH) be the directed graph obtained by directing each path in C′ away from r. Let z =
(za)a∈AH

be the flow that sends
∑
P :φ(P )=P ′ x∗P flow along each path P ′ ∈ C′. We prove in Lemma 3.4

that H is acyclic, and that zin(w) :=
∑
a∈δinH (w) za ≥

1
2 for every w ∈W .

A3. Use the integrality property of flows to round 2z to an integer flow ẑ of no greater creg-cost and value k ≤ d2k∗e
such that ẑin(w) ≥ 1 for every w ∈W . Since H is acyclic, we may decompose ẑ into k rooted paths P̂1, . . . , P̂k
so that (possibly after some shortcutting) every node of W lies on exactly one P̂i path.

A4. Grafting in the nodes of V \ W . If there is a component Z of F containing r, we pick an arbitrary path, say
P̂1, and modify P̂1 by traversing h(Z) first and then visiting the nodes of P̂1 \ {r} (in the same order as P̂i).
Next, for every path P̂i, i = 1, . . . , k, we walk along P̂i and each time we visit a new node w ∈ W on P̂i we
traverse h(Zw) before moving on to the next node on P̂i. Let P̃i denote the resulting new path.

A5. Apply Lemma 2.2 to P̃1, . . . , P̃k to obtain the final set of paths (having maximum regret R).

Analysis. Let S(F ) denote the set of components of F . Note that V ⊆
⋃
Z∈S(F ) Z.

Lemma 3.3 The forest F computed in step A1 has cost at most 6·k∗ ·R. Thus,
∑

Z∈S(F ) c(h(Z)) ≤ 12k∗R.

Proof : Consider the following LP for covering the cuts δ(S) corresponding to active sets S.

min
∑
e

ceze s.t. z(δ(S)) ≥ 1 ∀∅ ( S ⊆ V ∪ {r}, z ≥ 0. (C-P)

suitable cut-requirement function. By making this function explicit, we obtain a more illuminating explanation for the algorithm
and a simpler, cleaner description and analysis.
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Define z by setting ze =
∑

P :e is red on P 2 · x∗P for all e. This is a feasible solution to (C-P) since for every
active set S and every node v ∈ S, we have that

1

2
< 1− τ(v, S) ≤

∑
P :red(v,P ) 6⊆S

x∗P ≤
∑
e∈δ(S)

( ∑
P :e∈red(v,P )

x∗P

)
≤ z(δ(S))/2.

Also,
∑

e ceze = 2
∑

P x
∗
P

(∑
e red on P ce

)
≤ 3

∑
P c

reg(P )x∗P ≤ 3k∗R. The penultimate inequality fol-
lows from Lemma 2.4, and the last inequality follows because supp(x∗) ⊆ CR and

∑
P x
∗
P = k∗. The 2-

approximation algorithm of [19] then guarantees that c(F ) ≤ 2·OPT (C-P) ≤ 6k∗R, Since c(h(Z)) ≤ 2c(Z)
for component Z of F , we have

∑
Z∈S(F ) c(h(Z)) ≤ 12k∗R.

Lemma 3.4 (i) For every path P ∈ CR, every red interval of P contains at most one node of PW . Therefore,
φ(P ) visits nodes v in strictly increasing order ofDv; (ii)

∑
P :w∈φ(P ) x

∗
P ≥

1
2 for everyw ∈W ; (iii) Hence,

the digraph H constructed in step A2 is acyclic, and zin(w) ≥ 1
2 for every w ∈W .

Proof : Part (iii) follows immediately from parts (i) and (ii). For part (i), recall that PW = {w ∈ P ∩W :
red(w,P ) ⊆ Zw}. If there are two nodes u, w of PW contained in some red interval of P then Zu∩Zw 6= ∅,
but this contradicts the fact that we add at most one node to W from each component of F . It follows that
φ(P ) contains at most one node from each red interval of P , and by Lemma 2.5, we have that φ(P ) visits
nodes v in strictly increasing order of distance Dv. For part (ii), we note that for a node w ∈ W , by
definition, we have that w ∈ φ(P ) iff red(w,P ) ⊆ Zw. So

∑
P :w∈φ(P ) x

∗
P =

∑
P :red(w,P )⊆Zw

x∗P =

τ(w,Zw) ≥ 1
2 , where the last inequality follows from the definition of Zw.

Lemma 3.5 The total regret of the paths P̃1, . . . , P̃k obtained in step A4 is at most 14 · k∗ ·R.

Proof : Let Zr denote the component of Z containing r; let Zr = ∅ and h(Zr) = 0 if there is no such
component. The regret of path P̃1 is creg(P̂1) +

∑
w∈P̂1

creg
(
h(Zw)

)
and the regret of P̃i for i 6= 1 is

creg(P̂i) +
∑

w∈P̂i:w 6=r c
reg
(
h(Zw)

)
.

The paths P̂1, . . . , P̂k obtained after step A3 have creg-cost at most the creg-cost of 2z, which is
2
∑

P ′∈C′ c
reg(P ′)

∑
P :φ(P )=P ′ x

∗
P ≤

∑
P c

reg(P )x∗P ≤ 2k∗R. Since the creg- and c-costs of a cycle are

identical (by Fact 2.1), the total regret of P̃1, . . . , P̃k is at most
∑k

i=1 c
reg(P̂i) +

∑
Z∈S(F ) c

(
h(Z)

)
≤

2k∗R+ 12k∗R = 14k∗R, where we use Lemma 3.3 for the last inequality.

Theorem 3.6 Algorithm 1 returns a feasible solution with at most 16k∗ + 1 ≤ 16γorient ·OPT + 1 paths.

Proof : Applying Lemma 2.2 to the paths P̃1, . . . , P̃k, which have total regret at most 14k∗R (by Lemma 3.5),
we obtain a collection of k′ rooted paths of maximum regret R whose union covers all nodes, where
k′ ≤

(
14k∗

k + 1
)
k ≤ 14k∗ + k ≤ 14k∗ + d2k∗e ≤ 16k∗ + 1.

3.1 Improvement to the guarantee stated in Theorem 3.2

We now describe the improvement that yields Theorem 3.2. Let δ ∈ (0, 1) be a parameter that we will
fix later. The only change is that we now define the cut-requirement function in step A1 as f(S) = 1 if
τ(v, S) < δ for all v ∈ S, and 0 otherwise. This results in a corresponding change to the integer flow ẑ
obtained in step A2.
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Mimicking the proof of Lemma 3.3, we see that setting ze =
∑

P :e is red on P x
∗
P /(1−δ) yields a feasible

solution to (C-P), and therefore we have, c(F ) ≤ 3
1−δ · k

∗R, and
∑

Z∈S(F ) c(h(Z)) ≤ 6
1−δ · k

∗R. Step A2
is unchanged, but parts (ii) and (iii) of Lemma 3.4 need to be suitably modified: we now have that the flow
z satisfies zin(w) ≥ δ for every w ∈ W . Correspondingly, we round z/δ to an integer flow in step A3, and
obtain at most dk∗/δe paths. Proceeding as in the proof of Lemma 3.5, we infer that the total regret of the
paths obtained after grafting in the nodes of V \W is at most

(
1
δ + 6

1−δ
)
k∗R.

Applying Lemma 2.2, this yields at most
(
1
δ + 6

1−δ
)
k∗+

⌈
k∗

δ

⌉
≤
(
2
δ + 6

1−δ
)
k∗+1 paths having regret at

most R. Taking δ =
√
3−1
2 to minimize the coefficient of k∗, we obtain the guarantee stated in Theorem 3.2.

4 Multiplicative-RVRP

Recall that in multiplicative-RVRP, we are given a regret-bound R, and we want to find the minimum
number of paths covering all nodes so that each node v is visited by time R ·Dv. When R = 1, the problem
can be solved in polytime (as this is simply additive-RVRP with regret-bound 0), so we assume that R > 1.
We show that multiplicative-RVRP reduces to RVRP incurring an O

(
log( R

R−1
)
-factor loss. The following

observation, which falls out of Lemma 2.2 will be quite useful.

Lemma 4.1 Let γRVRP be the approximation ratio of our RVRP-algorithm. Suppose there are k paths cov-
ering a given set S of nodes ensuring that every node in S has additive regret at most ρ. For any ε > 0, one
can efficiently obtain at most

⌊
γRVRPk

⌈
1
ε

⌉⌋
paths covering S such that each node in S has regret at most ερ.

Proof : We shortcut the k paths so that they only contain the nodes in S. The regret of each of these k
paths is at most ρ, so as in Lemma 2.2, we may break up each path into at most

⌈
1
ε

⌉
paths of regret at most

ερ. This creates at most k
⌈
1
ε

⌉
paths of regret at most ερ that cover S. So by using our algorithm for RVRP

with the node-set r ∪ S and regret-bound ερ, we obtain γRVRPk
⌈
1
ε

⌉
paths of regret at most ερ covering S.

Since the number of paths is an integer, we actually have
⌊
γRVRPk

⌈
1
ε

⌉⌋
paths.

Theorem 4.2 Multiplicative-RVRP can be reduced to additive-RVRP incurring an O
(
log( R

R−1)
)
-factor

loss. This yields an O
(
log( R

R−1)
)
-approximation for multiplicative-RVRP.

Proof : Let R = 1 + δ. For i ≥ 1, define Vi = {v : 2i−1 ≤ Dv < 2i}. Note that the Vis partition the
non-root nodes. LetO∗ denote the optimal value of the multiplicative-RVRP instance. We apply Lemma 4.1
with ε = 1

4 to the Vis: for each Vi, there areO∗ paths covering Vi such that each node in Vi has regret at most
δ · 2i, so we obtain at most N = b4γRVRPO∗c = O(O∗) paths covering Vi such that each node in Vi has
regret at most δ · 2i−2. Pad these with the trivial path {r} if needed, to obtain exactly N paths P i1, . . . , P

i
N .

Let M =
⌈
log2

(
3 + 8

δ

)⌉
= O

(
log2(

R
R−1)

)
. Now for every index i = 1, 2, . . . ,M and every j =

1, . . . , N , we concatenate the paths P ij , P
i+M
j , P i+2M

j , . . . by moving from the end-node of P i+aMj to r

before following P i+(a+1)M
j for each a ≥ 0. This yields MN paths that together cover all nodes.

To finish the proof, we show that every node v is visited by time R · Dv. Suppose v ∈ Vi+aM and is
covered by path P i+aMj . It’s visiting time is then at most cP i+aM

j
(v) + 2

∑
a′<a c(P

i+a′M
j ) ≤ Dv + δ ·

2i+aM−2 + 2
(
1 + δ

4

)∑
a′<a 2i+a

′M ≤ Dv

(
1 + δ

2 + 4 · 1+δ/4
2M−1

)
≤ R ·Dv.
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5 Applications to DVRP

Recall that the goal in DVRP is to find the fewest number of rooted paths of length at most D that cover all
the nodes. We say that a rooted path P is feasible if c(P ) ≤ D. The length-D prefix of a rooted path P ,
denoted by P (D), is the portion of P starting from r and up to (and including) the last node v ∈ P such that
cP (v) ≤ D. Let O∗ be the optimal value, and Rmax ≤ D be the maximum regret of a path in an optimal
solution, which we can estimate within a factor of 2.

We apply our algorithm for RVRP to prove two approximation results for DVRP. We obtain anO
( logRmax

log logRmax

)
-

approximation algorithm (Theorem 5.1), which also yields the same upper bound on the integrality gap of a
natural configuration LP (DV-P) for DVRP (Corollary 5.6). This improves upon theO(logD) approximation
factor and integrality-gap bound for (DV-P) proved in [29]. Note that for graphical metrics, that is, when
the underlying metric is the shortest-path metric of an unweighted graph, we may assume that D ≤ n2,
and so this yields an O

( logn
log logn

)
-approximation. Next, we show that the integrality gap of (DV-P) is also at

most O(OPTDV-P) (Theorem 5.7). This presents an interesting contrast with set cover for which there are
O(log n)-integrality-gap examples for the standard set-cover LP even when the optimal LP-value is a con-
stant. The configuration LP (DV-P) is also a set-cover LP, but our result precludes such an integrality-gap
construction for this LP. Our integrality-gap bounds suggest that the additional structure in DVRP can be
further exploited, perhaps by refining our methods, to derive improved guarantees.

5.1 An O
(

logRmax

log logRmax

)
-approximation

As a warm-up, note that a simple O(N)-approximation, where N =
⌈
log2(

Rmax
D−maxv:Dv<D Dv

)
⌉

, follows by

applying Lemma 4.1 with ε = 1
2 to the node-sets V0 =

{
v : D − Dv ≥ Rmax

2

}
, Vi =

{
v : D − Dv ∈

[Rmax

2i+1 ,
Rmax

2i
)
}

for i = 1, . . . , N−1, and VN = {v : Dv = D}, which partition V . For VN , we can obtain at
most O∗ regret-0 paths covering it. Each Vi, 0 ≤ i < N , the optimal solution uses O∗ to cover Vi causing
regret at most Rmax

2i
to these nodes. So, we obtain O(O∗) paths covering Vi causing regret at most Rmax

2i+1 to
the Vi nodes; hence, the length-D prefixes of these paths cover Vi.

We now describe a more-refined reduction yielding an improved O
( logRmax

log logRmax

)
-approximation. The

algorithm is again based on choosing suitable pairs of regret bounds and node-sets, and covering each node-
set using paths of the corresponding regret bound. However, instead of fixing the regret bounds to be Rmax

2i
,

we now obtain them by solving a dynamic program (DP).
Let Si = {v : D − Dv < 2i} for i = 0, . . . ,M = dlog2De. We use DP to obtain a set of feasible

paths P(i) covering Si for all i. We use F (i) to denote |P(i)|. For all 0 ≤ k < i, we use our algorithm
for RVRP to find a collection Q(i, k) of paths of regret at most 2k that cover Si, Let P(0) be the fewest
number of paths of regret 0 (and hence are feasible) that cover the nodes with Dv = D, which we can
efficiently compute. For i > 0, we set F (i) = min0≤k<i

(
|Q(i, k)|+F (k)

)
; if k′ is the index that attains the

minimum, then we set P(i) = P(k′) ∪ (length-D prefixes of the paths in Q(i, k′)). We return the solution
P(M), which we show is feasible.

Analysis. For ease of comprehension, we prove the approximation guarantee with respect to an integer
optimal solution here, and observe in Section 5.2 that the analysis easily extends to yield the same guarantee
with respect to the optimum value of the configuration LP.

Let γ = γRVRP < 31 be the approximation ratio of our RVRP-algorithm. We define a suitable set of
indices, that is, regret bounds, such that using these indices in the DP yields the desired bound on the number
of paths. In order to establish a bound on F (i) by plugging in a suitable index k < i we need two things.
First, we need to bound |Q(k, i)|. This requires a more sophisticated analysis than the one suggested by
Lemma 4.1. Instead of directly using all the paths from an optimal solution to bound the number of paths
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of certain regret required to cover a given set of nodes, we proceed as follows. We argue that by suitably
preprocessing the paths in an optimal solution (see Claim 5.2), we can obtain a near-optimal solution O
such that Si is covered by paths of O of regret at most 2i. We modify these O-paths by breaking them up
(as in Lemma 2.2) to obtain paths of regret at most 2k that cover Si, which yields a bound on |Q(i, k)|.
Second, we need to argue that we make suitable progress when moving from index i to index k. In a crucial
departure from the previous analysis, we make progress by either suitably decreasing the number, or the
maximum regret, of the paths, needed from O to cover the remaining set of nodes. These ingredients yield
the following theorem.

Theorem 5.1 F (M) ≤ O
( logRmax

log logRmax

)
·γRVRPN . So the above algorithm is anO

( logRmax

log logRmax

)
-approximation

algorithm for DVRP (where Rmax ≤ D is the maximum regret of a path in an optimal solution).

We start with the following simple, but useful claim.

Claim 5.2 Let P be a rooted path. We can obtain at most two paths P1 and P2, both ending at v =
arg maxv∈P Dv and together covering all the nodes on P such that creg(P1), c

reg(P2) ≤ creg(P ) and
c(P1), c(P2) ≤ c(P ).

Proof : Let t be the end-node of P . Let P1 be the r  v portion of P , and P2 be the path where we move
from r to t, and then traverse the t v portion of P . Clearly, creg(P1) ≤ creg(P ) and c(P1) ≤ c(P ). Also,
c(P2) = Dt + c(P )− c(P 1) ≤ Dv + c(P )− c(P1) ≤ c(P ) and creg(P2) = c(P2)−Dv ≤ c(P )−Dv ≤
c(P )−Dt = creg(P2).

We preprocess the paths in an optimal solution using Claim 5.2 losing a factor of 2. (Note that this is
solely for the purposes of analysis.) Let O = {P ∗1 , . . . , P ∗N} denote the resulting collection of paths, where
creg(P ∗1 ) ≤ . . . ≤ creg(P ∗N ) = Rmax, and N ≤ 2O∗. For i ≥ 0, define n(i) = |{P ∈ O : creg(P ) < 2i}|.
The preprocessing ensures that if a node v ∈ Si lies on a path P ∈ O, then creg(P ) ≤ D −Dv < 2i. So Si
is covered by the n(i) paths of O of regret less than 2i.

Lemma 5.3 For all i, P(i) consists of feasible paths that cover Si.

Proof : The proof is by induction on i. The base case when i = 0 clearly holds. For i > 0, P(i) =
P(k) ∪ (length-D prefixes of the paths in Q(i, k)) for some k < i. By the induction hypothesis, the paths
in P(k) have length at most D and cover Sk. So all paths in P(i) have length at most D. Consider a node
v ∈ Si \ Sk, and suppose that v lies on path P ∈ Q(i, k). Then, cP (v) = creg(P ) + Dv ≤ 2k + Dv ≤ D,
where the last inequality follows since v /∈ Sk implies that D −Dv ≥ 2k. Thus, v is covered by P (D).

Claim 5.4 F (z) ≤ 2zγn(z) for all z.

Proof : This is clearly true for z = 0. For z ≥ 1, F (z) ≤ |Q(z, 0)| + F (0). We have |Q(z, 0)| ≤
γ
(
n(1)+2z(n(z)−n(1))

)
since the n(z)−n(1) paths ofO of regret more than 1 can be broken up to yield

at most 2z (in fact 2z−1) paths of regret at most 1. Thus, F (z) ≤ 2zγn(z) (note that γ ≥ 1).

We will need the following technical lemma, whose proof we defer to the end of this subsection.

Lemma 5.5 Let {ai}ki=0 be a sequence of integers such that a0 > a1 > . . . > ak > 0, and 2ai+1−ai <
log2 ai+1

ai+1
for all i = 0, . . . , k − 1. Then, k = O

(
a0

log a0

)
.
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Proof of Theorem 5.1 : Let k(0) = 0. For i > 0, set k(i) = 0 if
(
n(i)−n(0)

)
·2i < n(i); otherwise, let k(i)

be the unique value of k ∈ {0, . . . , i−1} such that
(
n(i)−n(k)

)
·2i−k ≥ n(i) >

(
n(i)−n(k+1)

)
·2i−k−1

(which must exist). This choice of index in the expression for F (i) (roughly speaking) is tailored to ensure
that |Q(i, k(i))| ≤ 3γn(i) and n

(
k(i)

)
≤ n(i)

(
1−2k(i)−i

)
when k(i) > 0. To see the bound on |Q(i, k(i))|,

consider an arbitrary index 0 ≤ k < i. There are n(i)−n(k+1) paths inO with regret in the range [2k+1, 2i),
and n(k + 1) − n(k) paths in O with regret in the range [2k, 2k+1). Breaking up these paths into paths of
regret 2k as in Lemma 2.2, and combining with the n(k) paths of O of regret less than 2k yields at most
n(k) + 2

(
n(k + 1)− n(k)

)
+
(
n(i)− n(k + 1)

)
(1 + 2i−k−1) ≤ 2n(i) +

(
n(i)− n(k + 1)

)
2i−k−1 paths

of regret at most 2k covering Si. So by Lemma 4.1, we have

|Q(i, k(i))| ≤ γ
[
2n(i) +

(
n(i)− n(k(i) + 1)

)
2i−k(i)−1

]
< 3γn(i).

We now define a function G : {0, . . . ,M} 7→ Z+ based on the recurrence for F by plugging in index
k = k(i) in the definition of F (i). More precisely, set G(i) = F (i) for i ≤ 3. Set G(i) = |Q(i, k(i))| +
G
(
k(i)

)
for i > 3. It is easy to see by induction that F (i) ≤ G(i) for all i.

Let M ′ = 1 + blog2(Rmax)c. So 2M
′
> Rmax, and n(M ′) = N . If M ′ < M , then F (M) ≤

|Q(M,M ′)|+F (M ′), and |Q(M,M ′)| ≤ γO∗ since there O∗ paths of regret at most 2M
′

that cover V . So
we have F (M) ≤ γN + F (M ′) ≤ γN + G(M ′). To finish the proof, we prove that G(M ′) satisfies the
bound in the theorem statement.

Let k(0)(i) = i and k(j+1)(i) = k
(
k(j)(i)

)
. Define B(i) =

{
j > 0 : k(j)(i) > 0, 2k

(j)(i)−k(j−1)(i) <
log2 k

(j)(i)

k(j)(i)

}
and b(i) = |B(i)|. Recall that n

(
k(i)

)
≤ n(i)

(
1 − 2k(i)−i

)
when k(i) > 0. Thus, when

k(i) > 0, if b(i) = b
(
k(i)

)
then we decrease the number of paths of O required to cover Sk(i) by an

appropriate factor, and otherwise, we decrease the maximum regret of these paths considerably. Thus, b(i)
is a measure of the number of times we make progress starting from i by decreasing the maximum regret
significantly. Let g(x) = 2 for x < 4 and x

log2 x
otherwise. Note that g is an increasing function.

We prove by induction on i that G(i) ≤ 3γn(i) ·
(
g(i) + b(i)

)
+ 8γn(3). The base case is i = 0, which

holds since G(0) = F (0) ≤ n(0), since we can compute the minimum number of regret-0 paths covering
S0. Consider i > 0. We have G(i) ≤ 3γn(i) + G

(
k(i)

)
. If k(i) ≤ 3, then G(i) ≤ 3γn(i) + F

(
k(i)

)
≤

3γn(i) + 2k(i)γn
(
k(i)

)
≤ 3γn(i) + 8γn(3), where the second inequality follows from Claim 5.4. So

suppose k(i) ≥ 4, and so g
(
k(i)

)
= k(i)

log2 k(i)
. Then

G(i) ≤ 3γn(i) +G
(
k(i)

)
≤ 3γ

[
n(i) + n

(
k(i)

)( k(i)
log2 k(i)

+ b
(
k(i)

))]
+ 8γn(3)

≤ 3γn(i)

[
1 +

(
1− 2k(i)−i

)
· k(i)
log2 k(i)

+ b
(
k(i)

)]
+ 8γn(3).

If 2k(i)−i ≥ log2 k(i)
k(i) , then the above term is at most 3γn(i)

[ k(i)
log2 k(i)

+ b(i)
]

+ 8γn(3). Otherwise, b(i) =

b
(
k(i)

)
+1, and the above term is bounded by 3γn(i)

[ k(i)
log2 k(i)

+b(i)
]
+8γn(3). Since k(i)

log2 k(i)
= g
(
k(i)

)
≤

g(i), we have G(i) ≤ 3γn(i) ·
(
g(i)+ b(i)

)
+8γn(3), which completes the induction step. So by induction,

G(M ′) ≤ 3γN ·
(
g(M ′) + b(M ′)

)
+ 8γN .

For any i > 0, consider the sequence i, {kj(i)}j∈B(i). This sequence has b(i) + 1 terms and satisfies
the conditions of Lemma 5.5, so by that lemma, b(i) = O

(
i

log i

)
. Thus, G(M ′) ≤ 3γN · O

(
M ′

logM ′

)
=

γN ·O
( logRmax

log logRmax

)
, which completes the proof.

Proof of Lemma 5.5 : We may assume that ak ≥ 16, since otherwise, we may truncate the sequence at aj
where aj+1 < 16; we have k ≤ j + aj+1 = O(j), so we can proceed to bound j. Since log2 x/x ≤ 1/

√
x

for x ≥ 16, we have 2ai+1−ai < 1√
ai+1

for all i = 0, . . . , k − 1.
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Let i0 = 0. If ij−1 ≤ k, let ij ≤ k be the smallest index such that aij < aij−1/2 if this exists;
otherwise, let ij = k + 1. Let i0, ij1 , . . . , ij` ≤ k < ij`+1

be the indices generated this way. Note that
` ≤ log2(a0/ak) ≤ log2 a0.

Consider a subsequence aij , . . . , aij+1−1. We have 2ai+1−ai < 1√
ai+1
≤
√

2
aij

for all i = ij , . . . , ij+1−

2. It follows that 2−aij /2 ≤ 2
a(ij+1−1)−aij <

(
2
aij

)(ij+1−ij−1)/2 and hence, ij+1 − ij < 1 + f(aij ), where

f(x) = x
log2(x/2)

. Note that f is an increasing function.

Adding the above inequality for all the ` + 1 subsequences {ai}
ij+1−1
i=ij

where j = 0, . . . , `, we obtain

that k + 1 ≤ ` + 1 +
∑`

j=0 f(aij ), so k ≤ ` +
∑`

j=0 f(a0/2
j). Note that f(x) is a concave function

for x ∈ [16,∞) and that 16 ≤ ai` < a0/2
`. (We have f ′(x) = 1

log2 x−1
− 1

ln 2(log2 x−1)2
and f ′′(x) =

− 1
x ln 2(log2 x−1)2

+ 2
x ln2 2(log2 x−1)3

= 1
x ln 2(log2 x−1)2

(
2

ln 2(log2 x−1)
− 1
)
.) So

∑̀
j=0

f(a0/2
j) ≤ (`+ 1)f

(∑`
j=0 a0/2

j

`+1

)
≤ (`+ 1)f

(
2a0
`+1

)
≤ 2a0

log2
(
a0
`+1

) ≤ 8a0
log2 a0

.

The last inequality follows since log2
(
a0
`+1

)
≥ log2

(
a0

log2 a0+1

)
≥ log2 a0

4 since a0 ≥ 16. Hence, k ≤
log2 a0 + 8a0

log2 a0
≤ 9a0

log2 a0
provided ak ≥ 16. In general, we have k ≤ 16 + 9a0

log2 a0
= O

(
a0

log a0

)
.

5.2 LP-based approximation guarantees for DVRP

Consider the following configuration LP for DVRP, which is along the same lines as (P). Let PD denote the
collection of rooted paths of length at most D, which is indexed below by P .

min
∑
P

xP s.t.
∑
P :v∈P

xP ≥ 1 for all v ∈ V, xP ≥ 0 for all P. (DV-P)

The preprocessing described in Claim 5.2 can also be applied to a fractional solution to (DV-P) losing
a factor of 2. The only change is that when we create two paths P1, P2 from a path P with positive weight
x, we increase the weights of P1 and P2 by x and set the (new) weight of P to 0. We break ties while
preprocessing using an arbitrary, but fixed ordering over nodes; that is, if u, v are such that Du = Dv and u
comes before v in the ordering, then we ensure that no fractional path ending at v contains u.

Thus, notice that the DP-based algorithm described and analyzed in Section 5.1 also proves an integrality
gap of O

( logRmax

log logRmax

)
, where Rmax ≤ D is now the maximum regret of a path in the support of an optimal

LP-solution. The only change to the analysis is that the path-collection O is (of course) replaced with the
preprocessed LP-optimal solution, and that n(i) is now defined to be the total LP-weight of the fractional
paths having regret less than 2i. Nodes in Si are now covered to an extent of at least 1 by (preprocessed)
fractional paths having regret less than 2i. Also, since our algorithm for RVRP has an LP-relative guarantee,
to bound |Q(i, k)| it suffices to exhibit a collection of fractional paths of regret at most 2k that cover Si, and
this is done exactly as before.

Corollary 5.6 The integrality gap of (DV-P) is O
( logRmax

log logRmax

)
, where Rmax ≤ D is the maximum regret of

a path in the support of an optimal solution to (DV-P).

Let OPTDV-P denote the optimal value of (DV-P). We now present an LP-rounding algorithm showing
an integrality gap of O(OPTDV-P). As with (P), the separation problem for the dual of (DV-P) is an orien-
teering problem, so one can obtain a γorient-optimal solution to (DV-P) given a γorient-approximation algo-
rithm for orienteering. Let x∗ denote the fractional solution obtained after preprocessing the γorient-optimal
solution to (DV-P) as described above. Let k∗ =

∑
P x
∗
P ≤ 2γorientOPTDV-P. Let P ′ = {P : x∗P > 0}.
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Theorem 5.7 We can efficiently round x∗ to a feasible DVRP-solution that uses O(k∗2) paths.

Proof : For each v ∈ V let Pv = {P ∈ P ′ : P ends at v} and B(v) = {u ∈ V :
∑

P∈Pv :u∈P x
∗
P ≥

1
3k∗ }.

We partition V into V1, V2, . . . as follows. Take v1 to be the node furthest from the root r, where we break
ties using the same ordering that was used in the preprocessing step, and set V1 = B(v1). In general, suppose
we have formed V1, . . . , Vi−1, We pick vi+1 to be node in V \

⋃i−1
j=1 Vj that is furthest from r (breaking ties

as before), and set Vi = B(vi) \ ∪i−1j=1Vj . It is clear that the Vis are disjoint; we prove that vi ∈ Vi for every
i, and hence the Vis form a partition of V .

For each i we have
∑

P :vi∈P x
∗
P ≥ 1. Since we choose vi to be the furthest node in V \

⋃i−1
j=1 Vj ,

any path in P ′ containing vi can only end at a node in
⋃i−1
j=1 Vj . Since vi 6∈ B(vj) for all j < i, we

have
∑

P∈Pvi
x∗P ≥ 1 −

∑i−1
j=1

∑
P∈Pvj :vi∈P

x∗P > 1 − i−1
3k∗ . We argue that i < 3k∗. It suffices to show

that the above partitioning process terminates after at most N = b3k∗c steps. Suppose otherwise. Since∑
P∈Pvi

x∗P > 1− i−1
3k∗ for all i, and Pu ∩ Pv = ∅ for distinct nodes u and v, we have

∑
P

x∗P ≥
N∑
i=1

∑
P∈Pvi

x∗P > N −
N∑
i=1

i− 1

3k∗
> 3k∗ − 1− 3k∗(3k∗ − 1)

6k∗
≥ k∗

where the last inequality holds since k∗ ≥ 1.
Now consider a part Vi. Each P ∈ Pvi has length at most D, so creg(P ) ≤ D − Dvi . Hence, xi ={

3k∗x∗P }P∈Pvi
is a feasible solution to the RVRP-LP (P) for the instance with root r, node-set Vi, and regret

bound D − Dvi . By Theorem 3.2, we can efficiently find at most O(k∗
∑

P∈Pvi
x∗P ) paths with regret at

most D −Dvi covering Vi; each such path has length at most D since vi is the furthest node from r in Vi.
Doing this for every Vi-set, we obtain O(k∗

∑
P x
∗
P ) feasible paths covering all nodes.

6 Extensions

Additive-kRVRP. Recall that in additive-kRVRP, we fix the number k ≥ 1 of rooted paths that may be
used to cover all the nodes and seek to minimize the maximum regret of a node. We approach kRVRP by
considering a related problem, min-sum (additive) kRVRP, where the goal is to minimize the sum of the
regrets of the k paths. Our techniques are versatile and yield an O(k)-approximation for min-sum kRVRP,
which directly yields an O(k2)-approximation for kRVRP. These are the first approximation guarantees for
these problems, even for k = 2. The only previous approximation results for kRVRP were for the special
cases of tree metrics [7], and when k = 1 [6]. Partially complementing this, we prove in Section 7 that a
natural LP-relaxation for kRVRP along the same lines as (P) and (P2) has an integrality gap of Ω(k).

As in Section 3, our algorithm for min-sum kRVRP is based on LP rounding. Let C denote the collection
of all rooted paths. We now consider the following LP-relaxation for the problem, where we have a variable
xP for every rooted path. We use OPTR to denote the optimal value of (P2).

min
∑
P∈C

creg(P )xP s.t.
∑

P∈C:v∈P
xP ≥ 1 ∀v ∈ V (1) ,

∑
P∈C

xP ≤ αk, x ≥ 0. (P2)

Lemma 6.1 We can use a γMEP-approximation algorithm for unweighted MEP to compute, for any ε > 0, a
solution x∗ satisfying (1),

∑
P∈C x

∗
P ≤

k
1−ε , and

∑
P∈C c

reg(P )x∗P ≤
γMEP
1−ε ·OPTR, in time poly

(
input size, 1ε

)
.
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Lemma 6.1 is proved in Section 8. Let k∗ =
∑

P∈C x
∗
P and ν∗ =

∑
P∈C c

reg(P )x∗P . The rounding
procedure in Section 3 yields a bicriteria approximation. Choosing threshold δ = 1 − ε to define the cut-
requirement function in step A1 (see Section 3.1) yields

⌈
k∗

δ

⌉
= d(1 +O(ε))ke paths with total regret at

most
(
1
δ + 6

1−δ
)
ν∗ = O

(
1
ε

)
OPTR.

To obtain a true approximation, we choose ε in Lemma 6.1 so that k∗ ≤ k+ 1
3 and set the threshold δ to

be 1− 1
3k+2 . Steps A1 and A2 of Algorithm 1 then yield a forest F such that c(F ) ≤ 3

1−δ ·ν
∗ = 3(3k+2)ν∗,

a set W of witness nodes, and an acyclic flow z such that zin(w) ≥ δ for all w ∈ W . The flow ẑ = z/δ
is a flow of value k′ ≤ k∗/δ ≤ k + 2

3 . But instead of using this to obtain an integral flow of value at most
dk′e, we use the integrality property of flows in a more subtle manner. We may decompose ẑ into a convex
combination of integral flows z̃1, . . . , z̃` such that each z̃i is a flow of value at least bk′c satisfying z̃ini (w) ≥ 1
for all w ∈W . Therefore the convex combination must place a weight of at least 1

3 on the z̃i flows that have
value at most k. Choose the flow of value at most k with smallest creg-cost, and decompose this into k′′ ≤ k
rooted paths P̂1, . . . , P̂k′′ so that (maybe after some shortcutting) every node of W lies on exactly one P̂i
path. It follows that the total creg-cost of P̂1, . . . , P̂k′′ is at most 3 ·

∑
a∈H c

reg
a ẑa ≤ 3 · 3k+2

3k+1 ·
∑

a∈H c
reg
a za ≤

4
∑

P∈C c
reg(P )x∗P . Now we apply step A4 to obtain the final set of paths P̃1, . . . , P̃k′′ .

Theorem 6.2 The above algorithm returns at most k rooted paths having total regret O(k) · ν∗ = O(k ·
γMEP) · OPTR. Thus, we obtain an O(k)-approximation algorithm for min-sum kRVRP. This leads to an
O(k2)-approximation for kRVRP.

Proof : The total regret of P̃1, . . . , P̃k′′ is at most
∑k′′

i=1 c
reg(P̂i)+

∑
Z∈S(F ) c

(
h(Z)

)
≤
(
4+6(3k+2)

)
ν∗.

Multiplicative-kRVRP. This is the version of kRVRP with multiplicative regret. We can obtain a constant-
factor approximation for multiplicative-kRVRP as follows. Recall that G = (V ∪ {r}, E) is the underlying
graph. Let R∗ be the optimal value of the multiplicative-kRVRP problem, which we may assume we know
within a (1 + ε)-factor. Given an integer “guess” R of this optimum value, we consider the following
feasibility problem for multiplicative-kRVRP, which is an adaptation of the LP-formulation in [9] for the k-
route minimum-latency problem. Let T = R ·maxvDv. We use t to index the times in {1, . . . ,T}. (Recall
that all cuvs are positive integers.) We have variables xv,t for every node v and time t ∈ [Dv, R

∗ · Dv] to
denote that v is visited at time t. We also have variables ze,t for every edge e = (u, v) and time t to denote
that e lies on some path and both u and v are visited by time t.∑

t

xv,t = 1, xv,t = 0 if t /∈ [Dv, R ·Dv] ∀v;
∑
e

deze,t ≤ kt ∀t∑
e∈δ(S)

ze,t ≥
∑
t′≤t

xv,t′ ∀t, S ⊆ V, v ∈ S; x, z ≥ 0.
(P4)

The constraints encode that: (i) every node has multiplicative regret at most R; (ii) the total cost of the
portion of the k paths up to time t does not exceed kt; and (iii) if a node v is visited by time t then there
must be a path of edges traversed by time t connecting r to v. We use (P4)R to denote the above feasibility
program with regret-bound R.

Chakrabarty and Swamy [9] show that given a feasible solution (x, z), to (P4)R one can obtain k rooted
paths covering all nodes such that the visiting time of each client is O(1) ·

∑
t txv,t ≤ O(1) ·R ·Dv. Thus,

we obtain an O(1)-approximation provided we can solve (P4)R. We will not quite be able to do this, but
as in [9], we argue that despite the pseudopolynomial size of (P4)R, if it is feasible then one can efficiently
compute a feasible solution to (P4)(1+ε)R, for any ε > 0.
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Define Ti =
⌈
(1 + ε)i

⌉
, and let TS := {T0,T1, . . . ,T`} where ` is the smallest integer such that

T` ≥ R · maxvDv. Let (P4)TSR denote (P4)R when we only consider times t ∈ TS, and now enforce that
xv,t = 0 if t < Dv or t is larger than the smallest value in TS that exceeds R ·Dv.

Given a feasible solution (x, z) to (P4)R, we can obtain a feasible solution (x′, z′) to (P4)TSR as follows.
For t = Ti ∈ TS, we set z′e,t = ze,min(t,T) for every e, and x′v,t =

∑min(t,T)
t′=Ti−1+1 xv,t′ . It is easy to see that

(x′, z′) can be extended to a feasible solution (x′′, z′′) to (P4)(1+ε)R by “padding” it suitably: set x′′v,t = x′v,t
if t ∈ TS and 0 otherwise, and z′′e,t = z′e,Ti

for t ∈ [Ti,Ti+1). Finally, observe that (P4)TSR is a polynomial-
size feasibility program, so one can efficiently solve it.

To summarize, if (P4)R is feasible, then so is (P4)TSR and one can compute a feasible solution to (P4)TSR
efficiently, which can be rounded to obtain a solution with multiplicative regret O(1) ·R(1 + ε).

The same approach yields an O(1)-approximation for the problem of minimizing a weighted sum of
multiplicative regrets (with nonnegative weights). The only change is that instead of the feasibility program
(P4), we now have an LP whose constraints are given by (P4) and whose objective function is to minimize∑

v,t
wv
Dv
· txv,t, where wv is the weight associated with v’s regret. The compact LP with times in TS follows

analogously, and the rounding algorithm is unchanged.

Theorem 6.3 There is anO(1)-approximation algorithm for multiplicative-kRVRP. This guarantee extends
to the setting where we want to minimize a weighted sum of the multiplicative client-regrets (with nonnega-
tive weights).

Asymmetric metrics. We can also consider RVRP and kRVRP in directed graphs, that is, the distances
{cuv} now form an asymmetric metric. The regret of a node v with respect to a directed path P rooted at
r is defined as before, and we seek rooted (directed) paths that cover all the nodes. We crucially exploit
that, as noted in Fact 2.1, the regret distances {creguv } continue to form an asymmetric metric. Thus, we
readily obtain guarantees for asymmetric RVRP and asymmetric min-sum kRVRP by leveraging known
results for k-person s-t asymmetric TSP-path (kATSPP), which is defined as follows: given two nodes s, t
in an asymmetric metric and an integer k, find k s-t paths of minimum total cost that cover all the nodes.
Friggstad et al. [17] showed how to obtain O(k log n) s-t paths of cost at most O(log n) · OPT k, where
OPT k is the minimum-cost kATSPP solution that uses k paths; this was improved by [16] to the following.

Theorem 6.4 ([16]) For any b ≥ 1, we can efficiently find at most k + k
b paths of total cost O(b · log n) ·OPT k.

Theorem 6.4 immediately yields results for asymmetric min-sum kRVRP—since this is simply kATSPP
in the regret metric!—and hence, for asymmetric kRVRP.

Theorem 6.5 There is an O(k log n)-approximation algorithm for asymmetric min-sum kRVRP. This im-
plies an O(k2 log n)-approximation for asymmetric kRVRP.

We now focus on asymmetric RVRP. We may no longer assume that cuv > 0, but we may assume that
cuv + cvu > 0 as otherwise we can again merge nodes u and v. Consequently, at most one of (u, v) or (v, u)
may lie on a shortest rooted path, and so if R = 0, we can again efficiently solve the problem by finding a
minimum-cardinality path cover in a DAG. Let O∗ denote the optimal value of the given asymmetric RVRP
instance. Observe that Lemma 2.2 (as also Lemmas 2.4 and 2.5) continues to hold when c is asymmetric.
Thus, we again seek to find α · O∗ paths of average regret β · R, for suitable values of α and β. We show
that this can be achieved by utilizing (even) a bicriteria approximation algorithm for kATSPP.

Theorem 6.6 Suppose we have an algorithm for kATSPP that returns at most αk s-t paths covering all the
nodes with total cost at most β ·OPT k. Then, one can achieve an O(α+ β)-approximation for asymmetric
RVRP. Thus, the results in [17, 16] yield an O(log n)-approximation for asymmetric RVRP.
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Proof : Create an auxiliary complete digraph H = (VH , AH), where VH = {r} ∪ V ∪ {t}. The cost of
each arc (u, v) where u, v ∈ {r} ∪ V is its regret distance creguv ; for every v ∈ {r} ∪ V , the cost of (v, t) is 0
and the cost of (t, v) is∞. One can verify that these arc costs form an asymmetric metric.

We consider all values k in 1, . . . , n and consider the kATSPP instance specified by H , start node r,
and end node t. When k = O∗, we know that there is a solution of cost at most O∗ · R, so using the given
algorithm for kATSPP, we obtain at most αO∗ r  t paths in H of total cost at most β · O∗ · R. So the
smallest k for which we obtain at most αk paths of total cost at most β · k ·R satisfies k ≤ O∗. Removing t
from these (at most) αk ≤ α ·O∗ paths yields a solution in the original metric having total creg-cost at most
β ·O∗ ·R. by Lemma 2.2, this can be converted to a feasible solution using O

(
(α+ β) ·O∗

)
rooted paths.

We can obtain an O(log n)-approximation to OPT k using (at most) k log n paths [17], or 2k paths
(taking b = 1 in Theorem 6.4); plugging this in yields an O(log n)-approximation for asymmetric RVRP.

In Section 7, we prove that an α-approximation for asymmetric RVRP yields a 2α-approximation for
ATSP (Theorem 7.2); thus an ω(log log n)-factor improvement to the approximation ratio obtained in The-
orem 6.6 would improve the state of the art for ATSP.

Non-uniform RVRP. In this broad generalization of RVRP—which captures both multiplicative-RVRP
and DVRP—we have non-uniform integer regret bounds {Rv}v∈V and we seek the fewest number of rooted
paths covering all the nodes where each node v has regret at most Rv. Let Rmax = maxv Rv and Rmin =
minv:Rv>0Rv. We apply Lemma 4.1 to the sets V0 = {v : Rv = 0}, and Vi = {v : 2i−1 ≤ Rv < 2i} for
i = 1, . . . , O(logRmax). There are at most O

(
log2(

Rmax
Rmin

)
)

non-empty Vis. Let O∗ be the optimal value.
We cover V0 using at most O∗ shortest paths, and cover every other Vi-set using O(O∗) paths of regret at
most 2i−1. This yields a feasible solution using O

(
log(Rmax

Rmin
)
)
·O∗ paths.

Note that applying the set-cover greedy algorithm only yields anO(log2 n)-approximation, since finding
a minimum-density set is now a deadline TSP problem for which we only have anO(log n)-approximation [4].

Capacitated variants. Vehicle-routing problems are often considered in capacitated settings, where we
are given a capacity bound C, and a path/route is considered feasible if it contains at most C nodes (and
is feasible for the uncapacitated problem). Capacitated additive-kRVRP does not admit any multiplicative
approximation in polytime, since it is NP-complete to decide if there is a solution with zero regret [8]. How-
ever, when we do not fix the number of paths, a standard reduction [29, 7] shows that an α-approximation to
the uncapacitated problem yields an (α + 1)-approximation to the capacitated version. This reduction also
holds in asymmetric metrics. Thus, we obtain approximation ratios of 31.86 and O(log n) for capacitated
RVRP in symmetric and asymmetric metrics, and an O

( logD
log logD

)
-approximation for capacitated DVRP.

Multiple depots and/or fixed destinations. A natural generalization of the rooted setting is where we
have a set S = {r1, . . . , rp} of depots/sources, and a set T = {t1, . . . , tq} of destinations/sinks, and every
path must begin at an S-node and end at a T -node (and may contain nodes of S ∪ T as intermediate nodes).
We call such a path an S-T path. We define the regret of a node v with respect to an S-T path P to be
cP (v) − minri∈S criv, that is, the waiting time v spends in excess of the minimum time it takes to serve v
from any depot. We define the regret of nodes in S ∪ T , which may lie on multiple paths, as follows. The
regret of a source ri ∈ S is the minimum regret it faces along any path containing it (which is 0 if some
path originates at ri). The regret of a sink tj is the minimum regret it faces along any path ending at tj ; this
effectively means that we may assume (by shortcutting) that tj is not an intermediate node on any S-T path.
We obtain two variants of RVRP: (1) in S-T RVRP, the goal is to find the minimum number of S-T paths
of regret at most R that cover all nodes; (2) in multi-pair RVRP, the goal is the same, but we have |S| = |T |
and require that an S-T path starting at ri must end at ti.
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We can reduce S-T RVRP to RVRP as follows. Let
(
G = (V,E), {cuv}) be the underlying metric. We

create a new root node r and add edges (r, ri) with crri = R for all ri ∈ S. We also create nodes t′1, . . . , t
′
q,

and have an edge (ti, t
′
i) with ctit′i = R for all i = 1, . . . , q. Let H be the resulting (non-complete) graph.

Let cH denote the shortest-path metric of H . Observe that DH
v := cHrv = minri∈S criv +M . It is easy to see

that any solution to S-T RVRP in G translates to a RVRP solution in H . Conversely, given a RVRP solution
in H , we take every rooted walk P ′ in H and do the following. Note that neither r, nor any t′j node can be
intermediate nodes of P ′. We remove the root r and possibly the end-node of P ′ (if this is some t′j) to obtain
a path P inG starting at some depot ri. For every v ∈ P ′∩V , we have cHP ′(v) = cP (v)+M , so the regret of v
does not increase. Also, if P ′ covers t′j then P must end at tj , and moreover cregP (tj) = regret of t′j along P ′.
Finally, shortcut P past the intermediate nodes in P ∩ T and extend the resulting path to end at an arbitrary
sink (if it does not already do so). The resulting collection of paths is a feasible solution to S-T RVRP in G.

Clearly, this reduction also works in asymmetric metrics. So Theorems 3.2 and 6.6 yield approximation
ratios of O(1) and O(log n) for S-T RVRP in symmetric and asymmetric metrics respectively. We can also
consider the S-T and multi-pair versions of kRVRP and min-sum kRVRP, where we seek to cover all nodes
using k S-T paths, or k S-T paths such that paths starting at ri ∈ S end at ti ∈ T , so as to minimize the
maximum/total regret of a path. Note that k ≥ |T |. The above reduction preserves the number of paths that
are used. Hence, this reduction can also be used for kRVRP, and we obtain the same guarantees for the S-T
kRVRP and S-T min-sum kRVRP in symmetric and asymmetric metrics as those listed in Theorems 6.2
and 6.5 respectively.

For multi-pair RVRP, we can leverage our techniques to achieve an O(q)-approximation, where q =
|S| = |T |. In contrast, Theorem 7.3 shows that the multi-pair versions of kRVRP cannot be approximated
to any multiplicative factor in polytime; the status of multi-pair asymmetric RVRP is open. We formulate a
configuration LP with a variable for every ri-ti path of regret at mostR, for i = 1, . . . , q, and approximately
solve this LP to obtain x∗. We assign each node v to an (ri, ti) pair satisfying

∑
ri-ti paths P x

∗
P ≥

1
q , ensuring

that ri, ti are assigned to (ri, ti). Let Vi be the nodes assigned to (ri, ti). Shortcut each ri-ti path to contain
only nodes in Vi, and multiply the resulting fractional solution by q. For every i = 1, . . . , q, this yields a
collection x(i) of fractional regret-R-bounded ri-ti paths covering Vi (to extent of 1). We now merge all
the ris to create a supernode r (modifying each fractional path accordingly), and round each x(i) separately
using Algorithm 1. Thus, for each i = 1, . . . , q, we obtain O(

∑
P x

(i)
P ) ri-ti paths of regret at most R

covering Vi, and hence O(q
∑

P x
∗
P ) paths in all.

7 Approximation and integrality-gap lower bounds

We now present lower bounds on the inapproximability of RVRP and kRVRP, and the integrality gap of the
configuration LPs considered. We obtain both absolute inapproximability results (assuming P6=NP), and
results relating the approximability of our problems to that of other well-known problems.

Theorem 7.1 It is NP-hard to achieve an approximation factor better than 2 for additive- and multiplicative-
RVRP.

Proof : We give simple reductions from TSP and TSP-path. First, consider additive-RVRP. Given an
instance

(
G = (V,E), {cuv}

)
, where c is a metric, and a length bound D, we reduce the problem of

determining if there is a TSP solution of length at most D to determining if there is an additive-RVRP
solution of value 1. It follows that it is NP-hard to approximate additive-RVRP to a factor better than 2.

We designate an arbitrary node of G as the root r, create a new node r′ and add an edge (r, r′) of cost
D. The (additive) RVRP instance is specified by the shortest-path metric of this new graph H , root r, and
regret-bound D. A TSP solution of length at most D yields a RVRP solution using one path, where we
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traverse the TSP tour starting from r and then visit r′. Conversely, given a RVRP solution that uses a single
path P , P must end at r′, and so removing r′ from P yields a TSP tour in G of length at most D.

For multiplicative-RVRP, we consider the following decision version of TSP-path: given a “sink” t, we
want to decide if there is a Hamiltonian path of length at most D having t as one of its end points. We show
that this reduces to the problem of deciding if there is a multiplicative-RVRP solution of value 1; hence, it
is NP-hard to approximate multiplicative-RVRP within a factor better than 2.

We add two new nodes r and r′ to G. We add edges (r, v) of cost D for all v ∈ V , and edges (r, r′)
and (t, r′) of cost 2D. The multiplicative-RVRP instance is specified by the shortest-path metric of this new
graph H , root r and regret-bound 2. Note that crv = D for all v ∈ V , and crr′ = 2D. A TSP-path P
of length D ending at t yields a multiplicative-RVRP solution that uses one path, where we move from r
to the start node of P , then traverse P , and finally visit r′. This is feasible since the visiting time of every
v ∈ V is at most 2D, and the visiting time of r′ is at most 4D ≤ 2crr′ . Conversely, suppose we have a
multiplicative-RVRP solution that uses a single pathQ. Then, Qmust end at r′, otherwise some node v ∈ V
has visiting time at least 4D > 2crv. So Q must move from r to some v ∈ V , then cover all the nodes in V
ending at t, and finally move from t to r′. Thus, Q restricted to V yields a Hamiltonian path P in G ending
at t. The visiting time of r′ is D + c(P ) + 2D ≤ 2 · 2D, so c(P ) ≤ D.

Next, we prove that the approximability of asymmetric RVRP is closely related to that of ATSP. In
particular, this connection implies that improving our results for asymmetric RVRP (Theorem 6.6) by an
ω(log log n)-factor would improve the state-of-the-art for ATSP.

Theorem 7.2 Given an α-approximation algorithm for RVRP in asymmetric metrics, one can achieve a
2α-approximation for ATSP.

Proof : Suppose we have an ATSP instance with distances cuv whose optimal value is OPTATSP. For
a given parameter R, the following algorithm will return a solution of cost at most 2α · R provided R ≥
OPTATSP. We can then use binary search to find the smallest R for which the algorithm returns a solution
of cost at most 2α ·R, and thus obtain an ATSP solution of cost at most 2α ·OPTATSP.

Fix any node to be the root r. The algorithm first runs the α-approximation for asymmetric RVRP on
the RVRP instance specified by the metric c and regret bound R to find some collection of rooted paths
P1, . . . , Pk. Let vi be the end node of Pi. For each Pi, we add the (vi, r) arc to obtain an Eulerian graph.
The cost of the resulting Eulerian tour is

∑k
i=1(c(Pi) + cvir).

We claim that ifR ≥ OPTATSP then this cost is at most 2α ·R. To see this, note that an optimal solution
to the ATSP instance also yields a Hamiltonian path starting at r of cost at most R. Since the regret cost
of a rooted path is at most its cost, we infer that the optimum solution to the asymmetric RVRP instance
with regret bound R uses only 1 path. Thus, we obtain that k ≤ α. We know that c(Pi) ≤ Dvi + R, and
Dvi + cvir ≤ OPTATSP for every i = 1, . . . , k. Thus,

∑k
i=1(c(Pi) + cvir) ≤ α(R+OPTATSP) ≤ 2αR.

Friggstad [16] proved a hardness result for the multi-pair version of kATSPP. We observe that this
reduction creates a kATSPP instance where the metric is essentially a regret metric. Thus, we obtain the
following hardness results for multi-pair kRVRP.

Theorem 7.3 It is NP-complete to decide if an instance of multi-pair kRVRP has a solution with zero regret.
Hence, no multiplicative approximation is achievable in polytime for multi-pair kRVRP and multi-pair min-
sum kRVRP. Moreover, multi-pair RVRP is NP-hard even when the regret-bound is zero.

Proof : We dovetail the reduction in [16]. Given a tripartite graph G = (U ∪ V ∪W,E) with |U | = |V | =
|W | = n, the tripartite triangle cover problem is to determine if there are n vertex-disjoint cliques (which
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must be copies of K3) in G. This problem is NP-complete [18].4

Create four layers of nodes V1, V2, V3, V4 where V1 and V4 are disjoint copies of U , V2 is a copy of V ,
and V3 is a copy of W . For each edge e = (u, v) ∈ E, there is exactly one index i for which the copies of u
and v are in consecutive layers. Without loss of generality, say u ∈ Vi and v ∈ Vi+1. Then we add an edge
between the copy of u in Vi and v in Vi+1 with cost R > 0.

Finally, for each u ∈ U we create a source-sink pair that starts at the copy of u in V1 and ends at the
copy of u in U4. Denote the shortest path metric of this graph by H . As in [16], G can be covered with n
vertex-disjoint cliques if and only if H has a solution with maximum (or total) regret 0.

The same reduction shows that multi-pair RVRP is NP-hard even with regret bound 0. Fixing the regret-
bound to zero, H has a multi-pair RVRP solution using k paths iff G can be covered with k vertex-disjoint
cliques.

Integrality-gap lower bounds. We prove that a natural configuration-style LP-relaxation for kRVRP has
an Ω(k) integrality gap. A common technique used for min-max (or bottleneck) problems is to “guess” the
optimal valueB, which can often be used to devise stronger relaxations for the problem as well as strengthen
the analysis, since B now serves as a lower bound on the optimal value; examples include the algorithms
of [27, 34, 36] for unrelated-machine scheduling, and [2] for bottleneck ATSP. We show that this approach
does not work for kRVRP. Given a guessR on the maximum regret, similar to (P) and (P2), one can consider
the following feasibility problem to determine if there are k rooted paths in CR that cover all nodes. (Recall
that CR is the collection of all rooted paths with regret at most R.)∑

P∈CR:v∈P
xP ≥ 1 ∀v ∈ V,

∑
P∈CR

xP ≤ k, x ≥ 0. (P3)

Let RLP be the smallest R for which (P3) is feasible, and R∗ be the optimal value of the kRVRP instance.
We describe instances where R∗ ≥ k ·RLP; thus, the “integrality gap” of (P3) is at least k.

Theorem 7.4 For any integers h, c ≥ 1, there is a kRVRP instance with k = c(2h− 1) such that RLP ≤ 1
but any integer solution with maximum regret less than 2h − 1 must use at least k + c rooted paths. Thus,
(i) c = 1 yields R∗ ≥ k · RLP; (ii) taking c = h shows that one needs k + c = k + k

2h−1 paths to achieve
maximum regret less than (2h− 1)RLP.

Proof : Our instance will consist of copies of the following “ladder graph” Lh = ({r} ∪ V,E). We have
V = {u1, v1, u2, v2, . . . , u2h−1, v2h−1}. Define u0 = r = v0. E consists of the edges {(ui, ui+1), (vi, vi+1) :
0 ≤ i < 2h − 1}, which have cost h, along with edges {(ui, vi) : 1 ≤ i ≤ 2h − 1}, which have unit cost
(see Figure 1). Consider the shortest path metric of Lh. Any rooted path that covers all nodes of Lh must
have regret at least 2h− 1 (and this is achieved by the path r, u1, v1, v2, u2, . . . , u2h−1, v2h−1).

Consider the paths P1, . . . , P2h−1 given by

Pi =

{
r, u1, u2, . . . , ui, vi, vi+1, vi+2, . . . , v2h−1 if i is odd
r, v1, v2, . . . , vi, ui, ui+1, ui+2, . . . , u2h−1 if i is even

Each Pi has regret exactly 1 and each node w 6= r lies on precisely h of these paths. So setting xPi = 1
h for

all i = 1, . . . , 2h− 1, and xP = 0 for all other paths in C1 yields a solution that covers all the nodes in V to
an extent of 1 using 2− 1

h paths.

4Strictly speaking, [18] shows that triangle cover in general graphs is NP-hard via a reduction from exact cover by 3-sets.
However, one can easily verify that if we use the NP-complete 3D-matching problem (which is a special case of exact-cover-by-3-
sets) in their reduction, then the resulting triangle-cover instances are tripartite.

22



r

v1

u1

v2

u2

v3

u3

v4

u4

v5

u5

1 1 1 1 1

h

h
h

h

h

h

h

h

h

h

Figure 1: The ladder graph L3. Path P4 is highlighted with dashed edges.

The final instance consists of ch copies of Lh that share the root r but are otherwise disjoint. We set
k = c(2h − 1). Taking the above fractional solution for each copy of Lh, yields a feasible solution to (P3)
when R = 1. Now consider any integer solution with maximum regret less than 2h − 1. Note that any
rooted path with regret less than 2h can only traverse nodes from a single ladder Lh. Also, as noted above,
if a single path covers all the nodes of some copy of Lh, then this path has regret at least 2h− 1. Therefore,
the solution must use at least 2ch = k + c paths.

8 Solving the configuration-style LPs (P) and (P2)

Proof of Lemma 3.1 : We obtain an approximate solution to (P) (reproduced below), by considering the
dual problem (D), which has an exponential number of constraints. Recall that P indexes paths in CR.

min
∑
P

xP (P)

s.t.
∑
P :v∈P

xP ≥ 1 ∀v ∈ V (2)

x ≥ 0.

max
∑
v

πv (D)

s.t.
∑
v∈P

πv ≤ 1 ∀P (3)

π ≥ 0. (4)

The πv dual variables correspond to the primal constraints (2). We show that (D) can be solved approx-
imately, and hence (P) can be solved approximately. Separating over the dual constraints (3) amounts to
determining, given rewards {πv} on the nodes, if there is a rooted path of regret at most R that gathers
reward more than 1. We try all possible locations t for the end-node of this path; for a given destination t,
the above problem is an instance of orienteering.

Define P(ν; a) := {π : (3), (4),
∑

v πv ≥ aν}. Note that OPT is the largest ν such that P(ν; 1) 6=
∅. We use the γorient-approximation algorithm to give an approximate separation oracle in the following
sense. Given ν, π, we either show that π/γorient ∈ P(ν; 1), or we exhibit a hyperplane separating π from
P(ν; γorient). Thus, for a fixed ν, in polynomial time, the ellipsoid method either certifies thatP(ν; γorient) =
∅, or returns a point π with π/γorient ∈ P(ν; 1). The approximate separation oracle proceeds as follows.
We first check if

∑
v πv ≥ γorientν, (4) hold, and if not, use the appropriate inequality as the separating

hyperplane. Next, for each location t ∈ V , we run the γorient-approximation algorithm for orienteering
specified by rewards {πv}, r, t, and length bound Dt + R. If in this process we ever obtain a rooted path
P with reward greater than 1, then P ∈ CR and we return

∑
v∈P πv ≤ 1 as the separating hyperplane.

Otherwise, for all paths P ∈ CR, we have
∑

v∈P πv ≤ γorient and so π/γorient ∈ P(ν; 1).
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We find the largest value ν∗ (via binary search) such that the ellipsoid method run for ν∗ (with the
above separation oracle) returns a solution π∗ with π∗/γorient ∈ P(ν∗; 1); hence, ν∗ ≤ OPT . For any
ε > 0, running the ellipsoid method for ν∗ + ε yields a polynomial-size certificate for the emptiness of
P(ν∗ + ε; γorient). This consists of the polynomially many violated inequalities returned by the separation
oracle during the execution of the ellipsoid method and the inequality

∑
v πv ≥ γorient(ν

∗ + ε). By duality
(or Farkas’ lemma), this means that here is a polynomial-size solution x to (P) whose value is at most
γorient(ν

∗ + ε). Taking ε to be 1/ exp(input size) (so ln
(
1
ε

)
is polynomially bounded), this also implies that

x has value at most γorientν∗ ≤ γorient ·OPT .

Proof of Lemma 6.1 : The proof is similar to the proof of Lemma 3.1, but requires a more refined argument.
We again argue that an approximate solution to the dual LP (D2) can be computed efficiently. However, since
the dual objective function contains negative terms, even if our approximate separation oracle deems a point
(π, z) to be feasible, implying that some point in the neighborhood of (π, z) is feasible for (D2), we cannot
necessarily claim any guarantee on the value of this dual feasible solution relative to the value of (π, z) (in
fact its value may even be negative!). Consequently, we will need a more refined notion of approximation
for the dual LP. This in turn will translate to a approximate solution for the primal, where the approximation
is in both the objective value and the satisfaction of the primal constraints.

min
∑
P∈C

creg(P )xP (P2)

s.t.
∑

P∈C:v∈P
xP ≥ 1 ∀v ∈ V∑

P∈C
xP ≤ k

x ≥ 0.

max
∑
v

πv − kz (D2)

s.t.
∑
v∈P

πv ≤ z + creg(P ) ∀P ∈ C (5)

π, z ≥ 0. (6)

Define

Q(ν; a, b) :=
{

(π, z) : (6),
∑
v∈P

πv ≤ z +
creg(P )

b
∀P ∈ C,

∑
v

πv − a · kz ≥ ν
}
.

So OPTR is the largest ν such that Q(ν; 1, 1) 6= ∅. For a set S of nodes, let π(S) denote
∑

v∈S πv. The
separation problem forQ(ν; 1, 1) amounts to finding a rooted path that maximizes

(
π(P )−creg(P )

)
. Given

a γMEP-approximation algorithm for unweighted MEP, one can obtain a path P such that π(P )− creg(P )
β ≥

maxQ∈C
(
π(Q) − creg(Q)

)
/α, where α = (1 − ε)−1 and β = γMEP/(1 − ε). Let πmax = maxv πv. We

scale and round the rewards to π′v =
⌊

πv
επmax/n

⌋
. We try every destination t and run the γMEP-approximation

algorithm on the instance with rewards {π′v} (which involves making at most nε copies of a node), r, t. If an
optimal solution P ∗ ends at t and achieves reward Π∗ (note that Π∗ ≥ πmax), then we obtain an r-t path P
with reward at least Π∗ − επmax ≥ (1− ε)Π∗ and creg(P ) ≤ γMEP · creg(P ∗).

We use the above bicriteria approximation algorithm as follows. Given ν, π, z, we first check if
∑

v πv−
αkz ≥ ν, (6) hold; if not, we use the appropriate inequality as a separating hyperplane between (π, z) and
Q(ν;α, β). Next, we use the above algorithm to obtain a rooted path P . If π(P ) − creg(P )

β > z, then we

use π(P ) ≤ z+ creg(P )
β as a separating hyperplane between (π, z) andQ(ν;α, β). Otherwise, we know that

π(Q)− creg(Q) ≤ αz for all Q ∈ C, and so (π, αz) ∈ Q(ν; 1, 1).
Thus, for a fixed ν, the ellipsoid method either determines that Q(ν;α, β) = ∅ or returns a point

(π, αz) ∈ Q(ν; 1, 1). We find the largest value ν∗ for which the latter outcome is obtained. So ν∗ ≤ OPTR.
For any ε > 0, running the ellipsoid method with ν = ν∗ + ε returns a polynomial-size certificate for the
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emptiness of Q(ν;α, β). Taking ε = 1/ exp(input size), this shows that ν∗ is an upper bound on the
maximum value of

∑
v πv−αkz subject to (6) and the constraints π(P )− creg(P )/β ≤ z for every P ∈ C′,

where C′ ⊆ C is the polynomial-size collection of paths corresponding to the path-inequalities returned by
the approximate separation oracle. Taking the dual, we obtain the following LP:

min
∑
P∈C′

creg(P )
β · xP s.t.

∑
P∈C′:v∈P

xP ≥ 1 ∀v ∈ V,
∑
P∈C′

xP ≤ αk, x ≥ 0.

whose optimal value is at most ν∗. The optimal solution x∗ to the above LP satisfies the desired properties.
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